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Abstract We present a review and critique of several meth-
ods for the simulation of the dynamics of colloidal sus-
pensions at the mesoscale. We focus particularly on simu-
lation techniques for hydrodynamic interactions, including
implicit solvents (Fast Lubrication Dynamics, an approxi-
mation to Stokesian Dynamics) and explicit/particle-based
solvents (Multi-Particle Collision Dynamics and Dissipative
Particle Dynamics). Several variants of each method are com-
pared quantitatively for the canonical system of monodis-
perse hard spheres, with a particular focus on diffusion char-
acteristics, as well as shear rheology and microstructure. In
all cases, we attempt to match the relevant properties of a
well-characterized solvent, which turns out to be challeng-
ing for the explicit solvent models. Reasonable quantitative
agreement is observed among all methods, but overall the
Fast Lubrication Dynamics technique shows the best accu-
racy and performance. We also devote significant discussion
to the extension of these methods to more complex situa-
tions of interest in industrial applications, including models
for non-Newtonian solvent rheology, non-spherical particles,
drying and curing of solvent and flows in complex geome-
tries. This work identifies research challenges and motivates
future efforts to develop techniques for quantitative, predic-
tive simulations of industrially relevant colloidal suspension
processes.

1 Introduction

Colloidal suspensions have garnered significant research
interest for more than a century, both from a fundamental
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academic perspective and for their relevance in technolog-
ical applications. Although the study of colloidal suspen-
sions extends more broadly to different phases of the dis-
persed and dispersion media (e.g. foams, emulsions, gels,
aerosols) [94,189], we focus exclusively on solid particles
dispersed in a liquid medium (sols). For the purposes of
this work, we define the colloidal regime based on a length
scale that is much larger than molecular dimensions, but
small enough that thermal fluctuations as well as colloidal
forces (i.e. van der Waals dispersion and long-range electro-
static forces) are significant. For typical systems, this trans-
lates to effective particle diameters on the order of sev-
eral tens of nanometers to several microns (∼0.1–2µm).
Traditional application areas for such colloidal suspensions
include sedimentation of clays [54,166], oil recovery and
transport [143,213], and rheological properties of paints, cos-
metics, adhesives, food products, etc. [44,53]. More recently,
there has been renewed interest in particle suspensions due
to their presence in biological systems (e.g. red blood cells
and platelets in blood [43,84,148,177], microorganisms in
biological suspensions [61], proteins and nucleic acids in
aqueous environments [108], drug encapsulation and deliv-
ery [157]) as well as their applications in nanotechnology and
nanomanufacturing processes (e.g. nanoparticle-reinforced
composites [76,215], battery electrodes [236], control of
optoelectronic properties by specific arrangements of col-
loidal particles [195], sol–gel synthesis [28]).

From an applications perspective, the goal of studying col-
loidal suspensions is to understand, predict and control sus-
pension rheological properties and particle microstructure. In
applications where the desired product is a liquid suspension
(e.g. cosmetics, adhesives, paints, food products), rheologi-
cal properties are directly relevant to product performance;
in cases where the solvent is cured or removed, the rheologi-
cal properties of the suspension are critical to manufacturing
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processing conditions, whereas the final (dry) microstruc-
ture largely governs product properties and performance. For
example, in injection-molded parts, particulate composites
and thin film coatings, the spatial and orientational distribu-
tion of particles can drastically affect product properties.

However, both rheology and microstructure formation are
complex, non-equilibrium phenomena. A more fundamen-
tal process that governs both of these is colloid diffusion.
Although it may not be directly relevant in some applica-
tions, we argue that diffusion, which is a dynamic, equilib-
rium process, fundamentally underlies rheological properties
and microstructure formation, and must be well-understood
before these more complex phenomena can be addressed.
Furthermore, diffusivity is in principle a readily measurable
quantity, and diffusion is sufficiently complex to reflect many
of the relevant underlying physics (hydrodynamic interac-
tions, colloidal forces). Colloidal diffusion processes have
also been studied extensively by theory, experiments and sim-
ulations. We therefore identify diffusion, rheological proper-
ties and microstructure formation as the three main properties
of interest in the study of colloidal suspensions.

One of the difficulties in studying colloidal systems lies in
obtaining accurate information on disparate time and length
scales, which is essential to understanding macroscale behav-
ior. Common experimental techniques include various forms
of radiation scattering (e.g. X-ray, neutron, laser), confo-
cal microscopy, fluorescence recovery after photobleach-
ing (FRAP), pulsed-field-gradient nuclear magnetic reso-
nance (PFG NMR), and a host of conventional techniques
for probing rheology and imaging microstructures. With
regard to dynamics, light scattering techniques provide exten-
sive information on the spatial and temporal correlations
between particles, typically in the form of structure fac-
tors and intermediate scattering functions [14,56,151,183].
However, with increasing complexity (e.g. particle aggre-
gation, polydispersity, complex particle shapes and flow
geometries), interpreting these quantities becomes more dif-
ficult, and significant limitations exist with regard to particle
sizes, volume fractions and accessible time scales. Confocal
microscopy techniques paired with image recognition algo-
rithms have emerged as an important tool for directly prob-
ing the dynamics and structural evolution of colloidal sys-
tems [39,46,55,230], but also have limitations with regard
to particle size, time scales and various limiting require-
ments for the optical properties of the particles and sol-
vent (e.g. equal refractive indices). PFG NMR [158,209],
FRAP [20,102] and rheology techniques [77,155,188,189]
provide key information about average dynamical properties
such as diffusion coefficients and frequency-dependent rhe-
ological data, but cannot directly probe dynamics at the indi-
vidual particle scale, and the interpretation of microstructure
evolution is often not straightforward. Computer simulations
at the mesoscale, where colloidal particles are treated as dis-

crete elements much larger than the atomic scale, have there-
fore emerged as an important additional tool for the study
of colloidal suspensions, both to aid in the interpretation of
experimental data and in some cases as standalone predictive
techniques.

The focus of this work is to discuss and evaluate sev-
eral computer simulation methods relevant to colloidal sus-
pensions. We do not attempt a comprehensive literature
review of all such techniques, as the field is quite large;
instead, we focus on several methods that are primarily
off-lattice and particle-based, where the colloidal particles
are always treated explicitly (sometimes referred to as a
Lagrangian approach), while the solvent is treated either as
a separate set of particles (explicit) or incorporated in the
colloid–colloid interaction (implicit). The methods we have
selected are Fast Lubrication Dynamics (FLD) [31,124,126],
which is a recently-developed expedient approximation to
Stokesian dynamics (SD) [25–27]; multi-particle collision
dynamics (MPCD) [92,164,169] originally known as sto-
chastic rotation dynamics (SRD) [144]; and dissipative par-
ticle dynamics (DPD) [87,95]. We largely exclude several
important classes of colloid suspension simulation tech-
niques, including lattice-based treatments of the solvent
(in particular, Lattice-Boltzmann techniques [1,37,57,128];
field-based or Eulerian treatments of the particles, where a
spatially-varying continuous density variable is used rather
than explicit particles to represent the solid phase [64]; and a
host of continuum Navier–Stokes-based techniques for treat-
ment of the solvent, including various finite element, finite
difference, volume-of-fluid, boundary element and spectral
methods [66,78,80,83,96,134,163]). That said, we do cite
important work in these areas in Sect. 5 of this paper, as
often they offer the only route to address challenging appli-
cations. We also exclude particle-based continuum treat-
ments of the solvent (sometimes referred to as “meshless
methods” [13,161]), such as smoothed particle hydrody-
namics (SPH) [82,159], the element-free Galerkin method
(EFGM) [12,73], the reproducing kernel particle method
(RKPM) [137,138] or the finite point method (FPM) [167].
To our knowledge, these latter methods have not been applied
to the study of colloidal suspensions, and their potential in
this area remains largely unexplored. All of the aforemen-
tioned techniques have proved extremely useful in many
cases, and we discuss them briefly where appropriate.

We note that many excellent reviews of computer simula-
tion techniques for colloidal suspensions similar to those on
which we are focusing already exist in the literature. Barnes
et al. [9] provided an early survey of particle-based simu-
lation methods for dense suspension rheology, but did not
carry out a quantitative comparison of the various meth-
ods, and several currently popular techniques (DPD, MPCD)
had not been developed at the time of their work. Brady
and Bossis [27] and Foss and Brady [75] have summarized
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the development and extensive applications of the Stoke-
sian Dynamics method, which has been highly successful
for a broad range of problems. Harting et al. [91] reviewed
the use of MPCD and Lattice-Boltzmann methods for parti-
cle suspensions, and provided useful guidelines as to which
method is more appropriate for various physical situations.
The review by Dunweg and Ladd [57] of Lattice-Boltzmann
methods for colloidal suspensions also gives an excellent
overview of DPD, MPCD and SD-based methods and the
underlying theory. Van der Sman has presented an excellent
survey of methods that include Lattice-Boltzmann, a vari-
ety of continuum-based treatments of the solvent as well as
DPD and MPCD for suspension flows in confined geome-
tries [207]. His work provides qualitative insights into match-
ing these diverse methods with various length scales and flow
regimes, and suggests that the Lattice-Boltzmann method
may be the most versatile for complex geometries over multi-
ple length scales. More recently, Dickinson [52] has reviewed
the state of the art for a number of particle-based simulation
methods and the insights they provide on colloid aggregation
and phase behavior.

However, the reviews listed above rarely report quantita-
tive comparisons of simulation methods for the same system
in a manner that allows for direct critical evaluation of their
accuracy. Several authors have recently presented rigorous
quantitative comparisons of some of these methods: Batôt
et al. [11] have compared colloid diffusion and conductivity
for neutral and charged particles using MPCD and Brown-
ian dynamics (BD). They employed two different collisional
coupling schemes for MPCD, and BD with no hydrodynamic
interactions as well as using a Felderhof hydrodynamic ten-
sor [70]. Tomilov et al. [217] quantified various colloid aggre-
gation properties using BD, BD with a Yamakawa–Rotne–
Prager hydrodynamic tensor [234] and MPCD. Schlauch et
al. [193] compared finite element, Lattice-Boltzmann, and
Stokesian dynamics methods for their ability to reproduce
forces and torques on assemblies of stationary colloid parti-
cles, but did not investigate dynamic suspensions. In previous
work [197], we reported a comparison of MPCD, FLD and
DPD in the context of diffusion and rheological properties
for a system of colloidal polystyrene particles in aqueous
solution. The simulation methods were tested briefly against
a system of hard-sphere colloids, but the emphasis was on
their ability to reproduce the experimentally measured prop-
erties of the polystyrene–water system. In this work, we delve
into greater detail for the hard-sphere colloid system with an
emphasis on colloid diffusion characteristics, and explore
additional methodological details for all of these simula-
tion techniques. All the methods that we discuss have been
incorporated into the same parallel molecular dynamics soft-
ware package (LAMMPS [176]), which will allow for an
even more direct comparison, including computational per-
formance. Furthermore, we devote substantial discussion in

Sect. 5 to the feasibility of extending these techniques for
predictive simulations of more complex physics and real-
istic manufacturing processes. Overall, it is hoped that this
work will help identify areas of deficiency for the various
techniques discussed and motivate additional method devel-
opment efforts.

A high-level summary of the key findings of this work
is presented in Table. 1. The table shows that while implicit
solvent methods are more accurate for the simple systems
addressed in this paper, explicit methods offer far greater
promise for more advanced applications. The underpinning
reasons for this will become clearer in the sections that follow.
Specifically, in Sect. 5 we discuss the various extensions of
these techniques to more complex physical situations. We
include this table here as motivation for what follows, as well
as a convenient summary of outstanding research challenges
in the field.

The remainder of the paper is organized as follows: Sect. 2
presents a historic perspective on key developments in colloid
suspension theory and an overview of the dominant physics
involved in colloidal suspension modeling. Section 3 dis-
cusses the details of the different simulation techniques that
we focus on in this work (FLD, MPCD and DPD), including
a section devoted to the efficient implementation of simula-
tion algorithms for colloidal systems. In Sect. 4, we present
simulation results from our work as well as from the litera-
ture. We emphasize diffusion of hard-sphere colloids as a key
metric for the accuracy of various simulation methods, but
also discuss predictions of rheological behavior and equilib-
rium colloid particle microstructure. In all cases, we provide
an evaluation of the different simulation methods, includ-
ing accuracy, flexibility and computational speed. Section 5
is devoted to advanced capabilities standing in the way of
extension of these methods to complex applications. Finally,
we conclude with a summary of our findings, some of the out-
standing challenges, and future directions for particle-based
simulations of colloids.

2 Background

2.1 Historical perspective

Seminal work in the theory of colloidal suspensions dates
back to investigations of single-particle Brownian motion
by Einstein [62] and Smoluchowski [227], and subsequent
experimental validation by Perrin [171], all of which were
instrumental in confirming the atomic nature of matter. Sub-
sequent theoretical studies on the equilibrium properties
of colloidal suspensions by Derjaguin and Landau [49] as
well as Verwey and Overbeek [224] focused on understand-
ing the origins of interactions between colloidal particles.
This resulted in the Derjaguin–Landau–Verwey–Overbeek
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Table 1 Summary of the current capabilities of simulation methods treated in this work. Coloring indicates the relative state of development for
various capabilities (green—most mature; yellow—moderately mature; red—least mature). (Color table online)

(DLVO) theory, which describes forces of molecular ori-
gin between bodies immersed in an electrolyte, and can be
used to quantify several key features of colloid aggrega-
tion. With regard to dynamic properties, extensive theoret-
ical developments towards Fokker–Planck formulations of
single- and multi-particle colloidal systems appear in several
sources [34,50,147]. While the direct use of such formula-
tions is generally unwieldy, they provide a rigorous starting
point and a justification for the Langevin and generalized
Langevin equations that form the basis of many current sim-
ulation algorithms. Additionally, several approximations for
colloid diffusion coefficients and suspension viscosity have
been derived theoretically for simple systems in the dilute
limit [10]. Unfortunately, for most practical applications of
interest, the complexity of realistic colloidal suspensions pre-
cludes the direct use of a purely theoretical treatment.

Computer-aided simulation has greatly accelerated the
understanding of colloidal systems. The typical computa-
tional framework consists of an N -body Newtonian dynam-
ics solver to treat the colloidal particles (i.e. a discrete ele-
ment model, or DEM framework), coupled with a solver
for the hydrodynamic effects of the suspending fluid. Origi-

nal algorithms for DEM simulations date back to molecular
dynamics (MD) simulations of simple Lennard-Jones fluids
in the late 1950s [2], but a fully atomistic treatment of a
colloidal suspension still remains largely intractable due to
the vast separation in length and time scales between sol-
vent molecules and colloidal particles. Typically, the solvent
degrees of freedom are coarse-grained in some fashion. Sem-
inal work by Ermak and McCammon resulted in a Brown-
ian dynamics algorithm for the simulation of a collection of
spherical particles, with various approximations for hydro-
dynamic interactions [65]. A significant refinement of the
Ermak and McCammon algorithm came in the form of Stoke-
sian dynamics (SD) [25–27,59]. SD includes a near-field
correction to the interparticle hydrodynamic interaction as
well as improvements to the far-field interaction by account-
ing for torques and stresslets. Both the Ermak–McCammon
algorithm and Stokesian dynamics algorithms treat hydro-
dynamics based on multipole expansions to solve the Stokes
equation in the presence of moving spheres. Despite often
prohibitive computational costs, these methods have proved
to be remarkably accurate and extremely useful, and more
recent accelerated versions [8,154,200] as well as simplified
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versions such as Fast Lubrication Dynamics (FLD) [126]
show even greater promise. However, due to their underly-
ing assumptions, they are often limited in terms of flexibil-
ity to different geometries (particle shapes as well as over-
all domain geometry) and complicating physical phenomena
(e.g. complex solvent rheology, drying—see Table. 1).

In parallel, an increasing number of lattice-based (e.g.
lattice gas automata and Lattice-Boltzmann; various grid-
based Navier–Stokes solvers) as well as off-lattice particle-
based treatments of the solvent have emerged. Some of
the significant developments aimed at colloidal suspensions
came in the form of Lattice-Boltzmann algorithms which
include thermal fluctuations [130] and the development of
coarse-grained particle-based solvents methods like dissi-
pative particle dynamics (DPD) [95] and smoothed parti-
cle hydrodynamics (SPH) [82,140]. More recently, a hybrid
lattice-off-lattice algorithm known as stochastic rotation
dynamics (SRD) [144] or Multi-Particle Collision Dynamics
(MPCD) [92,164] has gained traction in the soft matter sim-
ulation community. The SRD algorithm was derived from
techniques developed for rarefied gas flow simulations, e.g.
direct simulation Monte Carlo (DSMC) [18]. The DPD and
MPCD methods are discussed in greater detail in Sect. 3, fol-
lowing a description of the key physics involved in modeling
colloidal suspensions.

2.2 Governing physical principles

We describe a suspension of colloidal particles as a col-
lection of N interacting, moving particles in carrier liq-
uid, or “solvent”. In three dimensions, each colloidal par-
ticle i has in general three translational degrees of free-
dom ri and three orientational degrees of freedom ωi .
We group these into the 6N -dimensional vector r =
{r1, r2, . . . , rN , ω1, ω2, . . . , ωN }. Similarly, the translational
and angular velocities of all particles are lumped into the vec-
tor U, the forces and torques into the vector F, and the masses
and moments of inertia into the matrix M.

In the general framework of a collection of N colloidal
particles submerged in a bath of Ns solvent particles, the
equations of motion for the colloidal particles can be written
as:

M
dU

dt
= F = FC + FS (1)

Here, FC is the resultant (conservative) force acting on
the particles due to interactions with other colloidal parti-
cles, and FS is the resultant force due to interactions with
solvent particles. When the solvent is treated atomistically,
the nature and form of the two interactions are often simi-
lar, and an additional Ns equations similar to (1) are required;
when the solvent particles are coarse-grained representations

of actual solvent molecules, FS is given by a modified pair-
wise interaction or a suitable solvent–colloid collision rule.
The choice of these rules and interactions depends on the
method. We will return to the details of the various methods
in subsequent sections.

An alternative approach to the simulation of additional sol-
vent particles relies on a continuum treatment of the solvent.
As a result, the solvent degrees of freedom can be discarded,
but the forces experienced by the colloid particles must be
modified to reproduce the key effects of the solvent. This
typically assumes that the momentum relaxation timescale
in the solvent is much smaller than the timescale of colloid
diffusion (i.e. steady flow). The motion of a given colloidal
particle induces a flow field in the solvent, which in turn
affects its own motion (drag) as well as the motion of the
remaining colloidal particles (hydrodynamic interactions).
Collectively, these effects are lumped into the hydrodynamic
forces, FH . In addition, colloidal particles experience a large
number of collisions with solvent molecules, which give rise
to Brownian motion. We denote the resulting forces as FB ,
the total Brownian force. The equations of motion for such a
model are therefore given by:

M
dU

dt
= F = FC + FH + FB (2)

We refer to all such models of colloidal suspensions as
implicit solvent models. While the term “implicit solvent”
often refers to models that also account for the thermo-
dynamic effects of solvents on conservative inter-particle
interactions [187] (e.g. electrostatic screening, hydropho-
bic effects, etc.), we use the term to refer exclusively to
the hydrodynamic and dissipative effects of the solvent. The
aforementioned thermodynamic properties of the solvent are
accounted for in the conservative interparticle force term FC .
In both implicit and explicit solvent models, FC is a conser-
vative force that depends only on particle positions (and ori-
entations), while the hydrodynamic force FH in implicit sol-
vent models depends additionally on particle velocities, and
the Brownian force is constrained to satisfy the fluctuation-
dissipation theorem.

In the remainder of this section, we provide a discussion
of the general physical principles underlying each of these
types of forces. The details pertaining to the treatment and
implementation of the solvent models are largely deferred to
Sect. 3.

2.2.1 Hydrodynamic interactions

Hydrodynamic interactions and Brownian motion of col-
loidal particles arise naturally when using explicit represen-
tations of the solvent, so long as several relatively simple con-
ditions are met. First, the solvent dynamics should conserve

123



326 Comp. Part. Mech. (2014) 1:321–356

mass, linear and angular momentum and energy on the time
and length scales relevant to the motion of colloidal particles.
When a constant temperature must be maintained in the sol-
vent, the thermostatting algorithm must be carefully designed
so as to minimize interference with the flow characteristics.
Second, the coupling between colloidal particles and sol-
vent must be done in a manner consistent with particle-scale
flow characteristics; in the canonical case of a hard-sphere
colloidal suspension, this typically entails enforcing no-slip
boundary conditions at the particle surface. Several other fea-
tures are additionally desirable for explicit solvents, such as
Galilean invariance, incompressibility, realistic solvent rheo-
logical and thermodynamic properties and realistic Schmidt
number (ratio of momentum to mass diffusivity). In many
cases, the solvent coarse-graining process compromises on
several of these features in order to keep the methods com-
putationally expedient (cf. Sect. 3).

Implicit solvent methods augment the particle forces with
hydrodynamic interactions and fluctuating Brownian forces,
as shown in Eq. (2). The most common starting point for
implicit solvent models is a continuum treatment via the
Navier–Stokes equations. Due to the small size of colloidal
particles, inertial effects are insignificant (low Reynolds
number), which leads to hydrodynamics well-described by
the Stokes equations:

∇ p = µ∇2v

∇ · v = 0
(3)

where v is the fluid velocity, p is the pressure and µ is the
fluid dynamic viscosity. We note that in writing Eq. (3), we
have also assumed a Newtonian solvent. A Green’s func-
tion (equivalent to the Oseen tensor) can be obtained for the
Stokes equations, and a boundary integral equation represen-
tation can be used to reduce the three-dimensional system of
Eq. (3) to a two-dimensional integral equation system [116].
This is the basis of the Boundary Element Method (BEM),
which can be used to solve the flow field for arbitrary particle
geometries, and as such represents a highly general approach
to the treatment of Stokes hydrodynamics [116]. Unfortu-
nately, the BEM is computationally too expensive for the
time scales of interest in the present work, so we do not pur-
sue it here.

Several approaches have been devised to approximate the
hydrodynamic interactions for systems that exhibit certain
symmetries in particle shapes and relatively simple computa-
tional domains. A key simplifying feature of the Stokes equa-
tions is their linearity, which makes the generalized hydrody-
namic force/torque vector FH a linear function of the particle
translational/angular velocities U:

FH = RU (4)

Here, R is known as the hydrodynamic resistance tensor,
which in the current formulation is a 6N -dimensional matrix
that describes the effects of the velocity of any particle on
the hydrodynamic force experienced by any other particle in
the system. Additionally, we have implicitly assumed that no
bulk flow fields are imposed. The Langevin equation for the
colloid particles then becomes:

M
dU

dt
= FC + RU + FB (5)

Both hydrodynamic and Brownian forces originate from
interactions between colloidal and solvent particles, so it is
not surprising that they are closely related. This relation-
ship can be derived based on the well-known fluctuation-
dissipation theorem, and yields the following requirement
for the properties of the 6-N -dimensional Brownian force
vector FB :

〈FB〉 = 0

〈FB(t)FB(t + τ)〉 = 2kB T RδD(τ ) (6)

Here, angular brackets denote an ensemble average, t and
τ represent time, kB and T are Boltzmann’s constant and
the system temperature, respectively, and δD is the Dirac
delta function. Clearly, the many-body resistance tensor R is
central for both hydrodynamic and Brownian forces. Much
of the research effort in developing implicit solvent methods
has been devoted to finding accurate and computationally
efficient approximation schemes to this resistance tensor.

The work of Ermak and McCammon [65] set the ground-
work for many subsequent implicit solvent methods. The
basic premise of their algorithm is to integrate Eq. (5) twice
in time and determine the particle displacements over a time
step ∆t much larger than the inertial time scale of the colloid
particles τC = m/6πµa, where µ is the solvent viscosity, m

is the particle mass and a is the particle radius. The interested
reader is referred to the original work for details [65]. We note
that this approach effectively ignores the inertial time scale
of the colloid particles, which is not always a good assump-
tion. In the current notation, the resulting expression for the
evolution of particle positions r is given by:

r(t +∆t) = r(t)+R−1FC∆t +kB T ∇ ·R−1∆t +R−1FB∆t

(7)

The inverse of the resistance tensor R−1 is known as
the mobility tensor, M. The constraint from fluctuation-
dissipation theorem on the magnitude of the Brownian force
FB in this formulation is:

〈FB〉 = 0

〈FB(t)FB(t + ∆t)〉 = 2kB T R/∆tδD(∆t) (8)
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The simple forward time-stepping scheme in Eq. (7) can
be problematic due to difficulties associated with comput-
ing the divergence of the mobility tensor (∇ · R−1). Sev-
eral tractable alternatives exist, including the use of a mid-
point time-stepping scheme [71,85]. The entries in the mobil-
ity tensor (or equivalently, the resistance tensor) can be
derived from various analytical treatments of the Stokes
equations (3). In the simplest case inter-particle hydrody-
namic interactions are ignored, leaving only isotropic drag
terms corresponding to the dilute limit. This yields resistance
tensor entries Ri j = 6πµRδi j for all force-translational
velocity couplings, and Ri j = 8πµR3δi j for all torque–
angular velocity pairs. The accuracy of this simple treatment,
often termed Brownian dynamics (BD), is expected to deteri-
orate when colloid particles are in close proximity. However,
its convenient diagonal form is computationally expedient
owing to the simple inversion of the resistance tensor. More
sophisticated mobility tensors have been derived based on a
multipole expansion treatment of the Stokes equations. In the
original formulation of Ermak and McCammon, the Oseen
tensor [90,235] as well as the Rotne–Prager tensor [186] were
implemented. The resulting algorithms are also classified as
Brownian dynamics, but modified based on various approx-
imations for the hydrodynamic tensor. Such methods have
met with some success and can often reproduce qualitative
trends in suspension diffusion and rheological properties, but
perform poorly for dense suspensions or when particles are in
close contact. In near-contact regimes, lubrication forces can
only be accounted for with high-order terms in the moment
expansion, which is impractical. As it stands, the computa-
tional cost of these methods is fairly significant, due to the
calculation of the resistance tensor, which scales as N 2, and
the inversion of the mobility matrix required for the Brown-
ian displacement terms, which scales as N 3 [7,57].

The more rigorous Stokesian dynamics (SD) technique
[25–27,59,75] has addressed many of the shortcomings in the
accuracy of these techniques, albeit at even higher computa-
tional cost. The discussion so far has centered on a quiescent
suspension of monodisperse spherical particles in an infi-
nite medium. In its original form, the SD method efficiently
accounts for near-field lubrication terms, considers the pos-
sibility of an imposed linear shear flow, and improves the
far-field hydrodynamics with the inclusion of stresslet (SH )
to rate-of-strain (E∞) coupling. For more details, the inter-
ested reader is referred to the original literature [27,59,75].
In Sect. 5, we discuss the application of SD to non-spherical
particles and general geometries.

The Stokesian dynamics technique has proved extremely
powerful, and remains one of the most accurate methods
available for simulating multi-body hydrodynamics in the
context of colloidal suspensions. However, due to its high
computational cost it is currently extremely difficult to reach
the time scales of interest for long-time diffusion. While the

recently-developed accelerated Stokesian dynamics (ASD)
techniques [8,200] have extended the timescales accessible
to SD, the algorithm still scales poorly on parallel archi-
tectures. Variants and further improvements to ASD are
available [48,72,107,125,153,200,225]. Additionally, sev-
eral simpler pair-drag models [7] that are based primarily on
pairwise lubrication terms have emerged as potential alterna-
tives, particularly for high colloid volume fractions. The most
recent variant of ASD, now commonly known as fast lubrica-
tion dynamics (FLD) [31,124,126], represents a significant
simplification of SD and has shown considerable potential
for use in predictive simulations of realistic systems. This
technique is very closely related to an approximate version
of ASD introduced by Banchio and Brady [8], which they
dubbed ASDB-near-field, or ASDB-nf. We adopt the FLD
nomenclature simply because more details are available on
its implementation and performance [31,124,126] and it has
been tested more extensively for the types of systems and the
time scales that we are interested in here [126,197].

The FLD technique is based on splitting the resistance
tensor R into an isotropic part that accounts for far-field
multi-body effects, R0 and a part that accounts for short-
range pairwise lubrication effects, Rδ:

R = R0 + Rδ (9)

The key simplifying assumption in FLD is choosing R0 to
be a diagonal tensor:

R0 =

⎛

⎜

⎝

6πµa f 0
FU (φ)I 0 0

0 8πµa3 f 0
T �(φ)I 0

0 0 20
3 πµa3 f 0

SE (φ)I

⎞

⎟

⎠

(10)

The scalars f 0
FU , f 0

T � and f 0
SE are functions only of the vol-

ume fraction of colloid particles φ, and are empirically fitted
to match the short-time diffusivity and viscosity obtained
from SD simulations. The details of the fitting procedure as
well as other aspects of the method are described in greater
detail in works by Kumar, Bybee and Higdon [31,124,126].

The lubrication component of the resistance tensor Rδ

is computed using only pairwise frame-invariant interac-
tions [7] based on lubrication theory solutions of two-particle
interactions [106,117], similar to what is done for the near-
field component of the SD algorithm. This gives rise to inter-
actions that include terms of order δ as well as δ log(δ), where
δ is the inverse of the distance between surfaces at the point of
nearest approach for a pair of particles (δ = 1/(ri j −ai −a j );
ai and a j are the particle radii, and ri j is the distance between
their centres). Following previous work [31,124,197], we
have tested the algorithm both with and without the log(δ)

terms.
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The FLD method thus combines the pairwise near-field
lubrication interactions that are dominant at high volume
fractions and small inter-particle separations with a reason-
able approximation for the far-field resistance tensor, which
dominates at large particle separations. It inherits the flexi-
bility of SD to account for imposed linear shear flows, but
also its limitations with regard to more complex boundaries,
flow conditions and solvent rheological properties. Although
the discussion thus far has focused on monodisperse spherical
particles, the extension to polydispersity is relatively straight-
forward, with pairwise lubrication expressions given by Kim
and Karrila [116]. Extensions of SD and FLD to nonspher-
ical particles will be discussed in Sect. 5, and more details
pertaining to the implementation of FLD in this work are
deferred to Sect. 3.

2.2.2 Conservative inter-particle interactions

The conservative force Fc in Eqs. (1) and (2) is only a func-
tion of particle positions, and includes inter-particle forces
as well as any effects from external forces. The physical
basis of conservative inter-particle interactions is typically
a very short-range repulsion due to steric effects (i.e. volume
exclusion/particle collision), a short-range attractive force
that has its physical origins in dispersion interactions, and a
long-range screened electrostatic force, which may be either
attractive or repulsive. For multicomponent solvents, attrac-
tive depletion forces due to the presence of additional solutes
can also be significant. Typically, surface chemistries of col-
loidal particles and solvent properties (pH, ionic strength) are
modulated in order to balance the attractive van der Waals
force with a repulsive electrostatic force and promote par-
ticle dispersion. Conservative inter-particle forces can often
be approximated as a sum of pairwise two-body interactions,
each of which depend only on the separation ri j between par-
ticles i and j (as well as relative orientation for non-spherical
particles). The total conservative force can thus be written as a
sum of pairwise inter-particle forces and any external forces:

Fc
i =

N
∑

j=1, j �=i

Fc
i j (ri j ) + Fext,i (ri ) (11)

The assumption of pairwise interactions ignores the pos-
sibility of multi-body effects, which can be problematic in
some cases. For instance, colloidal particles coated with rel-
atively large surface ligands (e.g. polymers) can interact in
ways that alter the coating structure, which in turn affects
their interactions with additional colloids. The discrete ele-
ment framework can in principle be extended to include
multi-body effects if their functional form can be determined,
but the added complexity and expense are typically not jus-
tified.

The form of pairwise inter-particle forces Fc
i j (ri j ) is highly

dependent on the details of the colloid particle material,
colloid surface topology and chemistry, solvent properties
and thermodynamic state variables. Typically, the potential
energy Ui j (ri j ) associated with the interaction of two parti-
cles is described, and the force is then trivially obtained from:

Fc
i j (ri j ) = −dUi j (ri j )

dri j

ri j

ri j

(12)

Determining the functional form of Ui j (ri j ) for two par-
ticles in a solvent requires an averaging (or coarse-graining)
of all degrees of freedom other than the inter-particle separa-
tion. This may include molecular details of the solvent (e.g.
counterion distribution, hydration layers), the colloid surface
(e.g. passivating ligands/polymers, any condensed counteri-
ons) and the colloid interior particle structure. In a rigorous
statistical mechanical framework, Ui j (ri j ) is the potential of
mean force between colloidal particles. Indeed, fully atom-
istic simulations of two colloidal particles can be used to com-
pute the potential of mean force for a given system, which
can then be tabulated and used in a larger scale simulation of
a many-particle colloidal suspension [132]. This approach is
computationally expensive, often suffers from statistical con-
vergence issues, is only practical for systems with monodis-
perse, homogeneous particles and is only as accurate as the
underlying atomistic force field. However, with improved
force fields and increasingly powerful computing resources,
it has the potential to become a key component in a multi-
scale modeling framework for colloidal suspensions.

The most common approaches to evaluating Ui j (ri j ) rely
on approximate analytical theories that describe the domi-
nant physical processes responsible for inter-particle inter-
actions. The classic DLVO theory treats screened electro-
static/electrical double layer interactions in the context of
a linearized mean-field approximation for the counterion
distribution in the solvent, and dispersion interactions in
terms of summations of empirical forms of atomic dis-
persion potentials. A detailed derivation is not given here
for either case, since these are available in many other
works [49,63,68,104,224]. Several forms of the electrostatic
interaction can be found in literature, and all contain a term
that decays exponentially with inter-particle separation. An
excellent discussion of these electrostatic potentials is given
by Elimelech et al. [63]. In previous work [197], we have
used the following form for the electrical double layer inter-
action potential for two particles with radius a separated by
a center-to-center distance r :

Uel(r) = 64πkTρ∞aψ2
0

κ2
e−κ(r−2a) (13)

ρ∞ is the bulk electrolyte concentration (assumed here to
be a 1:1 salt, but other cases can easily be incorporated), κ
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is the inverse Debye screening length and ψ0 is the electric
potential at the particle surface, which can be related to exper-
imentally measured zeta potentials. The interested reader is
referred to the work of Schunk et al. [197], which includes a
more detailed description of this potential and a discussion
of how parameters can be selected to match experimental
conditions.

The colloid dispersion interaction components of the
DLVO model are treated by summing the pairwise disper-
sion interactions between the constituent atoms/molecules
in the particles. Once again, a variety of physical assump-
tions and approximation schemes have been used to carry
out this summation [63]. Most formulations of DLVO the-
ory treat only the attractive dispersion terms, which scale as
r−6. In the original formulation of Hamaker [89], the result-
ing attractive potential for two spheres of radius a separated
by a center-to-center distance r yields the following for the
attractive potential:

UA(r) = Acc

6

[

2a2

r2 − 4a2
+ 2a2

r2
+ log

(

r2 − 4a2

r2

)]

(14)

Here and in previous work [197], we use the form derived by
Everaers and Ejtehadi [68], which treats colloidal particles
as collections of Lennard-Jones (LJ) particles, i.e. particles
that interact according to:

UL J (r) = 4ǫ

(

(σ

r

)12
−

(σ

r

)6
)

(15)

The parameters ǫ and σ are the usual LJ parameters repre-
senting the depth of the potential well and the characteristic
dimensions of the LJ particles, respectively. The resulting
integrated colloid–colloid potential Ucc, which includes the
r−12 repulsive component of the LJ potential, has the follow-
ing form:

Ucc(r) = UA(r) + Acc

37800

σ 6

r

[

r2 − 14ar + 54a2

(r − 2a)7

+ r2 + 4ar + 54a2

(r + 2a)7
− 2

r2 − 30a2

r7

]

. (16)

The overall potential that we advocate for DLVO-type
interactions is then the sum of the electrostatic component,
Eq. (13), and the attractive and repulsive dispersion inter-
actions, Eq. (16). These are implemented in the LAMMPS
software package [176] as ‘pair_style yukawa/colloid’ and
‘pair_style colloid’, respectively.

While the qualitative features of DLVO theory have pro-
vided invaluable insights into the behavior of colloidal sus-
pensions, its approximations can often be problematic. Real
systems typically consist of particles that are heterogeneous
in their composition, structure and surface characteristics.
As such, even simple parameters like the effective particle

radius a are not straightforward to assign for the purposes
of calibrating the potential. Based on previous work [197],
we have found the Hamaker constant Acc to be particularly
difficult to estimate. Typical values based on the derivation
discussed above [180] can vary by an order of magnitude
depending on some of the underlying assumptions. Typically,
several key parameters can be assigned based on experimen-
tal measurements of directly related properties, such as the
zeta-potential and particle diameter; however, the Hamaker
constant is often treated as a fitting parameter, which requires
some level of calibration based on experimentally measured
macroscopic properties. For the idealized systems in the
present work, colloid particles are assumed to be made up
of small Lennard-Jones particles with parameters σ and ǫ.
The Hamaker constant can then be calculated analytically as
Acc = 4π2ǫρ1ρ2σ

6, where ρ1 and ρ2 are the number denisi-
ties of constituent LJ particles in colloid particles 1 and 2.

Most analytical treatments of dispersion potentials,
including Eq. (16) lead to expressions that diverge at par-
ticle contact or near-contact. For dense suspensions under
high shear or compressive forces, DLVO-like potentials must
be replaced by short-range interactions for small particle
separations. This is typically done using potentials derived
in the context of granular flow simulations [33,105,202].
Various forms of such granular potentials have been pro-
posed depending on various assumptions relating to the
particle contact mechanics [51]. For most colloidal simu-
lations in a liquid solvent, friction effects can be ignored,
and simple frictionless Hookean or Hertzian granular poten-
tials [45] are adequate. More complex potentials that also
include friction effects [201] and inter-particle adhesion sur-
face forces [110,145] can also be included.

Attempts have also been made at deriving closed-form
potentials that include effects of grafted polymer ligands.
For instance, Vincent et al. [226] derived an interaction
potential between particles with grafted polymer chains in
a solvent containing additional polymer molecules, which
includes parameters such as the polymer χ -parameter, poly-
mer adsorbed densities, molar volumes, etc. Despite the
added complexity, such approaches can be useful in simu-
lations for predicting general trends as a function of changes
in various system parameters. However, the additional para-
meters can be difficult to evaluate, making quantitative pre-
dictions for such systems even more challenging.

3 Methods

As previously stated, the goal of this work is to directly com-
pare several techniques for the simulation of colloidal sus-
pensions. To make the comparison as straightforward as pos-
sible, we have selected the canonical system of hard-sphere
monodisperse particles immersed in a Newtonian solvent.
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In this section, we provide methodological details specific to
the simulations carried out in this work. We therefore discuss
our implementation of the MPCD and DPD methods, as well
additional details pertaining to the FLD method described in
Sect. 2.2.1. All of the simulations have been carried out in
the LAMMPS software package [176], which is freely dis-
tributed as open source code (http://lammps.sandia.gov). We
make reference to various modules within LAMMPS (known
as ‘styles’) for the reader interested in applying some of these
methods. The basic molecular dynamics algorithm and its
parallel implementation in LAMMPS are not discussed here;
it is covered extensively in other works [2,4,176]. However,
the last portion of this section provides more details of algo-
rithmic considerations specific to colloidal suspensions.

An important distinction in this work compared to previ-
ous similar studies is that we attempt to match quantitatively
the physical properties of a particular solvent, rather than the
usual approach of using convenient values for various para-
meters in the solvent models, and reporting all results in terms
of dimensionless quantities [11,22,36,169,181,217]. For all
simulations presented here, we select the solvent properties
to match those of a Lennard-Jones fluid of density 0.66 σ−3

at temperature kT = ǫ and pressure P = 0 σ 3/ǫ with a cut-
off distance of rc = 3.0σ and particle mass mL J . In previous
work, it was shown that this results in a dynamic viscosity of
µ = 1.01 ± 0.03σ 2/τ [172], where τ is the Lennard-Jones
time unit (τ =

√

mL J σ 2/ǫ). Note that we are not simulating
Lennard-Jones particles at any point in this work, only using
these solvent properties and Lennard-Jones units for conve-
nience. The well-characterized Lennard-Jones system shares
many of the same fundamental characteristics as real fluids,
and the mapping procedure is in principle equivalent. This
choice of solvent in combination with the hard-sphere-like
interaction of colloid particles allows for a straightforward
comparison of the different hydrodynamic treatments. The
interested reader is referred to previous work [197] for dis-
cussions of the additional complications that arise from map-
ping to the properties of a more realistic system (polystyrene
particles in water).

3.1 FLD implementation

The physical basis and mathematical treatment of hydro-
dynamic interactions and Brownian forces underpinning
implicit solvent methods such as SD and FLD were discussed
in Sect. 2.2.1. When implementing these methods in a mole-
cular dynamics framework, the time evolution of colloid par-
ticles can be carried out without inertial terms, as was largely
assumed throughout the development in Sect. 2.2.1. Alterna-
tively, the inertial terms in Eq. (5) can be retained, and the
equations of motion can be explicitly integrated in the usual
manner. In previous work [197], we referred to these two
schemes as implicit and explicit integration, respectively;

here, we refer to them as ‘non-inertial’ (e.g. non-intertial
FLD, or nFLD for short) and ‘inertial’ (iFLD), respectively.
This is to avoid confusion with the terms implicit and explicit
as they are applied to the solvent. As the name suggests,
inertial schemes can resolve timescales shorter than the iner-
tial timescale of the colloid, τC = m/6πµa, but naturally
require a time step significantly smaller than this. On the
other hand, non-inertial methods require a time step signifi-
cantly larger than τC . The time step size is otherwise limited
only by system-specific numerical considerations (e.g. con-
servative forces). We also note that both schemes assume that
the underlying momentum relaxation in the solvent is instan-
taneous (i.e., the underlying hydrodynamic expressions are
steady flow; see Eq. (3)).

We also present results for Brownian dynamics simula-
tions (BD), which are implemented as a straightforward sim-
plification of FLD. In particular, if all pariwise lubrication
terms Rδ in Eq. (9) are discarded, and volume fraction cor-
rections to the isotropic terms are not carried out (i.e. f 0

FU and
f 0
T � are set to unity in Eq. (10)), the resulting simulation cor-

responds to Brownian dynamics (BD). The inertial version
of BD (iBD) is then equivalent to Langevin dynamics (LD).
All of these simplifications can be carried out in LAMMPS
using various settings to the ‘pair lubricate’ styles.

The implementation of the FLD and BD schemes in
LAMMPS follows the works of Kumar, Bybee and Hig-
don [31,124,126]. The discussion of Sect. 2.2.1 largely
assumed quiescent flow conditions for simplicity, to which
we now add the possibility of an imposed shear flow. In
this case, the generalized velocities of colloid particles U

are expressed relative to the velocity/angular velocity of the
bulk fluid evaluated at the center of the particles, U∞. Also,
the stresslet (SH )/rate-of-strain(E∞) coupling introduced in
the original Stokesian dynamics formulation is retained. The
rate of strain tensor is a simple function of the shear rate γ̇

and the flow geometry [126]. The hydrodynamic force and
stresslet are given by the following linear relationship:

(

FH

SH

)

= R

(

U − U∞

E∞

)

(17)

We discussed the origins of the resistance tensor R in
Sect. 2.2.1. The additional Brownian force is calculated based
on Eq. (8), where the resistance tensor does not include the
RF E component. This requires taking the square root of the
force-velocity resistance tensor (RFU ), which is trivial for
the isotropic, diagonal portion R0 (see Eq. (10)), and can be
carried out in a pairwise fashion for the lubrication compo-
nent Rδ [7]. The interested reader is referred to the relevant
literature for additional details [7,31,124,126]. In the inertial
version of FLD (iFLD), the Brownian force, hydrodynamic
force and conservative inter-particle forces are summed, and
the particle positions are updated using standard molecular
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dynamics schemes. In LAMMPS this is accomplished using
“hybrid” pairwise interactions that include pair styles ‘lubri-
cate’, ‘brownian’ and additional conservative pair styles (e.g.
‘colloid’ or ‘yukawa/colloid’), in conjunction with a standard
extended-body integrator (for translation and rotation) such
as ‘fix nve/sphere’.

For nFLD, the forces sum to zero, which leads to the fol-
lowing matrix problem for the particle velocities:

RFU

(

U − U∞)

= −
(

RF E E∞ + FC + FB
)

(18)

Since the resistance tensor RFU is symmetric and posi-
tive definite, a conjugate-gradient algorithm can be used to
solve for the particle velocities. The particle positions are
then updated accordingly. In LAMMPS, this is accomplished
using a similar hybrid pair style scheme, but with the use of
pair style ‘lubricateU’ instead of ‘lubricate’, in conjunction
with ‘fix nve/noforce’ to update particle positions.

The rate-of-strain is imposed for both iFLD and nFLD
and the resulting stress which includes the solvent compo-
nent can be measured. Once the particle velocities are known,
the stresslet SH and the total stress in the solution τ can be
computed readily in a post-processing step for a given con-
figuration of particles (see Eqs. (13) and (14) in the work of
Kumar and Higdon [126]). The viscosityµr of the suspension
relative to the viscosity of the solvent µ0 can be computed
as a function of the appropriate measured stress component
τxy and the imposed shear rate γ̇ :

µr = 1 + τxy

µ0γ̇
(19)

3.2 MPCD implementation

The MPCD method and its implementation in LAMMPS
have been detailed elsewhere for a pure fluid [172] as well
as for forced flow in the presence of walls [24]. A summary
is given here for purposes of comparison, with additional
details relevant to colloidal suspensions given in Sect. 3.5. In
MPCD, the solvent is represented as point particles with no
pairwise particle/particle or long-range interactions. In order
to propagate momentum through the fluid, MPCD particles
are first streamed at a constant velocity, and their positions
xi are updated accordingly:

xt+1
i = xt

i + vi∆t (20)

At prescribed time intervals, particles are grouped into
evenly-spaced cubic regions (bins), and various schemes are
used to swap momentum among particles in order to simulate
solvent collisions. In the original MPCD (or SRD) scheme
proposed by Malevanets and Kapral [144], the components
of the velocities of particles relative to the centre of mass

velocity of all particles in a given bin ξ are rotated around a
randomly selected orthogonal direction:

vt+1
i,ξ = ut

ξ + Rs(v
t
i,ξ − uξ ) (21)

Here, Rs is a stochastic rotation matrix and uξ is the center
of mass velocity of all Nξ particles located in bin ξ :

uξ =
Nξ
∑

i=1

vt
i,ξ

Nξ

(22)

In our implementation, we select randomly one of six direc-
tions corresponding to positive and negative orthogonal axes,
and always rotate by 90 ◦. Alternative rotation schemes have
been proposed, and the rotation angle can be modulated to
control the properties of the solvent [3,219]. It can be easily
verified that this collision scheme conserves linear momen-
tum and energy; as a result, the correct hydrodynamics are
reproduced [101,144]. We refer to simulations based on this
collision scheme as SRD.

An alternative collisional scheme known as multi-particle
collision/Andersen thermostat (MPC–AT) [164,165] that
does not entail rotation has also gained traction, due its inher-
ent ability to thermostat the fluid. In this scheme, particle
velocities are updated according to:

vt+1
i,ξ = uξ + vi,rand −

Nξ
∑

i=1

vi,rand/Nξ (23)

Here, vi,rand represent velocities drawn randomly out of a
Maxwell–Boltzmann distribution, and uξ is the mean veloc-
ity for a particular bin, defined as in Eq. (22). A similar
scheme can be used to conserve angular momentum (MPC–
AT+a) [92,164], but we do not include it here as we are inter-
ested primarily in translational aspects of colloidal motion.

In both SRD [92,219] and MPC–AT [164] collision
schemes, the viscosity and diffusion coefficients of the pure
fluid can be calculated analytically. The kinematic viscosities
ν for the two schemes are given by:

νS R D = ∆x2

18∆t

(

1 − 1 − e−M

M

)

+ kB T M∆t (M + 2)

4ρ∆x3(M − 1)

(24)

νMPC−AT = ∆x2(M − 1 + e−M )

12M∆t

+kB T M∆t

ρ∆x3

(

M

M − 1 + e−M
− 0.5

)

(25)

Here, M is the mean number of MPCD particles per bin, ∆t

is the time between collisions, ∆x is the bin size and ρ is
the mass density of the fluid. Values of ν and ρ are chosen
to match the desired physical properties of the fluid, while
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Table 2 Summary of MPCD parameters

SRD MPC–AT

Small ∆t Large ∆t Small ∆t Large ∆t

∆t = λ 0.1220 3.476 0.1950 1.895

Sc 9.301 0.3265 10.72 1.103

In all cases, the bin size is set to ∆x = 2.0σ , the number of MPCD particles per bin to M = 5.28, and the MPCD particle mass to 1.0mL J . Values
of ∆t in the table indicate the collision time step in units of τ , not to be confused with the colloid/MD timestep

values of ∆x and M are selected based on numerical con-
siderations. Given values for these four parameters, both the
MPC–AT and SRD viscosity expressions (24) and (25) yield
two distinct solutions for the collision time step ∆t [24]. The
small time step solution corresponds to a short mean free
path λ relative to the bin size, which requires random shift-
ing of collision bins to remove inter-particle correlations and
restore Gallilean invariance [100,101]. In contrast, the larger
time step solution leads to a larger mean free path, and bin
shifting is not required. However, the short mean free path
solution also corresponds to higher, more realistic Schmidt
numbers (Sc = ν/D, where D is the diffusion coefficient
of the MPCD particles). Here we present results for several
sets of parameters for both methods. In all cases we attempt
to match the properties of the same Lennard-Jones solvent
discussed earlier, following previous work [24]. The result-
ing parameters for both collision schemes are summarized in
Table 2. The Schmidt number in Lennard-Jones fluids is typ-
ically of order 10–100 [152], comparable to values obtained
using the small collision time step, but significantly larger
than that of the large time steps. More realistic fluids have
Schmidt numbers of order 103, which is difficult to attain
with the MPCD method.

Several schemes have been proposed for coupling MPCD
fluids to colloid particles. The simplest of these includes
colloid particles in the multi-particle collision scheme as if
they were another MPCD particle (located at the colloid cen-
ter) [11,109], with the option of weighting the colloid parti-
cle influence by the colloid mass. This is referred to as ‘colli-
sional coupling’ by Batôt et al. [11]. While this scheme yields
qualitatively reasonable results, it does not resolve the parti-
cle surface in any way, and cannot be expected to compare
quantitatively to the other methods tested here; the hydro-
dynamic radius of the colloid particles in this approach is a
function of the MPCD parameters, rather than being set to
the desired value [109]. A more sophisticated approach relies
on introducing a pairwise potential between MPCD particles
and colloid particles, typically with a short repulsive char-
acter [11]. However, this introduces additional parameters
that must be carefully selected for a given set of MPCD fluid
parameters [11], and it is not clear that no-slip boundaries
can easily be enforced in this manner. Finally, the approach
that we adopt here involves detecting collisions between

MPCD particles and colloid particles that take place during
the MPCD streaming step (Eq. 20), re-directing the MPCD
particles, and adjusting the forces/torques on the colloids
appropriately. These collisions are not to be confused with
the bin-wise multi-particle collisions, in which only MPCD
particles participate (Eqs. 21 and 23). The physical basis of
MPCD particle–colloid collisions is not easily interpreted,
since MPCD particles do not correspond directly to solvent
molecules or fluid elements. One of the key requirements of
such collisions is that they enforce no-slip boundary condi-
tions at the colloid particle surface, i.e. the average tangential
component of the MPCD fluid velocity must vanish at the
colloid surface. We have tested two such collision schemes.

The first collision scheme, which we refer to as stochas-
tic boundary conditions, is based on the work of Inoue et
al. [103]. Briefly, an MPCD particle that collides with a col-
loidal particle is returned to the point of collision, after which
it is assigned a random velocity with a component along the
outward normal to the colloid particle surface, and two com-
ponents tangential to this. The normal and tangential compo-
nents (vn and vt , respectively) are drawn out of the following
distributions:

p(vn) ∼ vn exp(−βv2
n) (26)

p(vt ) ∼ exp(−βv2
t ) (27)

Here, β = m f /(2kB T ), with m f the mass of the MPCD fluid
particles (taken here to be unity). The colloid particle surface
velocity at the point of collision (Eq. 29) is then added to the
randomly assigned MPCD particle velocity, and the MPCD
particle is propagated with the new velocity for the remainder
of the streaming time step. Forces are applied to the colloid
at the collision point based on the momentum change of the
MPCD particle. In previous work [24], we showed that this
boundary condition can be problematic for situations with
forced flow, but we expect it to be adequate for quiescent
conditions.

In the second collision scheme (‘reverse’), the MPCD par-
ticle is returned to the point of collision, and the magnitude
of each of its outgoing velocity components is calculated
assuming a momentum-conserving (perfectly elastic) colli-
sion with the point on the colloid surface. In the limit of
the colloid mass being much larger than the MPCD particle
mass, this yields:
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v
f
1 = −v

f
0 + 2v0

cs (28)

Here, v
f
0 and v

f
1 are the velocities of the MPCD particle

before and after the collision, respectively, and v0
cs is the

velocity at the colloid surface before the collision:

v0
cs = v0

c + (rs − rc) × �0
c (29)

v0
c and �c are the translational and angular velocities of the

colloid particle prior to collision, and rs and rc are the loca-
tions of the surface collision point and the colloid particle
centre, respectively.

In order to avoid artificially low local viscosities in MPCD
bins that are partially occupied by colloid particles [131,232],
we use the “virtual particle” method first suggested by
Lamura et al. [131]. Although several versions have been
proposed [24,232], we only implement one here, which has
been shown to be adequate for forced flow between par-
allel walls [24]. In this scheme, “virtual” MPCD particles
(VPs) are added at random locations to the interior of col-
loid particles where MPCD bins partially overlap colloids.
Next, the velocities of the VPs are randomly assigned out of
a Maxwell–Boltzmann distribution, and augmented by the
velocity of the interior point in the colloid corresponding to
their location. VPs then participate in multi-particle colli-
sions with actual MPCD particles, and resulting changes in
their momenta are transferred as forces/torques to the col-
loids. Note that VPs only participate in the multi-particle
collisions, and new VPs are generated for each such event.
The total number of VPs assigned to each colloid particle is
selected to yield the same overall density of VPs as actual
MPCD particles in the bulk fluid. Additional details are pro-
vided in our previous work [24], where this method was
referred to as “VPdens” and “VPmulti” .

3.3 DPD implementation

The DPD method introduced by Hoogerbrugge and Koel-
man [95] treats a fluid using a collection of particles with
‘soft’ interactions, allowing for a much larger time step than
atomistic MD. The characteristic dimension of DPD particles
(i.e. the cutoff of the DPD interparticle interactions) is much
larger than the molecular dimension of fluid molecules, but
should be smaller than the relevant flow characteristic size (in
the case of suspensions, the colloid particle diameter). Addi-
tionally, thermostatting in a DPD fluid is carried out using a
pairwise scheme that preserves hydrodynamics. The physi-
cal basis of the DPD method can be justified if DPD particles
are thought of as ‘packets’ of fluid, but as with MPCD, rigor-
ous mapping to the properties of a given fluid and resolving
geometric features comparable to the size of DPD particles
is problematic [175].

From a molecular dynamics perspective, DPD is a tradi-
tional pairwise interaction model with a short-range cutoff
and can be implemented similar to a Lennard-Jones poten-
tial. The implementation in LAMMPS follows that of Groot
and Warren [87], where the force on particle i due to particle
j separated by a distance r < rc is given as:

fi j = (FC + F D + F R)r̂ij

FC = Aw(r)

F D = −γw2(r)(r̂ij · vi j )

F R =
√

2kB T γ /∆tw(r)α

w(r) = 1 − r/rc

(30)

FC is a conservative force, F D is a dissipative force, and F R

is a random force. The unit vector r̂ij is in the direction ri −r j ,
vi j = vi −v j is the relative velocity of the two particles, α is a
Gaussian random number with zero mean and unit variance,
∆t is the timestep size, and w(r) is a weighting factor that
varies between 0 and 1.

Like all explicit solvent models, mapping the physical
properties of a real fluid to a DPD model is challenging.
In particular, the lack of analytical expressions for various
dynamic properties such as viscosity complicates matters
(i.e. equations analogous to (24) and (25) for the MPCD
method). Approximate expressions have been proposed [87],
which provide a useful starting point for the mapping proce-
dure we carry out herein. As previously discussed, we aim
to reproduce the viscosity of the carrier fluid, rather than
simply the key dimensionless parameters for a given flow
situation. The combination of DPD parameters that gives the
desired viscosity of 1.01mL J /στ is not unique. We there-
fore select a value of A = 25ǫ/σ , which, following previ-
ous work [170,181,197], results in a realistic solvent com-
pressibility; the DPD interaction cutoff rc is chosen to be
somewhat smaller than the colloid particle diameter [181],
rc = 3.0σ ; and the DPD particle number density is set to
3.0r−3

c , or 1/9σ−3 based on computational considerations.
The DPD particle mass is set to 5.94mL J to match the target
mass density of 0.66mL J /σ 3. Finally, the parameter γ is set
to 86ǫτ/σ 2, which yields a viscosity of ∼ 1.01mL J /στ , as
measured using a trial-and-error approach and the Müller-
Plathe viscosity calculation method (see below). The non-
linear dependence of the viscosity on the damping parameter
γ is well-known for the DPD method [114,218]. For this
set of parameters, the system pressure is ∼ 3ǫ/σ 3, and the
Schmidt number is ∼ 64.

Several approaches have been proposed for coupling a
DPD fluid to colloidal particles. In early works based on
the DPD method, suspended objects were simulated by con-
straining clusters of DPD particles to move as rigid bod-
ies [21–23,118]. While this approach is flexible with regard
to representing various object shapes (see also Sect. 5.2),
it leads to significant solvent penetration into colloid par-
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Table 3 Summary of DPD parameters

δC S ǫC S σC S

DPD-v1 4.0 1.0 1.0

DPD-v2 3.0 2.0 2.0

DPD-v3 4.0 4.0 1.0

In all cases, the following DPD parameters were used, in Lennard-Jones units (see Eq. (30) and related discussion for explanations). A = 25ǫ/σ ,
γ = 86ǫτ/σ 2, rc = 3.0σ , ρD P D = 3r−3

c = 0.111σ−3, m D P D = 5.94mL J . The integration time step was 0.03τ in all cases

ticles due to the soft DPD interaction, and in the case
of spherical colloids, it entails unnecessary computational
expense. Instead, we model colloids as single spherical par-
ticles, and introduce an additional, relatively stiff conserva-
tive interaction between colloids and DPD particles. Similar
approaches have been proposed by others and shown to be
more conducive to producing correct hydrodynamic inter-
actions [36,60,170]. Given the non-physical nature of DPD
particles, the choice of interaction potential is somewhat arbi-
trary, and serves only to prevent solvent penetration into the
colloid and satisfy the required boundary conditions. As such,
we use a simple shifted Lennard-Jones potential:

UC S(r) = 4ǫC S

(

(

σC S

r − δC S

)12

−
(

σC S

r − δC S

)6
)

(31)

Here, ǫC S and σC S are Lennard-Jones parameters specific to
the colloid–DPD interaction, r is the distance between the
colloid and DPD particle centers, and δC S is a parameter that
effectively shifts the potential so that it diverges at a non-zero
particle separation. As these parameters are not straightfor-
ward to select, we have tested several combinations to achieve
the desired diffusion characteristics. These parameters were
selected to approximately match the short-time diffusivity
of colloidal suspensions at a volume fraction of 0.1 based on
iFLD simulations; short DPD simulations were therefore car-
ried out with several parameter sets to ensure that reasonable
agreement was attained. We have tested three combinations
of parameters for DPD–colloid coupling, which we denote
as DPD-v1, DPD-v2 and DPD-v3. The values of the relevant
parameters are summarized in Table 3.

Additional modifications of the DPD method have been
proposed in literature that have resulted in improved accu-
racy. The centro-symmetric colloid–solvent interaction
potential in Eq. (31) can only transfer linear momentum to
colloid particles, and all rotational aspects of the flow are
lost. To address this, Espanol [67] has proposed a gener-
alization of the DPD method known as the fluid particle
model (FPM), which adds non-central shear components to
the dissipative forces. Several variations of this method have
been successfully applied to simulations of colloidal sus-
pensions [170,175,181]. In order to achieve higher Schmidt
numbers, Fan et al. [69] have suggested a modified form

of the DPD conservative interaction, w(r) = (1 − r/rc)
s ,

where non-unity values of the exponent s have been shown
to yield higher Schmidt numbers. For high-viscosity fluids,
the use of a Lowe thermostat [139] to replace the DPD ran-
dom force has been advocated by several workers [35,36].
For additional discussion, the interested reader is referred to
the excellent review by Pivkin et al. [175].

3.4 Colloid particles and simulation details

In all of the methods discussed here, the colloidal particles
are treated as finite-sized particles with translational as well
as orientational degrees of freedom (LAMMPS atom style
‘sphere’). Parameters for the hard-sphere-like colloids are
similar to those in previous work [197], with the particle
radius set to a = 5σ . Inter-colloid interactions are cap-
tured using the integrated Lennard-Jones potential (Eq. (16);
pair style ‘colloid’ in LAMMPS) with a cutoff distance of
Rc = 2a+30−1/6σ and a Hamaker constant of Acc = 4π2 ∼
39.478ǫ. Note that this interaction is not infinitely hard, but
is slightly softened to prevent colloid overlaps and allow for
standard molecular dynamics time integration. Physically,
this corresponds to adding a short surfactant coating to the
colloid particles to avoid flocculation. Due to its short range
and relatively stiff nature, the differences from a true hard-
sphere interaction are expected to be minor. Although lubri-
cation forces prevent the close approach of the colloids, we
also include the inter-particle potential with FLD, in order
to maintain consistency with the other methods. In all cases,
the inner and outer cutoff distances for FLD lubrication terms
are set to 2.0002a and 3a, respectively (i.e. FLD lubrication
terms are active for 2.0002a < ri j < 3a).

Based on simple energy conservation considerations, we
found that the hard-sphere potential described above limits
the time step to a value of ∆tC ∼ 0.04τ . This is smaller than
the inertial timescale of colloid motion (τC = m/6πµa ∼
3.63τ ), implying that nFLD cannot take full advantage of its
large time-stepping ability; indeed, results for these meth-
ods for timescales not satisfying t >> τC are physically
suspect. In order to facilitate the comparison among various
methods, we nonetheless retain the colloid potential and a
small time step of δtC = 0.01τC ∼ 0.0363τ for iFLD and
δtC = 0.005τC ∼ 0.0182τ for nFLD simulations, where
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colloid particle overlaps were occasionally problematic. We
will return to this discussion when comparing computational
performance of the different methods, and note that for other
conservative inter-particle potentials, nFLD can be much
more efficient. Similar values of the MD time step (∼ 0.03τ)

were used for MPCD, where the multi-particle collision time
step (see Table 2) must be an exact multiple of the colloid/MD
time step. For DPD, where no such constraints exist, we used
a time step of 0.03τ for all cases.

The starting configurations for our simulations were gen-
erated so as to maintain consistency between the different
methods. The MPCD method is the only one that imposes
any constraint on the simulation domain size, which should
be a multiple of the MPCD bin size (2.0σ ). As such, we
set the simulation box size for all cases based on this crite-
rion. Computational considerations for the explicit solvent
methods (MPCD and DPD) at low volume fractions limit the
system size to several hundred colloid particles, so we use a
system size of 200 particles of radius a = 5σ for all methods
and volume fractions. Based on these two constraints, we
used cubic domains of side length 104, 80, 70 and 64σ , cor-
responding to volume fractions φ of 0.0931, 0.2045, 0.3053,
and 0.3995, respectively; for simplicity, we refer to these as
0.1, 0.2, 0.3, and 0.4 volume fraction systems. The diffusion
coefficient measured in simulations with periodic boundary
conditions is known to have a strong dependence on system
size [8,75,129]. We therefore use the corrections suggested
by Ladd [129] for all volume fractions. Further details are
provided in the Sect. 4.

The lowest volume fraction system (0.1) was constructed
by random placement of colloidal particles in a cubic domain
of size 104σ , ensuring that no particles overlap. This method
is robust up to volume fractions of approximately 0.3, beyond
which random placement of particles quickly exhausts all
possibilities. As such, the 0.1 volume fraction system was
slowly compressed in a simple Langevin dynamics (LD)
simulation to the desired dimensions to generate the start-
ing colloid particle configurations for the remaining volume
fractions. In the case of MPCD simulations, additional sol-
vent particles were added to achieve the desired number of
MPCD particles per bin (M = 5.28), while ensuring that
no MPCD particle started inside a colloid particle. For DPD
simulations, simulation boxes of the same size as the desired
colloid suspension systems were first constructed using only
DPD particles with the requisite parameters (see Sect. 3.3),
and the resulting pressures were measured. The colloidal par-
ticles were then added, and any DPD particles within a dis-
tance a of any colloidal particle center were removed. For
each volume fraction, the pressure of the resulting colloid–
DPD mixture resulting from this procedure was found to be
in good agreement with the pressure for the pure DPD fluid;
as such, the viscosity and other key parameters of the DPD
fluid are consistent among volume fractions.

In all simulations, several hundred thousand equilibra-
tion steps were carried out prior to sampling for the pur-
poses of computing diffusion coefficients or radial distrib-
ution functions. Viscosity for all FLD methods was deter-
mined using a non-equilbirium molecular dynamics (NEMD)
approach, where the simulation box was shear-deformed at
a constant rate (equivalent to Lees-Edwards boundary con-
ditions; implemented in LAMMPS using the “fix deform”
capability). The resulting stress was then measured as out-
lined near the end of Sect. 3.1, and viscosity values were
computed for several shear rates. The Müller-Plathe velocity
swapping algorithm [160] was used to compute viscosities
for all explicit solvent methods. In this method, a momentum
flux is imposed by random exchanges of particle velocities,
and the resulting velocity profile (i.e. shear rate) is measured.
The shear rate can be varied by controlling the frequency and
number of particles undergoing velocity exchanges. For addi-
tional details, the interested reader is referred to the original
work of Müller-Plathe [160] as well as the work of Petersen
et al. [172]. The method is implemented in LAMMPS in the
“fix viscosity” capability. For both MPCD and DPD, only
solvent particles are included in the velocity exchanges; this
minimizes interference with the colloid particle dynamics,
and leads to a much faster convergence of the measured vis-
cosities as compared to the NEMD method that must be used
for FLD simulations. In both DPD and MPCD, simulations
of the pure fluid were first carried out at the desired shear
rates to ensure that no shear thinning of the solvent takes
place in the shear range of interest.

3.5 Computational considerations

From a computational perspective, all the techniques
described in this section (FLD, MPCD, DPD) share simi-
lar computational kernels: computing colloid/colloid inter-
actions and (optionally) colloid/solvent or solvent/solvent
interactions. This enables all the methods to be imple-
mented in a discrete element (DEM) or molecular dynamics
(MD) framework such as LAMMPS. Moreover, all the meth-
ods can exploit parallelism using the spatial-decomposition
approach provided by LAMMPS (and many other MD codes)
whereby the simulation box is partitioned across processors
and processors compute forces on particles within their sub-
domain and communicate particle information to processors
owning neighboring sub-domains [176]. Due to the short-
range nature of the computations, so long as there are suffi-
cient particles per processor, the computational work out-
weighs the communication costs, and the parallel perfor-
mance of a simulation can scale to large numbers of proces-
sors. Prototypical performance and scaling data are presented
in Sect. 4.4.

Since FLD is an implicit solvent method, colloid/colloid
interactions are the only pairwise particle computations to
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perform. As discussed above, the inertial FLD method is
effectively an explicit time-stepping method, so the forces
and torques on particles resulting from pairwise interactions
are time-integrated in the usual manner. The non-inertial ver-
sion of FLD is effectively an implicit time-stepping method,
which requires solution of a linear matrix equation to obtain
particle velocities at each time-step. This is a sparse matrix of
order N = the number of particles, with non-zero elements for
each particle/particle interaction within the cutoff distance.
The matrix equation can thus be solved in a modest number
of conjugate gradient iterations which invoke the same kind
of local inter-processor communication needed to exchange
particle information between neighboring processors in the
three-dimensional spatial partitioning.

MPCD for hybrid colloidal/solvent systems has been
implemented in the parallel MP2C code by Sutmann et al.
[211], and has been used to model hydrodynamic effects
on shearing polymers [97] and colloidal systems [205]. In
LAMMPS, MPCD is implemented as a ‘fix srd’ style, which
allows MPCD solvent particles to be added to a colloidal sys-
tem. Colloid/solvent interactions are only computed when a
streaming solvent particle collides with a colloid particle.
As discussed above, the no-slip collision imparts force and
torque to the colloid. The manner in which collisions are
efficiently detected in LAMMPS is by binning the colloid
particles onto a regular 3-D grid, which may but need not
be the same resolution as the grid used for binning MPCD
particles to perform multi-particle collisions. Since colloid
particles have finite extent, each may overlap several such
bins. After an MPCD particle streams to its final position, a
loop over the small number of colloid particles in its bin is
used to check for collisions.

MD codes such as LAMMPS use neighbor lists of nearby
particles to efficiently enumerate particle/particle interac-
tions [176], e.g. for colloid/colloid interactions in all the
methods discussed here. MPCD particles do not interact
directly with each other, and the number of solvent parti-
cles is orders of magnitude larger than the number of col-
loid particles in typical mixture models. For performance
reasons it is important to be able to “skip” the solvent parti-
cles when building neighbors lists for colloid/colloid interac-
tions or other operations such as time integration, which only
involve colloid particles. LAMMPS does this by separating
the two kinds of particles within the list of particles owned
by each processor. Colloid particles are at the beginning of
the list and can thus be looped over, when necessary, as if no
solvent particles were present. Likewise, no MPCD particles
need be communicated to neighboring processors to act as
“ghost” particles when computing pairwise interactions.

As previously mentioned, DPD is straightforward to
implement as a short-range pairwise interaction potential
in an MD code. However, an additional complication arises
when using small interacting particles as a background sol-

vent for large colloidal particles. Such a model has multi-
ple length scales, as evidenced by the disparate cutoffs for
colloid/colloid, colloid/solvent, and solvent/solvent interac-
tions. For example, if colloid particles are 20-times the size
of solvent particles (diameter = σ ), then coarse-grained col-
loid/colloid potentials like that of Everaers and Ejtehadi [68]
may be cut off at a distance ∼2.5× the colloid diameter
= 50σ . Solvent/solvent interactions (like Lennard-Jones or
DPD) are typically cut off at ∼2.5σ , and colloid/solvent
interactions at some intermediate distance, ∼25σ . Standard
parallel algorithms for building neighbor lists and communi-
cating ghost atoms, designed for systems with a single cutoff
length, can become very inefficient for such systems. To over-
come this, LAMMPS has optional ‘multi’-style neighbor-
finding and communication algorithms tailored for systems
with multiple cutoff lengths. Benchmarks of prototypical
solvated colloidal systems with size disparities up to 20×
showed speed-ups of up to 100× in serial or parallel, using
the algorithms presented by in’t Veld et al. [222]. Although
the disparities in particle sizes and cutoff distances are not
as significant for the systems in the present work, these algo-
rithms are nonetheless beneficial.

A final computational issue that can affect all of the meth-
ods, when running in parallel, is that of load-imbalance. Col-
loidal particles in dilute systems (low volume fraction) may
aggregate, whether the solvent is implicit or explicit. This can
lead to unequal numbers of particles per processor, if the sim-
ulation box is partitioned into equal-sized sub-domains. The
problem can be exacerbated if explicit solvent is used, since
both the large coarse-grained colloid and tiny solvent parti-
cles are represented as single particles. Thus the number of
total particles per processor may vary widely. This typically
becomes less of an issue as the colloid volume fraction rises,
since the colloid density remains more spatially homoge-
nous. LAMMPS has a ‘balance’ option to adjust processor
sub-domain sizes to improve load balance, which can com-
pensate for one-dimensional density variations, e.g. in an
evaporation model with a liquid/vapor interface [38].

The use of GPUs for computational acceleration is becom-
ing common place in molecular dynamics modeling. There
is recent work by Wang et al. for GPU-enabled DPD models
[228], and by Westphal et al. for GPU-enabled MPCD mod-
eling [231] for pure MPCD fluids. We are not aware of GPU
implementations of hybrid colloidal/MPCD models.

4 Results

4.1 Diffusion coefficients

The equilibrium diffusion of colloid particles is fundamental
to more complex phenomena of interest, such as shear vis-
cosity and microstructure formation. If any simulation tech-
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Fig. 1 Diffusion coefficient as a function of time computed using
iFLD and nFLD, for various volume fractions. The diffusion coef-
ficient is normalized by the Stokes–Einstein infinite dilution value,
D0 = kB T/6πµ0a. Early- and late-time values of the diffusion coef-
ficient are indicated using cross and circle symbols, respectively. No
finite size corrections have been applied here

nique is to be quantitatively predictive, it must first be able to
predict diffusion properties accurately. As such, we present
comparisons of the various methods discussed above, with a
particular focus on diffusion. The details of each simulation
method, the treatment of the colloidal interparticle interac-
tions and the system construction have been discussed in the
Sect.3.

In Fig. 1, we plot diffusion coefficients of hard-sphere
colloid suspensions at various volume fractions as a function
of time based on FLD simulations, using both nFLD and
iFLD formulations discussed in Sect. 3.1. These plots were
obtained by taking central finite difference numerical deriv-
atives of the mean square displacement of colloid particles
as a function of time:

D(t) = d

dτ

〈

∥

∥

∥ri (τ + τ0) − ri (τ0)

∥

∥

∥

2
〉

6

∣

∣

∣

∣

t

(32)

The angular brackets denote an average over particles as well
as times τ0, i.e. using a standard moving time-origin analysis.
Note that these values are not corrected for finite size effects,
as these corrections are only applicable to plateau values
of the diffusion coefficients, rather than the entire range of
timescales.

Of particular interest are the early- and late-time plateau
values of the diffusion coefficient, indicated on each plot by a
cross or circle symbol, respectively. For the non-inertial FLD
methods (nFLD), the early time regime is not physically real-

istic, as this method is predicated on the assumption of having
a much larger time step than the colloid inertial time scale
τC = m/6πµa; this point was discussed in greater detail in
Sect. 3.1. Nevertheless, for sufficiently long times, the nFLD
diffusion coefficients converge exactly to the iFLD values.
The physical origins of these different diffusion regimes are
well-known—the early-time plateau corresponds to the dif-
fusion of colloids on length scales characteristic of inter-
particle separations, i.e. diffusion within a cage-like structure
formed by neighboring colloid particles. The decrease in the
diffusion coefficient at later times is associated with diffus-
ing particles encountering neighboring particles and being
unable to move past them. At sufficiently long times, par-
ticles diffuse past their neighbors, and a Fickian diffusion
regime is recovered. Note that the very short-time ballistic
regime encountered in atomistic systems is not accessible to
either FLD variant, as this requires resolving a time scale
shorter than colloid–solvent collisions, and the form of the
Brownian force used in both variants of FLD assumes a much
larger time scale. At the shortest times shown in Fig. 1, the
diffusion coefficient is independent of volume fraction, as
this corresponds to diffusion on length scales smaller than
those at which colloid particles interact. With increasing
volume fraction, inter-colloid collisions happen on shorter
length (and time) scales, so that early-time values of diffu-
sion are reached faster, and Dearly values are lower; similarly,
late-time diffusivity values Dlate decrease, as higher colloid
densities lead to greater hindrance to diffusion.

Qualitatively similar plots to those in Fig. 1 are obtained
for all simulation methods. For ease of discussion, we present
only Dearly and Dlate values as a function of volume fraction;
while there are additional small differences in the behavior of
the diffusion coefficient as a function of time, these plateau
values suffice to provide quantitative comparisons of the dif-
ferent methods. Additionally, the values of the early- and late-
time diffusion coefficients obtained in this manner are known
to be sensitive to the number of colloid particles N in the
system, with a dependence that scales as N−1/3 [8,75,129].
Laddy [129] has proposed an accurate correction for these
finite-size effects, where the true infinite-size diffusion coef-
ficient D∞ is given by:

D∞/D0 = D(N )/D0 + µ0

µ

(

1.7601

(

φ

N

)1/3

− φ

N

)

(33)

Here, D(N ) is the diffusion coefficient measured based on
the plateau values in Fig. 1, D0 = kB T/6πµ0a is the Stokes–
Einstein diffusion coefficient, µ0 and µ are the viscosity of
the pure solvent and the suspension, respectively and φ is the
volume fraction. For the viscosity of the suspension µ, we
use the shear viscosity measured at Pe = 0.1; see Sect. 4.2.
For simplicity, we do not retain the D∞ notation, and leave it
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Fig. 2 Early- and late-time diffusion coefficients for FLD and LD.
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erker [223], van Megen and Underwood [150] and Foss and Brady [74].
In all cases, the diffusion coefficient is normalized by the Stokes–
Einstein infinite dilution value, D0 = kB T/6πµa

to be understood that diffusion coefficients for FLD, MPCD
and DPD in all subsequent discussions have been corrected
in this manner.

In Fig. 2, we present early- and late-time diffusivity val-
ues for the FLD and LD methods (see Sect. 3.1). The non-
inertial versions (nFLD and BD) yield the same results
(data not shown). Results from theory [216,223], experi-
ments [150,168] and other simulation works [74] are pre-
sented as reference values. We include Brownian dynam-
ics results from the work of Foss and Brady [74], which, in
agreement with our own LD simulations, show the need to
account for hydrodynamic effects. Note that LD results need
not be corrected for finite size effects. While some variation
exists among theoretical, experimental and simulation refer-
ence values for both Dearly and Dlate, it is clear that the iFLD
method yields diffusion coefficient values in excellent agree-
ment with the expected values. In particular, the agreement
in late-time diffusion coefficients between the iFLD method
and the more rigorous Stokesian dynamics method is excel-
lent. We therefore use the iFLD results as a benchmark for
the remaining methods.

In Fig. 3, we plot the early- and late-time diffusion coef-
ficients obtained using several variations on the MPCD
method, all of which were discussed in Sect. 3.2. We
have also tested the variants with the inclusion of “virtual
particles” (see discussion near the end of Sect. 3.2), but
found no appreciable effect on diffusion characteristics. Even
though the key physical properties of the background MPCD
fluid (viscosity, density) are the same in all cases, and the
colloid particle boundaries are equally well-defined, there
are clearly strong effects of all the methodological details
tested.

While no clear systematic trends emerge from Fig. 3, sev-
eral general comments can be made. First, with the excep-
tion of the SRD/large collision time step/reverse boundary
conditions scheme, all other variations attempted here fail
to reproduce the iFLD results. However, in most cases the
discrepancy is not drastic (∼20–30 %). Second, stochastic
boundary conditions (Eqs. 26 and 27) always lead to larger
colloid diffusion coefficients as compared to reverse bound-
ary conditions (Eq. 28). In all cases, this leads to an overes-
timate of the late-time diffusivity. We therefore advocate the
use of reverse boundary conditions, and limit the discussion
of viscosity that follows to simulations based on this treat-
ment. Third, the small collision time step generally leads to
larger values of the diffusion coefficient, and a better match
to the iFLD results is obtained with the large collision time
step. This is somewhat surprising, as the large collision time
step leads to unrealistically low Schmidt numbers for both
algorithms, but the effect appears to be minor. Fourth, the
MPC–AT collision scheme tends to yield diffusion coeffi-
cient values that are mostly larger than those resulting from
the SRD collision scheme.

Overall, the MPCD method yields qualitatively reasonable
results, and in one case (SRD/large collision time step/reverse
boundary conditions), a near-perfect match to iFLD data.
However, given the differences observed as a result of the
different variants, it may well be that the match in this
case is fortuitous. It is not clear that the finite size correc-
tions given in Eq. (33) apply equally to all MPCD variants,
particularly at finite Schmidt number, where hydrodynamic
correlations may decay much differently. Additional sim-
ulations with larger numbers of colloid particles may elu-
cidate this, but these are beyond the scope of the present
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Fig. 3 Early- and late-time diffusion coefficients for various versions
of MPCD: MPC–AT collision scheme, large collision time step, reverse
boundary conditions (open square); MPC–AT, large collision time step,
stochastic boundary conditions (cross symbol); MPC–AT, small colli-
sion time step, reverse boundary conditions (asterisk); MPC–AT, small
collision time step, stochastic boundary conditions (plus); SRD col-
lision scheme, large collision time step, reverse boundary conditions

(triangle); SRD collision scheme, large collision time step, stochastic
boundary conditions (diamond); SRD, small collision time step, reverse
boundary conditions (triangle left); SRD, small collision time step, sto-
chastic boundary conditions (star). iFLD results are shown as reference
values (circle symbols). All results have been corrected for finite size
effects using Eq. 33

work. A clear picture of the effects of various methodological
details remains elusive. It is hoped that these results expose
some of the remaining difficulties in this otherwise promising
technique.

Finally, in Fig. 4, we summarize colloid diffusion results
for DPD using three sets of colloid–solvent coupling para-
meters (see Table 3). We were unable to obtain late-time dif-
fusion coefficient values for a volume fraction of 0.4 (the dif-
fusivity drops to near zero at long times), and the short-time
values at this volume fraction are likewise unreliable. This is
a result of the finite size of DPD particles, which results in
an artificial gel-like state of the system at high volume frac-
tions. At lower volume fractions, the agreement with FLD
values is quite good; both early- and late-time values are best
reproduced by the parameter set DPD-v3, while DPD-v1 and
DPD-v2 overestimate the diffusion coefficients. Presumably,
with an alternate choice of parameters or an alternate func-
tional form of the DPD–colloid interaction potential (viz.
Eq. 31), even better agreement for both short- and late-time
diffusivity can be attained. Additionally, some of the more
sophisticated versions of DPD discussed in Sect. 3.3 (FPM
method and Lowe-Andersen thermostat) can be expected to
yield further improvements. However, in all cases, parame-
ters and coupling schemes cannot be chosen directly, and
must be calibrated using an ad hoc approach. We therefore
identify the lack of a systematic procedure for the selection
of DPD–colloid coupling parameters as a major shortcoming
of the method.

4.2 Shear viscosity

Shear viscosity was computed for all simulation methods,
using a NEMD/Lees-Edwards approach for FLD and the
Müller-Plathe method [160] for DPD and MPCD. Addi-
tional details are provided in Sect. 3.4. In all cases, we
express the shear rate γ̇ in terms of the Peclet number,
i.e. the ratio of the applied shear forces to diffusion forces
(Pe = a2γ̇ /D0 = 6πµ0a3γ̇ /kB T ). We note that this is only
for numerical convenience, since all other quantities (µ0, a)
are equal for all cases. In Fig. 5, we plot the suspension vis-
cosity normalized by the solvent viscosity µ0 as a function
of Pe for various volume fractions, as calculated using iFLD
and MPCD. In all cases, nFLD and iFLD yielded the same
results to within statistical error, so we only show data for
the latter.

At low volume fractions, the shear viscosity computed by
MPCD is in excellent quantitative agreement with that pro-
duced by iFLD. As the volume fraction increases, the agree-
ment remains strong, but with some notable discrepancies.
The small collision time step for both the SRD and MPC–AT
collision schemes results in a lower suspension viscosity in
all cases as compared to the iFLD values; the agreement is
better with the large time step. This is to be expected given
that the small collision time step simulations tend to over-
estimate the diffusion coefficient (indicating a lower effec-
tive viscosity). In all cases, the well-known shear thinning
effect is observed at higher volume fractions and moderately
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high shear rates [39,233]. This effect has traditionally been
explained as a result of shear-induced layering of particles,
although recent work suggests alternative mechanisms [233].
Overall, the MPCD method appears to be an excellent tool
for the prediction of rheological properties of colloidal sus-
pensions; however, it is limited to moderate shear rates such
as those tested here (Pe < 100), as higher shear rates result
in shear thinning of the MPCD fluid (data not shown); while
many fluids of interest, including the LJ solvent tested here
do exhibit shear thinning, it occurs at much higher Pe values.

Figure 6 shows a similar comparison of shear viscosity for
iFLD and DPD. For clarity, we only show results for DPD-

v2 and DPD-v3, since DPD-v1 diffusion results are similar
to DPD-v2, but consistently overestimate the diffusion coef-
ficient. At low volume fractions, the agreement with iFLD
is strong for both DPD-v2 and DPD-v3, as expected given
the agreement in the diffusion coefficient values. However,
at higher volume fractions, the agreement breaks down sig-
nificantly, as was the case for diffusion characteristics. The
higher volume fraction cases correspond to a regime in which
the typical inter-colloid separation is on the order of the size
of DPD particles, which leads to a highly structured gel-
like state. For sufficiently high shearing rates, the collective
motion of colloid and DPD layered particles yields signifi-
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cant shear thinning. However, suspension viscosities at low
Pe values cannot be reliably measured, as the statistical con-
vergence of the velocity profiles requires unfeasible simu-
lation time. At high volume fractions, we were not able to
reach a sufficiently low Pe value to obtain the zero shear rate
value of the viscosity. As such, DPD is an adequate method
at low volume fractions, but breaks down at volume fractions
above ∼ 0.3. The choice of DPD–colloid coupling method
will not yield significant improvements in this area, as this
effect is inherently related to the finite size of DPD parti-
cles. An obvious solution is to decrease the size of the DPD
particles (rc) relative to colloid particles, but this requires a
higher density of DPD particles to maintain the same vis-
cosity, and therefore a significant increase in computational
costs.

4.3 Equilibrium colloid microstructure

As a final point of comparison, we also quantify the equilib-
rium microstructure of colloid suspensions using the radial
distribution function g(r). In simulation studies of colloid
suspensions, it is often of interest to compare pair distri-
bution functions in non-equilibrium conditions (i.e. under
shear), particularly in different directions (e.g. velocity gra-
dient and vorticity directions) [39,126,233]. We do not carry
out such an analysis here, as it does not advance our methods-
comparison appreciably. Equilibrium g(r) plots are shown
for the various methods at volume fractions of 0.1 and
0.4 in Fig. 7. The radial distribution function data corre-
sponding to MPCD is only shown for one variation of the
method (MPC–AT collision scheme, small collision time

step, reverse boundary conditions), as other variations do not
lead to appreciable differences in g(r).

Clearly, the FLD and MPCD methods yield the same equi-
librium colloid suspension structure at both low and high
volume fractions; DPD on the other hand predicts a signifi-
cantly different structure. With FLD, no solvent particles are
present, and FLD pairwise and isotropic terms only modify
the dynamics of the suspension, but do not affect structural
properties. Similarly, the point-mass particles used to rep-
resent solvent in all MPCD methods do not have a signifi-
cant effect on equilibrium structural properties; at sufficiently
high MPCD number densities, depletion-like forces can be
expected for particles in close contact, but they do not appear
to be significant here. This is likely because the inter-colloid
repulsive potential used here prevents such close particle
approaches from occurring. With DPD, the finite size of the
solvent particles and the conservative forces used to couple
DPD and colloid particles clearly have a strong effect on the
structural and thermodynamic properties of the suspension.
The inter-colloid interaction potential is effectively modified
by the presence of DPD particles, as shown by the result-
ing radial distribution functions. At high volume fractions,
where the DPD particles and the range of DPD–colloid inter-
actions approaches the inter-colloid separation, this leads to
a highly-structured, gel-like suspension, which explains the
breakdown of the DPD method for diffusion and shear vis-
cosity calculations in this range. A related and more detailed
discussion of the effects of explicit versus implicit solvents
on inter-colloidal interactions is given by Grest et al. [86].

Overall, it is clear that the FLD method yields more accu-
rate diffusion coefficients than any variant of the MPCD and
DPD methods that we have tested. A significant challenge
for the latter two methods is reproducing the desired phys-
ical characteristics of the fluid, in particular dynamic prop-
erties such as viscosity. Given the variations in diffusivities
observed as a result of changes in the solvent-colloid coupling
scheme for both MPCD and DPD, it appears that enforcing
the correct colloid particle size and boundary conditions is
also problematic. The precise nature of the difficulties in this
regard is not clear from the results presented here for either
MPCD or DPD, and requires additional investigation and
development of these methods. With FLD, both the solvent
viscosity and particle size are direct inputs to the simulation,
which makes for a trivial parameterization procedure.

Despite discrepancies between explicit solvent methods
and FLD with regard to diffusion coefficient values, viscosity
data for certain variants of MPCD are in excellent agreement.
It appears that for the system tested here, the unusually low
Schmidt numbers (order unity) of the large collision time step
variants of MPCD do not have a significant adverse effect;
however, for more realistic fluids, this is bound to become
a concern for all MPCD-based methods. With DPD, good
agreement with iFLD viscosity results is obtained at low vol-
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Fig. 7 Colloid particle radial distribution functions for several simulation methods at volume fractions of 0.1 and 0.4

ume fractions, but the method breaks down at high volume
fractions due to the finite size of DPD particles, which is
comparable to the inter-colloid separation distance. This can
be overcome with a larger number of smaller DPD parti-
cles, but the computational advantage of the method is then
diminished. Despite the ability to reproduce a higher Schmidt
number using DPD, the method overall appears to be a less
physically accurate model for colloid suspensions as com-
pared to MPCD.

4.4 Computational performance

The computational performance of the different simula-
tion methods is summarized in Table 4. All methods are
implemented in the LAMMPS software package [176], as
described in Sect. 3. The data in Table 4 are based on runs car-
ried out on the Sandia National Laboratories Red Mesa sys-
tem, a cluster of Intel Xeon 5500 processors with InfiniBand
connectivity. Short equilibrium simulations were carried out
for the system described in the preceding section, i.e. 200
colloidal particles interacting with a purely repulsive inte-
grated Lennard-Jones potential. DPD data correspond to the
DPD-v1 system, and MPCD data correspond to the MPC–AT
collision scheme with a large time step and reverse bound-
ary conditions. While there are some differences in speed
for different variants of the MPCD method, they are small
compared to differences among the three different solvent
models.

As expected, the iFLD method provides by far the fastest
performance of all the methods tested, while MPCD and DPD
show comparable speed and parallel scaling. However, we
note that for both volume fractions shown, there are close to
ten times more MPCD solvent particles than DPD particles.

We have used a constant number of colloid particles (200)
and varied the size of the simulation box to achieve different
volume fractions. This results in the explicit solvent methods
being significantly faster at higher volume fractions, where
much fewer solvent particles are needed. In contrast, both
iFLD and nFLD become slower at higher volume fractions,
since the computational effort in these methods is dominated
by the calculation of pairwise colloid–colloid interactions;
at higher volume fractions, particles are in closer proxim-
ity, leading to more frequent near-field pairwise lubrication
interactions. In both cases, the nFLD method is significantly
slower, due to the matrix problem that must be solved at every
time step (see Eq. (18)). As already mentioned, we have used
a similar integration time step size for both methods, as the
integration time step in this case is limited by the inter-colloid
potential. This leads to unphysical diffusion results at short
times for the nFLD method, which is predicated on the use
of a much larger time step. For the situation considered here,
the iFLD method is clearly the better choice; however, for
cases where a much softer colloid interaction potential is
used, the nFLD method can potentially allow for the use of
a time step that is orders of magnitude larger than iFLD;
as a result, nFLD can be a much more expedient method in
terms of total simulation time achieved, even if each time
step requires more wall time to compute.

As previously discussed, a plethora of solvent parameter
choices are possible for both the MPCD and DPD methods,
which can have significant impacts on computational perfor-
mance. In this work, several parameters were selected for
optimal computational speed; as shown in the previous three
subsections, the relatively large size (and consequently lower
number density) of DPD particles leads to some undesir-
able effects, particularly at high colloid volume fractions. For
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Table 4 Computational performance for all methods at volume fractions of 0.1 and 0.4

Cores Volume fraction = 0.1 Volume fraction = 0.4

iFLD nFLD MPCD (742,410) DPD (113,341) iFLD nFLD MPCD (173,015) DPD (17,838)

1 0.97 29.3 953 1597 3.67 144 347 226

2 0.70 27.7 459 841 2.20 102 171 120

4 19.8 257 470 67.5 104.1 68.2

8 17.2 154 293 0.91 46.0 65.3 45.0

16 0.54 25.0 68.8 167 0.90 52.3 41.0 27.4

32 33.1 100 25.9 17.0

64 17.4 54.0 17.3 11.3

128 10.2 37.0 14.4 8.7

256 8.37 22.7 12.5 7.4

512 8.28 16.6 12.1 8.0

Values are wall times in seconds required to perform 10,000 time steps (lower number means better performance). Numbers in braces below each
explicit solvent method in the title row indicate the total numbers of solvent particles in the system

more realistic simulations, smaller DPD particles at higher
number densities would likely be required, which could lead
to a large increase in computational expense. In contrast, the
MPCD results do not suggest any need for larger number den-
sities of MPCD particles, except perhaps to achieve higher
shear rates without shear thinning of the solvent, and higher
Schmidt numbers. Although we have not attempted to do so,
it is clear that in order to achieve the accuracy of MPCD
using DPD, a much larger number of DPD particles would
be required, leading to a drastically higher computational
effort. We therefore consider MPCD to be the more compu-
tationally expedient method of the two, despite comparable
performance data in Table 4.

Even for a well-characterized system like the suspension
of monodisperse hard spheres treated here, the quantitative
prediction of seemingly simple properties such as equilib-
rium diffusion and shear viscosity is challenging. Based on
the results presented, we find the FLD method to offer the
best balance between accuracy and computational expedi-
ence. Presumably, more rigorous variants of the SD method
would provide even more accurate results, albeit with some
additional computational expense. However, the flexibility of
the different simulation techniques beyond the simple sys-
tem discussed above must also be considered when evalu-
ating their overall use and future potential. The possibility
of introducing more advanced capabilities in these and other
similar simulation methods is therefore addressed in detail
in the next section.

5 Advanced capabilities

Newtonian dynamics particle solvers coupled with any
approach to hydrodynamic interactions all suffer from at least

one fundamental underpinning that prevents general applica-
tion to practical processing routes for integrating colloidal
particles into useful materials. In this section we present
the current state and outstanding challenges in what we
believe are the key barriers to such general application: (1)
non-Newtonian, complex solvent rheology (2) solvent dry-
ing/curing (3) non-spherical particles, and (4) complex flow
geometries.

Despite these barriers, we want to stress that even in their
current state, modeling and simulation tools can be quite
useful in addressing practical problems. Processing colloidal
dispersions into either highly-ordered films/structures or dis-
ordered particle compacts or composites involves complex
flows (casting, coating, extrusion, mixing). Regarding the
underpinning process flow, much can be learned from the
work undertaken and reviewed in Sects. 3 and 4, as nearly
all practical processes include colloidal diffusion and shear-
induced (or viscometric) flow. Moreover, many systems of
interest consist of Newtonian or nearly Newtonian solvent
rheology and many colloidal particles are spherical or can be
treated as such for practical purposes. Hence, computational
studies such as the ones reviewed and taken up in Sect. 4 are
useful for determining the effects of inter-particle potentials
on flow rheology, volume fraction effects, and microstruc-
tural evolution tendencies. Moreover, these approaches can
also be used to contrive and/or fit coarse-grained constitutive
models for use in larger scale simulations.

Unfortunately solvents in real-world applications of
nanocomposite fabrication are often non-Newtonian, and
many particles are not spherical. New materials development
is most often focused on the solid state (except for lubri-
cants or liquid-crystals), and so drying and solidification is
key to most processes. Finally, many processing flows (coat-
ing, extrusion, etc.) are not simply bulk shear, but a com-
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bination of shear and extensional in nature, together with
wall-confinement effects. In this section we address these
complications and provide some guidance based on existing
literature and from our own experience on how best to pro-
ceed with existing technology, as well as research challenges
that must be addressed.

5.1 Non-Newtonian solvents

The non-Newtonian response of a colloidal suspension to
impressed shear, even when the solvent is Newtonian, is
well known (see Sect. 4). Classic shear thinning is always
observed in such systems. Even more extraordinary non-
Newtonian responses are observed with large particle load-
ings and strong colloidal interactions (attractive and/or repul-
sive), including time-dependent relaxation, viscoelasticity,
and even yield-stress behaviors. It is clear that the modeling
and simulation community has made great strides in predict-
ing such behaviors [75,91,197]. For processing flows associ-
ated with directed colloidal assembly (e.g. the work of Sny-
der et al. [208]) solvents are usually of low molecular weight
(high vapor pressure) and demonstrate a Newtonian (con-
stant viscosity) response to deformation. However, process-
ing flows of this sort remain largely bench-top research, and
are in rare instances practiced in industry for large-scale man-
ufacturing. More often, dense suspensions are processed into
particle compacts and composites for a number of applica-
tions, including the production of energy materials (e.g. bat-
teries, fuel cells), catalytic materials (porous with high sur-
face area), and other structural polymer, metal and ceramic
materials. These suspensions are replete with binders and
surfactants added for the express purpose of particle inter-
action control and binding/adhesion (through curing) upon
solvent removal. Due to their higher molecular weight, these
constituents result in non-Newtonian solvent response, espe-
cially during the curing process. Unfortunately, the model-
ing and simulation methods discussed above are not easily
extended to account for such effects.

Extension of the hydrodynamics to accommodate time-
dependent relaxation and/or viscous response (the classic G ′

and G ′′ quantities measured from oscillatory shear exper-
iments [19]) has received the most attention. Clearly, any
implicit solvent model based on the Stokes equation for a
Newtonian fluid (see Eq. 3) is fundamentally problematic in
this respect. This includes all pair-wise and isotropic terms
for methods such as SD, FLD and BD. However, simple
approximations can be used to account for certain types
of non-Newtonian rheological behaviors in these models.
Perhaps the simplest approach to this problem is to aug-
ment expressions for the hydrodynamic resistance tensor (see
Eq. 10) with a frequency dependent solvent viscosity. To this
end the equation of motion for a single colloid can be written
as follows:

mi

dvi

dt
=

∑

j �=i

FC
i j + FH

i + FB
i (34)

The hydrodynamic term is written as a time convolution inte-
gral:

FH
i = [R0]i i

∫ ∞

0
κ(t − t ′)

dvi

dt ′
dt ′ (35)

The kernel κ(t) contains the non-Newtonian behavior of
the solvent (note, in Eq. 1 the kernel is assumed to be
κ(t) = δD(t); hence, after evaluating the inegral one is left
with a time-independent or quasi-steady drag). Finally the
Brownian term must reflect the correlations due to the time
dependence of the viscosity:

〈FB〉 = 0

〈FB(t)FB(t + τ)〉 = 2kB T [R0]i iκ(τ) (36)

In each of these expressions we have also assumed an
FLD-type mean-field-like approximation for the volume
fraction dependence of the viscosity via diagonal terms in the
R0 tensor (i.e., [R0]i i ), while ignoring the lubrication terms
Rδ (see Eq. 9) for simplicity; although the lubrication terms
can be included as well. This means that any non-Newtonian
effects would not be accounted for in long-range hydrody-
namic interactions. This approach of course assumes that the
colloid particle size is significantly larger than the long-chain
polymers which lead to the time-dependent solvent viscos-
ity, or that, in accordance with assumptions of microrheology,
the viscosity that the colloid feels is equivalent to the shear
viscosity of the solvent [146]. One example of an algorithm
to numerically simulate the so-called Generalized Langevin
equation implemented in LAMMPS has been presented by
Baczewski and Bond [6] who deployed a frequency (time)
dependent viscosity with proper Brownian fluctuation terms
(see also references therein).

Extending explicit solvent methods such as MPCD and
DPD coupled to DEM colloidal solvers towards non-
Newtonian solvents has also been the subject of research.
Pryamitsyn and Ganesan [182] extended DPD to account
for colloidal particle systems in viscoelastic solvents. Other
groups have paid considerable attention to extending DPD to
viscoelastic fluid mechanics, largely by connecting a portion
of the particles with springs. This can either be interpreted as
a direct representation of polymer additives [119,194,212]
or as an abstract augmentation of the DPD algorithm that
yields viscoelastic solvent behavior [210]. In a similar vein,
Tao et al. [214] advanced the MPCD technique presented in
Sect. 3.2 to viscoelastic fluids by connecting pairs of MPCD
particles with harmonic spring-like potentials. The method
is based on alternating streaming and collision steps, just
like the Newtonian solvent implementation. They applied
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this approach to oscillatory shear flow and found the elastic-
viscous frequency response to be consistent with that of a
Maxwell fluid. This work did not address interactions with
other colloidal particles. Despite the ability of these types of
models to qualitatively capture several features of viscoelas-
tic behavior, no approach that we are aware of has been able
to map the non-Newtonian rheology of a realistic solvent and
yield quantitative predictions for real-life applications. The
scaling and mapping of realistic solvent properties that were
of significant concern even for the simple system in Sect. 4 are
greatly compounded for these more complex solvent models.

Several groups have extended Stokesian dynamics (SD)
as well as the more general boundary element method (BEM,
see Sect. 2.2.1) to account for non-Newtonian and viscoelas-
tic solvent behavior. The approach just described for DPD
and MPCD, i.e. including an additional discrete element rep-
resentation of particles with elastic character, was adopted
by Binous and Phillips for SD [16,17]. By adding spherical
dumbbells connected by finite-extension nonlinear-elastic
(FENE) springs to the colloid suspension, they were able
to recover the behavior of a Boger viscoelastic fluid—i.e.
exhibiting elastic effects, but having a constant shear vis-
cosity. In a different approach, an approximate analytical
reformulation of SD to simulate a Maxwell fluid has been
presented by Schaink et al. [192]. The more generalized
Boundary Element Method has also been extended to vis-
coelastic solvents by Phan-Thien and Fan using an analyti-
cal treatment for an Oldroyd-B fluid [173], which in princi-
ple can be extended to other rheological models, but is lim-
ited to unbounded domains (or possibly domains with simple
boundary conditions). A similar approach has been advanced
in the continuum flow arena, viz. to use a microstate equation
in the continuum which carries the response of elastic mole-
cules to solvent deformation [98]. The continuum approach
typically must be mesh-based (e.g. finite element, finite vol-
ume methods), or posed in a Lagrangian-particle framework,
as is discussed below.

Immersed Boundary Methods (IBM) as recently reviewed
by Lechman et al. [134] offer the most direct route to non-
Newtonian solvent rheology, as the added, but expensive,
benefit of a background or body-fitted mesh provides a route
for several decades of mesh-based algorithm development to
address non-Newtonian effects. Halin et al. [88] advanced the
so-called Langrangian particle method for computing time-
dependent viscoelastic flows. Their method deploys either a
differential constitutive equation (macroscopic approach) or
a kinetic theory model (micro-macro approach) on a back-
ground mesh for the viscoelastic stress. The discrete Lan-
grangian particles carry the stress state and its history through
the interpolation, and they can serve in a dual role as suspen-
sion particles. Hwang et al. [99] pioneered an approach based
on earlier work of Baaijens [5] to couple discrete particle
motion with a uniform background FEM model of incom-

pressible viscoelastic flow. They deployed Lagrange multi-
plier constraints to match the particle-fluid stress and solvent-
mass-displacement boundary conditions on the particles.
However, their application was restricted to two dimensions
with no apparent effort to extend it to three. A recent method
developed by Noble et al. [163] known as the conformal-
decomposition finite element method (CDFEM) may offer
the most general framework to address non-Newtonian sol-
vent effects. They have made considerable progress towards
scalability to parallel platforms and hence may be well posi-
tioned to incorporate such effects in flows of colloidal sus-
pensions. A more recent IBM-like approach was advanced by
Chrispell and Fauci [40] and applied to a complex flow geom-
etry (refer to Sect. 5.4). Using a finite-difference, marker-
in-cell Navier-Stokes solver they developed a method to
integrate an Oldroyd-B constitutive equation. They success-
fully applied their approach to peristaltic pumping of col-
loidal suspensions at reasonably high Weisenberg numbers.
In summary, IBM methods coupled with colloidal DEM
offer a straightforward route to solve this problem, but with
the requirement of at least 100–1,000 particles in a three-
dimensional meso-scale simulation, computational expedi-
ency remains an outstanding issue with this approach.

Accounting for non-Newtonian solvents in colloidal
dynamics solvers is clearly still an outstanding multi-
scale challenge. From the most general, straightforward
approaches based on coupled FEM/FDM and DEM to the
more esoteric extensions of FLD, SRD, and DPD, the
research challenges seem not surprisingly to lead to the need
for computational efficiency and rheological accuracy. FLD,
with all of its merits vis-à-vis DPD and SRD, will face
the same potentially unsolvable challenges, mainly due to
its quasi-analytical origins, a potential pitfall that extends
equally to SD and BEM.

5.2 Non-spherical particles

Colloidal particles are often spherical due to the manner in
which they are synthesized. In both high-temperature gas-
phase reactions and solution-based nucleation growth, spher-
ical shapes are thermodynamically favorable. As already
discussed, the spherical particle assumption mathematically
enables and is in fact the foundation of most DEM approaches
that include contact and colloidal forces. On the other hand,
particles larger than colloids are commonly aspherical as fab-
rication routes in this regime are often based on pulverization
and milling. Larger particles made by spraying/atomization
and drying also often end up ellipsoidal due to drying stresses.
In the colloidal size regime, however, recent topical interest
in so-called nano-materials has drawn attention to processing
particles like nanotubes (e.g. carbon nanotubes), nanowires
(e.g. silicon) and graphene flakes [136,198] into useful mate-
rials. As a result, broadening DEM capabilities and associ-
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Fig. 8 Various approaches to representing non-spherical particles

ated hydrodynamics to accommodate such shapes has come
to the forefront. In addition to nano-materials, some cre-
ative solution-based approaches to producing mildly aspher-
ical shapes like di-spherical colloids, or di-colloids, have
emerged [111]. However, colloidal particles of this sort are
rarely encountered in large-scale manufacturing, perhaps
because the process of making them has not been scaled
up. Highly aspherical colloidal particles can also be fab-
ricated with nano-imprinting processes. Caldorera-Moore
et al. [32] used imprint lithography to make a variety of
shapes of hydrogel particles. Again, such approaches hold
promise for small batches of particles used for applications
like drug delivery, but they represent a specialized case vis-

à-vis modeling requirements for concentrated dispersions
used in nanocomposites. While the development of mod-
eling approaches that address generalized particle shapes is
an important challenge to be met in the broader DEM space,
most colloidal applications today deal with easily parame-
terized shapes, such as spheres, cylinders, and plates.

There are a number of ways to construct and parameter-
ize models of non-spherical particles, as illustrated in Fig. 8.
To first order, arbitrary shapes such as a di-colloid can be
approximated with dumbbell assemblies, or if a smooth, sin-
gle particle is required with a spheroid, as shown in Fig. 8a,
d. Clearly, if the goal is to represent a hexahedral body, these
simple shapes do not capture important features, such as

sharp corners and flat surfaces, which can have a signifi-
cant effect on microstructure and dynamics. A more generic
and accurate representation can be accomplished with collec-
tions of spheres (overlapping or non-overlapping) [81,178],
which are then constrained to move as rigid bodies, as in
Fig. 8b, c. This generalization is also applicable to cylin-
ders, rods and sheet-like objects. The corrugation that results
from this approach is sometimes undesirable, as it can lead
to artificial inter-particle stacking at close range. The most
generic approach involves representing a shape using a sur-
face triangular mesh, with the possibility of an interior tetra-
hedral volume mesh, as shown in Fig. 8e, f. The LAMMPS
software package [176] provides the basic computational
infrastructure to accommodate all of these representations.
What remains a challenge, however, is a workflow which
allows for building a collection of such non-spherical par-
ticles to be used for a mesoscale simulation. Several help-
ful algorithms for generating and using libraries of arbitrary
shapes have been presented in literature [81,133,178], but
the process is highly dependent on the problem at hand, and
typically requires some effort on the part of the analyst.

Regardless of the representation, extensions for accom-
modating aspherical particles are difficult to implement in
most simulation methods for two reasons. First, the method
itself may be predicated on the spherical particle assumption,
as is the case in quasi-analytical hydrodynamic treatments
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underpinning Brownian Dynamics, Stokesian Dynamics and
FLD. Second, soft/long-range colloidal forces are difficult
to reconcile without generalized and expensive surface-to-
surface distance calculations required to determine the pair-
wise force. Significant work has been pursued to address both
of these areas, as we discuss below.

Hydrodynamic interactions in implicit solvents pose a sig-
nificant challenge. The Stokesian Dynamics (SD) method
and its expedients, such as FLD, are limited to spheres due
to their analytical underpinnings. However, dicolloid shapes
in suspensions have been modeled with SD-related exten-
sions [125,127]. Meng and Higdon [153,154] have gen-
eralized to plate-like particles using an extension to SD
that approximates the hydrodynamics based on a planar
assemblage of hard-spheres (viz. no colloidal interaction).
An extension of their work added Brownian motion to the
model [154]. They reported the effects of Peclet number
(shear rate) and volume fraction on the effective suspen-
sion viscosity. Additionally, SD has been extended to pro-
late spheroids [41,42] and fibres [30,190]. Nevertheless, the
SD approach and all related methods are fundamentally lim-
ited to relatively simple particle shapes that are amenable
to analytical treatment. Unfortunately, generalizations of
these methods, like the Boundary Element Method (BEM),
which easily accommodate nonspherical shapes, are often too
expensive to be practical for large systems. On the other hand,
explicit solvents such as MPCD and DPD can in principle be
used in conjunction with any arbitrary particle shapes. The
challenge there lies in developing efficient solvent–colloid
collision detection and surface interaction algorithms that
enforce no-slip boundary conditions at the particle surface.
This can largely be resolved for simple flow geometries with
MPCD [24], and significant effort has been expended for
DPD [58,174,185]. Further investigations for more complex
flow situations involving the various particle representations
discussed above are warranted for these methods, but the
difficulties appear to be manageable.

Two alternative modeling routes exist that are feasible for
general application to aspherical particles. First, atomistic
models have no such limitations regarding particle shape,
as both solvent and colloid can be represented at the atom-
istic scale. Presuming accurate atomistic potentials are avail-
able for all atom–atom (solvent and particle) interactions,
addressing nonspherical colloidal systems is feasible [115]
but limited to just a handful of colloidal particles. In short,
an atomistic approach is currently too computationally inten-
sive to address mesoscale systems of particles in a suspension
at large enough length scales to predict bulk properties. At
the other extreme, a second approach with no such parti-
cle shape limitations would be direct continuum formulation
for particle–solvent interactions coupled with grid/element-
based immersed boundary methods (cf. Sect. 5.1). In this case
the mechanics of each particle can be handled in the con-

tinuum, i.e. particle motion and deformation [162] or with
a discrete element approach [134]. Particle–solvent interac-
tions can be accommodated with a variety of approaches as
recently reviewed by Noble et al. [163]

Beyond atomistic approaches, no such work was found
on coarse-grained mesoscale modeling of graphene flake
suspensions or carbon nanotubes. The major challenge
here would be the approximate long-range inter-particle
forces (which may be modulated by the presence of poly-
mers/additives, in addition to their hydrodynamic interac-
tions), as well as obtaining accurate representations of the
shapes (triangular meshes or composite spheres). Because of
the simpler shapes, solving a microstate orientation equa-
tion in the continuum together with the appropriate con-
stitutive relations in a FEM/FDM framework is another
option [141,142], but detailed mechanisms of aggrega-
tion/agglomeration cannot be obtained in this approach.

Perhaps the most significant challenge pertains to mod-
els for the proper colloidal interaction potentials for non-
spherical particles. More specifically, the challenge is to
develop integrated colloidal potentials that can be efficiently
and accurately applied to coarse-grained colloidal model sys-
tems. For mildly aspherical particles like spheroids, several
colloidal potentials are available [68]. For composite spher-
ical representations (see Fig. 8c), long-range inter-particle
interactions can in principle be treated as a sum of pair-
wise interactions among constituent spheres, but the phys-
ical relevance of such an approach is questionable, espe-
cially for cases of highly overlapping spheres. On the other
hand, short-range (granular) contact potentials can be readily
implemented in this context [81,178].

While several atomistic studies addressing this challenge
have been undertaken [93], the best and most accurate
approach remains to be determined. in’t Veld et al. [221]
recently compared pair-wise interactions in atomistic sim-
ulations of composite nanoparticles with integrated spher-
ical forms. They compared pairwise forces between col-
loidal particles composed of smaller aggregated LJ atoms
to the integrated case due to Everaers [68]. They deter-
mined that simply computing the interaction via the Lennard-
Jones atoms on the surface of the composite colloidal par-
ticle led to incorrect temperature/vapor-pressure behavior,
unlike the properly integrated case. Similar results were
observed for composite nanoparticles, with the atom–atom
interactions truncated at a finite distance. In summary, while
DLVO and related potentials developed for spherical sys-
tems can be extended with minor modifications for mildly
aspherical systems (spheroids, dicolloids, etc.), much work
remains for generic shapes. A promising alternative yet to
be explored in great detail may be the surface element
integration method [15] which addresses in detail the col-
loidal interactions between spheres and plate-like parti-
cles.
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Fig. 9 Phases of coating and drying of colloidal suspensions: a Convective assembly process for highly ordered films, b fast drying and fully
densified films lead to c capillary stresses

5.3 Drying and solidification

Addressing the underlying mechanics of processing col-
loidal suspensions into functional materials (films, compos-
ites, fibers) requires not just a firm understanding of rheo-
logical behavior of the suspension, as discussed in Sect. 5.1,
but also the stability of the suspension under processing and
during solidification. Solidification typically starts with vol-
ume reduction through drying. Two distinct processing routes
are of technological relevance here: the first is aimed at the
production of highly-ordered films (monolayers or multiple
layers) through what is known as colloidal directed assembly,
viz. self assembly influenced by external forces. Although a
number of approaches have been explored that deploy elec-
tromagnetic forces, the most noteworthy and scalable route
is so-called convective-assembly/drying [208,229], which
deploys a metering blade to apply the film and subsequent
drying to assemble the ordered layer(s) of particles (see
Fig. 9). In this case, the initial suspension is highly dilute
in order to achieve sufficient particle mobility. Unfortu-
nately, long-range ordering is prone to thermally-induced
defects, and so this process is typically run slowly (of order
1 cm/min in typical coating processes). The second distinct
drying/processing route is often used in the production of
disordered nanocomposites. Dispersions typically being cast
into such materials are highly loaded (of order 20–40 % or
higher by volume) in order to reduce energy requirements and
to force the microstructure to be amorphous. At high particle
concentrations, long-range ordering is not the goal. Typically
a plethora of high-speed coating and drying processes can be
brought to bear. Managing suspension rheology is paramount
to successful processing, and subsequent drying and curing
is often fraught with defects (residual stress and cracking).

Modeling and simulation tools at the continuum scale
have been central to process design of coating and drying for

decades [179,196]. Colloidal particle concentration tracking
during drying of drops and films has been treated with sus-
pension balance and population balance approaches at the
continuum scale [29,156]. However, this work is aimed at
understanding the connection of processing to microstruc-
ture, which is best achieved with meso-scale models of the
sort we have discussed above. At this scale, modeling the
effects of a true drying process is still in need of attention.

Foremost are the challenges associated with model for-
mulations that best represent an actual drying process. If the
concern is basically the physics underpinning uniform, bulk
volume reduction, then this can be achieved with a uniform
compression of the simulation box in a meso-scale model,
using the usual periodic boundary conditions in all direc-
tions. For implicit solvent methods like FLD, these simula-
tions are straightforward without any significant modeling
advances, and essentially mimic the case in which solvent is
removed from the volume in a uniform way. If particle diffu-
sion is much faster than the volume reduction rate, this simple
simulation does represent a slow drying regime, viz. one in
which the diffusion time scale τD = a2/D0 is much less than
a/vint , where vint represents the wall speed and a the particle
radius. With explicit solvent methods, the solvent particles at
the boundaries must be deleted from the system in a way that
maintains thermodynamic consistency. These considerations
can affect the temperature of the system. Some consideration
should be made of latent heat consumption (cooling) during
drying, as some workers have addressed at the atomistic [38]
and meso-scales [184].

Actual drying or solvent removal drives the predominant
solvent and particle transport in one direction relative to the
drying interface. Whether the medium is a drop, fiber or film,
drying-induced microstructural formation is still a three-
dimensional problem and ripe for exploration with mesoscale
models (see Fig. 9). Special boundary conditions on the dry-
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ing interface must be contrived for such simulations. Bound-
aries normal to the interface can be treated as periodic, but
at the interface solvent must be removed in a thermodynam-
ically consistent way, depending on the drying regime. We
identify two distinct drying regimes:

– “Slow drying”—particle diffusion rate much faster than
the drying rate

– “Fast drying”—drying rate much faster than the particle
diffusion rate

Within the “fast drying” regime of colloidal systems, as
pictured in Fig. 9, there are several phases of the process with
distinct physical descriptions:

– Constant rate regime—low volume fraction of colloids,
which do not impede diffusion path for solvent signifi-
cantly

– Falling rate regime—particle concentration increases at
the drying front (free surface), impeding solvent mobility
and slowing evaporation

– Percolated network—solvent recedes in particle space and
drying controlled by pore-diffusion/flow of solvent

In a slow-drying regime the rate of drying continually
falls, but less precipitously, as no surface layer (“skin”) forms.
When drying is slow, simply moving a single boundary along
its normal direction at the desired drying speed for implicit
solvent methods, and/or deleting solvent particles in explicit
methods commensurately with the moving boundary, is use-
ful for exploring the microstructural implications. In the case
of atomistic explicit solvents such as LJ or atomistically rep-
resented water, particles naturally form a liquid–vapor inter-
face, and move from the liquid to the vapor phase; the evap-
oration rate can be controlled by removing particles from
the vapor phase at various rates [38]. If drying is “fast”,
then the effect on the drying rate of surface-microstructure
(skin) formation must be accounted for. Clearly, explicit
solvents should capture this effect: evaporation of particles
from the surface, or boundary, will induce diffusion of sol-
vent particles to feed the evaporation. That diffusion, if fast
enough, leads to heightened convection of colloids towards
the surface, induces tension in the liquid, and ultimately leads
to a compression of particles near the surface. No known
mesoscale approach deploying an implicit solvent (e.g. FLD)
can capture this effect due to their quasi-analytical nature.
Challenges also remain for coarse-grained explicit solvent
approaches related to local depletion in regions where col-
loids are closed-packed. Simulations of drying processes
clearly require additional effort in algorithmic development.

Some relevant work in this area is noteworthy. Inter-
faces between dense (liquid) and gaseous regions can be
modeled with coarse-grained explicit solvents, provided that

some energetic interaction among solvent particles exists. If
additional energetic interactions between solvent molecules
and colloids are present, these approaches can also account
for capillary interactions among colloids. However, colloid–
solvent interactions must be adjusted appropriately in order
to reproduce realistic capillary effects, and the choice of para-
meters is not straightforward. Most of this work deploys
lattice-Boltzmann solvents [112,113,199], but is typically
limited to small systems. For models where colloid–solvent
energetic interactions are not present (such as MPCD or
FLD, as well as some variants of DPD), capillary effects
will not arise spontaneously. Instead, additional capillary
forces must be applied to particles at the interface (in the
case of implicit solvent, no true interface exists, but it can
be simulated for the slow drying regime with a moving flat
wall, as described above). These capillary forces are based on
approximate analytical solutions to the Young–Laplace equa-
tion, and have been studied extensively by Kralchevsky and
coworkers [47,120–122] and more recently by Vassileva et al.
[220]. The resulting expressions have been used in analyti-
cal equilibrium models [135] as well as dynamic simulation
methods [79]. In the latter case, Fujita and Yamaguchi used
an immersed boundary method to couple the resulting DEM
to a Navier–Stokes solver, a rigorous but computationally
expensive approach. They do however capture the drying-
induced convective effects critical in fast-drying regimes.

As drying proceeds to a complete percolated, stress-
supporting network, evaporation continues as the solvent
recedes into the film (Fig. 9b). Capillary stresses can fur-
ther induce consolidation at this point, and in some cases
particles can deform and even crack. At a larger scale the
film can form defects (mud-cracking). Simulating this prob-
lem at the mesoscale requires granular contact potentials (e.g.
Hookean/Hertzian with friction) and possibly some accom-
modation for particle deformation and even grain-boundary
diffusion (at high temperature). Theoretical treatments in the
continuum have been reported, such as the quasi-analytical
approach of Singh and Tirumkudulu [204]. Additionally,
network approaches with statistically-based bond-breaking
probabilities [149,206] are limited to simplified phenomeno-
logical models.

To make matters more complicated, in most practical
applications, drying for composite material production is
accompanied by the curing of a binder. We found no rel-
evant literature in which this effect was accommodated in
mesoscale simulations. With coarse-grained explicit solvent
approaches, the chemistry underpinning curing would be dif-
ficult to implement, as it is often based on free-radical or
condensation reactions, which would require the tracking of
species concentration, etc. One could implement some sort
of viscosity increase through a thermal effect, which would
account for some of the dynamics of curing during the consol-
idation of particles. This is readily implemented in implicit
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solvent models (including SD, BD, FLD), so long as a suit-
able rate model for the viscosity is available. Accounting for
curing effects, including their contribution to the final resid-
ual stress of a film, remains an outstanding research challenge
for DEM mesoscale modeling.

5.4 Variable complex flow geometry

Up to this point we have only addressed the applicability and
extensibility of mesoscale DEM modeling in simple geome-
tries, with very little discussion of their application to flows
not simply driven by Brownian motion or impressed simple
shear in simulation boxes with obvious periodicity. The dry-
ing problems discussed in Sect. 5.3 present the first need for
non-standard boundary conditions (non-periodic), and it is
clear that much work is needed, especially with respect to
the quasi-analytical, implicit solvent formulations like FLD.
Extending the methods highlighted in this paper to accom-
modate no-slip walls, non-periodic boundaries that account
for drying fronts, or flow regimes that are not simple bulk
shearing is of great interest for other applications as well.

As with the other advanced capabilities addressed herein,
a general approach with no restrictions and complete gen-
erality in complex geometries is to solve the Navier-Stokes
equations in the actual application of interest. With mesh-
based methods like finite element, or lattice-particle methods
(LB) and even with the explicit solvent methods discussed
earlier, such simulations in principle can be carried out, so
long as wall interactions with the solvent particles can be
designed to produce the desired boundary behavior (e.g. no
slip). That is, there are no inherent limitations to imposing
no-slip boundaries or other sources of impressed flow (pres-
sure driven flow, stretching flow, etc.). Recent work by Zhao
et al. [237] used SRD and DPD successfully in modeling
electro-osmotic flow in a microfluidic cell. The same meth-
ods have also been recently extended to complex geometries
and free surfaces between two phases (like capillary free sur-
faces), as motivated by related work using lattice Boltzmann
techniques [1,112,113]. Although implicit solvent models
such as SD and its expedients can be extended to include the
effects of planar walls [203], more general boundaries can-
not easily be treated, and require significant theoretical and
algorithmic modifications.

Regarding generalized Navier–Stokes solvers coupled
with DEM particle solvers, the work of Sasic et al. [191]
is noteworthy. Building on a finite volume solver and the
volume-of-fluid multiphase flow model, similar to the finite
element based approach of Baaijens [5], Sasic et al. advance
a method to couple a particle solver using the volume-of-
fluid marker function to imprint the volume displacement
on the solvent mesh. The method is similar to a multiphase
flow approach, but seems to be limited to a small number
of particles. In this same generalized framework, Chrispell

and Fauci [40] used finite difference methods and marker-
and-cell free boundary tracking. In general, these grid-based
approaches are computationally intensive when coupled with
DEM, and thus limited to small systems until work on scal-
ability to massively parallel platforms is undertaken. How-
ever, as with all such FEM, FDM, or FVM solvers, these
approaches can accommodate all boundary conditions.

What remains an outstanding challenge in the rheological
arena is the simulation of mixed shear and extensional defor-
mations, or even pure extensional deformation. No obvious
periodic simulation domains exist to impress a purely exten-
sional flow. However, the work of Kraynik and Reinelt [123]
advanced a clever method to do just this for the flow of foams,
even though it seems to only recently have been discovered
for use in atomistic simulations. Their work solves the lattice-
compatibility condition for planar extension. While straight-
forward for simple shearing flow, this condition is subtle for
extensional flows. At the time of this writing no such work
in the meso-scale particle flow arena has taken advantage of
this work.

In conclusion on this topic, the most pressing chal-
lenge, which may in fact not have an elegant solution, is
the extension of implicit solvent methods such as SD and
FLD to boundary and physical conditions often encountered
in real-life applications. Specifically, because these meth-
ods are quasi-analytical, extension of the underpinning the-
ory to accommodate long-range hydrodynamic interactions
between particles and walls, and particles and free surfaces
is difficult and may only be accessible with mesh-based or
particle-based solvents. With regard to explicit solvent meth-
ods such as MPCD and DPD, some challenges remain in
selecting surface-solvent interactions to enforce the desired
boundary conditions, but in principle arbitrary flow geome-
tries can be simulated.

6 Conclusions

We have presented an overview of particle-based mesoscale
simulation techniques for colloidal suspensions. In Sect. 4,
we focused on a quantitative comparison of three com-
monly used techniques: FLD, an implicit solvent method that
represents a significant simplification of Stokesian dynam-
ics, as well as DPD and MPCD, two distinct explicit sol-
vent approaches to simulating coarse-grained fluids. We
deployed each method to model thermal motion (diffusion)
and viscometric flow (shear) of suspensions with a pre-
scribed solvent viscosity. Our approach stands in contrast to
some previous works, in which only key non-dimensional
parameters were reproduced, but various specific proper-
ties and parameters (e.g. viscosity and particle diameter)
were not explicitly controlled or mapped to a particular
solvent [11,22,36,169,181,217]. While this latter approach
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would likely have been adequate for the simple diffusion and
bulk shearing simulations presented in Sect. 4, the exact map-
ping of solvent properties is an essential step in simulations
of more realistic, complex systems.

With FLD, both the solvent viscosity and particle size
are direct inputs to the simulation, thus making for a trivial
mapping procedure. With MPCD, the availability of analyt-
ical expressions greatly simplifies the selection of MPCD
fluid parameters, and the particle size is in principle a direct
simulation input for the colloid–solvent coupling schemes
considered here; however, in practice, it turns out that both
colloid diffusivity and viscosity are sensitive to many algo-
rithmic details of the MPCD method, and no clear choice can
be identified to produce the desired results. With DPD, sol-
vent properties cannot be accurately predicted a priori for a
given set of parameters, and must be measured from simula-
tions of the pure DPD fluid. Furthermore, no clear choice or
physical basis for colloid–solvent coupling exists, and ad hoc
potentials must be introduced, with parameters that can only
be selected based on a trial and error approach. While this is
feasible for the systems considered in this work, it becomes
unwieldy for more complex cases (e.g. polydispersity, non-
spherical particles, etc.), and any parameters thus selected do
not transfer readily to different situations. As such, we con-
clude that FLD and similar Stokesian dynamics-based meth-
ods are in general superior to explicit solvent methods with
regard to mapping of key physical parameters. We identify
this as a notable shortcoming of both MPCD and DPD in the
simulation of colloid suspensions, and an area that requires
further method development.

With regard to accuracy, the FLD method is once again
superior as measured by the accuracy of the early- and late-
time diffusivities at various volume fractions. FLD results
are in excellent agreement with theoretical and experimental
predictions, whereas notable deviations are apparent in both
MPCD and DPD data. With MPCD, most variants and para-
meters tested yield values that are in reasonable agreement
with the expected diffusivities, but no clear picture emerges
as to systematic effects of different parameters. With DPD,
parameters can in principle be selected to match the target
diffusivity data at low volume fractions, but the method fails
at higher volume fractions. MPCD and FLD viscosity data
are in excellent agreement, but MPCD is limited to moderate
shear rates; while DPD performs well with regard to viscos-
ity at low volume fractions, it once again fails at high volume
fractions due to the finite size of DPD particles.

Given the superior accuracy and performance of SD-based
methods such as FLD over explicit solvent methods, it would
seem that the former is a clear choice for colloidal suspension
simulations. However, the merits of explicit solvent methods
become more apparent when moving away from the canoni-
cal system of monodisperse spheres in an infinite domain to
more complex, realistic systems, such as those discussed in

Sect. 5. Although the difficulties noted for the simple sys-
tems persist in these cases, there is significant flexibility to
be gained through the use of explicit solvents. In particu-
lar, modeling hydrodynamics for non-spherical particles and
complex flow geometries is relatively straightforward with
explicit solvent methods, whereas only a limited number of
simple shapes and geometries can be treated using SD-based
implicit solvent methods. Explicit solvents extend more read-
ily to models of solvent evaporation, although simple models
of curing can be more readily implemented in the context of
FLD. Finally, modeling solvents with non-Newtonian viscos-
ity appears to be more mature for MPCD and DPD, although
much work is needed for all methods to achieve realistic
complex solvent rheologies.

Overall this work provides a direct comparison of several
particle-based simulation methods for colloid suspensions.
For simple systems, Stokesian dynamics-like methods, such
as FLD, are the clear method of choice; presumably, more
rigorous variants of the SD method yield even better results.
We have quantified a number of shortcomings for MPCD
and DPD explicit solvent methods even when applied to a
suspension of monodisperse spherical particles. We feel that
these deficiencies can be resolved, and that the potential for
applications to realistic systems is promising. While greater
flexibility can be attained using direct numerical simulations
of solvent hydrodynamics (e.g. finite element solutions of
relevant continuum equations), the computational simplicity
and ease of parallelization for particle methods cannot be
matched. In general, we believe particle-based methods such
as those discussed in this work will remain an important tool
for the simulation of colloidal suspensions.
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