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Abstract—Computing the phase angle of a three-phase voltage
signal in utility grid is critical for the synchronization of smart
grid. Only if the phase angle is accurately estimated, the energy
transfer between the distributed power generators and the
utility grid can be properly controlled. In this paper, we propose
a particle filter (PF) based scheme to estimate the phase angle
of the utility grid in the presence of voltage unbalance and
frequency variation in the αβ stationary reference frame where
the positive and negative sequences of the input three-phase
signal are separated by Clarke transformation. For the filter
algorithm, the traditional SIR filter is customized for the grid
synchronization problem by exploiting the feature of the grid
state system dynamics and incorporating the deterministic
resampling. Extensive simulations have been conducted to
verify the effectiveness and efficiency of the proposed PF-based
synchronization scheme. It is shown that the proposed PF-based
scheme outperforms the traditional EKF-based scheme in terms
of both estimation accuracy and convergence time, when both
the voltage imbalance and frequency variation are exerted.

Keywords — Extended Kalman filter, grid synchronization,
particle filter, phase angle estimation.

I. INTRODUCTION

With more renewable energy source based distributed power

generation systems (DPGS) being connected to utility grid,

the necessity for accurate and efficient grid synchronization

is ever-growing [1]. The main task of grid synchronization

is to compute the phase angle of the three-phase voltage

signal in utility grid. Without grid synchronization, DPGS can

not be properly controlled and their connection to the utility

network may lead to grid instability. Moreover, when several

DPGS transmit their power to the buses in utility grid, the

transform efficiency can be improved by achieving perfect

grid synchronization in each distributed generator (DG). The

reason lies in that, the transmitted active power is proportional

to the phase difference between the bus of a DG and the utility

grid [2]. Only when grid synchronization is achieved, a DG

can adjust its phase to maximize its transmission efficiency.

Grid synchronization is a very challenge task. For a three-

phase voltage signal in the presence of voltage unbalance,

it is composed of positive, negative and zero sequences. In

grid synchronization, the positive sequence of signal has to be

identified to obtain the phase angle of the ideal signal. It is

very challenging because a double frequency component will

be introduced due to the existence of negative sequence [3].

Further more, when the frequency variation in real-world

utility grid is taken into consideration, the task becomes even

more difficult.

In traditional power grid, phasor measurement units (PMUs)

are deployed to measure the phase of three-phase voltage /

current signals [4]. They play an important role in power

system monitoring, protection and control. In North America,

about 500 networked PMUs have been deployed. However,

for small scale DGs, it is not proper to deploy the traditional

PMUs to measure the voltage phase due to the high hardware

complexity and high cost of PMUs [5], [6]. One solution for

the DGs is to let the deployed PMUs help to process the

signal by using enhanced transmission technology in smart

grid, but the computation burden for the PMUs will become

very heavy and the communication overhead is significant [7],

[8]. Thus, designing a “miniPMU” which can measure the

voltage signal phase with low hardware complexity and cost in

local DGs motivates the study of this work. In this miniPMU,

analog signals are first converted to digital signals, and then

digital filters are designed to estimate the phase of the positive

sequence signal.

One of the key issues in designing this kind of miniPMU

is the filter algorithm for grid synchronization utilized in the

system. In this paper, we propose a synchronization scheme

based on particle filter (PF), which is a state-of-the-art solution

for non-linear and non-Gaussian systems [9], [10]. Since the

state dynamics of power signal can be represented by a

highly non-linear system, the estimation performance of state

variables by using a PF is expected to have better performance

than that of the extended Kalman filter (EKF) [11]. The main

contribution of this work is two fold. First, after formulating

the grid synchronization problem into a Bayesian filtering

framework, we design a PF-based scheme which exploits the

feature of the utility grid system dynamics for state variables

estimation and employs a threshold-based resampling for real-

time performance improvement. Second, we conduct extensive

simulations to validate the effectiveness of the proposed grid

synchronization scheme and compare its performance with the

EKF-based results.

The remainder of this paper is organized as follows. In Sec-

tion II, we discuss the related work. In Section III, we describe



the problem formulation of grid synchronization, and present

the design of the PF-based synchronization scheme under the

Bayesian framework. Then, we conduct extensive simulation

and make comparison between the proposed scheme with the

EKF-based scheme in Section IV. Finally, we conclude this

paper in Section V.

II. RELATED WORK

The problem of detecting the phase angle of grid voltage

signal with voltage unbalance has been studied in the last

several years and many methods has been proposed [11]–[14].

Among them, the voltage zero-crossing method is the most

simple and easy one. However, disturbances in the input signal,

such as voltage unbalance and harmonics, degrade the accura-

cy of the method. To address this problem, filtering techniques

including low-pass filters and recursive weighted least-square

estimation have been employed for grid synchronization [12],

to achieve better estimation accuracy than the zero-crossing

methods and get fast transient response, even in the presence

of some distorted conditions. In addition, some phase-locked

loop (PLL) based phase estimation techniques are proposed

in [14], which are able to reject harmonics, voltage unbalance,

and other kinds of disturbances. However, these methods have

rather complex hardware structure and are not suitable to be

implemented in the miniPMUs.

In [11], a nonlinear synchronization method based on EKF

is proposed. The input three-phase signal is transformed to the

αβ stationary reference frame, and the system state equation

and measurement equation are established. After the system

models are available, an EKF is used to estimate the state

variable for obtaining the phase angle of the grid voltage signal

in the presence of voltage unbalance and frequency variation.

It has a comparatively much simpler structure and is suitable

for miniPMU applications. However, we notice that the system

state equation is highly nonlinear, and EKF utilizes only the

first order Taylor expansion of the nonlinear model. Thus, there

are rooms to improve the estimation performance. Since PF

is a kind of Sequential Monte Carlo (SMC) approach which

is more suitable for solving nonlinear and/or non-Gaussian

problems than the traditional extended Kalman filter (EKF), in

this paper we design a PF-based scheme to solve this problem.

III. PARTICLE FILTER BASED SCHEME FOR GRID

SYNCHRONIZATION

In this section, we describe the problem formulation of grid

synchronization under the Bayesian framework, present the

detailed design of the PF for state variables estimation, and

show how to use the estimated state variables to determine the

phase angle of the positive sequence voltage signal.

A. Problem Formulation

The main objective of grid synchronization is to obtain the

phase angle of the positive sequence from the three-phase

voltage signal. The phase angle is then used to synchronize

the on/off state of power devices, calculate and control the

flow of active/reactive power, adjust the phase angle of DGs

to achieve maximum transform efficiency from DGs to buses

in utility grid.

As shown in Fig. 1, the grid synchronization process con-

sists of three stages [11]: 1) Reference Frame Transformation:

use Clarke transformation to transform the three-phase input

signal into the αβ domain; 2) Variable Tracking: estimate the

grid state variables with respect to the in-phase sinusoidal

signals, quadrature sinusoidal signals, and grid frequency; and

3) Phase Angle Computation: after the grid state variables are

obtained, compute the phase angle of the positive sequence

based on their internal relationships.

Input:

Three-phase 

voltage signal

Stage 1:

Reference 

Frame 

Transformation

Stage 2: 

Variable 

Tracking

Stage 3: 

Phase Angle 

Computation

Output: 

Phase angle of 
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sequence

Fig. 1. Three steps of grid synchronization.

The input three-phase voltage signal of a utility grid can be

described by

va(n) = Va cos(nω + ϕa) + ea(n)

vb(n) = Vb cos(nω + ϕb) + eb(n) (1)

vc(n) = Vc cos(nω + ϕc) + ec(n)

where n (n = 0, 1, 2, . . .) is the time index, and Vi and ϕi

denote the amplitude and initial phase angle of signal i (i =
a, b, c). The angular frequency ω of the grid is defined as ω =
2πf/fs, where fs is the sampling frequency and f is the

grid frequency with its nominal value f0 equalling 50 Hz or

60 Hz in most countries. e(n) = [ea(n), eb(n), ec(n)]
T is the

additive noise which is assumed to be a zero-mean Gaussian

random vector. The noise vectors at different time indexes are

uncorrelated, i.e., E[e(n)e(m)T ] = 0 for n �= m. Considering

the presence of voltage unbalance and frequency variation,

the values of Va, Vb and Vc may not be the same, ϕa, ϕb and

ϕc may not obey the relationship that ϕb = ϕa − 2π/3 and

ϕc = ϕa+2π/3, and f may have very small fluctuation around

its nominal value f0.

When the input signal in (1) is transformed into the αβ
stationary reference frame, it becomes:

[vα(n), vβ(n)]
T = T[va(n), vb(n), vc(n)]

T (2)

where T is the Clarke transformation defined as

T =
2

3

[
1 − 1

2 − 1
2

0
√
3
2 −

√
3
2

]
. (3)

Then, the signal defined in (2) can be rewritten as

vα(n) � Vα cos(nω + ϕα) + eα(n) (4)

vβ(n) � Vβ cos(nω + ϕβ) + eβ(n) (5)

where Vi and ϕi denote the amplitude and initial phase angle

of signal i (i = α, β), and eα(n) and eβ(n) are noises for the

α component and β component, respectively.



To establish the system dynamic model, five state variables,

including the in-phase and quadrature signals of both vα(n)
and vβ(n), as well as the grid frequency, are defined as [15]:

x1n = Vα cos(nω + ϕα)

x2n = Vα sin(nω + ϕα)

x3n = Vβ cos(nω + ϕβ) (6)

x4n = Vβ sin(nω + ϕβ)

x5n = ω.

Accordingly, the state equation can be formulated as:

Xn+1 = f(Xn)

=

⎡
⎢⎢⎢⎢⎣

x1n cos(x5n)− x2n sin(x5n)
x1n sin(x5n) + x2n cos(x5n)
x3n cos(x5n)− x4n sin(x5n)
x3n sin(x5n) + x4n cos(x5n)

(1− ε)x5n

⎤
⎥⎥⎥⎥⎦+ ewn (7)

where the state vector is Xn = [x1n , x2n , x3n , x4n , x5n ]
T , and

ewn is the process noise which can be modeled as a Gaussian

distributed random variable with zero-mean and covariance

matrix Q. In (7), f(·) is a system transition function which

contains both sinusoid and cosine functions and is highly

nonlinear. The parameter ε is introduced to represent the

slowly time-varying characteristic of the grid frequency.

The measurement equation is given by

Zn = h(Xn) = HXn + evn (8)

where evn is the measurement noise and is modeled as a Gaus-

sian distributed random variable with zero-mean and covari-

ance matrix R. In (8), h(·) is the measurement function, Zn is

the observation vector represented as Zn = [vα(n), vβ(n)]
T ,

and H is defined as

H =

[
1 0 0 0 0
0 0 1 0 0

]
. (9)

B. PF Design for Grid State Estimation

In grid synchronization, the most critical stage is the

grid state variable estimation. Once the state variables are

estimated, the phase angle can be determined according to

their internal relationships. From (7), it can be seen that the

system dynamics contains highly nonlinear equations. Thus,

different from the existing EKF-based scheme [11], in this

paper, a properly designed PF is employed to estimate the

state variables X1:n from the observation vectors Z1:n. The

possible advantage of particle filtering over the EKF-based

scheme is that it does not involve linearization around current

state estimation, but uses discrete particles to approximate

the posterior probability density function (PDF). In this way,

PF may yield the estimation performance improvement in

comparison with the EKF-based scheme.

The main idea of PF is to represent the required posterior

PDF p(Xn|Z1:n) at time index n by a set of random samples

{Xj
n}Nj=1 (N is the number of particles used) with associated

weights (particle probability) {wj
n}Nj=1 and to compute the

estimation based on these samples and weights as follows [16]

p(Xn|Z1:n) ≈
N∑
i=1

wj
nδ(Xn −Xj

n). (10)

If the particles are drawn in proper positions and the number

of samples is large enough, these samples can very closely

represent the true posterior PDF.

Generally, after initialization, a PF contains the following

three steps of processing iteratively [16]:

1) sampling: draw a set of particles Xj
n ∼ π(Xn|Xj

n−1)

for j = 1, ..., N , where π(Xn|Xj
n−1) is the proposal

important density. In this paper, for simplicity, we set

π(Xn|Xj
n−1) = p(Xn|Xj

n−1)
2) weight calculating: for each particle Xj

n, calculate its

weight wj
n according to the measurement Zn and its

weight in previous time index by:

wj
n = w̃j

n−1

p(Zn|Xj
n)p(X

j
n|Xj

n−1)

π(Xn|Xj
n−1)

(11)

3) resampling: Based on the available particles Xj
n and

their weights wj
n, use a selected resampling algorithm

to draw new particles Xj
n and assign weights wj

n to

each of them.

In this paper, to achieve better estimation performance, we

design a PF customized for the estimation of grid state as

shown in Algorithm 1. The basic filter structure is mainly

inherited from the traditional SIR particle filter [16]. The

customization to the SIR mainly contains two parts: first, in the

sampling step, after sampling a particle from its previous state,

we will check its validity to see whether the particle generation

need to be repeated, as shown Algorithm 1; second, in the

resampling step, we adopt the threshold-based resampling [10]

for possible enhancement of parallel processing to improve

the real-time performance. In addition, when calculating the

particle weight, we add a very small value of 10−100 in

order to prevent the weight from being zero to achieve better

algorithm convergency.

The particle state validity checking is based on the fact that,

unlike those general state tracking and estimation problems,

for the state variables in (7), each of them has a corresponding

maximum and minimum value, which can be used in the

sampling steps. When a particle is generated, each state vari-

able of it will be compared with the corresponding maximum

and minimum values (value boundary). If any variable of the

particle is out of the value boundary, the particle is regarded

as out of possible value boundary and will be sampled again.

This customization eliminates the particles that contributes

nothing to the correct representation of posterior PDF of grid

state and makes the estimation algorithm more efficient in

terms of computation and more effective in terms of estimation

performance.

Resampling is a critical step to eliminate low weight parti-

cles and multiply the particles with higher weight to increase

the estimation accuracy. Several resampling schemes have



Algorithm 1 [{Xj
n, w

j
n}Nj=1] = PF [{Xj

n−1, w
j
n−1}Nj=1]

BEGIN:
1) Loop Initialization: n = 0

1: for j = 1, 2, ..., N do
2: Draw xj

0 using the procedure proposed in [17];
3: Assign particle weight wj

n = 1/N ;
4: Initialize threshold: T < 1/N
5: end for

2) Main Loop:

for k=1,2,... do
for j = 1 : N do

Draw Xj
n ∼ π(Xn|Xj

n−1) = p(Xn|Xj
n−1)

while (Xj
n out of the possible value boundary) do

Re-Draw Xj
n;

end while
Calculate wj

n = 1

2π
√

R(1,1)R(2,2)
(
(HXj

n(1)−Zn(1))2√
R(1,1)

+
(HXj

n(2)−Zn(2))2√
R(2,2)

) + 10−100

end for
Calculate total weight: t = SUM[{wj

n}Nj=1]
for j = 1 : N do

Normalize: wj
n = t−1wj

n

end for
i = 0
for j = 1 : N do

if wj
n > T then

i = i+ 1
X̂i

n = Xj
n

end if
end for
r = 1
for j = 1 : N do

Assign sample: Xj
n = X̂r

n

Assign weight: wj
n = 1/N

r = mod(r, i) + 1
end for

end for
END

been proposed in literatures, such as systematic resampling

(SR), residual SR, and some kinds of deterministic resampling.

In this paper, we adopt the threshold-based resampling pro-

posed in [10], where the weights of each particle are compared

with a threshold T . For the particles with weights that are

greater than T , they are called substantial particles and will be

retained, otherwise, they are called negligible particles and will

be discarded. The threshold-based resampling can improve

the real-time performance of PF because each particle can be

resampled as soon as its weight is obtained, i.e., the sequential

nature of the traditional SR or RSR can be overcome. From the

estimation performance point of view, it is shown in [10] that

with a properly selected threshold T , the sampling can achieve

the same level of estimation performance as the traditional SR

and RSR. Following the design guide in [10], in this paper,

the threshold is set as 1
10N .

C. Phase Angle Computation

Once the state vector X is estimated at each time index n,

the phase angle of the positive sequence can be computed by

the following equations:

V̂α sin(ϕ̂α) =x2n cos((n− 1)x5n

− x1n sin((n− 1)x5n

V̂α cos(ϕ̂α) =x2n sin((n− 1)x5n

+ x1n cos((n− 1)x5n

V̂β sin(ϕ̂β) =x4n cos((n− 1)x5n

− x3n sin((n− 1)x5n

V̂β cos(ϕ̂β) =x4n sin((n− 1)x5n

+ x3n cos((n− 1)x5n

(12)

ϕ̂p = arctan
V̂α sin ϕ̂α + V̂β cos ϕ̂β

V̂α cos ϕ̂α − V̂β sin ϕ̂β

(13)

θ̂p(n) = (n− 1)x5n + ϕ̂p. (14)

IV. SIMULATION RESULTS AND DISCUSSION

In this section, we describe the simulation set up for the

proposed PF-based grid synchronization scheme, and then

show simulation results of the estimation of the grid state and

the consequent grid phase. The results are compared with the

EKF-base scheme.

A. Simulation Setup

In the simulation, for the system model, the amplitudes and

initial phase angles of the three-phase voltage signal are set to

1.0, 1.2, 0.8 and 0, −π
3 , 2π

3 , respectively, to model the voltage

unbalance. The process noise covariance is Q =

[
σ2I4×4 0

0 q

]
,

where σ is set to 10−3, 10−4 and 10−5 for comparative study,

I4×4 is the 4 × 4 identity matrix and q = 10−7. The value

of parameter ε is 10−16. The measurement noise covariance

is R = rI2×2, where r is set to {10−n, n = 1, 2, . . . , 10} and

I2×2 is the 2× 2 identity matrix. The sampling frequency fs
(fs =

1
T ) is chosen as 1200 Hz and the nominal fundamental

frequency f0 is 60 Hz. The frequency is simulated to change

from about 60 Hz to 61 Hz to testify the effectiveness of the

proposed scheme to frequency variation.

For the PF, the number of particle is set as 300. To compare

the performance with the EKF-based scheme in [11], the

EKF-based scheme is also simulated. The estimation error

covariance P used in EKF design is 10−4

2 I5×5 and I5×5 is

the 5× 5 identity matrix.

B. Grid State Estimation

To show the estimation performance of the grid state, the

root mean square error (RMSE) is used as the performance

metric and defined as:

RMSE =

√√√√ 1

L

L∑
n=1

1

NMC

NMC∑
i=1

(ŝin − struen )2 (15)

where L is the total number of simulation time steps, NMC is

the number of Monte Carlo simulations performed , ŝin is the

filter variable estimation at time index n in the i−th Monte

Carlo run, and struen is the true variable at time index n.
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Fig. 2. Root Mean Square Error (RMSE) of state variables.

Fig. 2 shows the RMSE of the five state variables for both

the EKF- and PF-based schemes for grid state estimation when

NMC = 1000, L = 500, σ = 0.0001, and r changes from

10−10 to 10−1. For the first four states, the estimation of the

PF is always much better than that of the EKF. For the last

parameter, namely the frequency ω, the estimation of the PF

is a little bit worse than that of the EKF when r is very very

small as of below 10−7. Note that in Fig. 2(b), since the errors

of x5 for both schemes are of 10−6 order of magnitude, it can

be regarded as no performance gap. Thus, the PF outperforms

the EKF in terms of estimation performance.

C. Phase Estimation Results

From the grid state variables, we can obtain the grid phase

estimation. Fig. 3 shows the results of one round of simulation

with σ = 10−4 and r = 10−3 to illustrate the convergence

of the PF to the true phase angle of the grid. Estimation

performance is compared with that of the EKF-based scheme.

From Fig. 3(a), it can be seen that the PF-based scheme can

always estimate the phase angle accurately, but the EKF-based

scheme will have some obvious estimation errors in some

time indexes. The performance difference can be observed in

a more clear way from Fig. 3(b), where the absolute phase
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Fig. 3. Simulated phase angle estimation.

angle estimation errors defined as

ephase = |θest − θtrue|, (16)

with θest denoting the estimated phase and θtrue denoting the

true phase, are shown. It is clear that the PF-based scheme is

more accurate than the EKF-based scheme.

To further demonstrate the effectiveness of the proposed PF-

based scheme, Fig. 4 shows the RMSE of the phase estimation

for both the PF-based scheme and the EKF-based scheme

in different conditions. Three different values of σ and ten

different values of r are studied in our simulations. The results

are averaged over 1000 Monte Carlo simulation runs. It can be

seen that the RMSE of the phase angle obtained from the PF-

based scheme is always smaller than 0.2 while that from the

EKF-based scheme is much larger. Thus, the performance of

the PF-based scheme is far superior to that of the EKF-based

scheme.

To show the effectiveness of the proposed PF-based scheme

in the presence of frequency variation, Fig. 5 plots process

of estimating the frequency f over time when the frequency

f0 change from about 60 Hz to 61 Hz. It can be seen that,

although the estimations of both the PF-based scheme and

the EKF-based scheme fluctuate around the ground truth,

both of them succeed in tracking the frequency change. For
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comparison, we can see that the the estimated grid voltage

frequency converges to the actual frequency much faster than

that from the EKF estimator. This is because that the EKF

is very sensitive to the initial states. Mathematical calcula-

tion from simulation results show that, the RMSE of phase

estimation from the EKF-based scheme is 0.65989, while that

from the PF-based scheme is 0.28105. This indicates that the

performance of the PF-based scheme is superior to the EKF-

based scheme when the frequency variation is exerted.

0 100 200 300 400 500
59

59.5

60

60.5

61

61.5
σ=0.0001   R=0.001

Time(ms)

Fr
eq

ue
nc

y(
H

z)

Truth
EKF
PF

Fig. 5. Frequency estimates in a single simulation run.

V. CONCLUSION

In this paper, we have proposed a PF-based grid synchro-

nization scheme for DGs to estimate the phase angle of grid

voltage signal in smart grid. The traditional SIR filter is

customized by exploiting the feature of the grid state sys-

tem dynamic and incorporating the deterministic resampling.

Extensive simulations have been conducted and the results

demonstrate that, for both the grid state estimation and grid

phase angle estimation, the PF-based scheme outperforms

the EKF-based scheme in terms of the estimation accuracy

and convergence time. In addition, the proposed PF-based

scheme is effective when both the voltage imbalance and

frequency variation are exerted. The whole processing can be

implemented in a low cost microprocessor and this makes

it possible to design a miniPMU in each small scale DG

deployed in smart grid network.
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