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Abstract

In this paper we study the use of computer vision tech-
niques for for underwater visual tracking and counting of
fishes in vivo. The methodology is based on the applica-
tion of a Bayesian filtering technique that enables track-
ing of objects whose number may vary over time. Unlike
existing fish-counting methods, this approach provides ad-
equate means for the acquisition of relevant information
about characteristics of different fish species such as swim-
ming ability, time of migration and peak flow rates. The sys-
tem is also able to estimate fish trajectories over time, which
can be further used to study their behaviors when swimming
in regions of interest. Our experiments demonstrate that the
proposed method can operate reliably under severe environ-
mental changes (e.g. variations in water turbidity) and han-
dle problems such as occlusions or large inter-frame mo-
tions. The proposed approach was successfully validated
with real-world video streams, achieving overall accuracy
as high as 81%.

1. Introduction

A wide variety of human activities have altered the dis-
tribution and abundance of the native fish fauna all over the
world. Extractive industries, such as mining and forestry
and other intervention by man on Nature, such as the con-
struction of dams for hydroelectric power generation are
some examples of activities that have had widespread, dra-
matic impacts, often with deeper effects on a local scale,
resulting in extensive changes in aquatic environments and
often in the break-down of reproductive isolation between
some species [1, 15].

Recently, in Brazil, various legal provisions and laws
have passed to minimize those types of environmental im-
pacts, mainly the ones caused by hydroelectric impound-
ments. In some states the construction of fish ladders is
mandatory in order to assist the fish upriver journey to

Figure 1. Observation room at the fish ladder
located at UHE-Igarapava, MG, Brazil, used
by researchers to study several aspects of
the fish ladder, mainly its adequacy and effi-
ciency for different fish species.

spawning grounds (a natural phenomenon which in Brazil
is known as Piracema) [1]. Moreover, those fish transpo-
sition mechanisms allow the acquisition of relevant infor-
mation about different fish species (see Figure 1), such as
swimming ability and patterns, time of migration and peak
flow rates.

Many design factors must be considered when designing
fish ladders. Given that every blockage in a river represents
a unique situation, it is quite hard to design a mechanism
that is able to accommodate all fish species. The present
work was developed as part of a wider research effort [5],
and its goal is to provide efficient vision-based techniques
for automatic acquisition of accurate information about the
behavior of fish species that swim upstream a fish ladder.
Based on the proposed methodology for fish counting, a ro-
bust system has been developed, whose overview is illus-
trated in Figure 2. By using the information provided by
that system, engineers and fish biologists can better analyze



Figure 2. Overview of fish counting system
developed by CTP Research Group [5].

the effectiveness of the designed transposition mechanism.
The problem we are interested in, and which lies at the

background of aforementioned task of estimating the num-
ber of fishes that swim upstream a transposition mecha-
nism, is object tracking, that is, the problem of detecting
and recursively localizing objects in input video sequences.
We understand that any general solution for automatic fish
tracking should handle the following cases:

• Arbitrary number of fishes: distinct amounts of fish
may enter and leave the image at any time;

• Arbitrary fish behavior: fishes may touch, occlude,
and interact with each other;

• Arbitrary fish size and orientation: fish size and ori-
entation are unknown and may be totally arbitrary;

• 3D motion: fishes have 3D (off the ground plane) mo-
tion, making them slightly more difficult to track than
people, for instance;

• Environmental changes: illumination variations and
changes in water quality may occur;

• Bad image quality: the image acquisition process
may be affected by noise and distortions due to the
cameras optical and electronic systems;

• Segmentation failures: an individual fish may not be
segmented reliably;

As a step towards this goal, we present a vision-based
methodology that operates under all the above conditions.
In particular, our approach is based on a robust Bayesian
multiple-blob tracker (BraMBLe) [7], which uses a single
static camera to track multiple objects as they enter, exit
and move about in a scene.

Existing methodologies for fish counting are mainly
based on the use of acoustic systems [9, 14, 11, 2], infrared
sensors [4] or multiple counting tunnels where fishes are
detected by sensing elements that measure the fluctuations

in water conductivity caused by fish flows [12]. Normally,
such solutions must be used in conjunction with physical
structures that house several sensors. This leads to a lim-
itation on the space in which fishes swim, forcing them to
move through specified paths. Consequently, these devices
may interfere in the fishes’ swimming ability and even af-
fect their moving decisions. Moreover, those methods are
not recommended when the flow of fishes is large, as it usu-
ally happens in fish ladders in spawning periods. In that
scenario, many fishes swim very close to each other and
different individuals may activate the same sensor simulta-
neously leading to significative counting errors. Finally, any
moving object may be counted by those systems, since they
do not use any technique to differentiate fishes from other
moving targets such as wood pieces.

The approach proposed in this paper does not need a
physical infra-structure to limit the fish flow in order to per-
form the counting, since sensing is performed by a cam-
era under skylight illumination, aided by two uniform linear
light sources. Since all experiments were performed under
this condition, the influence of artificial lighting was kept
to a minimum, such that fish biologists did not perceive
any significant impact on fish swimming patterns. The sys-
tem also provides complete fish trajectories, which may be
used to study fish swimming behaviors in regions of inter-
est. The system can operate reliably under severe environ-
mental changes, such as variations in water characteristics,
and it can handle problems such as occlusions or large inter-
frame motions.

Our system relies on a robust multi-target likelihood
function [7], which assigns directly comparable likelihoods
to hypotheses containing different numbers of objects, and a
Bayesian filter for tracking the centroid of their correspond-
ing blobs. The BraMBLe tracker [7] updates this function
by searching for blobs such that all pixels inside the blobs
"look like" a learned foreground model and all pixels out-
side the blobs "look like" a learned background model. Al-
though a constrained vision system could alternatively be
implemented, making the problem much simpler by using,
for instance, artifacts for obtaining good and approximately
constant lighting conditions or creating a bright and uniform
background, we decided to not use those artifacts, since they
affect the fish ladder’s project and, thus, represent expensive
solutions.

In spite of the fact that vision-based tracking of animals
has countless applications in biology, so far only a handful
of works have proposed effective solutions for that problem
[3, 8]. Differently from our fish-tracking approach, previ-
ous works assume that the number of targets is constant and
known a priori. Contrary to these works, our system han-
dles temporal variations in the number of objects present in
scene.

This paper is organized as follows. In Section 2 we de-
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Figure 3. A fish is modelled as an ellipse and
its state is described by 8 parameters: the co-
ordinates (xc, yc) of the ellipse’s central point,
the half lengths (a, b) of the major and minor
axes of the ellipse, the angle θ that measures
the ellipse’s rotation with respect to x-axis, a
label r and the velocity components (vx, vy)
of the fish.

scribe the observation model used by our approach for de-
tecting fishes in the scene, which is based on the multi-blob
likelihood function presented in [7]. Section 3 describes
the tracking methodology used in this paper, which is based
on a standard particle filter to yield a posteriori distribution
over the number and configurations of fishes. The counting
technique is presented in Section 4. Experiments with real
data and their results are presented in Section 5, followed
by the conclusions in Section 6.

2. Fish detection

In our fish-counting approach, the fish detection task is
based on the use of a set of functions that are learned off-
line, which are responsible for describing the scene appear-
ance model, that is, the model that associates image pixels
to either the scene foreground or background (see Figure 2).
More specifically, by using this appearance model, we de-
fine the observation model responsible for detecting fishes,
which is represented by the multi-blob likelihood function
P (I | S) described in [7] and which expresses the likeli-
hood that a hypothesized configuration S of fishes produced
an observed image I .

We represent the configuration S of a specific fish set
by: S =

(
n, s1, s2, . . . , sn

)
, where n is the total number of

fishes present in the image plane and si is a vector encoding
the state of the ith fish. By modelling a fish as an ellipse,
we describe its state si with 8 parameters (see Figure 3),
namely, the coordinates (xc, yc) of the ellipse central point,
the half lengths (a, b) of the major and the minor axes of
the ellipse, the angle θ that measures the ellipse’s rotation
with respect to image x-axis, a fish label r and the velocity
components (vx, vy) of the centroid of the fish. Since il-

Figure 4. Log-likelihood ratios using learned
foreground and background models. Redder
values are more likely to be drawn from the
foreground model.

lumination affects the image appearance and, consequently,
may lead to color variation, only the chrominance informa-
tion of images represented in the YUV color space is con-
sidered.

The next step is similar to those in [13] and [7], where
each image is overlaid with a grid of W locations spaced
at 5-pixel intervals in the horizontal and vertical directions.
To each image location w with coordinates (xw, yw) is as-
sociated an observation vector zw with 4 parameters, which
are obtained from the application of a Gaussian and a LoG
filter to each one of the chrominance channels (U and V).

By considering the observation vectors zw, we define the
background model by computing a Gaussian mixture for
each location w. Specifically, we consider a 4-component
mixture of Gaussians model [7]:

P (zw | back) =
1
4

4∑
k=1

N (
µk

w,Σk
w

)
. (1)

which is learned by performing a k-means clustering with
k = 4 on 184 images containing only the background which
were recorded at the same time as the input test sequence.
The parameters µk

w and Σk
w are the mean and the diagonal

approximation to the covariance of cluster k.
On the other hand, since we do not know a-priori the fish

localizations in the image plane, we use a single foreground
model for the entire image. More specifically, we use a 25-
component mixture of Gaussians which were learned using
k-means in the same way as the background model [7]:

P (zw | fore) =
1
25

25∑
k=1

N (
µk

fore,Σ
k
fore

)
. (2)

The training set for the foreground is generated using a
training image sequence with 107 images, which contains



fishes moving against the static background of the fish lad-
der. Specifically, the foreground training data was acquired
by applying background subtraction with images containing
only the background, so that the foreground segments used
in the training included only fish skin areas.

Now, before we show how to compute the multi-blob
likelihood function P (I | S) using the aforementioned fore-
ground and background models, we would like to discuss
the association of a label lw ∈ {0, . . . , n} to each location
w [7]. We associate a label lw = i (i > 0) to a location
w if the configuration S hypothesizes that this location is
centered in one of the n possible fishes present in the scene,
otherwise we make lw = 0, indicating that the location w is
centered in the background.

By considering those labels and assuming that the obser-
vation vectors zw are conditionally independent given the
configuration S, we may finally define the multi-blob like-
lihood function P (I | S) as follows [7]:

P (I | S) =
W∏

w=1

P (zw | S) =
W∏

w=1

P (zw | lw). (3)

This likelihood P (I | S) is used as the observation
model of the particle filter for fish tracking and it is respon-
sible for assigning likelihoods to the hypothetical configu-
rations S.

In order to optimize the computation of P (I | S), we
apply the logarithmic operation to both sides of Equation
(3). This operation transforms the right side products in
sums and produces a log-likelihood function L as follows:

L = log(P (I | S)) =
W∑

w=1

hl
w, (4)

where hl
w = log(P (zw | lw)), for w = 1, ...,W and

l ∈ 0, 1, ..., n. More importantly, since the particle filter
described in next section requires the log-likelihood con-
straint only up to a multiplicative constant, the literature [7]
suggests the redefinition of the log likelihood L as follows:

L =
W∑

w=1

(log(P (zw | l)) − log(P (zw | 0))), (5)

that is, Equation (5) specifies a log-likelihood ratio com-
paring the hypothesis that the response was generated by
an object l with the hypothesis that it was generated by the
background. Observe that in this case, only foreground re-
sponses contribute to the log-likelihood, since h0

w = 0 for
all w. As in [7], we consider Equation (5) in our approach.
Figure 4 illustrates the log-likelihood ratios for a selected
frame by considering the aforementioned foreground and
background models. For additional details about the esti-
mation process of the multi-blob likelihood function, the

reader is referred to [7]. In next section, we demonstrate
how to use that function together with a standard particle
filter to perform robust fish tracking.

3. Fish tracking

We perform tracking of fishes represented in a config-
uration St at time t, by propagating in time the function
P (St | I1...t), which represents the a posteriori probability
of configuration St, given a sequence of observations (im-
ages) from times 1 to t. The key idea behind this approach
is based on the methodology presented in [6]. In that work,
the function P (St | I1...t) is defined as follows:

P (St | I1...t) = ktP (It | St)P (St | I1...t−1), (6)

where kt is a multiplicative constant for data normalization
and P (St | I1...t−1) is given by

P (St | I1...t−1) =
∫

St−1

P (St | St−1)P (St−1 | I1...t−1).

We use a particle filter to approximate the function
P (St | I1...t) in Equation (6). Specifically, we repre-
sent that function by a weighted set of N random hypothe-
ses (particles) [6] of the configuration S. To each parti-
cle Si

t at time t, for i = 1, ..., N , we assign a weight πi
t,

which is given by the log-likelihood ratio L in Equation
(5). In this sense, we construct a discrete representation
of P (St | It) at time t by using the weighted particle set
{(Si

t , π
i
t) : i = 1, ..., N}. The accuracy of this representa-

tion depends on the number of particles used. In fact, the
larger the particle set the higher will be the accuracy of that
representation.

Consider now the above-described discrete representa-
tion for P (St−1 | It−1). To perform its propagation to time
t, we initially perform a resampling (with replacement) of
the current particle set [6], generating a new set with N
samples. Next, each sample Si

t−1 chosen for the new par-
ticle set is subjected to the prediction model P (St | St−1)
in a predictive step. The prediction function f preserves the
unique identifier r of a fish and uses the following models
for the fish parameters represented in Figure 3:

f(r, (xc, yc), (a, b), θ, (vx, vy)) =

(r, (x
′
c, y

′
c), (a

′
, b

′
), θ

′
, (v

′
x, v

′
y)).

x
′
c = xc + vx + δx, y

′
c = yc + vy + δy

v
′
x = x

′
c − xc, v

′
y = y

′
c − yc

a
′
= a + δa, b

′
= b + δb, θ

′
= θ + δt,

where δx, δy , δa, δb, δt simulate white Gaussian noises with
zero mean and whose corresponding standard deviations are
presented in Table 1.
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Figure 5. A specific fish r with state sr
t must be

considered as an element of the configuration
Ŝt, if its probability computed by using the
theorem on total probability is higher than µs.

As in [7], our prediction model states that each fish will
remain in the scene with probability µr at each time step,
and additionally that there is a probability µe that a new fish
will enter the scene at each time step. The parameters µr

and µe work as decision parameters in the multi-object pre-
diction algorithm proposed in [7] and are not used in any
equations. The values considered for µr and µe are pre-
sented in Table 1, which are conservative values that lead to
accurate tracking results.

Note that after the prediction stage, the sample set {Si
t}

for the new time-step has been generated but, for now, with-
out its weights. Therefore, the next step consists in assign-
ing appropriate weights πi

t to all the hypothetical config-
urations {Si

t}. Those weights are determined by the log-
likelihood ratios L that are computed according to Equa-
tion (5). Importantly, all the weights πi

t determined by the
log-likelihood function are normalized, so that they satisfy∑N

i=1 πi
t = 1. Therefore, the normalized weights may be

considered as probability values, as in [6].
Finally, by considering the weighted particle set

{(Si
t , π

i
t) : i = 1, ..., N} determined above, we must es-

timate a configuration Ŝt of that set, which leads to the best
representation of an observed image It at time t. To de-
termine Ŝt we use the theorem on total probability. More
specifically, assume that the configurations S1

t ,..., SN
t are

mutually exclusive events represented by specific areas,
whose corresponding sizes are given by the weights πi

t of
those configurations, as illustrated in Figure 5. Moreover,
let a specific fish r with state sr

t be represented by the gray
ellipse in Figure 5. The size of the area of that ellipse rep-
resents the probability that the fish state sr

t occurs in an ob-
served image It at time t. Therefore, from the theorem on
total probability, we know that this probability is given by:

P (sr
t ) = P (sr

t ∩ S1
t ) + ... + P (sr

t ∩ SN
t )

= P (sr
t | S1

t )P (S1
t ) + ... + P (sr

t | SN
t )P (SN

t )
= P (sr

t | S1
t )π1

t + ... + P (sr
t | SN

t )πN
t . (7)

A specific fish r with state sr
t is considered as an ele-

Counting Regions

Figure 6. Illustration of the two virtual count-
ing regions in the image plane, where the es-
timations of the amounts of fishes that swim
up- and downstream the transposition mech-
anism are performed.

ment of the configuration Ŝt if its corresponding probabil-
ity P (sr

t ) is larger than a pre-determined threshold µs. The
parameter µs determines whether or not an ellipse is dis-
played, and has no effect on the particle filter itself [7]. Af-
ter several tests we considered µs = 0.4, which lead to the
most accurate experimental results.

Given the estimated configuration Ŝt for each time t, we
compute the fish trajectories. It is important to notice that,
as the quantity of fishes may vary over time (e.g., a fish
enters or leaves the image plane at any time), each hypothe-
sized fish configuration Si

t must consider that possible vari-
ation. As far as the hypotheses that indicate fishes entering
the scene are concerned, we assign the following values for
the parameters of a new fish state sr

t included in a configu-
ration St at time t: a = 20, b = 5, θ = π, vx = 0, vy = 0.
The coordinate (xc, yc) of the centroid of the fish’s ellipse is
determined by the coordinates of the localizations w in the
counting regions (see Figure 6) which have a log-likelihood
ratio L larger than zero, indicating that those locations are
probably centered in the foreground.

4. Counting approach

Counting fishes may now be performed as an almost
effortless task. This is due to the reliable tracking phase
described in the previous sections. Therefore, one only
needs to define which events will lead to incrementing a
fish counter. As far as the count is concerned, the overall
system is able to provide as output the number of individu-
als for each of the selected species. However, the problem
of classifying a fish as a member of a given species is out-
side the scope of this work, but it is thoroughly dealt with
in [10]. Therefore, we focus here only on providing a to-
tal number of fishes regardless of their type. So, in the fish
counting task, we divide the image plane into three regions



of interest as depicted in Figure 6. We consider the right and
left regions as our fish detection and counting zones, while
the central region is the tracking zone. Once the central
point of the ellipse of a fish crosses one of the counting re-
gions and then passes through the tracking zone and finally
crosses the opposite counting region, a fish counter is incre-
mented. In the many hundreds of hours of image taken at
the inspection window on the fish ladder at UH-Igarapava,
it has been observed that the dominant fish flow occurred
from the right counting region to the left counting region,
which is expected since this moving direction corresponds
to the fish migration upstream (against the water flow) in
the transposition mechanism.

5. Experimental Results

To demonstrate the effectiveness of our fish counting ap-
proach, we tested it on challenging real-world datasets, such
as the one illustrated in Figure 9, where two fishes occlude
each other. Image dimensions in all datasets were 320×240
pixels. The values for the parameters used in our experi-
ments are summarized in Table 1. Particularly, the parame-
ters σ1, σ2 and σ3 were empirically defined by using our
knowledge about the problem. The probability values for
µr and µe were set to values used in [7]. As pointed out in
[7], those two parameters are consistent with a Poisson dis-
tribution on object arrivals and an exponential distribution
on their survival times. Regarding the number of particles
used by the Bayesian filtering algorithm, we chose a parti-
cle set with N = 2000 samples. This number of particles
lead to a computational cost only slightly larger than the
one observed when a particle set with only N = 200 par-
ticles was used. However, the results returned by particle
filtering were significantly different. Therefore, we decided
to perform our experiments with N = 2000 particles, for
which the results of the particle filtering algorithm was sta-
ble. This number of particles was also used in [3] to track
multiple identical mice from video of the side of their cage.

Our experimental results demonstrate that the tracking
algorithm accurately tracks fishes, even when their motions
are particularly erratic and the distribution of their current
positions given their past trajectories presents a high vari-
ance. For instance, consider Figure 7, where we show some
frames of an input dataset (all datasets and results can be
found at http://www.dcc.ufmg.br/∼erikson/sibgrapi-2005/)
containing a single fish, as well as their corresponding log-
likelihood ratios computed according to the BraMBLe algo-
rithm. Redder values are more likely to be drawn from the
foreground models. Note that the ellipses in those frames
show the regions in which the fish motion and appearance
were estimated, giving us a visual perception of the good
tracker’s accuracy. Figure 8 quantifies this visual percep-
tion by comparing the horizontal and vertical positions of

Symbol Meaning Value

µr Fish survival probability 0.99
µe New fish arrival probability 0.02
µs Fish ellipse display threshold 0.4

σ1

Standard deviation (in pixels) of the
gaussian noises δx and δy added to the
fish coordinates (xc, yc)

1.2

σ2

Standard deviation (in pixels) of the
gaussian noises δa and δb added to the
fish ellipse’s axes (a, b)

0.9

σ3

Standard deviation (in degrees) of the
gaussian noise δt added to the fish el-
lipse’s rotation angle θ

11.5

N Number of particles 2000

Table 1. Parameter values for experiments.

the ellipse’s central point estimated by the tracker with their
corresponding manually defined “ground-truth” positions.
Since all ground-truth positions were determined by a man-
ual identification of the fish blobs’ centroids and the central
points of the computed fish ellipses do not coincide exactly
with those centroids, we obtained small offsets between the
estimated and manual measures, as we may see in Figure
8(a) and 8(b).

Another important evidence of the robustness of the
tracking methodology is illustrated in Figure 9. In this case,
two fishes occlude each other and despite the occurrence
of such an occlusion, the tracker successfully follows both
fishes. This result is particularly important for demonstrat-
ing the actual applicability of our approach in fish counting
applications where fishes occlude each other severely and
often, especially when the fish flow is large, what usually
happens in fish ladders during spawning periods. Finally,
Figure 10 illustrates the robustness of the tracker to complex
fish motions, characterized by quick turns and accelerations
that are not fit by our simple dynamics model.

By using several input video sequences with distinct
fish amounts, our approach was successfully validated and
achieved an overall accuracy as high as 81%. The observed
percentage of counting errors (19%) was determined by the
occurrence of false negatives. Considering that the main
goal of our fish counting system consists in providing en-
gineers and fish biologists with information about the ad-
equacy and efficiency of the designed transposition mech-
anism for different fish species, we note that the observed
accuracy of 81% may be considered as a satisfactory esti-
mation, since it provides a reasonable approximation of the
actual fish flow.

6. Concluding Remarks

Our experimental results suggest that the Bayesian track-
ing algorithm used, whose development is based on the mul-
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Figure 7. Frames 41, 47, 53, 59, 65 and 71 of an input dataset containing a single fish, as well as their
corresponding log-likelihood ratios computed according to the BraMBLe algorithm. Note that the
ellipses in those frames show the regions in which the fish motion and appearance were estimated,
giving us a visual perception of the good tracker’s accuracy.
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Figure 8. Quantification of the quality of the fish tracking executed in Figure 7. One may compare
the horizontal and vertical positions of the ellipse’s central point estimated by the tracker with their
corresponding manually defined “ground-truth” positions.

titarget likelihood function proposed in [7], can be success-
fully applied for performing accurate fish counting in trans-
position mechanisms. Unlike previous fish-counting works,
our approach provides adequate means for the acquisition of
relevant information about characteristics of different fish
species such as swimming ability, time of migration and
peak flow rates. Our system is also able to estimate fish tra-
jectories over time, which can be further used to study their
behaviors when swimming in regions of interest. The exper-
imental results demonstrate that the proposed method can
operate reliably under severe environmental changes and
handle problems such as occlusions. Our approach was suc-
cessfully validated with real-world video streams, achieving
overall accuracy as high as 81%. We are currently adapting
the implementation code of our fish counting system, so that
it can be executed in real-time together with the fish classi-

fication module developed in [10].
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Figure 9. Robust tracking despite occlusion. Tracking results for frames 40, 50, 60, 70, 80 and 90 are
shown. In this case, two fishes occlude each other and despite the occurrence of such an occlusion,
the tracker successfully follows both fishes.
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