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Particle Filtering Algorithms for Tracking an Acoustic
Source in a Reverberant Environment
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Abstract—Traditional acoustic source localization algorithms
attempt to find the current location of the acoustic source using
data collected at an array of sensors at the current time only. In the
presence of strongmultipath, these traditional algorithms often er-
roneously locate a multipath reflection rather than the true source
location. A recently proposed approach that appears promising
in overcoming this drawback of traditional algorithms, is a state-
space approach using particle filtering. In this paper we formulate
a general framework for tracking an acoustic source using par-
ticle filters. We discuss four specific algorithms that fit within this
framework, and demonstrate their performance using both simu-
lated reverberant data and data recorded in a moderately rever-
berant office room (with a measured reverberation time of 0.39 s).
The results indicate that the proposed family of algorithms are able
to accurately track a moving source in a moderately reverberant
room.

Index Terms—Acoustic signal processing, generalized cross-cor-
relation, localization, particle filters, time-delay estimation.

I. INTRODUCTION

T
HE problem of locating and tracking a wideband acoustic
source in a multipath environment arises in several fields,

including sonar, seismology, and speech. In this paper we are
particularly interested in speech, where applications include
automatic camera steering for video-conferencing, discrimi-

nating between individual talkers in multisource environments,
and providing steering information for microphone arrays [1].
Traditional approaches to the above problem collect data

from several microphones and use a frame of data obtained
at the current time to estimate the current source location.
These traditional approaches can be divided into two cate-
gories: i) time-delay estimation (TDE) methods such as the
well-known generalized cross-correlation (GCC) function [2],
which estimate location based on the time delay of arrival of
signals at the receivers and ii) direct methods such as steered

beamforming. Each method transforms the received frame
of data into a function that exhibits a peak in the location
corresponding to the source. We will refer to this function as
the localization function. The practical disadvantage of these
traditional approaches is that reverberation causes spurious
peaks to occur in the localization function. These spurious
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peaks may have greater amplitude than the peak due to the true
source, so that simply choosing the maximum peak to estimate

the source location may not give accurate results.
A promising technique that overcomes the drawback of tradi-

tional methods is to use a state-space approach based on particle
filtering (PF), as recently described in [3], [4]. The key to these
new techniques is that the peak due to the true source follows
a dynamical model from frame to frame, whereas there is no
temporal consistency to the spurious peaks. Using a sequential
Monte Carlo method, particle filters are used to recursively es-
timate the probability density of the unknown source location
conditioned on all received data up to and including the current

frame. Related work on using particle filters to track multiple
moving targets can be found in [5].
In this paper, we formulate a general framework for acoustic

source localization using particle filters. We assume the pres-
ence of a single acoustic source in a reverberant environment, in
which the speed of wave propagation is known (and constant),
and the sensor positions are also known.
The paper is organized as follows. In Section II, we formu-

late the source localization problem and present an overview of
classical methods. These classical methods are used as a ref-

erence to compare with the tracking ability of the particle filter
algorithms developed later in this paper. The general framework
we propose for acoustic source localization using particle filters
is described in Section III. In Section IV, we present a detailed
summary of four different algorithms that fit within this frame-
work, including those proposed in [3], [4]. Section V gives a de-
scription of the different parameters used to assess the tracking
accuracy of each algorithm. In Sections VI and VII, we then
present a series of experiments to test the particle filtering algo-
rithms and compare them with the classical source localization

approaches. These experiments involve both simulations based
on the imagemethod [6], and data obtained from recordings per-
formed in a real office room.

II. SOURCE LOCALIZATION

A. Signal Model

Consider a collection of sensors positioned arbitrarily and
located in a multipath environment. Assuming a single source,
the discrete-time signal received at the th sensor (where

) is

(1)

where is the complete impulse response from the source
to the th sensor, is the source signal, is additive
noise (assumed to be uncorrelated with the source signal and
from sensor to sensor), and denotes convolution. The impulse
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response from the source to any sensor can be separated into
direct path and multipath terms, giving

(2)

where

(3)

is the source location in Cartesian coordinates, is the sensor

location, is the component of the impulse response be-
tween the source and the th sensor due to multipath only, and

denotes the vector 2-norm. The delay from the source to
the th sensor is

(4)

where is the speed of wave propagation.
Assume that the data at each sensor are collected over a frame

of samples, and let

(5)

denote the data at the th sensor for frame . Stack the sensor
frames to form the matrix

... (6)

which represents the data received at the array during time frame
.Wewill refer to as the raw data. The problem is to estimate
the current location of the source from the raw data.

B. Traditional Approach

Classical source localization algorithms attempt to determine
the current source location using data obtained at the current
time only. There are essentially two methods used: time-delay
estimation methods (which estimate location based on the time
delay of arrival of signals at the receivers) and direct methods.
Each method transforms the raw data into a function that ex-
hibits a peak in the location corresponding to the source. Here
we briefly review these two methods.

1) TDE Method: Many conventional source localization al-
gorithms partition the sensors into pairs, and attempt to find
a time-delay estimate (TDE) for each pair of sensors. These
TDEs can be obtained using a variety of techniques, including
the adaptive eigenvalue decomposition algorithm (AEDA) [7]
and the well-known generalized cross-correlation (GCC) func-
tion [2] (and its variants). These techniques act to transform the
raw data into another functional form from which time delays
can be estimated. Specifically, for a given time delay , let the
-dimensional measurement (where is the number of sensor

pairs) be

(7)

where is the (algorithm-dependent) function that trans-
forms the raw data to a localization measure that exhibits a peak
corresponding to the true source location. We will refer to

as the TDE localization function. As an example, we will con-
sider the TDE localization function for the GCC technique.1

Let denote the data received during a given frame at
the th sensor of the th sensor pair, with denoting the total
number of pairs.2 With denoting the Fourier transform,

represents the frequency domain data
received during time frame at the sensors in the th pair. With

denoting the th element of the vector , the th element of
the TDE localization function for the GCC technique is then

(8)

where is a weighting term. One common choice
for this weighting term is

(9)

which results in the well-known PHAT localization algorithm
[2].
For the th pair of sensors, the TDE is determined as

(10)

Determining the TDEs for all pairs requires one-dimensional
searches over the scalar space of possible time delays.
For each pair of sensors and TDE, the locus of potential

source locations in a two-dimensional setting is a line (or in
three-dimensions is a hyperboloid). The source location is then

estimated as the location which best fits the potential source
loci across all sensor pairs. There has been a large amount of
work in the literature concerning how to find this best fit (see
e.g., [8]–[11]). In the simulation and experimental results of
the TDE methods (GCC and AEDA) presented in Sections VI

and VII, we define the source location as that minimizing
the distance to each intersection point of the bearing lines with
each other. Intersection points lying outside the room boundary
are discarded, which provides an effective way of diminishing
the contribution of outliers in the TDE measurements. This
method is similar to that proposed in [9] and has shown a good
performance for the present work compared to other variants
proposed in the literature.
For the specific implementation of AEDA, we have used sub-

sample interpolation of the delays. During each frame, we have
also discarded TDEs obtained from those microphone pairs that
produce a TDE that is physically not possible given the micro-
phone spacing and sample rate used.
In practice, there are twomajor drawbackswith the traditional

TDE approach: (i) although the true source location will usu-
ally correspond to a peak in the TDE localization function, in
the presence of multipath it may not always be the global max-
imum; and (ii) in the presence of noise there is usually no single
point at which the source loci from different sensor pairs inter-

sect. These two drawbacks have also been addressed recently in

1Note that AEDA differs from GCC in that it returns a single time delay es-
timate, whereas GCC produces a function which has the TDE as the indepen-
dent variable. The localization function for AEDA is therefore a delta function.
Hence, it cannot be used with the pseudo-likelihood function described in Sec-
tion III, although it could be used with the Gaussian likelihood function.
2If each sensor belongs to only one pair, the number of sensors is even,

and the sensor pairs are indexed in order, then ,
, , .
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[12] using the notion of realizable delay vectors. Note that TDE
methods are an indirect approach to source localization, since
they rely on a two-stage algorithm, viz., first estimate time de-
lays for different pairs, then combine these time delays to find
the source location.
2) Direct Method: In contrast to the TDE method, direct

methods attempt to estimate the source location vector without

recourse to pairwise TDEs. In this case, let the scalar measure-
ment be

(11)

where is the source location vector, and is the direct lo-
calization function. As an example of a direct localization func-
tion, consider the frequency-averaged output power of a steered
beamformer (SBF) [13], [14].
Let denote the frequency domain data

received at the th sensor during a given time frame . For a
beamformer steered to the location , the localization function
is

(12)

where the integration is computed over the frequency range of

interest, is a frequency weight, and

(13)

is the complex-valued beamformer weighting term on the th
sensor, with the gain applied to the th sensor signal,

the sensor location, and the distance to some reference
point (typically chosen as the centre of the sensor array). If

, then corresponds to a conventional
delay-and-sum beamformer. It was shown in [15] that, if the
sensor gain is chosen according to the signal gain level of the
source at the th sensor, then the frequency-averaged steered
beamformer output is the optimal maximum likelihood solution
to locate wideband signals. It is also stated in [15] that there is
no significant performance degradation if the gain is chosen as
unity or is modeled by the direct path attenuation only.
The source location is estimated from the localization func-

tion as

(14)

Determining the source location requires a single multidimen-
sional search over the vector space of possible source locations.
Although direct methods do not require the calculation of in-
termediate time delays, a multidimensional search over source
locations is required—this is potentially computationally very
demanding.
Finally, observe the similarity between the direct method (12)

and the time-delay method (8). In fact, it was shown in [15] that
these methods are equivalent when GCC is performed across
all sensor pairs with chosen according to the signal gain

levels at the sensors in the th pair, and the beamforming sensor
gain is chosen according to the signal gain level at the th
sensor.

III. FRAMEWORK FOR SOURCE LOCALIZATION USING

PARTICLE FILTERING

A. Development of a General Framework

In this section we formulate a general framework for source

localization based on particle filtering (PF). We use a first order

model of the source dynamics and define the source state at time

as

(15)

where is the true source location in Cartesian co-

ordinates, and is the source velocity. For a given

state , we will denote the location vector of the state as .

At time , assume that a measurement of the unobserved

state becomes available. This measurement is described by the

state-space equation

(16)

where is an unknown, not necessarily linear, function of

the state and a noise term . Assume also that the state is

a Markov process, which can be modeled by the state transition

relation

(17)

where is a known, not necessarily linear, function of the

previous state and a noise term .

Physically, the measurement is obtained through some

transformation of the raw data

(18)

where we refer to as the localization parameter and as

the localization function. Observe that themeasurements in both

the TDE (7) and direct (11) methods can be described by (18).

For the TDE method, is a -dimensional vector and is a

scalar time delay, whereas for the direct method, is a scalar

and is a location vector. The common description of (18) will

be used in the sequel. One should note that (16) is a state-space

equation that describes the measurements as a function of the

unobserved state, whereas (18) describes how themeasurements

are physically obtained from the raw data.

Let denote the concatenation of all mea-

surements up to time . The aim is then to recursively estimate

the conditional probability density —the source lo-

cation can be estimated as the mean or mode of this density

function. Unfortunately, this posterior filtering density is usu-

ally unavailable in practice. However, assuming that the poste-

rior density at time is available, then the posterior at time

can be found through prediction and update as [16]

(19a)

(19b)

where is the prior, is the state tran-

sition density, and is the likelihood (or measurement

density).
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In general no closed-form solution exists for (19), except

in the special case where and in (16) and (17) are

linear, and the noise processes and are Gaussian.

In this case the Kalman filter is the optimal solution. For the

acoustic source tracking problem these functions are nonlinear,

and hence, the Kalman filter cannot be used directly. A local

linearization of the nonlinearity is possible, however, through

the extended Kalman filter (see e.g.,[17]). An excellent tutorial

overview of other suboptimal solutions to (19) is given in

[18]. The approach that we will adopt in this paper is particle

filtering. This technique is suitable for nonlinear functions and

non-Gaussian noise, and approximates (19) through Monte

Carlo simulation of a set of particles (representing samples

of the source state) having associated discrete probability

masses. As the number of particles becomes very large this

set of samples and weights tends to the true distribution, and

the particle filter becomes the optimal Bayesian solution to the

tracking problem. The generic particle filtering algorithm is

described in [18].

With this framework in place, the general algorithm that we

propose for source tracking using particle filters is described in

Fig. 1. This is a standard particle filtering algorithm, and only

steps 2)–4) are specific to the source tracking problem. In im-

plementing this algorithm, there are three algorithmic choices to

be made: 1) what model to use for the source dynamics in Step

2); ii) what localization function to use in Step 3); and iii) how

to calculate the likelihood function in Step 4).

We note that there is also choice to be made in deciding the

precise implementation of the PF algorithm, although we will

not deal with the many variants of PF methods in this paper

(refer to [18], [19] for a review of these algorithms).

B. Source Dynamics

There are several dynamical models that could be used to rep-

resent the time-varying location of a person moving in a typ-

ical room, e.g., [20]. One that is reasonably simple but has been

shown to work well in practice is the Langevin model used in

[3]. In this model the source motion in each of the Cartesian

coordinates is assumed to be independent. In the -coordinate,

this motion is described as [3]:

(20a)

(20b)

(20c)

(20d)

where is a normally distributed random variable,

is the time period separating two location estimates (with

being the frame length in samples and denoting the sam-

pling frequency), is the source velocity, and is the steady-

state RMS velocity. The model parameters suggested by [3] are

, and ; we use these parameter values

in our experiments (unless stated otherwise). The dynamics and

parameters for the other Cartesian dimensions are identical. In

the sequel, we will use (20) to model the source dynamics.

Fig. 1. Generic particle filtering algorithm for source tracking.

C. Localization Function

The localization function should be chosen such that it has a

maximum corresponding to the true source location. It is likely

that due to multipath, the localization function may also have

peaks at false locations. It is also likely that the true location

may not always be the global maximum. There are two classes

of possible localization function, corresponding to the two

methods used for conventional source localization, viz., TDE

and direct methods.

1) TDE Localization Function: In TDE localization, the

sensor array is partitioned into pairs, and the measurement is

formed according to (18), where is a scalar time delay, and

is a vector. The localization function for the th pair

of sensors is denoted by . Assume

that from each of these measurements, possible TDEs

are obtained, with the th TDE for the th sensor pair denoted

by . These potential TDEs

would typically be obtained as the largest local maxima of

. A practical example of an implementation of the TDE

localization function is the GCC function given in (8).

Note that the localization function can be quite general, incor-

porating several different TDE algorithms simultaneously. For

example, one of the potential TDEs could be obtained by
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AEDA with the remaining potential TDEs obtained from

the peaks of the GCC.

2) Direct Localization Function: In direct localization, the

measurement is given by (18), where is the location vector, and

is a scalar. Assume that from this measurement, potential

source location vectors are obtained as the largest local maxima

of , and denote the th potential location as

. A practical example of an implementation of a di-

rect localization function is the steered beamforming function

in (12).

D. Likelihood Function

For a given state , the likelihood function measures the like-

lihood of receiving the data . The likelihood function should

be chosen to reflect the fact that peaks in the localization func-

tion correspond to likely source locations. It should also reflect

the fact that occasionally there may be no peak in the localiza-

tion function corresponding to the true source location (such as

when the source is silent). The position of the peak may also

have slight errors due to noise and sensor calibration errors. We

propose the following two classes of likelihood function.

1) Gaussian Likelihood: The Gaussian likelihood function

we develop here is essentially identical to that proposed in [3].

If potential locations have been obtained from the localiza-

tion function, then the Gaussian likelihood function is formed

by assuming that either one of these potential locations is due to

the true source location corrupted by additive Gaussian noise, or

none of the potential locations is due to the true source location.

There are two possible ways of forming the likelihood function,

depending on whether a TDE or direct localization function is

used.

For a direct localization function, the likelihood function is

formed as

(21)

where denotes a Gaussian distribution with mean

and variance evaluated at . The potential locations ob-

tained from the localization function are denoted by

, and is the localization parameter corre-

sponding to the state.

The value of is the prior probability that none of

the potential locations is due to the source location,3 and

is the prior probability that the th potential

location is the true source location. Without prior knowledge of

likely source locations, one would typically choose

(22)

For a TDE localization function, the likelihood function for

the th sensor pair is

(23)

3A larger value of indicates that the true source location is often not among
the candidates. This is likely in cases where there is a high level of reverber-
ation, or the source is often silent.

where is the th potential

location obtained from the th sensor pair, and

(24)

is the TDE corresponding to the state, with the location

of the th sensor in the th pair. Assuming that the measure-

ments across sensor pairs are independent, the complete likeli-

hood function becomes

(25)

2) Pseudo-Likelihood: The idea behind this approach is that

the localization function itself is typically a continuous func-

tion which could be used directly as the basis of a pseudo like-

lihood function. A lower bound is included to allow for the

case where no peak in the localization function corresponds to

the true source location. Again, there are two possible ways of

forming the likelihood function, depending on whether a TDE

or direct localization function is used.

For a direct localization function, the pseudo-likelihood func-

tion we propose is

(26)

where , , and . The purpose of is to

help shape the localization function to make it more amenable

to recursive estimation. The design parameter ensures that

the pseudo-likelihood function is nonnegative (since the local-

ization function can be negative), and also fulfils a role

similar to that of in the Gaussian likelihood.

For a TDE localization function, the pseudo-likelihood func-

tion is

(27)

where

(28)

with given by (24), , and .

3) Discussion: The Gaussian likelihood has the advantage

that it treats all peaks as being equally likely, although it requires

a search over the localization function to find the peaks. The

pseudo-likelihood does not require such a search, but imposes

a weighting on the possible source positions proportionally to

the localization function (i.e., a larger peak will be treated as a

more likely source location than a smaller peak—this implicit

weighting may not always be advantageous).

IV. SUMMARY OF PROPOSED ALGORITHMS

The framework developed in Section III is rather general and

can be implemented using a wide class of TDE or direct local-

ization schemes. To clarify this development, here we summa-

rize four specific PF algorithms corresponding to each of the

likelihood-localization pairs that we proposed in Section III.
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A. GCC Localization With Gaussian Likelihood (GCC-GL)

Organize the sensor array into pairs. Implement the PF al-

gorithm in Fig. 1, with steps 3) and 4) as follows. Step 3: For

each sensor pair, calculate the GCC (8) across a set of candidate

time delays. Find the largest local maxima in the GCC func-

tion and denote the corresponding time delays as

. Step 4: For each resampled state

calculate the likelihood function using

(23)–(25).

B. GCC Localization With Pseudo-Likelihood (GCC-PL)

Organize the sensor array into pairs. Implement the PF

algorithm in Fig. 1, with steps 3) and 4) as follows. Step 3: For

each sensor pair, calculate the GCC (8) only at the time delays

corresponding to the resampled states , where these time

delays are found using (24). Step 4: For each resampled state

calculate the likelihood function

using (24), (27) and (28).

C. SBF Localization With Gaussian Likelihood (SBF-GL)

Implement the PF algorithm in Fig. 1, with steps 3) and 4)

as follows. Step 3: Calculate the steered beamformer output

power (12) over a set of candidate source locations. Find the

largest local maxima in the output power function and denote

the corresponding location vectors as . Step

4: for each resampled state calculate the likelihood function

using (21).

D. SBF Localization With Pseudo-Likelihood (SBF-PL)

Implement the PF algorithm in Fig. 1, with steps 3) and 4) as

follows. Step 3: calculate the steered beamformer output power

only at the set of location vectors corresponding to the resam-

pled states . Step 4: for each resampled state calculate

the likelihood function using (26).

E. Discussion

Algorithm A (GCC-GL) requires the calculation of sepa-

rate GCC functions across a set of time delays. It also requires

one-dimensional searches to find the candidate TDEs. This

algorithm is essentially that proposed in [3]. Note that the GCC

can be implemented efficiently using the FFT, although the time

delays are restricted to a specific set of values (determined by

the sampling frequency and the number of points in the FFT).

Algorithm B (GCC-PL) requires calculation of separate

GCC functions only at the specific time delays corresponding to

the resampled states. It is not necessary to perform any searches.

Because the time delays are determined by the resampled states,

however, the FFT cannot be used to calculate the GCC in this

algorithm.

Algorithm C (SBF-GL) requires the calculation of a steered

beamformer response over the set of all possible source loca-

tions (this set is potentially very large). Furthermore, it requires

a multidimensional search to find the candidate source loca-

tions. We believe that this particular algorithm is too compu-

tationally demanding to be viable.

Algorithm D (SBF-PL) requires the calculation of the steered

beamformer response only at the locations corresponding to the

Fig. 2. Typical microphone signal simulated with the image method for
.

resampled states. No multidimensional searches are required.

This algorithm was proposed in [4].

V. ANALYSIS OF THE TRACKING ACCURACY

In Sections VI and VII, we will present the results from a

series of experiments using simulated as well as real audio data,

performed in order to determine the performance of the various

algorithms proposed in Section IV together with traditional

algorithms presented in Section II-B. These tests allow for a

comparative assessment of the tracking ability of each method

when used in a moderately reverberant and noisy environment.

We first give a brief description of the different parameters

used to assess the overall tracking accuracy for each algorithm

simulation.

Three different parameters have been implemented in order

to provide a reproducible and algorithm-independent assess-

ment of the tracking ability. Only the first parameter (root mean

square error) is applicable to the traditional localizationmethods

described in Section II-B; the other two are based on the specific

distribution of the particles for PF algorithms.

1) Root Mean Square Error (RMSE): For each frame of raw

data received from the sensors, the tracking algorithm de-

livers an estimate of the current source location. The

square error for time frame is computed as:

(29)

The RMSE value then corresponds to the square root of the av-

erage value of the variable , averaged over the total number of

frames in the audio sample. This parameter gives an indication

about how much the source location estimate deviates from the

true source position. A high RMSE value hence always reflects

an inaccurate tracking ability.

2) Mean Standard Deviation (MSTD): For each time frame

, the standard deviation of a particle set around its estimate

is defined as

(30)

Similarly to the RMSE parameter, the MSTD value corresponds

to the variable averaged over the total number of frames pro-

cessed by the algorithm. The MSTD parameter is an accuracy

measure of the estimated source position delivered by a particle

filter. A large value means that the position estimate results

from a widely spread particle set, indicating a low level of esti-

mation certainty.
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Fig. 3. Example plots showing typical tracking results for two classical and two PF-based methods. Solid lines are the algorithms’ estimate of the source location,
dotted lines represent true source position. The audio sample used was simulated with the image method for a reverberation time .

3) Frame Convergence Ratio (FCR): We first define the

term convergence as follows. For time frame , a particle filter

is said to be converging toward the true source position if this

latter lies within one standard deviation from the estimated

source location . In other words, a particle filter is convergent

if the following inequality holds:

(31)

where accounts for the inaccuracy of the source position mea-

surements during the recording of the audio samples. The pa-

rameter FCR is defined as the percentage of frames for which

the particle filter has been found to converge, over the entire

audio sample length.

It must be noted here that the FCR value depends indirectly on

the MSTD parameter. If the particles are widely spread around

the source location estimate, the probability of the true source

lying within one standard deviation of the estimate is higher,

which in turn implies a higher FCR value. Hence, a high FCR

percentage may be partly resulting from a large MSTD value.

VI. IMAGE METHOD SIMULATIONS

In this section, we present the tracking results obtained

using synthetic audio data for the classical GCC, AEDA and

SBF approaches. Results obtained from algorithms SBF-PL

and GCC-GL are also shown here as generic representatives

of the PF methods (these two particle filtering methods were

presented in [3] and [4], respectively). We consider a two-di-

mensional tracking problem where the height of the source is

set to be the same as the height of all the microphones.

A. Simulation Setup

For all the results presented in this section, the audio data

at each sensor was obtained using the image method for

simulating small-room acoustics [6] for a set of reverberation

times ranging from 0 to 0.79 s. The simulation setup was

defined to match the experimental setup used in Section VII

as closely as possible: the room dimensions were set to

2.9 m 3.83 m 2.7 m, and 8 microphones were used in total,
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the positions of which were defined as shown in Fig. 5 at the

constant height of 1.464 m.

A single sample of simulated audio data has been used to ob-

tain the results presented in this section. Fig. 5 shows the cor-

responding source trajectory (distance of approximately 1.6 m)

defined for the image method simulations. The source signal

used was the speech utterance “Draw every outer line first, then

fill in the interior” pronounced by a male speaker and looped

twice, yielding a length of about 7.2 s.

The sensors’ signals were generated by splitting the source

signal into 120 frames along the source’s path (resulting in a

frame length of about 60.4 ms). The data received at each sensor

was obtained by convolving these frames of source signal with

the corresponding impulse responses resulting from the image

method between the source’s and sensor’s positions. After re-

combining the convolution results, random Gaussian noise was

finally added to each microphone signal yielding an SNR level

of about 20 dB. Fig. 2 shows a typical signal generated for

microphone 1 using this setup and for a reverberation time of

.

B. Simulation Results

Each of the methods under investigation in this section was

simulated for a variety of values and using the same

setup as given above. Fig. 3 shows typical tracking results

obtained for some of them for . The tracking

quality of the classical methods (especially GCC and SBF)

rapidly degrades for increasing reverberation times, and plots

of the tracking results for these methods become unusable for

larger values.

Fig. 4 gives a good insight into this kind of behavior. It shows

the RMSE obtained for each algorithm as a function of the

value resulting from the image method computations. For the

two PF algorithms (SBF-PL and GCC-GL), the RMSE plotted

in Fig. 4 corresponds to the average RMS error resulting from

100 algorithm runs using the same audio sample and simulation

setup.

C. Discussion

As clearly depicted in Figs. 3 and 4, methods based on a se-

quential Monte Carlo principle show a distinct improvement in

tracking ability compared to more traditional source localiza-

tion methods. Fig. 4 shows that for practically relevant levels

of performance (i.e., for RMSE values close to zero), PF-based

methods are able to deal with reverberation levels two to three

times higher than classical localization methods. As has been

previously reported [7], AEDA consistently gives the best re-

sults of the classical techniques.

As shown in Fig. 3, the presence of outliers in the observa-

tions computed from the raw data appear as spurious peaks in

the tracking results of these classical methods. The frequency

of these peaks increases dramatically as the reverberation time

becomes larger, which results in a deterioration of the overall

tracking ability. On the other hand, PF-based methods provide

an efficient way of filtering these peaks out and hence prove to

be more robust to reverberation and noise.

Fig. 4. Average RMS error for three classical (GCC, SBF, AEDA) and two
PF-based (GCC-GL, SBF-PL) source localization methods, plotted versus
reverberation time. The audio data was simulated with the image method for
small room acoustics.

Fig. 5. Room layout with microphone positions (black circles numbered from
1 to 8, positioned at a constant height of 1.464m), and showing a typical example
of source trajectory (dashed arrow).

VII. REAL AUDIO EXPERIMENTS

In Section VI, we have described the tracking accuracy of
classical as well as PF-based methods using synthetic audio
data. In this section, we use real audio samples recorded in a
typical office room to assess the tracking performance of these
algorithms when used in a moderately reverberant environment.
Again we consider a two-dimensional tracking problem.

A. Experimental Hardware Setup

The recording environment was a typical office room mea-
suring roughly 2.9 m 3.83 m 2.7 m, with various encased
and protruding spaces (windows, door, column, etc.). A number
of office furniture objects were also present in the room during
the recordings. A near to scale diagram of the room layout is
presented in Fig. 5.
The level of reverberation in the room was experimentally

measured by means of a loudspeaker emitting a high level
white noise signal. Measuring the 60 dB decay period of the
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Fig. 6. Typical example of microphone signal recorded in real office room.
The source signal was the sentence “Draw every outer line first, then fill in the
interior” (taken from the TIMIT database) pronounced by a male speaker.

sound pressure level after the source signal is switched off, for a
number of speaker and microphone positions, provided the fre-
quency-averaged reverberation time . The level
of noise in the room was comparable to typical office noise
levels, including mainly a computer fan and an air-conditioning
vent on the ceiling. The average SNR recorded at the micro-
phones for the various experiments was calculated to be 9.4 dB
(ranging in value from 6.8 dB for the noisiest experiment, to
16.4 dB for the best).
The experimental setup made use of a total of 8 microphones

organized as one pair on each wall as depicted in Fig. 5. The
moving sound source was generated in the room with a loud-
speaker in upright position emitting the desired sound signal and
following a predefined path at a constant height of 1.464 m (dis-
tance from the floor to the center of the speaker cone). For prac-
tical reasons, the source trajectory was always a straight line,
showing a variety of lengths and orientations (mainly from one
side or corner of the room to the other, within the unused floor
area). Fig. 5 shows a typical example of such a source trajectory.
Due to the practical method used tomove the sound source in the
room, a small source of error may have been introduced when
monitoring the position of the speaker for the duration of the
recording. The maximum deviation of the actual speaker path
from the desired source trajectory was estimated to be less than
10 cm in every direction. The measurement inaccuracy param-
eter in (31) was therefore set to 0.1 m.
The audio samples used as source signals were speech utter-

ances by male speakers with a sample length varying from 3.6 s
to 7.5 s. Fig. 6 shows a typical example of sensor signal recorded
withmicrophone 1 as the loudspeaker wasmovingwith constant
velocity across the room. The sensor signals were all sampled
at 8 kHz and band-pass filtered between 300 and 3000 Hz prior
to source localization processing.

B. Experimental Software Setup

1) Tuning of PF-Based Algorithms: The main objective of
the simulations presented in this section is to give a compar-
ison of the classical and PF-based methods described above
with each other. In order to ensure a fair algorithm comparison,
the parameters of each PF algorithm were independently tuned
using a reference audio sample to achieve the best particle filter
performance. This process was done empirically by running
each algorithm a number of times with varying parameters until
a satisfactory performance was achieved. Table I presents the
parameter settings chosen for each PF algorithm. For algorithm
SBF-GL, the beamformer output power was computed over a
set of candidate locations distributed on a grid across the room
with a uniform spacing of 0.15 m.

TABLE I
CHOSEN PARAMETER SETTINGS FOR EACH PF ALGORITHM

Fig. 7. Beamformer output power function used as pseudo-likelihood in
algorithm SBF-PL, for one signal frame.

The PF results given in this section are obtained from the
algorithms operating in tracking mode. Higher level problems
(e.g., related to the detection and handling of long speech
pauses, ways of initializing the particle set at simulation start,
etc.) are of course important for a functional system, but we do
not examine these issues in the present paper. Consequently,
the particle set for each PF algorithm was initialized by placing
all the particles at the start location of the sound source in the
room. This way, the unpredictable effects of a uniform initial
particle distribution were reduced to a negligible level. Thus,
we are measuring the ability of the algorithms to track a moving
source only.
Given the relatively small dimensions of the room, the vari-

ables and of the source dynamics model given by (20)
were set to 0.7 .
2) Other Considerations: In each algorithm (classical

methods included), the incoming sensor signals were split into
frames of samples (corresponding to a frame length of
64 ms) multiplied by a Hamming window, and the processing
was carried out using a frame overlapping factor of 50%.
For the classical SBF method, the output power function of

the steered beamformer was computed on a uniformly spaced
grid of points across the room with a 0.02 m spacing.

C. Experimental Results

1) Example Plots: To illustrate some of the simulation
results, we first present some typical plots obtained from
algorithm SBF-PL using a sample of real audio data.
Fig. 7 shows an example of the function used as pseudo-like-

lihood plotted for one signal frame over the entire two-dimen-
sional state-space.4 This plot shows clearly the multihypothesis
character of the observation: the peak associated with the true

4Note that this figure is shown for illustration purposes only: with algorithm
SBF-PL, the likelihood function is evaluated only at the particles’ positions.
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Fig. 8. Tracking results for one run of algorithm SBF-PL using real audio data, showing the true source trajectory (dotted line) and the estimated path resulting
from the particle filter (solid line). Grey lines represent one standard deviation of the particle set from its weighted mean (estimated source position ).

TABLE II
EXPERIMENTAL RESULTS: EACH OF THE 6 MAIN ROWS SHOWS THE AVERAGE PERFORMANCE MEASURES (RMSE IN M, MSTD IN M, FCR IN % ) FOR A

DIFFERENT SAMPLE OF REAL AUDIO DATA

source is located at the coordinate position ,
other peaks are clutter measurements due to reverberation.
Fig. 8 presents the tracking result in the and coordinates

for a 3.8 s run of algorithm SBF-PL. It demonstrates the ability
of this method to accurately track the sound source across the
room despite the relatively high level of reverberation. This kind
of result typically yields tracking quality values of RMSE
0.114 m, MSTD 0.094 m and FCR 95%.
2) Comparative Results: The comparative results shown

here have been obtained in the following manner. Each of the
four PF methods under test was run 100 times with each one
of 6 different samples of real audio data, implying a variety
of source signals and trajectories. Since a different level of
performance is usually achieved for different source signals
and paths, the results obtained for each of the audio samples
are given separately. Table II contains the values obtained for
the performance assessment parameters averaged over the 100
real audio simulations.
As for the classical (SBF, GCC, and AEDA) results presented

in this table, a single run of each algorithm has been used to
generate the RMSE value for each audio sample. Contrary to
PF-based methods (where the resampling and prediction steps
introduce some degree of randomness), these classical methods
will generate the exact same tracking results when applied twice
to the same audio sample.

D. Discussion

In Table II, differences in the overall performance results
from one audio sample to the other reflect a variable degree

of tracking difficulty for the algorithms, resulting typically
from the quality of the audio signals and the specific trajectory
of the sound source. As expected, these comparative results
also demonstrate the major tracking improvement of PF-based
methods versus classical source localization algorithms.
When comparing PF methods only, results from Table II tend

to show that algorithm SBF-PL generally works better than the
other methods, yielding on average lower RMSE and higher
FCR values. However, more simulations using real audio data
may be required in order to fully verify this statement.
The MSTD values shown in Table II are more or less con-

stant for each PF-based algorithm. This reflects the fact that the
MSTD value is mainly resulting from the specific parameter set-
ting chosen for each of these algorithms and that it does not
strongly depend on which audio sample is used.
To give an indication of the computational complexity of

each algorithm, we also measured the CPU time required to
process a single audio sample.5 Of the PF methods, both of
the pseudo-likelihood algorithms (SBF-PL, and GCC-PL) took
24 s, whereas the Gaussian-likelihood algorithms took 99 s
for GCC-GL, and 306 s for SBF-GL. The classical methods
required 53 s for GCC, 93 s for AEDA, and several hours for
SBF. As well as providing the best performance as measured in
Table II, the SBF-PL algorithm is also the most computationally
efficient.

5We have not attempted to optimize any of the algorithms used. The CPU
times reported are based on Matlab implementations.
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VIII. CONCLUSIONS

Carrying out acoustic source tracking in the practical en-
vironment of a moderately reverberant office room is not a
trivial task. Even low levels of reverberation or background
noise can rapidly become detrimental to classical TDE-based
or beamforming methods. Under such adverse conditions, the
use of sequential Monte Carlo methods proves to be of ad-
vantage compared to these more traditional algorithms.
In this paper, we have presented a framework for source

tracking using particle filters, and discussed four specific
PF-based algorithms, each of them differing from the other in
the nature of the observations or in the way the measurement
likelihood is computed. Results obtained from three traditional
source localization methods have also been investigated and
used as reference for an overall comparison of each algorithm’s
tracking ability.
Using synthetic audio data as well as audio samples recorded

in a real office room, we have demonstrated that sequential
Monte Carlo methods show a much higher degree of robustness
against reverberation and background noise compared to these
classical algorithms.
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