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ABSTRACT

The application of particle filters in geophysical systems is reviewed. Some background

on Bayesian filtering is provided, and the existing methods are discussed. The emphasis

is on the methodology, and not so much on the applications themselves. It is shown

that direct application of the basic particle filter, importance sampling using the prior as

the importance density, does not work in high-dimensional systems, but several variants

are shown to have potential. Approximations to the full problem that try to keep some

aspects of the particle filter beyond the Gaussian approximation are also presented and

discussed.

1. Introduction

From a data-assimilation perspective, geophysical systems such as the atmosphere or

the oceans are characterized by a large state space, typically of order 1 million or (much)

more, and by spatial relations between the variables related to the partial differential equa-

tions that describe the system. These systems are nonlinear, especially in high resolution

applications. The nonlinearity arises from both the dynamics, in which the nonlinear

advection terms can become of dominant order, and from diabatic processes such as deep

convection, cloud formation and precipitation. In this paper we concentrate on physical

models of atmosphere and oceans, although the ideas developed are also of interest to

other geophysical systems such as hydrology and atmospheric chemistry. With ever in-

creasing resolution, the nonlinearities are likely to become so strong that data-assimilation

methods based on linearizations, such as the Kalman filter and its ensemble versions, as
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well as gradient descent methods like 4D-Var might fail in one way or another.

In the statistical literature several methods have been proposed to deal with strongly

nonlinear systems. Unfortunately, these methods have been developed with the focus

primarily upon low-dimensional systems, typically of state dimension 10 or less. The

huge dimensions used in geophysical models thus prohibit direct application. These huge

dimensions do not pose immediate problems themselves. One can argue that the actual

degrees of freedom of these models is far less, so pointing to the dimension of the state

vector is misleading. This boils down to the notion of a strange attractor in state space

from which the actual model state is unlikely to deviate much. This should be kept in

mind when the size fo the problem is discussed in the rest of this paper. Unfortunately,

we have little notion of what the relevant dimension of our geophysical model is. But

even if it is only 1% of the dimension of the state vector, it is still very large, much larger

than used in the statistical literature.

A further complication is that the geophysical fields contain certain spatial relations,

loosely called ’balances’, which should be preserved to a certain extent in the data-

assimilation system. The formulation in the previous sentence is rather vague, since

we have no clear idea what the balances are in nonlinear geophysical systems. But we

do know from experience that certain ’balances’ should be preserved, e.g. in atmospheric

data assimilation the data-assimilation step should not introduce strong gravity waves

since these tend to ruin the weather forecast. Up until recently this problem was solved

by projection of the analyzed field on the so-called ’slow manifold’, mainly related to

geostrophy. However, as mentioned above, at higher resolution the coherent nonlinear

structures follow other balances, which are not well known. In fact, the gravity waves
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become an important part of the correct solution, and should be correctly initialized, not

necessarily to zero.

Although direct application of the methods developed in the statistical literature is

not possible, the general idea is that it is possible to adapt some of these methods to

geophysical applications. This paper gives an overview of attempts to do so, and ideas

that could be fruitfully followed. Of special interest are Monte-carlo methods because

their convergence rate is independent of the dimension of the state vector. Of these, the

so-called particle filters, which rely on a representation of the model probability density

function (pdf) by a discrete set of model states, seem to be quite promissing. In the context

of data assimilation these model states are referred to as ’ensemble members’, or ’particles’.

We will call them particles in the following. The evolution of the model probability density

function is simulated by propagating all particles (model states) forward in time by the

nonlinear model equations. When observations of the true geophysical system become

available, the particles are changed such that the information present in the observations

is incorporated into the swarm of particles. The emphasis of this paper is on these particles

filters.

The statistical literature suggests that particle filters based on improvements of basic

Importance Sampling might have potential for the large-scale systems we are interested

in. The restriction to these particle filters stems from the size of the ensemble of parti-

cles. Typically, given the capabilities of present day supercomputers and the expected

resolution needed to describe the processes of interest, of the order of 50 to maybe 1000

particles can be afforded. Because of this small size, we cannot afford to completely reject

many particles, which will happen quite frequently because the large-dimensional state
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spaces tend to be very empty in terms of probability. For this reason the Accept-Reject

algorithm, and variants thereof, are not considered here.

Another class of Monte-Carlo methods is based on the Metropolis-Hastings algorithm

(Hastings, 1970), with the Gibbs sampler as a simpler version of that algorithm. These

methods have been shown to be effective on highly nonlinear small-scale problems, but

typically need a large number of samples. The ability of these methods to solve the geo-

physical data-assimilation problem is still unclear. For instance, Alexander et al. (2005)

use ideas from statistical mechanics, in which the state at a certain time is considered

as a point in state space. The sequence of points that describes a model integration, a

model trajectory, is viewed as a generalized coordinate, to which a generalized momentum

is assigned. To the (weak constraint) costfunction that is to be minimized in variational

problems one adds a ’kinetic energy’ term quadratic in these momenta and a Hamilton

dynamical system is obtained. The Hamilton equations give a model trajectory and the

momentum of that model trajectory in state space. Starting from a certain initial model

trajectory in state space, a sequence of model trajectories is generated by the Hamilton

dynamics. This sequence of model trajectories is not independent, like in a particle filter,

so more model trajectories than actually needed are generated to find N independent

trajectories that describe the posterior pdf. Alexander et al. (2005) describe generaliza-

tions to this Hamiltonian Monte-Carlo technique that shorten the decorrelation time, i.e.

ensure that the model trajectories are independent with less Hamiltonian dynamics steps.

The authors mention that fairly large space-time spaces can be handled: in quantum

chromodynamics up to 107 space-time dimensions. Note that this equals about 100 time

steps for a model with a fairly small number, 105, of variables, and that these methods
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are in fact smoothers instead of filters. For these reasons we will not discuss them further

here.

Several other reviews on particle filtering exist in the literature. For instance, Doucet

et al. (2001) present an excellent overview of particle filter theory including several exam-

ples from the statistical literature. Wikle and Berliner (2007) give a short introduction,

including several analytical examples, and is a good introduction to the field.

Before we start off, a word of caution. This paper is intended be a review of what

has been done in geophysical applications of particle filters, and of ideas that have come

forward from the statistical literature. I have encountered several articles in which it has

becomes clear that the authors, including myself, were not aware of relevant previous

literature on the subject. There is no doubt that this review will also miss important

contributions.

The paper is organized as follows. The next chapter introduces the basic idea of

particle filtering. The idea of Monte-Carlo simulation and Bayes theorem to incorporate

observations into the model system is outlined, and its problems are identified. These are

in fact twofold. Chapter 3 describes methods to solve the problem of ensemble degeneracy

over time due to repeated application of the algorithm in the assimilation cycle. The

second problem, related to the fact that the majority of particles are too far from the

observations to properly represent the actual state of the geophysical system, is discussed

in chapter 4, together with possible solutions. Chapter 5 discusses approximations to

the general framework. It is here that the boundary between particle filtering and other

solution methods for data-assimilation problems becomes particularly vague. The rather

loose definition of particle filtering used here is that particles are used to evolve the
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pdf forward in time between observations, but excludes ensemble Kalman filters, which

approximate the prior probability density function by a Gaussian. (Actaully, from a

maximum entropy point of view, one assumes that one can only estimate the mean and

the covariance with any confidence from the ensemble of particles. The maximum entropy

formalism leads directly to a gaussian density in that case.) Finally, chapter 6 summarizes

the results and tries to draw a few general conclusions.

2. The basic particle filter

When the system under study is nonlinear a statistical description in terms of errors

in variables of the system becomes cumbersome, and a probabilistic description in terms

of stochastic differential equations is more natural. Each variable in the geophysical

model is described by a probability density function, and the full state ψ is described

by the joint probability density of all variables, denoted by p(ψ). Given this probability

density, we want to combine it with observations when they become available, to obtain

the probability density of the model given these new observations. To this end we use

Bayes theorem.

a. Bayes Theorem

Bayes Theorem is based on conditional probability densities which can be introduced in

the following way. The joint probability of two variables can be written as the probability

of one of the variables given the other (i.e. the one conditioned on the other), times the

8



probability of the other:

Pr(a ∈ A, b ∈ B) = Pr(a ∈ A|b ∈ B) Pr(b ∈ B) (1)

An example shows that this makes sense: if a is the number of participants of a workshop

on data assimilation who are wearing glasses, and b is the number of women participat-

ing, then the joint probability (the number of women wearing glasses) is equal to the

conditional probability (the number of participants that wear glasses given that they are

female) multiplied by the fraction of women in the workshop. For a workshop with 30

participants, of which 2 of the (only...) 3 women wear glasses, we find

2

30
=

2

3

3

30
(2)

which is indeed an identity. Since

Pr(a ∈ A, b ∈ B) = Pr(a ∈ A|b ∈ B) Pr(b ∈ B) = Pr(b ∈ B|a ∈ A) Pr(a ∈ A) (3)

we find:

Pr(a ∈ A|b ∈ B) =
Pr(b ∈ B|a ∈ A) Pr(a ∈ A)

Pr(b ∈ B)
(4)

which is Bayes theorem. It is easy to show that when the probability distribution Pr

is continuously differentiable Bayes theorem also holds for probability densities (see e.g.

Papoulis,1995). For the data assimilation case we find that the model state ψ given the

observations d

pm(ψ|d) =
pd(d|ψ)pm(ψ)

pd(d)
(5)

in which the subscript m denotes the probability density of the model, and the subscript

d denotes the probability of the observations. From now on we will omit these subscripts

and let the argument of the density refer to the domain and functional form of the density.
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We thus find that the probability density of the model given the new observations

is equal to that of the observations given the model times the probability density of

the model prior to the observations being taken into account, divided by the probability

density of the observations. Interestingly, the probability density of the model comes in

differently from that of the observations. We have to know the probability density of the

model prior to the observations, the so-called prior pdf. For the observations we know the

observed values, and the functional form of their probability density. Each observation is

picked randomly by our measurement from the probability density but we do not know the

probability of that specific observation because we don’t know where the pdf is located.

Happily, we don’t need to, because we can use p(d|ψ), i.e. the pdf of the observations

given the model, as if the model gives the true observation. The observational pdf p(d)

in the denominator of (5) is written as

p(d) =

∫

p(d, ψ)dψ =

∫

p(d|ψ)p(ψ)dψ (6)

which shows that the denominator is just the normalization of the pdf of the model given

the observations, the posterior pdf. If we use (6) in (5) it becomes apparent that the

likelihood p(d|ψ) does not have to be a pdf, in the sense that it doesn’t have to integrate

to 1.

The difficulty in applying Bayes theorem is the probability density of the model. It is

a density over a million (or more) dimensional space, which is impossible to store. This

raises the question of what we want to know about this pdf. The mean? The mode

(maximum)? The covariance? Higher order moments? Or, if the pdf is multimodal, the

positions of these modes?

The idea used in particle filtering is to try to represent the model pdf by a number
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of random draws, called ensemble members, or particles. After (or during) a previous

data-assimilation step a new ensemble of particles is generated. Each particle (model

state) is propagated forward in time with the full nonlinear model. This part of the

data assimilation consists of trying to represent the forward evolution of the model pdf.

Formally the evolution equation of this pdf is given by the Kolmogorov equation (see

e.g. Jazwinski, 1970). This equation is solved approximately by solving an ensemble of

stochastic partial differential equations. The stochastic terms in these equations represent

unknown external and internal terms (or factors) in the model. Unknown terms in external

forcing and in the model equations are incorporated by adding random numbers, drawn

from a known error density, to the model equations. It is also possible to multiply parts

of the model equations by unknown factors, sometimes called multiplicative errors. The

latter approach is usually related to unknown model parameters. All particle methods

have this forward propagation in common, and differ mainly in the analysis step, i.e. in

the way model and observations are combined.

b. Why use Monte-Carlo (or particle) methods?

We know that the most complete description of the system ψ under study, e.g. the

atmosphere or the ocean, is given by its probability density p(ψ), in which ψ is the state

vector, i.e. the vector that contains all prognostic variables of the system. Suppose we

want to calculate the mean of a function f of the state vector, e.g. the velocity at some

point in space time. That mean is given by:

I(f) = f(ψ) =

∫

f(ψ)p(ψ) dψ (7)
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In the applications we have in mind, the dimension of the integrand can easily be one

million or more, so a very efficient integration method is needed. A grid-point-based

integration is out of the question because of this high dimension. One way to solve this

problem is to introduce N independently drawn random samples, or particles, from the

density p(ψ). We denote these particles with subscript i, as ψi. The density p(ψ) can be

represented by these particles as:

p(ψ) =
1

N

N
∑

i=1

δ(ψ − ψi) (8)

The mean of f(ψ) can now be approximated as

I(f) ≈ IN(f) =
1

N

∑

i

f(ψi) (9)

This estimate is unbiased, and the variance in the estimate due to the random character

of the draws is equal to (see e.g. Robert and Cassela, 2004):

var(IN(f)) =
varf

N
(10)

in which

varf =
1

N − 1

N
∑

i=1

f 2(ψi) − I2
N (f) (11)

The interesting point for us is that the rate of convergence of the estimate IN (f) is

independent of the dimension of the integrand. Furthermore, we just saw that the standard

deviation of the estimate decreases as 1/
√
N . In contrast, grid-point-based integration

has the property that the rate of convergence decreases as the dimension of the integrand

increases.
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c. .. and perhaps why not?

Obviously, for a million dimensional system, the number of particles should also be

large. How large is not exactly clear. A rule of thumb is that this number should be equal

to the degrees of freedom of the system. However, in these large-dimensional systems it is

very hard to get an idea of the order of magnitude of the number of degrees of freedom.

Furthermore, that number will no doubt depend on the actual state of the system. In

practice, we cannot afford to run more than 50-1000 model states forward in time. Is

particle filtering feasible at all? Experience shows that when assuming that the pdf is

Gaussian, the so-called Ensemble Kalman Filter (and its variants), can, with a few tricks,

give good results in e.g. weather forecasting (see e.g. Kalnay, 2004; Evensen, 2006 ). The

hope is that, probably also with a few tricks, the non-Gaussian problem can be solved in

this way too. This is still to be proven, and that problem is at the heart of this paper.

d. Basic Importance Sampling

As mentioned in the introduction, almost all methods we will discuss here are based

on Importance Sampling. The most straight-forward implementation is what we call

Basic Importance Sampling. (In the statistical literature one usually finds Importance

Sampling described with a proposal density different from the prior model pdf, see section

4a. However, for pedagogical reasons we present Importance Sampling in the following

way.) Basic Importance sampling is a straightforward implementation of Bayes Theorem.

Using the particle description of the prior pdf given by (8) in (5) gives:

p(ψ|d) =

N
∑

i=1

wiδ(ψ − ψi) (12)
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in which the weights wi are given by:

wi =
p(d|ψi)

∑N
j=1 p(d|ψj)

(13)

The density p(d|ψi) is the probability density of the observations given the model state

ψi, which is often taken as a Gaussian:

p(d|ψi) = A exp

[

−1

2
(d−H(ψi))

T R−1 (d−H(ψi))

]

(14)

in which H(ψi) is the measurement operator, which is the model equivalent of the obser-

vation d, and R is the error covariance of the observations.

Weighting the particles just means that their relative importance in the probability

density changes. For instance, if we want to know the mean of the function f(ψ) we now

have:

f(ψ) =

∫

f(ψ)p(ψ) dψ ≈
N
∑

i=1

wif(ψi) (15)

Common examples for f(ψ) are ψ itself, giving the mean of the pdf, and the squared

deviation from the mean, giving the covariance.

The order of operations in importance sampling is as follows (see figure 1):

1 Sample N particles ψi from the initial model probability density p(ψ0), in which the

superscript 0 denotes the time index.

2 Integrate all particles forward in time up to the measurement time. In probabilistic

language we denote this as: sample from p(ψn|ψn−1
i ) for each i,

i.e. for each particle ψi run the model forward from time n − 1 to time n using

the nonlinear model equations. The stochastic nature of the forward evolution is

implemented by sampling from the density that describes the random forcing of the

model.
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3 Calculate the weights according to (13) and attach these weights to each correspond-

ing particle. Note that the particles are not modified, only their relative weight is

changed!

4 Increase n by one and repeat 2 and 3 until all observations up to the present have

been processed.

The good thing about importance sampling is that the particles are not modified,

so that dynamical balances are not destroyed by the analysis. The bad thing about

importance sampling is that the particles are not modified, so that when all particles

move away from the observations they are not pulled back to the observations. Only their

relative weights are changed.

However, there is more. Even if the particles do follow the observations in time,

the weights will still differ more and more. Application to even very low-dimensional

systems shows that after a few analysis steps one particle gets all the weight, while all

other particles have very low weights (see figure 1, at t = 20). That means that the

statistical information in the ensemble becomes too low to be meaningful. This is called

filter degeneracy. It has given importance sampling a low profile until resampling was

(re-)invented, see later on. In a naive example Van Leeuwen and Evensen (1996) applied

importance sampling in a two-layer quasi-geostrophic model of the perturbed baroclinc

jet with a state dimension of 6400. Unaware of the statistical literature, they called the

method the direct ensemble method. The 500 member data-assimilation experiment was

indeed divergent.

The method has been applied successfully in an atmospheric chemistry model to infer

the trend in the global OH concentration by Krol et al. (1998). In a global atmospheric
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chemistry model with online fluid dynamics the global OH concentration, its trend, and

the initial methyl-chloroform (MCF ) concentration were estimated from MCF concen-

tration observations in the period 1975-1995. After 200 model integrations the statistics

of mean and covariance converged to their final value. It should be mentioned that only

3 parameters were estimated, but the measurement operator, i.e. obtaining the model

equivalent of the observations by running the full model, was rather complex. This is usu-

ally the case in parameter estimation. Vossepoel and Van Leeuwen (2007) estimated the

lateral mixing coefficients for temperature, salinity and momentum in the global OGCM

OPA of 2o resolution with meridional refinement to 0.5o in the tropics. Observations were

obtained from a model run with mixing coefficients derived from altimeter sea-surface

height variability observations. About 10,000 coefficients were estimated using 128 mem-

bers. The method worked, but showed that more particles were needed for convergence.

(Actually, to obtain good estimates the observations had to be assimilated locally, i.e.

only observations within a 5o radius were taken into account for each gridpoint, reducing

the number of observations per gridpoint to about 21. This is a form of localization, to

be discussed later.)

3. Reducing the variance in the weights

Several methods exists to reduce the variance in the weights (see e.g. Doucet et al.,

2001). We discuss here Sequential Importance Resampling, the Marginal Particle Filter

and hierarchical models, because these are among the few that can be applied directly

to large-dimensional problems. The first two methods ’break with the past’ in that they
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get rid of the weights of the particles accumulated during previous assimilation steps. In

resampling methods the posterior ensemble is resampled so that the weights become equal.

In the marginal particle filter the past is integrated out. Both methods do not change the

position of the particles in state space. In the next section methods are discussed that do

change the positions of the prior particles in state space to improve the likelihood of the

particles. In hierarchical models one tries to break up the full assimilation problem in a

sequence of easier to solve smaller assimilation problems, using the concept of conditional

probability densities.

a. Resampling

The idea of resampling is simply that particles with very low weights are abandoned,

while multiple copies of particles with high weight are kept for the posterior pdf. Although

the idea is old (Metropolis and Ulam, 1944), it was reintroduced in the statistical literature

in 1993 by Gordon et al. In order to restore the total number of particles N , identical

copies of high-weight particles are formed. The higher the weight of a particle the more

copies are generated, such that the total number of particles becomes N again. Sequential

Importance Re-sampling (SIR) does the above, and makes sure that the weights of all

posterior particles are equal again, to 1/N . Several resampling algorithms exist of which

we discuss four. The last one is a special application of Metropolis Hastings which uses a

chain-like procedure to resample the particles.

Sequential Importance Re-sampling is identical to Basic Importance Sampling but for

a resampling step after the calculation of the weights. The ’flow chart’ reads (see figure

2):
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1 Sample N particles ψi from the initial model probability density p(ψ0).

2 Integrate all particles forward in time up to the measurement time (so, sample from

p(ψn|ψn−1
i ) for each i)

3 Calculate the weights according to (13) and attach these weights to each correspond-

ing particle. Note that the particles are not modified, only their relative weight is

changed!

4 Re-sample the particles such that the weights are equal to 1/N .

5 Repeat 2, 3 and 4 sequentially until all observations up to the present have been

processed.

1) Probabilistic resampling

The resampling can be performed in many ways. The most straightforward method is

to directly sample randomly from the density given by the weights (Gordon et al.,1993).

Since this density is discrete and one-dimensional this is an easy task. However, due to

the random character of the sampling, so-called sampling noise is introduced.

Kim et al. (2003) applied this method to the one-dimensional double-well problem

and found superior results over Basic Importance Sampling. They called their method

the weight resampling filter. The best results for the double-well problem were achieved

with their Parametric Resampling Filter, which we discuss as the Maximum Entropy

Filter in section 5. Zhou et al. (2006) estimated a 684-dimensional state vector in their

land-surface dynamics model using one satellite-derived brightness observation every day

for 28 days. They compared the results of the particle filter with probabilistic resampling
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with those of the EnKF and found that although the particle filter gave better results,

it needed 800 particles to converge versus 80 for the EnKF. They mention that when

more measurements are used, or when the state space increases, much more particles are

needed in the particle filter.

A special case of particle filtering is parameter estimation. Kivman (2003) used the

particle filter with probabilistic resampling to estimate model parameters sequentially.

The method was compared with the EnKF on the Lorenz 63 model with 250 and 1000

particles. In this highly nonlinear system the particle filter was superior to the EnKF, as

can be expected. Interestingly, in some experiments the EnKF did converge, but to the

wrong parameter values, showing the need for non-Gaussian estimators in highly nonlinear

systems.

Losa et al. (2003) used particle filtering with probabilistic resampling in a combined

state-parameter estimation problem. The ecosystem model used had 9 state variables

(compartments) and 29 model parameters, of which 15 were estimated and 14 held fixed.

Using 1000 particles the authors obtained a converged solution (in which some parameters

showed seasonal variations, pointing to serious model problems). The particles were drawn

from the combined model state/parameter space, and each time step the model noise

was changed, while the parameters were held fixed until the new observations. Then

the particles were weighted and resampled probabilistically. After resampling identical

particles are present in the posterior ensemble with identical values for the parameters.

For the model state this is not problematic due to the time-variable model noise, but

the spread in parameter space is lost. To overcome this problem one could try to sample

from a smoothed approximation of the parameter pdf (see e.g. West, 1993). Instead, the
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authors used a simpler scheme, in which the mean and variance of each parameter were

determined, and new parameters were chosen from a uniform pdf with the same mean

and variance. To avoid negative parameter values, the pdf was restricted from below.

The continuation of this work is described in Brasseur et al. (2005), in which also the

model-noise amplitude in the ecosystem was estimated together with the model param-

eters. With a 1000 member ensemble the strong seasonal variations in the parameters

disappeared, and all seasonal variations moved towards the model noise amplitude. In

this experiment another variant of resampling was used in which the new parameters were

chosen from the uniform density bounded by [ nearest smaller value, nearest higher value].

2) Residual Sampling

To reduce the sampling noise Residual Sampling can be applied. In this re-sampling

method all weights are multiplied by the ensemble size N . Then n copies are taken of

each particle i in which n is the integer part of Nwi. After obtaining these copies of

all members with Nwi ≥ 1, the integer parts of Nwi are subtracted from Nwi. The

rest of the particles are drawn randomly from this resulting distribution. This method

was introduced by Lui and Chen (1998), who report a substantial reduction in sampling

noise and thus an improved performance of the filter in their small-scale applications. Van

Leeuwen (2003) compared this method with the EnKF in a one-dimensional KdV equation

with state dimension 100. With an ensemble size of 250 it was shown that the particle

filter is superior to the EnKF in the specific parameter regime chosen. The problem with

the EnKF was that when the update during the assimilation step is large, some the EnKF

particles obtained negative values for the model variable. This leads to unstable behavior
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of the KdV equation in this parameter regime. The reason for the negative values is that

the EnKF assumes the model variable to be approximately Gaussian distributed, while it

is positive definite. (It should be mentioned that the EnKF might perform much better

with a few improvements over the basic formulation.) On the other hand, the particle

filter did show filter divergence more often than the EnKF for some settings, but when

both the EnKF and the particle filter became degenerate the particle filter did recover

more easily. Van Leeuwen (2003) also used this method with 512 particles to estimate

the evolution of a 5-layer quasi-geostrophic model of the ocean area around South Africa,

governed by highly nonlinear dynamics. The dimension of the state vector was about

200,000. To avoid filter divergence the tails of the observational pdf had to be widened

from a Gauss to a Lorentz (Cauchy) density, the rationale being that the Gaussian has

too narrow tails to represent observational errors properly.

3) Stochastic Universal Sampling

While Residual Sampling reduces the sampling noise, it can be shown that Stochastic

Universal Sampling has lowest sampling noise (Kitagawa, 1996; see also Robert and Cas-

sela, 2004). In this method all weights are put after each other on a line [0, 1]. Then a

random number is drawn from a uniform density on [0, 1/N ]. Then N line pieces starting

from the random number, and with interval length 1/N are laid on the line [0, 1]. A

particle is chosen when one of the end points of these line pieces falls in the weight bin of

that particle. Clearly, particles with high weights span an interval larger than 1/N and

will be chosen a number of times, while small weight particles have a negligible change of

being chosen.
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4) Monte-Carlo Metropolis-Hastings

An enormous amount of literature exists on the Metropolis-Hastings algorithm (Hast-

ings, 1970, see also Robert and Casella, 2004). It is unusual to describe it as a re-sampling

method, but for the application we have in mind it is. Here we restrict ourselves to a

straightforward application to particle filtering ( see e.g. Dowd, 2007, for a geophysical

application). The algorithm works as follows:

1 Sample N particles ψi from the initial model probability density p(ψ0).

2 Sample from p(ψn|ψn−1
i ) once for each i (i.e. run the N particles forward in time).

3 Calculate the weights according to (13).

4 We do not automatically accept all particles as members of the new ensemble, but

use the Metropolis-Hastings algorithm, as follows.

Choose one particle, e.g. ψn
1 as a member of the new ensemble.

Particle 2 is also a member of the new ensemble if either

w2 > w1 (16)

or it is accepted with probability

p =
w2

w1
(17)

The latter condition is implemented by choosing a random number ν from a uniform

density on [0, 1], and accepting particle 2 when ν < p. When it is not accepted we

duplicate particle 1.

5 Repeat 4 and 5 using as particle 1 the last chosen particle, and as particle 2 the new

particle.
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5) Regularization

A potential problem with resampling is that several particles will be identical after

the resampling step. If the model has no error, these particles will remain identical dur-

ing forward integration, leading eventually to filter divergence. Also when the model

error is relatively small, or the dynamics of the model is itself degenerate (i.e. a strong

low-dimensional attractor is close by), the filter can become degenerate. (On can argue,

however, that for realistic atmospheric and oceanic applications model errors are substan-

tial.) To avoid this, some ’jitter’ has to be applied to the resampled particles. In the

statistical literature this action has be termed regularization, and one speaks of regular-

ized particle filters. Several regularization algorithms have been proposed. The central

idea is to resample the particles from a continuous representation of the pdf. Typically

kernel density smoothers are used, in which the sum of delta functions is replaced by a

sum of smooth functions:

p(ψ) =
N
∑

i=1

cigi(ψ) (18)

in which

∑

i

ci = 1 (19)

and in which gi(ψ) is the smooth pdf centered around particle ψi. Popular choices for

gi(ψ) are the Gaussian density and the Epanechnikov kernel. The width of these kernels

should be as large as possible to avoid degeneracy, and as small as possible to avoid extra

statistical noise. An overview is given by Musso et al. (2001). One can show from density

estimation theory, see e.g. Silverman (1986), that the optimal choice for the kernel for
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equal weight particles is the Epanechnikov kernel, given by:

gi(ψ) =
n+ 2

2γ

(

1 − |ψ − ψi|2
)

for |ψ − ψi| < 1 (20)

and zero otherwise, with n is the dimension of ψ and γ is the volume of a unit sphere in

Rn.

Pham (2001) proposes to sample new particles from a Gaussian density centered

around particles with multiple identical copies, found from probabilistic resampling. Ap-

plications to the Lorenz 63 model show that some 200 particles are needed for good

performance. As an extreme case Xiong et al. (2006), probably unaware of the work

by Pham (2001), draw their new particles from a Gaussian posterior density with mean

and covariance found from the complete weighted ensemble. This makes sense because

the posterior pdf will be much more Gaussian than the prior pdf because the prior is

multiplied by a Gaussian likelihood. In their example of the Lorenz 63 model the method

produces results which are slightly better than the EnKF, although the authors mention

that this result will depend on the model parameters chosen.

6) Is resampling enough?

The future for resampling in large-scale geophysical applications is limited according

to a growing number of authors. Budhiraja et al. (2007) state (without proof) that a

particle filter with a suitable resampling scheme might work in systems of dimension up

to 15.

Bengtsson et al. (2008) and Snyder et al. (2008) give arguments why resampling

the prior pdf is not enough to avoid filter divergence in large-scale applications. The

problem is related to the small number of particles that are typically found in those areas
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where the likelihood is large. This especially happens if a large number of (independent)

observations is present, which makes the likelihood peak in only a very small portion of

the observation space. So, via the likelihood the curse of dimensionality comes back into

the problem. The importance of these papers allows us to spend some more time on them.

Assuming that the observations are identically distributed and independent the weights

can be written as:

wi =
p(d|ψi)

∑

k p(d|ψk)
=

Π
Ny

j=1p(dj|ψi)
∑

k Π
Ny

j=1p(dj|ψk)
(21)

in which Ny is the total number of observations. Now introduce φ(xj) = − log p(xj) to

find:

wi =
exp

[

−∑Ny

j=1 φ(dj|ψi)
]

∑

k exp
[

−
∑Ny

j=1 φ(dj|ψk)
] (22)

If the observation pdf is Gaussian, φ(dj|ψk) = 1/2(dj−Hj(ψk))
TR−1(dj−Hj(ψk)). Snyder

et al. (2008) and Bengtsson et al. (2008) now concentrate on the largest weight. The

idea is to show that in order to keep the largest weight much smaller than 1 the number

of particles has to grow exponentially with ’the size of the problem’. We come back to

this in a minute. The largest weight can be taken without loss of generality as that of the

first member, and by dividing numerator and denominator by the numerator we find for

this largest weight:

w1 =

[

1 +
N
∑

k=2

exp

(

−
Ny
∑

j=1

φ(dj|ψk) − φ(dj|ψ1)

)]−1

=

[

1 +
N
∑

k=2

exp (−τ(Sk − S1))

]−1

(23)

in which τ is the square root of the variance (in particles k) of
∑Ny

j=1 φ(dj|ψk) and Si is

the normalized value:

Si =
1

τ

(

Ny
∑

j=1

φ(dj|ψk) − E

[

Ny
∑

j=1

φ(dj|ψk)

])

(24)
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With these expressions the largest weight can be written as:

w1 =
1

1 + T
(25)

in which T is given by:

T =

N
∑

k=2

exp [−τ(Sk − S1)] (26)

Filter divergence occurs when T approaches zero, so one has to look at the expectation

of T . To find this expectation it is assumed that the Si are N(0, 1) distributed. This is a

weak point in the analysis, because a rigorous proof on the distribution of the Si is lacking.

However, the end result fits quite well with numerical experiments, so the assumption has

serious backup. When the Si are indeed Gaussian, it is easy to show that as N → ∞ the

Si tends to −
√

2 logN . After a few manupilations and assumptions the authors arrive at

E[T ] ≈
√

2 logN

τ
(27)

To prevent the filter from diverging, the number of particles N >> exp(τ 2/2). Now recall

that τ is the square root of the variance of
∑Ny

j=1 φ(dj|ψk). τ depends on the variability

of the prior and on the characteristics of the observations. It can be considered as an

effective dimension of the system, but in general it is unclear what the relation to the

state dimension is. However, it is reasonable to assume that it will grow with the state

dimension, and the ensemble size should grow exponentially with its square. As a rough

order of magnitude one might use the number of independent observations for τ 2. So

10 independent observations lead to N >> 150, and 50 independent observations need

N >> 1011. These results are consistent with the findings of Zhou et al. (2006) and Van

Leeuwen (2003) described above. This leads to the conclusion that a particle filter with

resampling will diverge for large-scale applications. More is needed, and section 4 deals

with extensions of the simple resampling technique.
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b. The Marginal Particle Filter

The Marginal Particle Filter, introduced by Klaas et al. (2005), uses the fact that in

basic Importance Sampling the joint-in-time pdf is updated using a new observation, while

in the filtering problem we are only interested in the marginal pdf at the analysis time.

That basic Importance Sampling is indeed working on the joint pdf is immediately clear

when we realize that for each particle all weights from all observations are just multiplied

with each other to obtain the weight of the particle at the present time. In the marginal

particle filter the past is integrated out. This idea is exploited as follows. The marginal

prior pdf can be obtained from the joint pdf by integration:

p(ψn|d1:n−1) =

∫

p(ψn, ψn−1|d1:n−1) dψn−1 =

∫

p(ψn|ψn−1)p(ψn−1|d1:n−1) dψn−1. (28)

If we now introduce the particle representation of the pdf at time n− 1 we find that each

particle of the prior pdf at time n can be obtained from

ψj ∼
∑

i

wn−1
i p(ψn|ψn−1

i ) (29)

in which the ∼ denotes that we have to sample from the density at the right-hand-side.

So, we have to propagate all particles ψn−1
i forward in time and construct the weighted

sum as indicated to obtain particle ψn
j . This has to be done for each j, so N2 integrations

have to be performed. This is exactly equivalent to the Particle filter with resampling,

since instead of resampling at n − 1, a weighted sample is produced at time n. In this

way the stochastic noise introduced by the resampling step is avoided. The new ensemble

at time n is then confronted with the observations and new weights wn are obtained from

the likelihood, as:

wn
j ≈ p(dn|ψn

j ) (30)
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as usual. Klaas et al. (2005) apply the method to a one-dimensional highly nonlinear

model. They show that the Marginal Particle Filter is much less sensitive to outliers in

observations, especially in combination with the Auxiliary Particle Filter, to be discussed

in the next section. Finally, the authors discuss techniques from N-body learning that

can reduce the number of integrations to N logN , or even smaller for special problems.

No applications to geophysical systems have been described yet.

c. Hierarchical models

In some situations it is possible to formulate the full assimilation problem in terms

of a sequence of easier-to-handle assimilation problems. The basic idea is the following.

Suppose the state vector contains two parts ψ and φ (or ψ is the vector containing the

model variables and φ denotes unknown parameters in the model). The pdf of the state

vector can be written as:

p(ψ, φ) = p(ψ|φ)p(φ) (31)

If both p(φ) and p(ψ|φ) are easy to draw from, this equation allows us to generate samples

from p(ψ, φ).

In a particle implementation this decomposition can be used as follows. Assume, for

example, that φ denotes unknown model parameters. Draw N sets of model parameters

φi, and for each parameter set evaluate p(ψ|φi), which is in this case a model run with

parameters equal to φi. This then gives us an ensemble of particles drawn from p(ψ, φ).

Two advantages of the method can be highlighted. First, the conditional densities

have smaller dimension than the joint densities. Second, different algorithms can be used

for different parts of the hierarchy.
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Wikle and Berliner (2007) explain the method in general, and Berliner and Wikle

(2007) use an example in which velocity and pressure observations are available and the

model is ’stochastic geostrophic’, i.e.

ρfu = βu1

∂P

∂x
+ βu2

∂P

∂y
(32)

and a similar equation for v. Clearly, if the field is exactly geostrophic βu1 = 0, and

βu2 = −1, but now these two parameters are to be estimated. So in this case we want to

estimate:

p(u, P, β|du, dp) ∼ p(du|u) p(u|P, β) p(β) p(dp|P ) p(P ) (33)

We assume the densities of the pressure P , and of the β’s to be known. One starts with

drawing samples Pi from p(P ), evaluates the likelihoods p(dp|P ) , and one resamples

the Pi to give them equal weight. Then draw samples for the β’s. With these in hand

we generate samples of the velocities, using the stochastic geostrophy model. These are

then confronted with the observations in p(du|u), leading again to a weighted ensemble

of velocity, pressure, and parameter fields. This ensemble of particles represents the

posterior pdf, as we wanted. So, instead of drawing particles from p(u, P, β) we reduced

the dimension of the system and only had to draw from p(P ) and p(β).

Although this sounds simple, it does not work this way in practice. For instance,

Berliner and Wikle (2007) had to use an EOF-decomposition of the pressure field and

estimate the coefficients of those fields. Also other smart changes in the formulation of

the problem were needed to obtain a stable solution. Furthermore, one must be able to

draw samples from the prior densities, in this case pressure and parameters, enforcing

relatively simple pdf’s for these. Wikle and Berliner (2007) argue that basic Importance

Sampling, as outlined above, should be used only for low-dimensional problems. In higher
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dimensional problems they propose Markov Chain Monte-Carlo (MCMC) methods, like

the Gibbs sampler, Metropolis-Hastings, and slice samplers. This goes beyond particle

filtering and is not discussed here. The interested reader is referred to Robert and Cassela

(2004).

To conclude, hierarchical models provide a systematic way to reduce the complexity of

the assimilation problem by highlighting specific dependencies between model variables.

This can be very useful, but it is unclear how to exploit this efficiently in high dimensional

problems. However, as Berliner and Wikle (2007) state, in combination with other tech-

niques it might help in solving the particle filter problem, and dismissing particle filters

all together is premature.

4. Improvement of the likelihood

Related to decreasing the variance of the weights is ensuring that all model integrations

end up close to the new observations. First we discuss the application of a proposal density

that allows one to sample from a density that is conditioned on the new observations, so

it is much closer to these observations than the prior density. As an example the EnKF

is chosen as the proposal density. Then we discuss the Auxiliary Particle Filter, the

Backtracking Particle Filter, and the Guided SIR. In both the Auxiliary Particle Filter

and the Guided SIR future observations are used directly to improve the likelihood, while

the Backtracking Filter ’tries again’.

As a bit of a side track, before we go into these methods, we shortly discuss smart

ways to generate the prior ensemble based on the dynamics of the system at hand. One
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could use as particles the singular vectors of the linearized model equations (Chorin and

Krause, 2004). The idea is to use the singular vectors to explore the state space only in

the direction of the growing eigenmodes of the linearized model operator. The eigenmodes

are related to the Liapounov exponents of the system. However, Bowler (2006) compared

the impact of singular vectors, error breeding, random perturbations and EnKF strategies

on the forecasts (so, on the quality of the next prior) for the 40-variable Lorenz-95 model.

It turned out that the breeding perturbations were too similar to each other to show a

reasonable spread. The singular vectors denote the fastest growing structures, but there is

no guarantee that the actual errors will project significantly on those structures. Looking

at their structure, they tend to be very localized in space, so that a large number of them

is needed to perturb all gridpoints. The random perturbations and the EnKF scheme were

superior. It must be mentioned that the 40-variable Lorenz-95 model is of much smaller

dimension than the applications we have in mind in this paper, but the problems with the

error-breeding and singular-vector ensembles seem to be general. Several attempts have

been performed on the ENSO system with a Kalman filter using a reduced EOF space

(e.g. Ballabrera-Poy et al., 2000), and again it was found that the system tends to grow

out of the reduced space and the assimilation fails after some time.

a. The proposal density

We now discuss a very interesting property of particle filters that has received little

attention in the geophysical community. This has to do with the following. Typically, we

are interested in evaluating at time n integrals like:

f(ψn) =

∫

f(ψn)p(ψn|dn) dψn =
1

A

∫

f(ψn)p(dn|ψn)p(ψn) dψn (34)
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in which A is a normalization factor. This integral can be written as:

f(ψn) =
1

A

∫

f(ψn)p(dn|ψn)
p(ψn)

q(ψn)
q(ψn) dψn (35)

in which q(ψn) is another probability density. Obviously, the support of q has to be equal

to or larger than that of p to avoid division by zero. The density q is called the proposal

density, and we could sample from q instead of from p to approximate the integral. Using

a particle representation of q we obtain for the mean of f in the posterior:

f(ψn) =
1

A

∑

i

f(ψn
i )p(dn|ψn

i )
p(ψn

i )

q(ψn
i )

=
∑

i

wif(ψi) (36)

in which the weights are given by:

wi =
1

A
p(dn|ψn

i )
p(ψn

i )

q(ψn
i )

(37)

The interest comes from the fact that we can try to put information of the observations

dn in the density q such that the particles ψn
i , which are sampled from q, are close to

these observations. This opens a whole new area of possible improvements of efficiency of

particle filters. When the observations are included we have:

f(ψn) =
1

A

∑

i

f(ψn
i )p(dn|ψn

i )
p(ψn

i )

q(ψn
i |dn)

=
∑

i

wif(ψi) (38)

with

wi =
1

A
p(dn|ψn

i )
p(ψn

i )

q(ψn
i |dn)

(39)

(As mentioned before, in the statistical literature one tends to find derivations of Impor-

tance Sampling with the proposal density included from the beginning. For pedagogical

reasons the proposal density is introduced here.)

Although this sounds good, a close inspection of the equations above reveals a diffi-

culty. The ψi are drawn from q, so we can infer their probability. But how should we
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determine p(ψi)? And, similarly, how can we evaluate q(ψi|dn)? Only when the shape of

the prior and proposal pdf are known these probabilities can be determined. This might

be possible for the proposal, which we are free to choose, but not for the prior. To solve

this problem we have to go to a slightly different formulation of the assimilation problem

(see e.g. Doucet et al., 2001). We first derive the equations without proposal density for

clarity.

We can expand p(ψn) in Bayes theorem to find:

p(ψn|dn) =
p(dn|ψn)

∫

p(ψnψn−1)dψn−1

∫

p(dn|ψn)p(ψn) dψn
(40)

which can be rewriten as:

p(ψn|dn) =
p(dn|ψn)

∫

p(ψn|ψn−1)p(ψn−1) dψn−1

∫

p(dn|ψn)p(ψn) dψn
(41)

Assuming a (resampled) particle representation of p(ψn−1) (i.e. p(ψn−1) is a sum of delta

functions) we find:

p(ψn|dn) =
p(dn|ψn)

∫

p(dn|ψn)p(ψn) dψn

1

N

∑

i

p(ψn|ψn−1
i ) (42)

Note that we have assumed that the particles at n− 1 all have the same weight, from e.g.

a resampling step at n− 1. This is not essential for the following, but is assumed here for

clarity. The procedure is that we now draw a sample from
∑

i p(ψ
n|ψn−1

i ), which is equal

to choosing the stochastic forcing for the model integration starting at ψn−1
i to form ψn

i .

Sampling N particles from this density gives a posterior that is a weighted sum of delta

functions with weigths

wi =
p(dn|ψn

i )
∑

j p(d
n|ψn

j )
(43)

as before. Let us now introduce the proposal density again. The posterior density is
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written as:

p(ψn|dn) =
1

A
p(dn|ψn)

1

N

∑

i

p(ψn|ψn−1
i )

q(ψn|ψn−1
i dn)

q(ψn|ψn−1
i dn) (44)

in which A is the normalization factor:

A =

∫

p(dn|ψn)p(ψn) dψn (45)

Drawing from the transition density q(ψn|ψn−1
i d), i.e. performing a model integration

from each of the ψn−1
i gives us the sample of the posterior density, with weights:

wi ∝ p(dn|ψn
i )

p(ψn
i |ψn−1

i )

q(ψn
i |ψn−1

i dn)
(46)

It is important to note that we never actually calculate the normalization constant A.

The important observation is that it does not depend on a specific ψi, so it is the same

for all particles. In practice one calculates the weights up to a normalization constant,

and normalizes these weights by their sum.

This formulation of Bayes theorem gives us the possibility to explore the proposal

density. As an example we will explore this technique with the Gaussian of the EnKF

as the proposal density. First we have to evaluate the prior transition density. We will

follow the presentation by Papadakis (2007). Since we know the starting point of the

simulation, ψn−1
i , and its end point, the posterior EnKF sample ψn

i , and we know the

model equation, written formally as:

ψn
i = f(ψn−1

i ) + ǫni (47)

we can determine ǫni . We also know the distribution from which this ǫni is supposed to be

drawn, let us say a Gaussian with zero mean and covariance Qm. We then find for the

transition density:

p(ψn
i |ψn−1

i ) ∝ exp
[

−1/2
(

ψn
i − f(ψn−1

i )
)

Q−1
m

(

ψn
i − f(ψn−1

i )
)]

(48)
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This will give us a number for each [ψn−1
i , ψn

i ] combination.

Let us now calculate the proposal density q(ψn
i |ψn−1

i dn). This depends on the ensemble

Kalman filter used. For the Ensemble Kalman filter with perturbed observations (see

Evensen, 2003) the situation is as follows. Each particle in the updated ensemble is

connected to those before analysis as:

ψn
i = ψn,old

i +Ke
(

d+ δi −H(ψn,old
i )

)

(49)

in which δi is the random error that has to be added to the observations in this variant of

the ensemble Kalman filter. Ke is the ensemble Klman gain, i.e. the Kalman gain using

the prior error covariance calculated from the prior ensemble. The particle prior to the

analysis comes from that of the previous time step through the stochastic model:

ψn,old
i = f(ψn−1

i ) + ǫni (50)

Combining these two gives:

ψn
i = f(ψn−1

i ) + ǫni +Ke
(

d+ δi −H(ψn−1
i ) −H(ǫni ))

)

(51)

or

ψn
i = f(ψn−1

i ) +Ke
(

d−H(f(ψn−1
i ))

)

+ (1 −KeH)ǫni +Keδi (52)

assuming that H is a linear operator. The right-hand side of this equation has a deter-

ministic and a stochastic part. The stochastic part provides the transition density going

from ψn−1
i to ψn

i . Assuming both model and observation errors to be Gaussian distributed

and independent we find for this transition density:

q(ψn
i |ψn−1

i dn) ∝ exp
[

−1/2 (ψn
i − µn

i )T Σ−1
i (ψn

i − µn
i )
]

(53)
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in which µn
i is the deterministic ’evolution’ of ψ, given by:

µn
i = f(ψn−1

i ) +Ke
(

d−H(ψn−1
i )

)

(54)

and the covariance Σi is given by:

Σi = (1 −KeH)Qm(1 −KeH)T +KeRKeT (55)

where we assumed that the model and observation errors are uncorrelated. It should be

realized that ψn
i does depend on all ψn,old

j via the Kalman gain, that involves the error

covariance P e. Hence we have calculated q(ψn
i |P eψn−1

i d) instead of q(ψn
i |ψn−1

i ), in which

P e depends on all other particles. The reason why we ignore the dependence on P e is

that in case of an infinitely large ensemble P e would be a variable that depends only on

the system, not on specific realizations of that system. This is different from the terms

related ψn
i , that will depend on the specific realization for ǫni even when the ensemble size

is ’infinite’. (Hence another approximation related to the finite size of the ensemble comes

into play here and at this moment it is unclear how large this approximation error is.)

For a square-root filter the situation is a bit different because the observations are not

perturbed. Instead, an updated ensemble is found as:

ψn
i =

N
∑

j=1

(

ψn,old
j − ψn,old

)

Wji + ψn,old (56)

in which Wij is a symmetric transition matrix dependent on ensemble covariance, inno-

vation and observation error covariance. Note that the Wij can be considered as weights,

i.e. how strong each old member j counts in forming the new member i. As before, ψn,old
j

is the particle j at time n before the Kalman filter analysis step. Using the stochstic

model evolution equation we obtain:

ψn
i =

N
∑

j=1

(

f(ψn−1
j ) + ǫnj − ψn,old

)

Wji + ψn,old (57)
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or

ψn
i =

N
∑

j=1

(

f(ψn−1
j ) − ψn,old

)

Wji + ψn,old +
N
∑

j=1

ǫnjWji (58)

Again a deterministic and a stochastic part can be found at the right-hand side. As above,

the deterministic part shows not only dependence on ψn−1
i , but also on all other ψn−1

j .

The argument used there is repeated here: in case of an infinite ensemble size this term

would be a system variable not dependent on specific realizations. Also the stochastic

term only depends on i when the ensemble size becomes very large.

The transition density can be found as:

q(ψn
i |ψn−1

i dn) ∝ exp
[

−1/2 (ψn
i − µn

i )T Σ−1
i (ψn

i − µn
i )
]

(59)

in which now

µn
i =

N
∑

j=1

(

f(ψn−1
j ) − ψn,old

)

Wji + ψn,old (60)

and the covariance Σi is given by:

Σi =
N
∑

j=1

WijQmW
T
ij (61)

The calculation of p(ψn
i |ψn−1

i ) and q(ψn
i |ψn−1

i dn) looks very expensive. By realizing

that Qm and R ican be obtained from the ensemble of particles, computationally efficient

schemes can easily be derived.

We can now determine the full new weights. Since the normalization factors for the

transition and the posterior densities are the same for all particles the weights in (46) are

easily calculated. The procedure now is as follows (see figure 3):

1 Run the ensemble up to the observation time n.

2 Perform a (local) EnKF analysis of the particles.
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3 Calculate the relative weights w∗

i = p(ψn
i |ψn−1

i )/q(ψn
i |ψn−1

i dn) using (48, 53) or (48,

59).

4 Calculate the relative weights wi = p(dn|ψn
i )

5 Calculate the full relative weights as wi = wi ∗ w∗

i and normalize them.

6 Resample

It is good to realize that the EnKF step is only used to draw the particles close to

the observations. This means that when the weights are still varying too much, one can

do the EnKF step with much lower observational errors. This might look like overfitting

but it is not because the only thing we do in probabilistic sense is to ’drag’ particles to

those positions in state space where the likelihood is large. Any other proposal density

that does this could be used instead.

Van der Merwe et al. (2000) use the Unscented Kalman Filter (UKF) as the proposal

density. The unscented Kalman filter, introduced by Julier and Uhlmann (1997), is an

EnKF in which the initial particles are chosen as in a square-root filter, capturing the mean

and the covariance of the prior density, but with the possibility to use a scaling parameter

to change the distance of the particles to the mean without changing the covariance. Van

der Merwe et al. (2000) use in their implementation of the so-called Unscented Particle

Filter a Gaussian density around each particle, so, in fact, their proposal is a Gaussian

mixture model (see next section). Each Gaussian is updated using all observations, the

result of which is again a Gaussian distribution q(ψn|ψn−1
i dn). The proposal density

value q(ψn
i |ψn−1

i d) is found by drawing a ψn
i from that Gaussian density, and evaluate its

probability. Note the difference with the EnKF approach: in the EnKF the posterior is
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represented by one Gaussian density, while in the UPF a Gaussian density is centered

around each particle. Because the UKF is used on each particle separately the method

needs about N2 integrations, so it is not feasible in the large-scale geophysical context.

Van der Merwe at al. (2000) show in small-scale highly nonlinear examples that the

Unscented Particle Filter outperforms the particle filter with resampling and particle

filters with the Extended Kalman filter as proposal.

As another example the Marginal Particle Filter with proposal density is briefly dis-

cussed. The Marginal Particle Filter can easily be expanded by utilizing the proposal

density as :

ψj ∼
∑

i

wn−1
i q(ψn|ψn−1

i dn) (62)

and forming weights at time n as:

wn
j ≈ p(dn|ψn

j )

∑

i w
n−1
i p(ψn|ψn−1

i )
∑

i w
n−1
i q(ψn|ψn−1

i dn)
(63)

Klaas et al. (2005) also discuss a combination of this filter with the Auxiliary Particle

Filter (see next paragraph), and apply the method to a one-dimensional highly nonlinear

model. Again they find that the Marginal Particle Filter is much less sensitive to outliers

in observations, especially in combination with the Auxiliary Particle Filter.

b. Auxiliary Particle Filter

In the Auxilary Particle Filter introduced by Pitt and Shephard (1999), the ensemble

at time n− 1 is weighted with information from the likelihood at time n. In this method

one generates a representation of each particle at the time of the new observation, e.g. by

integrating each particle from time n − 1 to time n using zero model noise. (Depending
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on the complexity of the stochastic model integrator this can save considerable time.)

Then the particles are weighted with the observations, and a new resampled ensemble is

integrated from n− 1 to arrive closer to the observations. A flow chart reads (see figure

4):

1 Integrate each particle from n−1 to n with simplified dynamics (e.g. without model

noise or omitting some computationally expensive part of the model), producing a

representation of the proposal density q(ψn) at the measurement time.

2 Weight each particle with the new observations as

wi ∝ q(dn|ψn
i ) (64)

These weights are called the ’first-stage weights’ or the ’simulation weights’.

3 Resample the particles at time n − 1 with these weights, and use this ensemble as

a representation of the proposal density by integrating it forward to n with the full

stochastic model.

4 Re-weight the members with weights

wi ∝
p(dn|ψn

i )

q(dn|ψn
i )

(65)

A resampling step can be done, but is not really necessary because the actual re-

sampling is done at step 3.

It should be noted that 2N integrations have to be performed with this method, one

ensemble integration to find the proposal, and one for the actual pdf. If adding the

stochastic noise is not expensive step 1 can be done with the stochastic model, which

comes down to doing the SIR twice. One can imagine doing it even more times, zooming
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in into the likelihood, but at a cost of performing more and more integrations of the

model.

The name ’auxiliary’ comes from the introduction of a member index in the original

formulation by Pitt and Shephard (1999), but that is not needed explicitly. Implicitly,

the member index keeps track of the relation between the first-stage weights and the

particle sample at n− 1, so that a formal treatment of the characteristics of the method

is facilitated.

c. The Backtracking Particle Filter

One possibility to solve the problem of filter divergence (i.e. when all members obtain

very low weights, such that none of the particles follows the observations) is to go back

to the time when the particle filter did work properly, and try again. This ’trying again’

can be done in several ways, and Spiller et al. (2008) describe four methods to do so.

The first idea is to duplicate each particle at time n− b when the filter still performed

fine, and propagate 2N particles up to time n + 1, one time step after the divergence.

Then the ensemble size is recudes to N again until a new divergence is detected.

Another possibility, called cloud expansion, is to go back to n− b and just rerun the

N particles with different realizations of the model noise, or, if that doesn’t work, add

N particles each with zero mean Gaussian random noise centered around the original N

particles. These 2N particles are then used until time n + 1, after which one proceeds

again with N particles.

A more serious change is directed doubling, in which one goes back to n − b, and

uses the ensemble at that time before resampling. Take the M particles with the largest
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weights (typically, M = N/10) and add new particles along the line between each of

these particles and the observations. (With more than one observation at a time this

becomes more complicated, but one can probably generate efficient schemes that do this

in an approximate way.) To preserve the mean of the ensemble, add the same number

of particles on the same line at the other side of each of the M original particles. The

number of extra particles is such that the total size of the new ensemble becomes 2N .

This ensemble is propagated up to time n+1, after which the size is brought back to N . A

potential problem with this method in high-dimensional systems with implicit balances is

that it is unclear how to generate these new particles because they will not all be close to

an original particle. In the application used by Spiller et al. (2008) in which the position

of two point vortices in a 2-D domain has to be found when a tracer is observed, this is

not a problem.

Finally, Spiller et al. (2008) use doubling with perturbed observations, in which one

goes back to n− b, perturbs the observations 2N times, and calculates 2N particles using

Bayes. This step reminds us of the perturbed-observation implementation of the EnKF.

Then these 2N particles are used up to time n + 1, after which one returns back to N

partilces.

Spiller et al. (2008) showed that each of the variants of the backtracking particle

filter worked better than the Extended Kalman Filter (EKF) and than the particle filter

with resampling in their highly nonlinear Lagrangian tracking problem with N = 500. A

possible disadvantage is that the filters typically need 2N model integrations, similar to

the auxilary particle filter.
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d. The Guided SIR

In this method, introduced by Van Leeuwen (2002), we use the fact that observations

are available not at every time step, but at say each L time steps. This means that the

model is stepping forward L time steps before new observations are available. This is the

common situation in geophysical systems. The idea is to weight and resample the ensemble

of particles using future observations at the present time. This will guide the particles

into the direction of these future observations. To avoid drawing the particles to the

observations too strongly too early, one increases the error covariance of the observations

by a factor > 1, typically a factor 10-100 is used. A possible implementation is as follows

(see figure 5):

1 Run the particles from the previous analysis time n − L to some predefined time

n− L+ k in between measurement times, in which k < L.

2 Calculate the weights using the observations of the next measurement time with the

observational error covariance multiplied by e.g. 1 + 10(L− k)/L, as

wi ∝ p(dn|ψn−L+k
i ) with

∑

i

wi = 1 (66)

3 Resample the particles according to these weights. This ensures that the particles

are on the good track towards the next observations.

4 Re-weight this new ensemble to compensate for the extra weights that have been

introduced in step 3, but do not resample, as:

αi ∝
[

p(dn|ψn−L+k
i )

]

−1
with

∑

i

αi = 1 (67)
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So now each particle i has weight αi, but is still on the good track towards the

observations.

5 Propagate this ensemble forward in time to the next predefined time n − L + 2k,

again before the actual measurement time (so also 2k < L).

6 Repeat 2, using as weights

wi ∝ αip(d
n|ψn−L+2k

i ) with
∑

i

wi = 1 (68)

with the observational error covariance multiplied by e.g. 1 + 10(L− 2k)/L.

7 Repeat 3,4, 5, 6 until the ensemble reaches the true measurement time.

8 Calculate the weights at the measurement time, as

wi ∝ p(dn|ψn
i ) with

∑

i

wi = 1 (69)

9 Resample the particles according to these weights, i.e. without corrections, since

they are not needed at this step.

Note that all we did in this procedure is to guide the particles towards the observations

via resampling at intermediate steps (steps 3). In order to avoid a bias we compensated

for the extra weights introduced by the intermediate resampling in step 4.

A few comments:

1 One could do a resampling at step 4 (Arnaud Doucet, personal comunication)

2 One can choose k differently in each cycle of step 7.

3 One can use modifications of the true observations at time n. For instance, when

a daily cycle is present and observations are only once a day, one could introduce
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a daily variation in the pseudo observations too. Note that any pseudo observation

can be used, as long as it brings the ensemble closer to the true observations at time

n.

5. Approximations

Even with all ideas from the statistical literature presented above, it is difficult to avoid

filter degeneracy in geophysical problems with state vectors of size 1 million or larger. To

this end, several approximation to especially the SIR filter have been proposed. We discuss

here the Merging Particle Filter, Localization, as used in e.g. the Ensemble Kalman Filter,

Kernel dressing, in which eacch particle is ’dressed’ with a - usually Gaussian - pdf, and

the Maximum Entropy Particle Filter.

Also, a consideral number of papers have appeared recently that approach the problem

from the EnKF side, that is, one tries to introduce non-Gaussian elements in the EnKF.

Unfortunately, the adaptations to the EnKF or its square-root variants are rather ad hoc.

Nonetheless, interesting results have been achieved that are of interest in trying to solve

the full nonlinear problems. An example is presented by Harlim and Hunt (2007), who

widen the prior pdf in a variational formulation of the Kalman-filter update. This is done

routinely in operational centers now by including a covariance inflation factor in the prior

covariance, but Harlim and Hunt change the shape of the prior pdf from a Gauss to a pdf

with much broader tail. Obviously, the Kalman filter equations do not apply anymore,

but the wider pdf can be incorporated in the variational formulation quite easily.
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a. The Merging Particle Filter

In this method, introduced by Nakano et al. (2007), linear combinations of the par-

ticles are taken at the measurement time to reduce the variance in the weights. These

linear combinations are taken such that the mean and the covariance of the ensemble are

kept, at the costs of a less correct description of the higher-order moments. In this way

the algorithm is still variance-minimizing for nonlinear models, unlike e.g. the Ensemble

Kalman Filter.

The procedure is as follows (see figure 6):

1 Sample N particles ψi from the initial model probability density p(ψn−1) (or have

them from a previous assimilation step.

2 Integrate all particles forward in time up to the measurement time (so, sample from

p(ψn|ψn−1
i ) for each i)

3 Calculate the weights according to (13) and attach these weights to each particle.

Note that the particles are not modified, only their relative weight is changed!

4 Re-sample the particles such that the weights are equal to 1/N . So far, the algorithm

is identical to the SIR.

5 Repeat 4 M − 1 times, with M > 2 to form M ensembles of size N .

6 Merge M particles:

ψn
i =

M
∑

j=1

αjψ
n
j,i (70)

in which ψn
j,i denotes particle i ∈ [1, 2, .., N ] in ensemble j ∈ [1, 2, ..,M ]. To ensure
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the correct mean and covariance of the ensemble choose

M
∑

j=1

αj = 1 and

M
∑

j=1

α2
j = 1 (71)

as proven in Nakano et al. (2007), and is easily verified.

7 Back to step 2.

Nakano et al. (2007) compare the performance of the merging particle filter to the

particle filter with resampling and to the EnKF for the Lorenz 63 and 96 models. They

note that the EnKF works best with a low number of particles, but increasing the number

of particles the Merging Particle Filter takes over. Only with a very high number of

particles is the particle filter with resampling superior. The breakpoint depends on the

linearity of the problem. The authors argue that for strongly non-Gaussian pdf’s the

merging particle filter will perform less well because only the mean and the covariance of

the ensemble are optimized, at the cost of higher-order moments. The difference with the

EnKF lies in the fact that in the EnKF approximations are made before the analysis step.

In the merging particle filter approximations are made after the analysis step, and only

the mean and the covariance remain unchanged (up to sample noise). Hence the merging

particle filter is truly variance minimizing, while the EnKF and its variants are not.

Finally, note that the positions of the particles in state space have changed, unlike

a particle filter with direct resampling. This is both good and bad. Good because the

spread in the ensemble is enhanced, bad because nonlinear balances in each particle are

destroyed to some extend.
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b. Gaussian Resampling

Xiong et al. (2006) propose to use Gaussian resampling from the posterior pdf as

obtained from the particle filter. It is interesting to compare this idea to the Merging

Particle Filter. In the merging particle filter the α′s are determined analytically. In

Gaussian resampling new particles have to be drawn from the covariance of the weighted

ensemble of particles. Clearly, the latter is much more expensive. Gaussian Resampling

in combination with weights from the particle filter is superior to EnKF-like methods

because the posterior is truly variance minimizing, while the EnKF-like methods are not.

On the other hand, the particles are changing position in state space, but not towards

the observations. In EnKF-like methods all particles are drawn towards the observations.

(Note that this is not necessarily true for multi-modal likelihoods.)

c. Weights from reduced-dimension models

To avoid large variance in the weights one can reduce the dimension of the assimilation

problem by performing the importance-sampling step in a reduced space. For instance,

Berliner and Wikle (2007) propose to use the dominant EOF’s of the model system and

perform the importance sampling on the EOF amplitudes of the particles, given the EOF

amplitudes of the observations. The procedure is to first determine the dominant EOF’s

of the system, e.g. from a long model run, or from a long observational data set, or

from the ensemble of particles at the observation time. Then run the particles up to

observation time, determine the EOF amplitudes of both particles and observations, do

the importance sampling on the EOF amplitudes, and use these weights as the weights
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of the full model particles.

More realistic model reduction might be possible using dynamical modes from dynam-

ical system theory. This is one of the areas where data assimilation and dynamical system

theory meet directly, and this author expects fruitful collaboration.

d. Localization

It is common practice that the Ensemble Kalman Filter (EnKF) shows degeneracy

when the state space size is much larger than the number of ensemble members. A

remedy used in that method is to update locally, i.e. to update the state vector at a

certain grid point only the observations in the immediate neighborhood are included in

the analysis step. This operation is called localization, and is common practice nowadays

in meteorology and oceanography. It was introduced by Houtekamer and Mitchell (1988),

and first used operationally by Brusdal et al. (2003), and Ott et al. (2004). The rationale

for this procedure comes from the idea that an observation at one location is not expected

to have anything to do with the state of the system at the other side of the globe.

This neglected correlation can be wrong for e.g. very long-scale phenomena, like long-

wavelength waves, and one can imagine to do localization in e.g. spectral space, or in the

space spanned by EOF’s.

One advantage of localization is that spurious long-range correlations can be sup-

pressed. Due to the relatively small ensemble size we can typically afford, it is hard to

obtain zero correlation when the actual correlation is zero. So, correlations close to zero

are suspicious, and one can argue to ignore them altogether. Another advantage is that

since the update of the ensemble is performed over only part of the full model domain,
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the size of the state vector is strongly reduced, or the effective ensemble size is greatly in-

creased. Finally, in a direct application of the EnKF without localization a new ensemble

will consists of ensemble members that are (almost) a linear combination of the old mem-

bers, and the space spanned by the ensemble remains the same. Using localization gives

’new blood’ in the ensemble because new members consist of different linear combinations

of old members in different parts of the domain.

These advantages motivate the search for a localization procedure in particle filtering.

One can calculate the weights locally, i.e. make the weights space dependent and use

only observations close to the spacial point. So, it is easy to localize the Importance

Sampling filter. This is less so for more sophisticated filters that employ resampling.

In the resampling step low-weight particles are abandoned and high-weight particles are

duplicated. However, with local weights, different particles are selected in different parts

of the domain. The problem now is that we have to have continuous (in space) model

fields to propagate forward in time with the model equations. Just constructing a new

particle that consists of one particle in one part of the model domain and another particle

in another domain will lead to problems at the boundary between these two. This is less

of a problem in the EnKF because the error covariances used there tend to smooth the

solution in space. In e.g. the SIR this smoothing is not present.

The above problem is less present in parameter estimation. In most (but not all!)

model systems parameters can be discontinuous without causing serious problems. An

example in provided by Vossepoel and Van Leeuwen (2007), as discussed in section 2. To

estimate the roughly 10,000 parameters with 128 particles localization was used, reducing

the number of parameters in each batch to about 21, and leading to converged results.
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Terwisscha et al. (2009) extended the method to estimate some 28,000 sea-ice strength

parameters during a two-year assimilation experiment in a finite-element model of the

Arctic Ocean, both in space and time. Real sea-ice concentration observations were

used from the SSM/I satellite instrument together with sea-ice drift observations from

Quickscat. Only 32 particles were used to obtain results that converged when the the

localization area was made small enough and observation errors large enough. A strong

seasonal variation of the sea-ice strength values was found, related to growth or decline of

sea ice. These results point to serious problems in the sea-ice model, which need further

investigation.

When model fields are estimated the smoothness issue is very serious, Several methods

to avoid this problem come to mind, which we discuss briefly below.

1) Spatial interpolation

The problem with spatial interpolation is that we have a-priori no idea which particles

one has to put together in different parts of the domain to generate one new particle over

the full domain, so that potentially very large gradients can occur, and interpolation will

still yield ’wild’ model fields. Van Leeuwen (2003b) used this method with a multi-layer

quasi-geostrophic model of the ocean area around South Africa and did not encounter

these problems, but the author expresses that one can expect spurious gravity-wave gen-

eration in primitive equation models. So, unless we find efficient ways to generate new

global particles which are as smooth as possible given the favorite particles in different

parts of the domain this does not work.
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2) Hierarchical Bayes

From a more fundamental point of view, one could use hierarchical Bayes in which

part of the state vector is conditioned on other parts. The idea is that the posterior pdf

can be written as:

p(ψ|d) = p(ψin|ψoutd)p(ψout|d) (72)

in which the subscripts in and out denote inner and outer, respectively. In this way the

solution at a specific area, the inner area, is conditioned on the solution in the rest of the

domain. To implement localization one assums that the inner domain is only dependent

on that part of the outer domain that is relatively close. The same is assumed for the

observations: only those close to the inner domain are relevant for the solution there.

With these assumption we can write for any inner domain i:

p(ψ|d) = p(ψi
in|ψi

outd
i)p(ψout|d) (73)

The outer area is build up of other inner areas around other points in state space. In this

way a hierarchy of conditional pdf’s is created:

p(ψ|d) =

M
∏

i=1

p(ψi
in|ψi

outd
i)p(ψM

out|dM) (74)

M+1 denotes the number of inner areas in the total domain. To use this we can start from

the back, i.e. p(ψM
out|dM) and work from there through the whole domain. The difficulty in

applying this formalism is in how to choose the conditional densities p(ψi
in|ψi

outd
i). Here

we want to introduce concepts like smoothness, but it is not straightforward to put these

concepts in probabilistic form. A simplified approach that includes localization is the

following.
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First local weighting is performed, i.e. only observations relatively close to each model

grid point are taken into account to calculate the local weights. Then we use the following

procedure.

1 Start from a point somewhere in the domain and choose the particle with highest

weight. Decrease that weight by 1/N (because the particle is chosen deterministi-

cally).

2 Walk to a next grid point and use the same particle if the weight is still high (i.e.

wi > 1/N). If the weight is low wi < 1/N choose another particle there which has

high weight, and is close to the original particle at the previous grid point. This is a

form of inplementing the conditional density using as outer domain only the point

next to the inner point.

3 Repeat 2 until all grid points have been visited and a particle is attached to each

grid point. This is the first new member.

4 Repeat 1, 2 and 3 until N particles have been created.

Experience learns that this procedure works nicely for the first few new particles, but

generates less smooth particles towards the end, because less particles can be chosen from

at a breakpoint where wi becomes smaller than 1.

3) Using an approximate smooth solution

As mentioned above, one needs guidance on how to choose the different particles in

different parts of the domain to generate smooth global particles. One could use the
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another approximate solution that is smooth to provide this guidance, for example the

EnKF solution. In that case step 2 above is replaced by

2 Walk to a next grid point and use the same particle if the weight is still high (i.e.

wi > 1/N). If the weight is low wi < 1/N choose another particle there which has

high weight, and is close to one chosen EnKF member.

One could choose this EnKF member to have the highest global weight for the first global

particle, and move to the EnKF member lower in weight rank for the next global particle

etc. The advantage of this procedure is that when the likelihood of all members is very

low in a certain part of the domain one can fall back on the EnKF solution, which is likely

to be closer to the observations there.

4) Discontinuous forcing

Instead of trying to snmooth discontinuous state vectors one can try to put the dis-

continuity in the forcing. Because the forcing is integrated at each time step the influence

on the model fields themselves is rather smooth. This could be implemented as follows:

1 Integrate the particles forward from time n − 1 to the new observations at time

n. Make sure that the random forcing used in each particle is either stored or

repeatable.

2 Do local weighting, and attach these weights to the random forcing field used be-

tween time n− 1 and time n.

3 Resample the forcing fields used, and use these to integrate the particles again from

time n− 1 to time n.
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This method assumes that the random forcing fields are causing the large weight variance,

and not the particles at n− 1. The latter is changed by e.g. the Auxiliary Particle Filter.

The method has in common with that method that it needs 2N model integrations.

In fact, one can imagine a combination of these two. An advantage is that a smooth

transition in time is present at measurement times, so the method can be considered a

smoother in that aspect.

e. Kernel dressing

Another approximation is to ’dress’ each particle with a continuous pdf to approximate

the true continuous pdf using a standard kernel technique, see e.g. Silverman (1986).

Usually a Gaussian pdf is chosen since that has only two parameters to be estimated.

In the Gaussian case the mean of the Gaussian is the particle state, and the covariance

can be taken as a factor smaller than one times the covariance of the full ensemble. This

results in a so-called Gaussian mixture model.

The idea is to represent the prior pdf as:

p(ψ) =
N
∑

i=1

1

N
N(ψi,Σi) (75)

The N(ψi,Σ) stands for the Gaussian (Normal) density with as mean particle i, ψi, and

covariance Σi. Anderson and Anderson (1999) use a simplification of this general method

due to Fukunaga (1972) in which all Σi are taken as a factor α times the full covariance

of the prior ensemble. They apply this method to the Lorenz 63 and 80 models. The

factor α is taken as a tuning parameter that takes care of the fact that the spread of the

Gaussian pdf around each particle is smaller than that of the full ensemble, while at the

same time it should prevent ensemble collapse by the filter being overconfident, showing
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up as a too small prior error covariance.

Using Bayes, and assuming Gaussian observational errors, leads to a posterior pdf

which is again a sum of Gaussian pdf’s. It is easy to show that the posterior pdf can be

written as

p(ψ|d) =
∑

i

ciN(νi,Σnew) (76)

where νi is the mean of the new Gaussian pdf i, Σnew is the new posterior covariance

(identical for each Gaussian), and ci is a normalization constant that comes from the

product of each prior Gaussian with the likelihood. ci is given by:

ci =
1

(2π)d/2|αΣ +R| exp

[

−1

2
(H(ψi) − d)T (αHΣHT +R)−1(H(ψi) − d)

]

(77)

in which R is the error covariance of the observations. The relative weight of each Gaussian

in the posterior pdf is given by this ci as:

wi =
ci

∑

j cj
(78)

Interestingly, these weights remind us of simple importance sampling (13), but now the

prior error covariance (multiplied by a factor α) is added to the error covariance of the

observations. This means that the likelihood has been broadened by the extra prior error

covariance, and filter degeneracy is less likely to occur. The procedure is depicted in figure

7.

To understand better what happens consider the simple scalar case in which the prior

is distributed as N(µ, P ) and the likelihood is N(d,R). Bayes tells us that the posterior
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is obtained by multiplying these two. Concentrating on the exponents we have:

(ψ − µ)2

P
+

(d− ψ)2

R
= (79)

(

1

P
+

1

R

)

ψ2 − 2

(

µ

P
+
d

R

)

+
µ2

P
+
d2

R
= ... = (80)

(ψ − µn)2

Pn
+

(d− µ)2

Rn
(81)

in which

µn =
Rµ

P +R
+

Pd

P +R
(82)

and

1

Pn

=
1

P
+

1

R
(83)

and finally

Rn = P +R (84)

Hence, as function of ψ the pdf has smaller variance, while as function of the observations

d the pdf is wider. So the posterior pdf around each particle is narrower than the prior

pdf around that particle, and the likelihood is wider. Furthermore, the posterior mean

has moved towards the observation. Note that, since the prior variance is smaller than the

variance of the full ensemble, the prior is not affected that much by the observation. That

is taken care of by the relative weights of the individual Gaussians in the mixture. In a

true particle filter the prior pdf is a sum of delta functions, so the prior variance of each

particle P is infinitely small. In that case the posterior pdf remains a delta function, the

mean does not move, and the likelihood does not change. Herewith we can understand the

smooth transition from continuous representations of the pdf to particle representations.

Anderson and Anderson (1999) generate the new ensemble that represents the pos-

terior pdf by first drawing randomly from the distribution of wi, i.e. choose a specific

Gaussian, and than draw a new particle randomly from that specific Gaussian.
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A few problems exists when trying to apply this method to large-scale problems. First,

manipulating the large error covariances becomes problematic, and second, sampling from

a large-dimensional pdf, even if it is a Gaussian, is hard.

Bengtsson et al. (2003) combine this approach with localization (see section 5d) to

try to solve these problems. Furthermore, they estimate local (in state space) error

covariances around each prior particle, instead of using the same fraction of the full error

covariance. Bengtsson et al. (2003) use the following steps:

1 First choose randomly L particles (typically 10-40) from the full N (typically 100)

ensemble to represent the centers of the Gaussians in the Gaussian mixture.

2 Choose the M nearest particles (typically 25) to each center to determine the local

(in state space) error covariance for that Gaussian. Bengtsson et al. (2003) use the

Euclidian distance, but other choices can be made.

3 Calculate the weights wi according to (78).

4 Choose randomly one of the Gaussians from the distribution of wi.

5 From that Gaussian choose one of the M members with probability 1/M , call that

member ψI and update each of the M members similarly to the update used in the

EnKF (Evensen, 1994; Burgers et al. 1998):

ψnew
i = ψi +K(d+ ǫi −H(ψI)) (85)

in which ǫi is chosen from N(0, R).

6 Repeat 4 and 5 until N new members have been chosen.
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With this approach, the computational efficiency is similar to that of the EnKF.

(Note the simularity of this method with the particle filter with the EKF or the UKF as

proposal.) Localization can now be implemented by using the above procedure at each

grid point, using only observations close to that grid point by putting correlations over

large spatial differences equal to zero. A problem with this approach is, however, that

since different Gaussians are chosen at different grid points the new global particles will

not be smooth. Note that we have encountered the similar problem with the resampling

scheme with localization. The solution proposed by Bengtsson et al (2003) is the following.

First, each particle is spitted in two parts, one inside ψ(i) and one outside ψ(o) the local

neighborhood used in the localization. The posterior density for state vector ψ can be

written as:

p(ψ|d) = p(ψ(i)|ψ(o), d)p(ψ(o)|d) (86)

Bengtsson et al. (2003) propose to use the nonlocal EnKF particles to sample p(ψ(o)|d),

and take a linear combination of that particle with the local particle obtained with the

local Gaussian mixture model inside the local neighborhood. In this way a hybrid method

is obtained that to some extent preserves non-Gausianity locally. For details of this linear

combination the reader is referred to Bengtsson et al. (2003). They show that when

applying the above to the Lorenz 63 and 80 models the local variant is outperformed

by the EnKF, but the hybrid method outperforms the EnKF in the higher dimensional

Lorenz 80 model.

Hoteit et al. (2008), probably unaware of Bengtsson et al. (2003), successfully used

the Gaussian mixture method with 50 particles on a full-blown ocean general circulation

model with about 1.5 million prognostic variables in an identical twin setting, without
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localization. To be able to handle the covariances a low-rank approximation was made.

The parameter α used for the size of the kernel error covariances compared to the full

error covariance is taken as 0.16.

It is interesting to try to understand why Hoteit et al. (2008) do not need any local-

ization to avoid filter divergence. The reason seems to be the implicit covariance inflation

in the resampling step. After showing that naive resampling of the posterior Gaussian

mixture gives rise to a biased resampled posterior, they propose a correction to the pos-

terior error covariances in each Gaussian of the mixture. It turns out that this correction

is such that the resampling works as if the mixture behaves like a sum of delta functions,

i.e. like a particle filter. Since this is undesirable from the viewpoint of filter divergence,

Hoteit et al. (2008) decide to put more weight on avoidance of filter divergence, at the

cost of allowing for a biased posterior pdf. The outcome of this careful discussion is that

the scaling factor α becomes a tuning factor, just like in Anderson and Anderson. Fur-

thermore, Hoteit et al. (2008) allow for a ’partial resampling step’, in which noise is added

to the particles without performing a true resampling, so without changing the weights of

the particles. (The word ’jitter’ might be more appropriate because the weights remain

unchanged.) The full implementation becomes a few ’partial resampling’ filter steps, fol-

lowed by an actual resampling filter step. Finally, it might be important that the first

assimilation step provided a large error reduction, i.e. the mean of the ensemble came

relatively close to the actual ’truth’. Since the model errors were neglected, so a per-

fect model is assumed, the filter didn’t have too much difficulty is keeping close to the

truth. Nonetheless, the model resolution of 1/4o, the 5 day assimilation interval, and the

fact that only sea-surface height fields were assimilated make the filtering problem highly
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nonlinear, and the model evolution is expected to be sensitive to small deviations from

’truth’.

Miller et al. (1999) tried to study the evolution of the full pdf in data assimilation

in small-dimensional strongly-nonlinear systems. They used the Epanechnikov kernel

instead of a Gaussian kernel. They apply this method to the double-well problem, the

Lorenz 63 model, and to a truncated spectral barotropic model with dimension 44. Since

the goal was to try to simulate the evolution of the full pdf, 10,000 particles were used.

f. The Maximum Entropy Particle Filter

In the Maximum Entropy Particle Filter one tries to incorporate the pdf of the model

without observations in the particle filter. In this way the degrees of freedom in the

data-assimilation problem can greatly be reduced, and the potential of filter divergence

might reduce too. The basic idea is that the pdf without observations is given by a

background pdf q. One can take for q a Gaussian mixture, but there is no need to do so.

The background pdf is used to describe the ’model climatology’. So, instead of Gaussian

mixture models that dress each particle with a separate pdf, one tries to describe the

model climatology by this background pdf.

The method was first put forward by Kim et al. (2003) and Eyink and Kim (2006)

and has received little attention so far in the geophysical literature. However, since it is

one of the methods in between the ensemble Kalman filter methods and the full particle

filter, this might change. Also in maximum entropy filters an ensemble of particles is

run up to the next observation. In the EnKF and ESRKF the assumption is that the

prior can be approximated by a Gaussian, and the analysis is performed as if the pdf is
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Gaussian. In the maximum entropy filter the assumption is that the prior pdf is as close

as possible to q, but at the same time it enforces that the mean and the covariance of the

pdf in observation space is obtained directly from the ensemble. Actually, it is easy to

show that when q is a simple Gaussian, the maximum entropy filter is just an ensemble

Kalman filter. To determine the prior pdf from the ensemble we do the following. The

closeness to q is expressed as the relative entropy:

E(p, q) =

∫

p log

(

p

q

)

dψ (87)

Further we use the constraints that p is a pdf that integrates to 1:

∫

p(ψ) dψ = 1 (88)

that the mean of the observation operator η is found from the ensemble:

∫

H(ψ)p(ψ) dψ =
1

N

∑

i

H(ψi) = η (89)

and that the covariance function of the observation operator Σ is found from the ensemble:

∫

H(ψ)HT (ψ)p(ψ) dψ =
1

N − 1

∑

i

H(ψi)H
T (ψi) = Σ (90)

The constraints are built into the minimization through Lagrange multipliers θ, λ, and

Λ, so we minimize

Ẽ(p, q) =

∫

p log

(

p

q

)

dψ + θ

(

1 −
∫

p(ψ) dψ

)

+ (91)

+ λ

(

η −
∫

H(ψ)p(ψ) dψ

)

+ ΛT

(

Σ −
∫

H(ψ)HT (ψ)p(ψ) dψ

)

(92)

with respect to p, θ, λ, and Λ. This leads to:

∫
(

log
p

q
+ 1 + θ + λH(ψ) +

1

2
H(ψ)ΛHT (ψ)

)

δp dψ = 0 (93)
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so that

p(ψ, λ,Λ) =
1

Z(λ,Λ)
exp

[

λH(ψ) +
1

2
H(ψ)ΛHT (ψ)

]

q(ψ) (94)

in which Z is the normalization factor. The Lagrange multipliers are found from maxi-

mizing the expected value of p, or rather log p, so

max

[

ηλ+
1

2
ΣT Λ − logZ

]

(95)

Note that the normalization factor Z has to be determined explicitly. However, Eyink

and Kim (2006) derive analytical expressions for Z when q is a Gaussian mixture.

Now that we have found the prior pdf, the analysis is discussed. The idea is to use

Bayes theorem to update λ and Λ, which, for Gaussian error statistics for the observations

and the maximum entropy density (94), leads us to:

λnew = λ+R−1d (96)

and

Λnew = Λ −R−1 (97)

The result is a maximum entropy density of the same form as (94) but with the new

parameters λnew and Λnew, and a new normalization factor, as can be verified easily. The

last step is to sample from this new pdf. This is not so easy, but Eyink et al. (2006)

discuss feasible ways to do this.

The authors also discuss the Mean-Field Filter, in which only the mean of the ensemble

is updated. The algorithm closely follows that of the Maximum Entropy Particle Filter

and is not discussed here. Obviously, the update step is much cheaper, but less accurate.

Interesting is that when the background probability is a single Gaussian, and the

mean and the covariance of the ensemble are taken as constraints in the prior maximum
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entropy pdf, the method is identical to the EnKF. In this sense it can be considered as

an extension to that method.

The methods were tested on the double-well and the Lorenz 63 problems. With a

well-chosen background pdf q, both methods outperformed the EnKF and the SIR for

ensemble sizes 10-100. The conclusion is that when knowledge of this background pdf is

available use it, and the Maximum Entropy Particle Filter is one of the methods to do so.

6. Summary and Conclusions

It is not easy to write a concluding section on the strongly developing field of par-

ticle filtering for geophysical applications. It has become clear that simple importance

sampling, even with resampling, is not enough to be applicable for large-scale geophysical

applications with O(100) particles. The weights of the different particles vary too much

to maintain a reasonable description of even the lowest order moments of the model pdf.

The paper by Snyder et al. (2008) gives a firm justification for this statement, based on

their idea that for a large number of observations the weights will tend to diverge, no

matter how close the particles are. Or, to put it more directly: each observation that has

important information on the pdf will increase the variance in the weights of the particles,

so a large number of independent observations will always tend to increase the variance

in the weights significantly (Andrew Lorenc, personal communication).

Van Leeuwen (2003) argues that the usual Gaussian tails for observation pdf’s are too

small and broader pdf’s should be used, but that is probably not enough to avoid filter

divergence. This means that other more sophisticated variants of particle filtering have
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to be tried. Among these, using another proposal density than the prior seems promising,

also because it has been used with a lot of success in the statistical literature. The strength

comes from the use of the new observations to generate particles with high likelihood

directly, at the expense of extra calculations to compensate for the artificially introduced

weights. But, it must be said, also in the statistical literature it is not considered the holy

grail (see e.g. Doucet et al., 2001).

Another method that also uses the new observations is the Guided Particle filter, in

which the particles are confronted with the observations before the actual measurement

time to guide them in the right direction. Little experience does exist with this method

on large-scale problems.

In another class of particle filters a first shot of particles is done to probe where the

observations are, followed by a new run of particles from the same initial condition. Of

these methods, the Auxilary Particle Filter used the new weights to resample the ensemble

at initial time, while the Backtracking Particle Filter moves back a few measurement times

and proceeds from there with a larger ensemble.

A large part of research in particle filtering is devoted to trying to introduce extra

approximations to importance (re)sampling. Among these are methods that try to con-

serve only the mean and the covariance of the posterior pdf. In Gaussian Resampling this

is done directly, while in the Merging Particle Filter linear combinations of particles are

created such that the mean and the covariance are preserved. Kernel dressing methods,

like Gaussian mixture models, in which each particle is ’dressed’ with a continuous pdf,

have been proposed and interesting results have been obtained for large-scale systems.

One can also fight the degeneracy by combining different observations in batches. For in-
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stance, amplitudes of EOF’s could be assimilated. By doing this part of the information

present in the observations is lost, but the dominant variability in them is kept.

Of a completely different nature is localization. Localizations has been crucial in the

development of large-scale applications of ensemble Kalman filters. Is was argued that

localization is not straightforward in combination with resampling due to the necessary

’glueing together’ of different particles. Several ideas to implement this glueing have

been discussed, but none of them seems to work in primitive equation models where too

strong gradients induced by the glueing procedure tend to lead to spurious gravity-wave

formation and degradation of the update. Finally, the Maximum Entropy Filter was

discussed in which use is made of a background pdf to which the model relaxes when no

observations are present. Interestingly, this builds a bridge to dynamical system theory,

since it tries to use the concept of the attractor of the dynamical system described by the

model.

After reviewing all these methods it is difficult to say what the most promising re-

search direction of the field is. All methods discussed have their merits, and perhaps

combinations of them will help us to make progress. Also combinations with 4D-VAR

might be fruitful. For instance, Lorenc (2003) shows how particles can be used to bring

flow-dependent information in the background covariance in strong-constraint applica-

tions. Particle filtering might also help to construct weak-constraint variational methods.

And vice versa, techniques developed for 4D-VAR might help to construct efficient particle

filters. At this moment the field is so young and exciting that ’anything’ can happen.
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Resampling. The model variable runs along the vertical axis, the weight

of each particle corresponds to the size of the bullets on this axis. The

horizontal axis denotes time, with observations at a time interval of 10

time units. All particles have equal weight at time zero. At time 10 the

particles are weighted according to the likelihood, and resampled to obtain

an equal-weight ensemble. 75

3 The particle filter with proposal density. The model variable runs along

the vertical axis, the weight of each particle corresponds to the size of the

bullets on this axis. The horizontal axis denotes time, with observations

at a time interval of 10 time units. All particles have equal weight at time

zero. At time 10 the particles are brought closer to the observations by

using e.g. the EnKF. Then they are weighted with the likelihood and these

weights are corrected for the artificial EnKF step. 76
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4 The Auxiliary Particle Filter. The model variable runs along the vertical

axis, the weight of each particle corresponds to the size of the bullets on

this axis. The horizontal axis denotes time, with observations at a time

interval of 10 time units. All particles have equal weight at time zero.

At time 10 the particles are weighted according to the likelihood. These

weights are used at time 0 to rerun the ensemble up to time 10. 77

5 The Guided Particle Filter. The model variable runs along the vertical

axis, the weight of each particle corresponds to the size of the bullets on

this axis. The horizontal axis denotes time, with observations at a time

interval of 10 time units. All particles have equal weight at time zero.
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at time 10, but with larger observational errors, so wider likelihood. The

particles are weighted with that likelihood and resampled. At time 10 the

particles are weighted according to the true likelihood, and these weights

are corrected for the artificial weights from the pseudo observations at time

5. 78
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6 Merging Particle Filter. The model variable runs along the vertical axis,

the weight of each particle corresponds to the size of the bullets on this axis.

The horizontal axis denotes time, with observations at a time interval of

10 time units. All particles have equal weight at time zero. The particles

are resampled according to the true likelihood M times at time t=10. The

new particles are averages over M of these resampled particles. Note that

the new particles are not identical copies of the old ones, so ’new blood’

enters the ensemble. 79

7 Kernel dressing. At analysis time each particle is ’dressed’ with a Kernel.

e.g. a Gausssian. Then each kernel is updated using the Kalman filter

update. Next step is weighting of the kernel with the likelihood of the

Kalman posterior. Finally, samples are drawn from this new posterior

density. Note that the new particles are not identical copies of the old

particles, bur drawn from the continuous posterior pdf. 80

75



List of Figures

76



t=0 t=10 t=20

weighting weighting

Fig. 1. The standard particle filter with Importance Sampling. The model variable runs
along the vertical axis, the weight of each particle corresponds to the size of the bullets on
this axis. The horizontal axis denotes time, with observations at a time interval of 10 time
units. All particles have equal weight at time 0. At time 10 the likelihood is displayed
together with the new weights of each particle. At time 20 only 3 members have weights
different from zero: the filter has become degenerate.
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resamplingweighting weighting

Fig. 2. The Particle Filter with Resampling, also called Sequential Importance Re-
sampling. The model variable runs along the vertical axis, the weight of each particle
corresponds to the size of the bullets on this axis. The horizontal axis denotes time, with
observations at a time interval of 10 time units. All particles have equal weight at time
zero. At time 10 the particles are weighted according to the likelihood, and resampled to
obtain an equal-weight ensemble.
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Fig. 3. The particle filter with proposal density. The model variable runs along the
vertical axis, the weight of each particle corresponds to the size of the bullets on this axis.
The horizontal axis denotes time, with observations at a time interval of 10 time units.
All particles have equal weight at time zero. At time 10 the particles are brought closer
to the observations by using e.g. the EnKF. Then they are weighted with the likelihood
and these weights are corrected for the artificial EnKF step.
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Fig. 4. The Auxiliary Particle Filter. The model variable runs along the vertical axis, the
weight of each particle corresponds to the size of the bullets on this axis. The horizontal
axis denotes time, with observations at a time interval of 10 time units. All particles
have equal weight at time zero. At time 10 the particles are weighted according to the
likelihood. These weights are used at time 0 to rerun the ensemble up to time 10.
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Fig. 5. The Guided Particle Filter. The model variable runs along the vertical axis, the
weight of each particle corresponds to the size of the bullets on this axis. The horizontal
axis denotes time, with observations at a time interval of 10 time units. All particles
have equal weight at time zero. Pseudo observations are introduced at time 5. These are
equal to those at time 10, but with larger observational errors, so wider likelihood. The
particles are weighted with that likelihood and resampled. At time 10 the particles are
weighted according to the true likelihood, and these weights are corrected for the artificial
weights from the pseudo observations at time 5.
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Fig. 6. Merging Particle Filter. The model variable runs along the vertical axis, the
weight of each particle corresponds to the size of the bullets on this axis. The horizontal
axis denotes time, with observations at a time interval of 10 time units. All particles have
equal weight at time zero. The particles are resampled according to the true likelihood M
times at time t=10. The new particles are averages over M of these resampled particles.
Note that the new particles are not identical copies of the old ones, so ’new blood’ enters
the ensemble.
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Fig. 7. Kernel dressing. At analysis time each particle is ’dressed’ with a Kernel. e.g.
a Gausssian. Then each kernel is updated using the Kalman filter update. Next step
is weighting of the kernel with the likelihood of the Kalman posterior. Finally, samples
are drawn from this new posterior density. Note that the new particles are not identical
copies of the old particles, bur drawn from the continuous posterior pdf.
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