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Abstract
Sequential Monte Carlo (SMC) and Markov chain Monte Carlo (MCMC) methods pro-
vide computational tools for systematic inference and learning in complex dynamical sys-
tems, such as nonlinear and non-Gaussian state-space models. This thesis builds upon
several methodological advances within these classes of Monte Carlo methods.

Particular emphasis is placed on the combination of SMC and MCMC in so called particle
MCMC algorithms. These algorithms rely on SMC for generating samples from the often
highly autocorrelated state-trajectory. A specific particle MCMC algorithm, referred to as
particle Gibbs with ancestor sampling (PGAS), is suggested. By making use of backward
sampling ideas, albeit implemented in a forward-only fashion, PGAS enjoys good mixing
even when using seemingly few particles in the underlying SMC sampler. This results
in a computationally competitive particle MCMC algorithm. As illustrated in this thesis,
PGAS is a useful tool for both Bayesian and frequentistic parameter inference as well as
for state smoothing. The PGAS sampler is successfully applied to the classical problem
of Wiener system identification, and it is also used for inference in the challenging class
of non-Markovian latent variable models.

Many nonlinear models encountered in practice contain some tractable substructure. As
a second problem considered in this thesis, we develop Monte Carlo methods capable of
exploiting such substructures to obtain more accurate estimators than what is provided
otherwise. For the filtering problem, this can be done by using the well known Rao-
Blackwellized particle filter (RBPF). The RBPF is analysed in terms of asymptotic vari-
ance, resulting in an expression for the performance gain offered by Rao-Blackwellization.
Furthermore, a Rao-Blackwellized particle smoother is derived, capable of addressing the
smoothing problem in so called mixed linear/nonlinear state-space models. The idea of
Rao-Blackwellization is also used to develop an online algorithm for Bayesian parameter
inference in nonlinear state-space models with affine parameter dependencies.
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Populärvetenskaplig sammanfattning

Matematiska modeller av dynamiska förlopp används inom i stort sett alla tekniska och
naturvetenskapliga discipliner. Till exempel, inom epidemiologi används modeller för att
prediktera, dvs. förutsäga, spridningen av influensavirus inom en population. Antag att
vi gör regelbundna observationer av hur många personer i populationen som är smittade.
Baserat på denna information kan en modell användas för att prediktera antalet nya sjuk-
domsfall under, låt säga, nästkommande veckor. Den här typen av information möjliggör
att en epidemi kan identifieras i ett tidigt skede, varpå åtgärder kan tas för att minska
dess påverkan. Ett annat exempel är att prediktera hur hastigheten och orienteringen på
ett flygplan påverkas då en viss styrsignal ställs ut på rodren, vilket är viktigt vid styrsys-
temdesign. Sådana prediktioner kräver en modell av flygplanets dynamik. Ytterligare ett
exempel är att prediktera utvecklingen på en aktiekurs baserat på tidigare observation-
er. Bör vi helt enkelt anta att kursen imorgon är densamma som idag, eller bör vi även
beakta tidigare observationer för att ta hänsyn till eventuella trender? Den typen av frå-
gor besvaras av en modell. Modellen beskriver hur vi ska väga samman den tillgängliga
informationen för att kunna göra så bra prediktioner som möjligt.

Användandet av dynamiska modeller spelar således en viktig roll. Det är därför även vik-
tigt att ha tillgång till verktyg för att bygga dessa modeller. Den här avhandlingen behand-
lar problemet att utnyttja insamlad data för att finna statistiska modeller som beskriver dy-
namiska förlopp. Detta problem kallas för systemidentifiering eller för statistisk inlärning.
Baserat på exemplen ovan är det lätt att inse att dynamiska modeller används inom vitt
skilda områden. Trots detta så är den bakomliggande matematiken i mångt och mycket
densamma. Av den anledningen så behandlas inte något specifikt användningsområde i
denna avhandling. Istället fokuserar vi på matematiken – de metoder som presenteras kan
sedan användas inom ett brett spektra av tillämpningar.

I många fall är det otillräckligt att använda enkla modeller som endast baseras på, till
exempel, linjära trender. Inom ekonomi är det vanligt att volatiliteten, dvs. graden av
variation, hos en finansiell tillgång varierar med tiden. För att beskriva detta krävs en
statistisk modell som kan förändras över tiden. Inom epidemiologi är det viktigt att ha
modeller som kan ta hänsyn till det tydliga säsongsberoendet hos ett influensaförlopp.
Detta kräver att modellerna innehåller olinjära funktioner som kan beskriva sådana vari-
ationer. För att kunna modellera denna typ av komplexa dynamiska fenomen så krävs, i
någon mening, komplexa matematiska modeller. Detta leder dock till att det statistiska in-
lärningsproblemet blir matematiskt invecklat – i praktiken till den grad att det inte går att
lösa exakt. Detta kan hanteras på två olika sätt. Antingen gör man avkall på flexibiliteten
och noggrannheten i modellen, eller så väljer man att ta fram en approximativ lösning till
inlärningsproblemet.

I den här avhandlingen följer vi det sistnämnda alternativet. Mer specifikt så används en
klass av approximativa inlärningsmetoder som kallas för Monte Carlo-metoder. Namnet
är en anspelning på det kända kasinot i Monte Carlo och syftar på att dessa metoder
baseras på slumptal. För att illustrera konceptet, antag att du lägger en patiens, dvs. ett
enmanskortspel som syftar till att lägga ut korten enligt vissa spelregler vilket leder antin-
gen till vinst eller till förlust. Att på förhand räkna ut vad sannolikheten för vinst är kräver
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viii Populärvetenskaplig sammanfattning

komplicerade kombinatoriska uträkningar, som lätt blir praktiskt taget omöjliga att utföra.
Ett mer pragmatiskt sätt är att spela ut korten, säg, 100 gånger och notera hur många av
dessa försök som resulterar i vinst. Vinstfrekvensen blir en naturlig skattning av vinstsan-
nolikheten. Denna skattning är inte helt tillförlitlig eftersom den är baserad på slumpen,
men ju fler försök som utförs, desto högre noggrannhet uppnås i skattningen.

Detta är ett exempel på en enkel Monte Carlo-metod. De metoder som används för att skat-
ta dynamiska modeller är mer invecklade, men grundprincipen är densamma. Metoderna
är datorprogram som, genom att generera ett stort antal slumptal, kan skatta intressan-
ta kvantiteter som är omöjliga att beräkna exakt. Detta kan till exempel vara värden på
modellparametrar eller sannolikheten att en parameter ligger inom ett visst intervall.

I den här avhandlingen används i huvudsak två klasser av Monte Carlo-metoder, par-
tikelfilter och Markovkedjor. Partikelfiltret är ett systematiskt sätt att utvärdera och upp-
datera ett antal slumpmässigt genererade hypoteser. Låt oss återigen betrakta en epidemi-
ologisk modell för influensaprediktion. I praktiken finns ingen exakt vetskap om hur stor
del av populationen som är smittad vid ett visst tillfälle. De observationer som görs av
antalet insjuknade är av olika anledningar osäkra. Ett partikelfilter kan användas för att
hantera denna osäkerhet och skatta det underliggande tillståndet, dvs. det faktiskta antalet
smittade personer. Detta görs genom att slumpvis generera en mängd hypoteser om hur
många personer som är insjuknade. Dessa hypoteser kallas för partiklar, därav namnet
på metoden. Baserat på de faktiska observationer som görs kan sannolikheterna för de
olika hypoteserna utvärderas. De hypoteser som ej är troliga kan avfärdas, medan de mer
sannolika hypoteserna dupliceras. Eftersom influensan är ett dynamiskt förlopp, dvs. den
förändras över tiden, så måste även hypoteserna uppdateras. Detta görs genom att utnyttja
en modell över influensaförloppets dynamik. Dessa två steg upprepas sekventiellt över
tiden och partikelfiltret kallas därför för en sekventiell Monte Carlo-metod.

Markovkedjor ligger till grund för en annan klass av Monte Carlo-metoder. En Markovked-
ja är en sekvens av slumptal där varje tal i sekvensen är statistiskt beroende av det före-
gående talet. Inom Monte Carlo används Markovkedjor för att generera en sekvens av hy-
poteser rörande, till exempel, värden på okända modellparametrar. Varje hypotes baseras
på den föregående. Systematiska tekniker används för att uppdatera hypoteserna så att de
efter hand resulterar i en korrekt modell.

Bidraget i den här avhandlingen är utvecklingen av nya metoder, baserade på partikelfil-
ter och Markovkedjor, som kan användas för att lösa det statistiska inlärningsproblemet
i komplexa dynamiska modeller. Partikelfilter och Markovkedjor kan även kombineras,
vilket resulterar i än mer kraftfulla metoder som har kommit att kallas för PMCMC-
metoder (Particle Markov Chain Monte Carlo). Dessa ligger till grund för en stor del
av avhandlingen. I synnerhet presenteras en ny typ av PMCMC-metod som har visat sig
vara effektiv jämfört med tidigare alternativ. Som nämnts ovan kan metoden användas
inom vitt skilda vetenskapliga områden. Flera variationer och utökningar av den föres-
lagna metoden presenteras också. Vi tittar även närmre på en specifik klass av dynamiska
modeller som kallas för betingat linjära. Dessa modeller innehåller en viss struktur, och vi
undersöker hur denna struktur kan utnyttjas för att underlätta det statistiska inlärningsprob-
lemet.
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Notation

PROBABILITY

Notation Meaning
∼ Sampled from or distributed according to
P,E Probability, expectation
Var,Cov Variance, covariance

D−→ Convergence in distribution
L(X ∈ · ) Law of the random variable X
‖µ1 − µ2‖TV Total variation distance, supA |µ1(A)− µ2(A)|

COMMON DISTRIBUTIONS

Notation Meaning
Cat({pi}ni=1) Categorical over {1, . . . , n} with probabilities {pi}ni=1

U([a, b]) Uniform over the interval [a, b]
N (m,Σ) Multivariate Gaussian with mean m and covariance Σ
δx Point-mass at x (Dirac δ-distribution)

OPERATORS AND OTHER SYMBOLS

Notation Meaning
∪, ∩ Set union, intersection
card(S) Cardinality of the set S
Sc Complement of S in Ω (given by the context)
IS( · ) Indicator function of set S
Id d-dimensional identity matrix
AT Transpose of matrix A
det(A), |A| Determinant of matrix A
tr(A) Trace of matrix A

xv
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vec(A) Vectorization, stacks the columns of A into a vector
diag(v) Diagonal matrix with elements of v on the diagonal
⊗ Kronecker product
supp(f) Support of function f , {x : f(x) > 0}
‖f‖∞ Supremum norm, supx |f(x)|
osc(f) Oscillator norm, sup(x,x′) |f(x)− f(x′)|
am:n Sequence, (am, am+1, . . . , an)

, Definition

ABBREVIATIONS

Abbreviation Meaning
ACF Autocorrelation function
ADM Average derivative method
APF Auxiliary particle filter
ARD Automatic relevance determination
a.s. almost surely
CLGSS Conditionally linear Gaussian state-space
CLT Central limit theorem
CPF Conditional particle filter
CPF-AS Conditional particle filter with ancestor sampling
CSMC Conditional sequential Monte Carlo
DPMM Dirichlet process mixture model
ESS Effective sample size
EM Expectation maximization
FFBSi Forward filter/backward simulator
FFBSm Forward filter/backward smoother
FIR Finite impulse response
GH Generalized hyperbolic
GIG Generalized inverse-Gaussian
GMM Gaussian mixture model
GP Gaussian process
GPB Generalized pseudo-Bayesian
HMM Hidden Markov model
i.i.d. independent and identically distributed
IMM Interacting multiple model
IW Inverse Wishart
JMLS Jump Markov linear system
JSD Joint smoothing density
KF Kalman filter
KLD Kullback-Leibler divergence
LGSS Linear Gaussian state-space
LTI Linear time-invariant
MBF Modified Bryson-Frazier
MCEM Monte Carlo expectation maximization
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MCMC Markov chain Monte Carlo
MH Metropolis-Hastings
MH-FFBP Metropolis-Hastings forward filter/backward proposing
MH-FFBSi Metropolis-Hastings forward filter/backward simulator
MH-IPS Metropolis-Hastings improved particle smoother
ML Maximum likelihood
MLE Maximum likelihood estimator
MNIW Matrix normal inverse Wishart
MPF Marginal particle filter
MRF Markov random field
PDF Probability density function
PEM Prediction-error method
PF Particle filter
PG Particle Gibbs
PGAS Particle Gibbs with ancestor sampling
PGBS Particle Gibbs with backward simulation
PIMH Particle independent Metropolis-Hastings
PMCMC Particle Markov chain Monte Carlo
PMMH Particle marginal Metropolis-Hastings
PSAEM Particle stochastic approximation expectation maximization
PSEM Particle smoother expectation maximization
RB-FFBSi Rao-Blackwellized forward filter/backward simulator
RB-FF/JBS Rao-Blackwellized forward filter/joint backward simulator
RB-F/S Rao-Blackwellized filter/smoother
RBMPF Rao-Blackwellized marginal particle filter
RBPF Rao-Blackwellized particle filter
RBPS Rao-Blackwellised particle smoother
RMSE Root-mean-square error
RS Rejection sampling
RS-FFBSi Rejection sampling forward filter/backward simulator
RTS Rauch-Tung-Striebel
SAEM Stochastic approximation expectation maximization
SIR Susceptible/infected/recovered
SMC Sequential Monte Carlo
SSM State-space model
TV Total variation
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Background





1
Introduction

This thesis addresses inference and learning of dynamical systems. Problems lacking
closed form solutions are considered and we therefore make use of computational statisti-
cal methods based on random simulation to address these problems. In this introductory
chapter, we formulate and motivate the learning problem which is studied throughout the
thesis.

1.1 Models of dynamical systems

An often encountered problem in a wide range of scientific fields is to make predictions
about some dynamical process based on previous observations from the process. As an
example, in the field of epidemiology the evolution of contagious diseases is studied (Keel-
ing and Rohani, 2007). Seasonal influenza epidemics each year cause millions of severe
illnesses and hundreds of thousands of deaths worldwide (Ginsberg et al., 2009). Further-
more, new strains of influenza viruses can result in pandemic situations with very severe
effects on the public health. In order to minimize the harm caused by an epidemic or a
pandemic situation, a problem of paramount importance is to be able to predict the spread
of the disease. Assume that regular observations are made of the number of infected in-
dividuals within a population, e.g. through disease case reports. Alternatively, Ginsberg
et al. (2009) have demonstrated that this type of information can be acquired by monitor-
ing search engine query data. Using these observations, we wish to predict how many
new cases of illness that will occur within the population, say, during the coming weeks.
The ability to accurately make such predictions can enable early response to epidemic
situations, which in turn can reduce their impact.

There are numerous other areas in which similar prediction problems for dynamical pro-
cesses arise. In finance, the ability to predict the future price of an asset based on previous

3



4 1 Introduction

recordings of its value is of key relevance (Hull, 2011) and in automatic control, predic-
tions of how a controlled plant responds to specific commands are needed for efficient
control systems design (Åström and Murray, 2008; Ljung, 1999). Additional examples
include automotive safety systems (Eskandarian, 2012), population dynamics (Turchin,
2003) and econometrics (Greene, 2008), to mention a few.

Despite the apparent differences between these examples, they can all be studied within a
common mathematical framework. We collectively refer to these processes as dynamical
systems. The word dynamical refers to the fact that these processes are evolving over
time. For a thorough elementary introduction to dynamical systems, see e.g. the classical
text books by Oppenheim et al. (1996) and Kailath (1980).

Common to the dynamical systems studied in this thesis is that observations, or measure-
ments, yt can be recorded at consecutive time points indexed by t = 1, 2, . . . . Based on
these readings, we wish to draw conclusions about the system which generated the mea-
surements. For instance, assuming that we have recorded the values y1:t , (y1, . . . , yt),
the one-step prediction problem amounts to estimating what the value of yt+1 will turn
out to be. Should we simply assume that yt+1 will be close to the most recent recording
yt, or should we make use of older measurements as well, to account for possible trends?
Such questions can be answered by using a model of the dynamical system. The model
describes how to weigh the available information together to make as good predictions as
possible.

For most applications, it is not possible to find models that exactly describe the measure-
ments. There will always be fluctuations and variations in the data, not accounted for by
the model. To incorporate such random components, the measurement sequence can be
viewed as a realisation of a discrete-time stochastic process. A model of the system is
then the same thing as a model of the stochastic process.

A specific class of models, known as state-space models (SSMs), is commonly used in
the context of dynamical systems. These models play a central role in this thesis. The
structure of an SSM can be seen as influenced by the notion of a physical system. The idea
is that, at each time point, the system is assumed to be in a certain state. The state contains
all relevant information about the system, i.e. if we would know the state of the system
we would have full insight into its internal condition. However, the state is typically not
known. Instead, we measure some quantities which depend on the state in some way. To
exemplify the idea, let xt be a random variable representing the state at time t. An SSM
for the system could then, for instance, be given by,

xt+1 = a(xt) + vt, (1.1a)
yt = c(xt) + et. (1.1b)

The expression (1.1a) describes the evolution of the system state over time. The state at
time t+ 1 is given by a transformation of the current state a(xt), plus some process noise
vt. The process noise accounts for variations in the system state, not accounted for by the
model. Equation (1.1a) describes the dynamical evolution of the system and it is therefore
known as the dynamic equation. The second part of the model, given by (1.1b), describes
how the measurement yt depends on the state xt and some measurement noise et. Con-
sequently, (1.1b) is called the measurement equation. The model of a dynamical system
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specified by (1.1) thus consists of the functions a and c, but also of the noise characteris-
tics, i.e. of the probability distributions for the process noise and the measurement noise.
The concept of SSMs will be further discussed in Chapter 2 and in Section 1 of Paper A.

1.2 Inference and learning

As argued above, models of dynamical systems are of key relevance in many scientific
disciplines. Hence, it is crucial to have access to tools with which these models can be
built. In this thesis, we consider the problem of learning models of dynamical systems
based on available observations. On a high level, the learning problem can be described
as follows,

Learning: Based on observations of the process {yt}t≥1, find a mathematical model
which, without being too complex, as accurately as possible can describe the obser-
vations.

A complicating factor when addressing this problem is that the state process {xt}t≥1

in (1.1) is unobserved; it is said to be latent or hidden. Instead, as recognized in the
description above, any conclusions that we wish to draw regarding the system must be
inferred from observations of the measurement sequence {yt}t≥1. A task which is tightly
coupled to the learning problem is therefore to draw inference about the latent state,

State inference: Given a fully specified SSM and based on observations {yt}t≥1, draw
conclusions about some past, present or future state of the system, which is not
directly visible but related to the measurements through the model.

For instance, even if the system model would be completely known, making a prediction
about a future value of the system state amounts to solving a state inference problem. As
we shall see in Chapter 2, state inference often plays an important role as an intermediate
step when addressing the learning problem.

There exists a wide variety of models and modeling techniques. One common approach is
to make use of parametric models. That is, the SSM in (1.1) is specified only up to some
unknown (possibly multi-dimensional) parameter, denoted θ. The learning problem then
amounts to draw inference about the value of θ based on data collected from the system.
This problem is studied in several related scientific fields, e.g. statistics, system identifica-
tion and machine learning, all with their own notation and nomenclature. We will mainly
use the word learning, but we also refer to this problem as identification, parameter in-
ference and parameter estimation. We provide an example of a parametric SSM below.
Alternative modeling techniques are discussed in more detail in Chapter 2. See also the
monographs by Cappé et al. (2005), Ljung (1999) and West and Harrison (1997) for a
general treatment of the learning problem in the context of dynamical systems.

Example 1.1
To describe the evolution of a contagious disease, a basic epidemiological model is the
susceptible/infected/recovered (SIR) model (Keeling and Rohani, 2007). In a population
of constant size, we let St, It and Rt represent the fractions of susceptible, infected and
recovered individuals at time t, respectively. Rasmussen et al. (2011) and Lindsten and
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Schön (2012) study a time-discrete SIR model with environmental noise and seasonal
fluctuations, which is given by

St+1 = St + µ− µSt − βtStItvt, (1.2a)
It+1 = It − (γ + µ)It + βtStItvt, (1.2b)
Rt+1 = Rt + γIt − µRt. (1.2c)

Here, βt is a seasonally varying transmission rate given by βt = β̄(1 + α sin(2πt/365)),
where it is assumed that the time t is measured in days. Together with α and β̄, the
parameters of the model are the birth/death rate µ, the recovery rate γ and the variance σ2

v

of the zero-mean Gaussian process noise vt. That is, we can collect the system parameters
in a vector

θ =
(
α β̄ µ γ σ2

v

)T
.

The SIR model in (1.2) corresponds to the process model (1.1a). Note that the system state
xt = (St, It, Rt) is not directly observed. Instead, Lindsten and Schön (2012) consider
an observation model which is inspired by the Google Flu Trends project (Ginsberg et al.,
2009). The idea is to use the frequency of influenza related search engine queries to infer
knowledge about the dynamics of the epidemic. The observation model, corresponding
to (1.1b), is a linear relationship between the observations and the log-odds of infected
individuals, i.e.

yt = log

(
It

1− It

)
+ et, (1.3)

with et being a zero-mean Gaussian noise.

Lindsten and Schön (2012) use a method denoted as particle Gibbs with backward simula-
tion (PGBS; see Section 5 of Paper A) to learn the parameters of this SIR model. Using the
identified model, a state inference problem is solved in order to make one-month-ahead
predictions of the number of infected individuals. The results from a simulation study are
shown in Figure 1.1, illustrating the possibility of forecasting the disease activity by using
a dynamical model.

The SIR model (1.2) is an example of an SSM in which the functions a and c in (1.1)
depend nonlinearly on the state xt. Such SSMs are referred to as nonlinear. Conversely,
if both a and c are linear (of affine) functions of xt, the SSM is also called linear. Lin-
ear models play an important role for many applications. However, there are also many
cases in which they are inadequate for capturing the dynamics of the system under study;
the epidemiological model above being one example. Despite this limitation, much em-
phasis has traditionally been put on linear models. One factor contributing to this is that
nonlinear models by nature are much more difficult to work with. However, as we de-
velop more sophisticated computational tools and acquire more and more computational
resources, we can also address increasingly more challenging problems. Inspired by this
fact, this thesis is focused on the use of computational methods for inference and learning
of nonlinear dynamical models.
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Figure 1.1: Number of infected individuals It in a population of size 106 over an 8
year period. Data from the first 4 years are used to learn the unknown parameters
of the model. For the consecutive 4 years, one-month-ahead predictions are com-
puted using the estimated model. See (Lindsten and Schön, 2012) for details on the
experiment.

In particular, we make use of a class of methods based on random simulation, referred to
as Monte Carlo methods (Robert and Casella, 2004; Liu, 2001). This is a broad class of
computational algorithms which are useful for addressing high-dimensional, intractable
integration problems. We make use of Monte Carlo methods to address both state infer-
ence and learning problems. In particular, we employ methods based on so called Markov
chains and on interacting particle systems. An introduction to basic Monte Carlo methods
is given in Chapter 3. More advanced methods are discussed in Paper A in Part II of this
thesis.

1.3 Contributions

The main contribution of this thesis is the development of new methodology for state
inference and learning of dynamical systems. In particular, an algorithm referred to as
particle Gibbs with ancestor sampling (PGAS) is proposed. It is illustrated that PGAS is
a useful tool for both Bayesian and frequentistic learning as well as for state inference.
The following contributions are made:

• The PGAS sampler is derived and its validity assessed by viewing the individual
steps of the algorithm as a sequence of partially collapsed Gibbs steps (Paper B).

• A truncation strategy for backward sampling in so called non-Markovian latent vari-
able models is developed and used together with PGAS (Paper B). The connections
between non-Markovian models and several important types of SSMs are discussed
(Paper A), motivating the development of inference strategies for this model class.

• An algorithm based on PGAS is developed for the classical problem of Wiener
system identification (Paper C).

• PGAS is combined with stochastic approximation expectation maximization, result-
ing in method for frequentistic learning of nonlinear SSMs (Paper D).
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Many nonlinear models encountered in practice contain some tractable substructure. When
addressing learning and inference problems for such models, this structure can be ex-
ploited to improve upon the performance of the algorithms. In this thesis we consider
a type of structure exploitation referred to as Rao-Blackwellization. We develop and
analyse several Rao-Blackwellized Monte Carlo methods for inference and learning in
nonlinear SSMs. The following contributions are made:

• A Rao-Blackwellized particle smoother is developed for a class of mixed linear/non-
linear SSMs (Paper E).

• An online, Bayesian identification algorithm, based on the Rao-Blackwellized par-
ticle filter, is developed (Paper F).

• The asymptotic variance of the Rao-Blackwellized particle filter is analysed and an
expression for the variance reduction offered by Rao-Blackwellization is derived
(Paper G).

1.4 Publications

Published work of relevance to this thesis are listed below in reversed chronological order.
Items marked with a star are included in Part II of the thesis.

? F. Lindsten and T. B. Schön. Backward simulation methods for Monte Carlo
statistical inference. Foundations and Trends in Machine Learning, 6(1):1–
143, 2013.

? F. Lindsten, T. B. Schön, and M. I. Jordan. Bayesian semiparametric Wiener
system identification. Automatica, 49(7):2053–2063, 2013b.

? F. Lindsten. An efficient stochastic approximation EM algorithm using con-
ditional particle filters. In Proceedings of the 38th IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver,
Canada, May 2013.

? F. Lindsten, P. Bunch, S. J. Godsill, and T. B. Schön. Rao-Blackwellized parti-
cle smoothers for mixed linear/nonlinear state-space models. In Proceedings
of the 38th IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Vancouver, Canada, May 2013a.

J. Dahlin, F. Lindsten, and T. B. Schön. Particle Metropolis Hastings using
Langevin dynamics. In Proceedings of the 38th IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver,
Canada, May 2013.

E. Taghavi, F. Lindsten, L. Svensson, and T. B. Schön. Adaptive stopping for
fast particle smoothing. In Proceedings of the 38th IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver,
Canada, May 2013.
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? F. Lindsten, M. I. Jordan, and T. B. Schön. Ancestor sampling for parti-
cle Gibbs. In P. Bartlett, F. C. N. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, editors, Advances in Neural Information Processing Sys-
tems (NIPS) 25, pages 2600–2608. 2012a.

? F. Lindsten, T. B. Schön, and L. Svensson. A non-degenerate Rao-Black-
wellised particle filter for estimating static parameters in dynamical mod-
els. In Proceedings of the 16th IFAC Symposium on System Identification
(SYSID), Brussels, Belgium, July 2012c.

F. Lindsten, T. B. Schön, and M. I. Jordan. A semiparametric Bayesian ap-
proach to Wiener system identification. In Proceedings of the 16th IFAC
Symposium on System Identification (SYSID), Brussels, Belgium, July 2012b.

J. Dahlin, F. Lindsten, T. B. Schön, and A. Wills. Hierarchical Bayesian ARX
models for robust inference. In Proceedings of the 16th IFAC Symposium on
System Identification (SYSID), Brussels, Belgium, July 2012.

A. Wills, T. B. Schön, F. Lindsten, and B. Ninness. Estimation of linear
systems using a Gibbs sampler. In Proceedings of the 16th IFAC Symposium
on System Identification (SYSID), Brussels, Belgium, July 2012.

F. Lindsten and T. B. Schön. On the use of backward simulation in the particle
Gibbs sampler. In Proceedings of the 37th IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, March
2012.

? F. Lindsten, T. B. Schön, and J. Olsson. An explicit variance reduction ex-
pression for the Rao-Blackwellised particle filter. In Proceedings of the 18th
IFAC World Congress, Milan, Italy, August 2011b.

F. Lindsten and T. B. Schön. Identification of mixed linear/nonlinear state-
space models. In Proceedings of the 49th IEEE Conference on Decision and
Control (CDC), Atlanta, USA, December 2010.

Other publications, loosely connected to the material presented in this thesis, are:

F. Lindsten, H. Ohlsson, and L. Ljung. Clustering using sum-of-norms reg-
ularization; with application to particle filter output computation. In Pro-
ceedings of the IEEE Workshop on Statistical Signal Processing (SSP), Nice,
France, June 2011a.

F. Lindsten, J. Callmer, H. Ohlsson, D. Törnqvist, T. B. Schön, and F. Gustafs-
son. Geo-referencing for UAV navigation using environmental classification.
In Proceedings of the IEEE International Conference on Robotics and Au-
tomation (ICRA), Anchorage, USA, May 2010.

F. Lindsten, P.-J. Nordlund, and F. Gustafsson. Conflict detection metrics
for aircraft sense and avoid systems. In Proceedings of the 7th IFAC Sym-
posium on Fault Detection, Supervision and Safety of Technical Processes
(SafeProcess), Barcelona, Spain, July 2009.
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1.5 Thesis outline

The thesis is divided into two parts. The first part contains background material and an in-
troduction to the problem studied throughout the thesis. The second part is a compilation
of seven edited publications. However, the first publication, Paper A, is a self-contained
tutorial article covering many of the topics studied in the thesis. Paper A should therefore
be viewed as part of the introduction, complementing the material presented in Part I.

1.5.1 Outline of Part I

Chapter 2 introduces the learning problem for dynamical systems. The maximum likeli-
hood and the Bayesian learning criteria are defined and we discuss the basic strategies for
addressing these problems. Chapter 3 is an introduction to basic Monte Carlo methods.
The algorithms discussed in this chapter are the building blocks needed for constructing
more advanced methods later in the thesis. Readers familiar with Monte Carlo statisti-
cal inference can skip this chapter. Finally, Chapter 4 concludes the thesis and point out
possible directions for future work.

1.5.2 Outline of Part II

Part II is a compilation of seven edited publications.

Paper A,

F. Lindsten and T. B. Schön. Backward simulation methods for Monte Carlo
statistical inference. Foundations and Trends in Machine Learning, 6(1):1–
143, 2013.

is a self-contained tutorial article covering a branch of Monte Carlo methods referred to
as backward simulators. These methods are useful for inference in probabilistic models
containing latent stochastic processes, e.g. SSMs. The first two sections of this paper
should preferably be read as part of the introduction, as they complement the background
material presented in Part I of the thesis. In particular,

1. SSMs are introduced in Chapter 2, but a more thorough discussion is provided in
Section 1 of Paper A.

2. Particle filters and Markov chains, the two main computational tools which are
employed throughout this thesis, are briefly discussed in Chapter 3. However, a
more thorough introduction is given in Section 2 of Paper A.

In the remaining sections of Paper A, several Monte Carlo methods based on particle
filters and on Markov chains are discussed. In particular, it is illustrated how backward
simulation can be used to address the so called smoothing problem and many state-of-the-
art particle smoothers are surveyed.

Paper B,

F. Lindsten, M. I. Jordan, and T. B. Schön. Ancestor sampling for parti-
cle Gibbs. In P. Bartlett, F. C. N. Pereira, C. J. C. Burges, L. Bottou, and
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K. Q. Weinberger, editors, Advances in Neural Information Processing Sys-
tems (NIPS) 25, pages 2600–2608. 2012a.

contains the derivation of the PGAS method. PGAS belongs to the family of so called
particle Markov chain Monte Carlo (PMCMC) algorithms. PMCMC is a combination of
particle filters and Markov chain theory, resulting in potent tools for Bayesian learning
and state inference. PGAS makes use of a technique reminiscent of backward simulation,
albeit implemented in a forward-only fashion, to improve the performance of the algo-
rithm. In particular, PGAS has been found to work well even when using few particles in
the underlying particle filter. This implies that the algorithm is computationally compet-
itive when compared with many other particle-filter-based methods. It is also discussed
how PGAS can be used for inference in the challenging class of non-Markovian latent
variable models.

Paper C,

F. Lindsten, T. B. Schön, and M. I. Jordan. Bayesian semiparametric Wiener
system identification. Automatica, 49(7):2053–2063, 2013b.

makes use of PGAS for addressing the classical problem of Wiener system identification.
A Wiener system is composed of a linear dynamical system followed by a static nonlin-
earity. That is, the measured quantity is a nonlinear transformation of the output from
the linear dynamical system. A semiparametric model is assumed for the Wiener system.
The model consists of a parametric model for the linear dynamical system and a nonpara-
metric model for the static nonlinearity. The resulting identification algorithm can handle
challenging situations, such as process noise and non-monotonicity of the nonlinearity, in
a systematic manner.

Paper D,

F. Lindsten. An efficient stochastic approximation EM algorithm using con-
ditional particle filters. In Proceedings of the 38th IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver,
Canada, May 2013.

is also based on the PGAS algorithm. In its original formulation, PGAS is useful for ad-
dressing the Bayesian learning problem. In this paper, the algorithm is adapted to instead
solve the maximum likelihood problem. This is accomplished by using PGAS together
with, so called, stochastic approximation expectation maximization. The resulting algo-
rithm is shown to be computationally very competitive when compared with alternative
particle-filter-based expectation maximization methods.

The last three papers are not (directly) related to PGAS. Instead, the common denominator
in these papers is that they make use of Rao-Blackwellization. Many nonlinear models
encountered in practice contain some tractable substructure. In the context of particle
filtering, Rao-Blackwellization refers to the process of exploiting such substructures to
improve the performance of the algorithms.
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Paper E,

F. Lindsten, P. Bunch, S. J. Godsill, and T. B. Schön. Rao-Blackwellized parti-
cle smoothers for mixed linear/nonlinear state-space models. In Proceedings
of the 38th IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Vancouver, Canada, May 2013a.

presents a Rao-Blackwellized backward simulation method. This algorithm can be used
to address the state inference problem in a class of SSMs referred to as mixed linear/non-
linear. In these models, the state can be partitioned into two components, one which enters
linearly and one which enters nonlinearly. By exploiting this structure, the proposed algo-
rithm results in more accurate estimators than what is obtained otherwise.

Paper F,

F. Lindsten, T. B. Schön, and L. Svensson. A non-degenerate Rao-Black-
wellised particle filter for estimating static parameters in dynamical mod-
els. In Proceedings of the 16th IFAC Symposium on System Identification
(SYSID), Brussels, Belgium, July 2012c.

considers the problem of online Bayesian learning. That is, we seek to learn a model
which is continuously updated as new information is collected from the system. Inspired
by the Rao-Blackwellized particle filter (RBPF), an approximate method capable of ad-
dressing this challenging problem is proposed. The method is applicable for Gaussian
models with a linear dependence on the model parameters, but a possibly nonlinear de-
pendence on the system state. At each time point, the posterior distribution of the system
parameters is approximated by a Gaussian mixture. The components of this mixture distri-
bution are systematically updated as new information becomes available by using moment
matching.

Paper G,

F. Lindsten, T. B. Schön, and J. Olsson. An explicit variance reduction ex-
pression for the Rao-Blackwellised particle filter. In Proceedings of the 18th
IFAC World Congress, Milan, Italy, August 2011b.

the final paper of the thesis, provides an analysis of the RBPF. By considering the asymp-
totic variances of the particle filter and the RBPF, respectively, an expression for the
improvement offered by Rao-Blackwellization is obtained.



2
Learning of dynamical systems

This chapter introduces the learning problem for dynamical systems. We define the maxi-
mum likelihood and the Bayesian learning criteria and discuss the technique of data aug-
mentation.

2.1 Modeling

On a high level, we can distinguish between different strategies for building models of dy-
namical systems as being white-, gray- or black-box modeling techniques (Ljung, 1999).
A white-box model is based solely on first principles, such as Newton’s laws of motion.
A gray-box model is constructed using similar insight into the structure of the dynamical
system, but it also contains unknown parameters. These parameters have to be estimated
from observations taken from the system. Finally, a black-box model is constructed using
only observed data, with no structural knowledge about the system. Black-box models
thus have to be flexible in order to capture different types of dynamical phenomena which
are present in the data.

For gray- and black-box models, the process of estimating unknown model quantities
based on observed data is what we refer to as learning. It should be noted, however, that
learning sometimes refers to a more general problem, including how to specify the model
structure, how to the design experiments for data collection etc. However, we shall restrict
our attention to the aforementioned subtask, i.e. to estimate parameters or other unknown
model quantities once the model structure has been specified.

As pointed out in Chapter 1, we will primarily be concerned with SSMs. This is a compre-
hensive and flexible class of models of dynamical systems. The additive noise model (1.1)
is an example of an SSM. More generally, we can express the model in terms of probabil-
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ity density functions (PDFs) as,

xt+1 ∼ fθ(xt+1 | xt), (2.1a)
yt ∼ gθ(yt | xt), (2.1b)

with the initial state x1 distributed according to µθ(x1). Here, fθ(xt+1 | xt) is a Markov
kernel encoding the probability of moving from state xt at time t to state xt+1 at time
t+1. Similarly, gθ(yt | xt) denotes the probability density of obtaining an observation yt,
given that the current state of the system is xt. The latent state process {xt}t≥1 is Markov
and, conditionally on xt, the observation yt is independent of past and future states and
observations. SSMs are further discussed and exemplified in Section 1 of Paper A.

Remark 2.1. In the system identification literature (see e.g. Ljung (1999)), particular emphasis is
put on learning of dynamical systems used in control applications. Hence, it is common to let the
system be excited by some known control input {ut}t≥1, i.e. by adding a dependence on ut on the
right hand side of (2.1). In this thesis, we will not make such dependence explicit, but this is purely
for notational convenience. The learning methods that we consider are indeed applicable also in the
presence of a known input signal.

The model (2.1) is said to be parametric, since it is specified only up to some finite-
dimensional parameter θ ∈ Θ, where Θ denotes a set of plausible parameters. As noted
in Chapter 1, an often encountered problem is to make predictions about some future
output from the system. Based on the model (2.1), the PDF of the one-step predictor can
be computed as,

pθ(yt+1 | y1:t) =

∫
gθ(yt+1 | xt+1)pθ(xt+1 | y1:t) dxt+1, (2.2)

where y1:t = (y1, . . . , yt) denotes the observations collected up to time t. There are two
things that are interesting to note about this expression. First, the predictor depends on the
model parameter θ. Hence, to be able to use the model for making predictions, we need
to obtain knowledge about its unknown parameters. Second, the expression (2.2) depends
on the predictive density for the latent state pθ(xt+1 | y1:t). Consequently, making a
prediction about a future output from the system amounts to solving a state inference
problem.

The complexity and flexibility of a parametric model is typically related to the dimen-
sionality of θ, i.e. to the number of adjustable parameters. However, there is a trade-off
between using many parameters to obtain an expressive model, and using few parameters
to unambiguously being able to learn the values of these parameters. If the model is too
simplistic to capture the dynamics of the system, we say that it suffers from under-fitting.
On the contrary, if the model is too complex and thereby prevents accurate learning of the
model parameters, there is a problem of over-fitting. Over- and under-fitting occurs when
there is a mismatch between the model complexity and the amount of available data, or
more precisely the amount of information available in the data.

A different take on modeling of dynamical systems is provided by nonparametric mod-
els. The word nonparametric does not imply that these models lack parameters. On the
contrary, it means that the number of parameters is allowed to grow with the amount of
data. Mathematically, this is accomplished by allowing for an infinite-dimensional latent
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structure in the model. For instance, a nonparametric model may contain a latent function
which lacks any finite-dimensional representation. This is in contrast with a parametric
model where the attention is restricted to a finite-dimensional parameter space. A sim-
ple example of a nonparametric model of a PDF is a kernel density estimate. To avoid
over-fitting in the nonparametric setting, it is necessary that the model complexity grows
in a controlled manner with the amount of data. However, this type of regularization is
often intrinsic to the model. Nonparametric models thus avoid the intricate trade-off be-
tween model fit and model complexity and at the same time they provide a high degree of
flexibility.

In this thesis, we will primarily consider parametric models. Consequently, for clarity
of presentation, many of the concepts that we introduce in the sequel are specifically
discussed in the context of parametric models. An exception is Paper C, in which a
combination of parametric and nonparametric ideas are used to construct a model for a
so called Wiener system. The necessary background material on Bayesian nonparametric
modeling is given in Section 2.3.

2.2 Maximum likelihood

Consider the parametric model (2.1). Assume that we have collected a batch of data y1:T ,
where T denotes some final time point, i.e. the length of the data record. We refer to the
PDF of the measurement sequence pθ(y1:T ) as the likelihood function. The likelihood
function depends on the model parameter θ. In fact, since the measurement sequence
y1:T is assumed to be fixed, it can be viewed as a mapping from the parameter space to
the real line,

pθ(y1:T ) : Θ→ R. (2.3)

A sensible approach to parameter inference is to find a value of θ which maximizes the
likelihood function. That is, we seek a parameter value for which the observed data is “as
likely as possible”; this idea is known as maximum likelihood (ML). Hence, we define
the ML estimator as,

θ̂ML = arg max
θ∈Θ

log pθ(y1:T ). (2.4)

The logarithm is introduced to simplify and to improve the numerics of the problem. Since
the logarithm is strictly increasing, any maximizer of the log-likelihood function is also a
maximizer of the likelihood function itself. The ML criterion was proposed, analysed and
popularized by Sir Ronald Aylmer Fisher (1890–1962) in the early 20th century (Fisher,
1912, 1921, 1922). However, the idea can be traced back even further to, among others,
Gauss, Hagen and Edgeworth (Hald, 1999). Aldrich (1997) provides a historical discus-
sion on Fisher and the making of ML. Due to its appealing theoretical properties, it has
a long tradition in many fields of science, including machine learning and system identifi-
cation.

A challenge in computing the estimator (2.4) for a nonlinear SSM, however, is that the
likelihood function in general is not available in closed form. Hence, it is not possible
to evaluate the objective function in (2.4), which complicates the optimization problem.
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In Section 2.4 we will see how the ML criterion can be related to a state inference prob-
lem, which can then be addressed using computational algorithms such as Monte Carlo
methods.

2.3 Bayesian learning

An alternative inference strategy bears the name of the British statistician and reverend
Thomas Bayes (1702–1761). In Bayesian learning (see e.g. Gelman et al. (2003)), model
uncertainties are represented using stochasticity. A probabilistic hypothesis about the
model is maintained. When observations regarding the validity of the hypothesis are ob-
tained, the belief in the hypothesis is updated using Bayes’ rule. Bayes (1764) treated
this problem, but only considered uniform priors. The ideas that we today refer to as
Bayesian, were to a large extent pioneered and popularized by the French mathematician
Pierre-Simon Laplace (1749–1827). In a memoir, produced at the age of 25 and suppos-
edly unaware of Bayes’ work, Laplace (1774) discovered the more general form of Bayes’
rule that we use today.

In the parametric setting, the aforementioned hypothesis concerns the model parameters.
Consequently, a Bayesian parametric model is characterized by the presence of a prior
PDF π(θ) for the model parameter θ, which is thus viewed as a random variable. The
prior distribution summarizes our a priori knowledge about the parameter, i.e. what we
know before we make any observations from the system. Such prior information is some-
times naturally available, e.g. due to physical constraints or insight into the system dy-
namics based on experience. In other cases, the prior is introduced simply to enable the
application of Bayesian methods. In such cases, a pragmatic, but useful, strategy is to
choose a prior which results in simple computations. This is achieved by using so called
conjugate priors (see Section 2.4). It is also common to choose the prior distribution to be
uninformative, meaning that it will affect the posterior degree of belief to a small extent.

Given a batch of observations y1:T , the Bayesian learning problem amounts to computing
the posterior PDF p(θ | y1:T ). From Bayes’ rule, this can be expressed as

p(θ | y1:T ) =
pθ(y1:T )π(θ)

p(y1:T )
, (2.5)

The above expression relates the posterior PDF to the prior PDF and to the likelihood
function. Note that in Bayesian probability θ is viewed as a random variable. Hence,
the likelihood function should be thought of as the conditional PDF of the observations
given θ, i.e. pθ(y1:T ) = p(y1:T | θ). However, to be able to discuss the different learning
criteria in a common setting, we keep the notation pθ(y1:T ).

If we accept the Bayesian model, the posterior distribution provides a rich source of in-
formation about the parameter. It is a complete summary of the a priori knowledge and
all the information which is available in the observed data. It can for instance be used to
compute minimum mean-squared-error estimates of the parameters, but also to systemat-
ically reason about the uncertainties in these estimates. Since the posterior PDF depends
on the likelihood function, we face similar challenges in computing (2.5) as in solving the
ML problem (2.4). We discuss how to make use of computational methods to address this
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issue in Section 2.4.

In the nonparametric setting, the number of “parameters” is allowed to vary and to grow
with the amount of data. Analogously to modeling unknown parameters as latent random
variables, Bayesian nonparametric models accomplish this by using latent stochastic pro-
cesses to represent the unknowns of the model; see e.g. Gershman and Blei (2012); Hjort
et al. (2010); Jordan (2010) for an introduction to these models. Principally, learning of
Bayesian nonparametric models is similar to learning of parametric models. Using Bayes’
rule, the likelihood of the data is combined with the prior to obtain the posterior distribu-
tion. However, for a nonparametric model, the target distribution is the posterior law of
the latent stochastic process. To illustrate the idea, an example of a Bayesian nonparamet-
ric model is given below.

Example 2.1: Gaussian process regression
Regression analysis amounts to learning the relationships within a group of variables.
With ξ ∈ Rd representing an input variable and y ∈ R representing an output variable,
we seek a functional relationship such that y ≈ f(ξ). The approximate equality reflects
the fact that we often observe the function values only up to some uncertainty. Formally,
we can write

y = f(ξ) + e, (2.6)

where e is an error term, here assumed to be zero-mean Gaussian: e ∼ N (0, σ2).

Assume that we observe an input/output data setD = {ξi, yi}ni=1 and wish to estimate the
function f . A parametric model can be obtained by fitting, for instance, a polynomial or a
trigonometric function to the data. In the nonparametric setting, however, we seek a flexi-
ble model where the complexity increases with the number of data points n. One way to
accomplish this is to make use of a Gaussian process (GP) regression model (Rasmussen
and Williams, 2006).

A GP is a stochastic process, such that any finite collection of sample points have a joint
Gaussian distribution. This construction can be used in regression analysis by modeling
f (which is indexed by ξ) as a GP with index set Rd. That is, any finite collection of
function values, in particular the collection {f(ξi)}ni=1, have a joint Gaussian distribution.
The mean vector and the covariance matrix of this Gaussian distribution follow from the
specification of the GP, i.e. from the definition of the prior. Typical choices allow for
a high degree of flexibility, but ensure continuity (and sometimes smoothness) of the
function f ; see Rasmussen and Williams (2006) for a discussion.

Consider now a previously unseen input value ξ?. From standard manipulations of Gaus-
sian random variables, it follows that the conditional distribution of f(ξ?), given D, is
also Gaussian with tractable mean and variance. Hence, the posterior GP can be used to
predict output values at previously unseen inputs, i.e. it constitutes a model of the function
f . The process of GP regression is illustrated in Figure 2.1.
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Figure 2.1: Illustration of GP regression. The mean and the variance (±3σ) of the
GP are show by the solid gray line and by the blue area, respectively. The true,
unknown function f is shown by the dashed black line and the data points by black
dots. From upper left to lower right; prior GP, i.e. before observing any data, and
posterior GP after observing 1, 5 and 50 data points, respectively.

2.4 Data augmentation
The intractability of the likelihood function appearing in (2.4) and (2.5) is a result of the
fact that the state sequence x1:T is latent. Hence, to compute the likelihood of the data, we
need to average over all possible state trajectories. More precisely, the likelihood function
is given by a marginalization over x1:T according to,

pθ(y1:T ) =

∫
pθ(x1:T , y1:T ) dx1:T . (2.7)

Using the conditional independence properties of an SSM, the integrand can be written
as,

pθ(x1:T , y1:T ) = µθ(x1)
T∏

t=1

gθ(yt | xt)
T−1∏

t=1

fθ(xt+1 | xt). (2.8)

The high-dimensional integration in (2.7) will in general lack a closed form solution. This
difficulty is central when addressing the learning problem for SSMs. Indeed, the need for
using computational methods, such as Monte Carlo, is tightly coupled to the intractabil-
ity of the above integral. Many of the challenges discussed throughout this thesis is a
manifestation of this problem, in one form or another.

The presence of a latent state suggests a technique known as data augmentation (Dempster
et al., 1977; Tanner and Wong, 1987). While this technique goes beyond learning of SSMs,
we discuss how it can be used in our setting below. Data augmentation is based on the idea
that if the latent states x1:T would be known, inference about θ would be relatively simple.
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This suggests an iterative approach, alternating between updating the belief about x1:T

and updating the belief about θ. The former step of the iteration corresponds to solving an
intermediate state inference problem. In data augmentation schemes, the states are viewed
as missing data, as opposed to the observed data y1:T . That is, the intermediate state
inference step amounts to augmenting the observed data, to recover the complete data set
{x1:T , y1:T }. The complete data and the observed data likelihoods are related according
to (2.7), suggesting that pθ(x1:T , y1:T ) indeed can be useful for drawing inference about θ.

Let us start by considering the Bayesian learning criterion. Assume for the time being that
the complete data {x1:T , y1:T } is available. From Bayes’ rule (cf. (2.5)) we then have,

p(θ | x1:T , y1:T ) =
pθ(x1:T , y1:T )π(θ)

p(x1:T , y1:T )
, (2.9)

where the complete data likelihood is given by (2.8). While computing the normalization
constant in (2.9) can be problematic, it is indeed possible for many models of interest.
In particular, for many complete data likelihoods, it is possible to identify a prior PDF
π(θ) which is such that the posterior PDF p(θ | x1:T , y1:T ) belongs to the same family
of distributions as the prior. The prior is then said to be conjugate to the complete data
likelihood (Gelman et al., 2003). For conjugate models, the posterior PDF in (2.9) can
be computed in closed form (still, assuming that x1:T is known). All members of the
extensive exponential family of distributions have conjugate priors. If the normalization
constant cannot be computed in closed form, it is possible to make use of Monte Carlo
integration to compute (2.9). We discuss this in more detail in Paper A. See also Paper C,
where this technique is used for Wiener system identification.

The problem in using (2.9), however, is that the states x1:T are not known. To address this
issue, we will make use of Monte Carlo methods. In particular, one of the main methods
that we will consider makes use of the observed data y1:T to impute values for the latent
variables x1:T by simulation. Once we have generated a (representative) sample from
x1:T , this can be used to compute θ according to (2.9). More precisely, we can draw a
sample of θ from the posterior distribution (2.9). These two steps are then iterated, i.e. the
method alternates between:

(i) Sample x1:T given θ and y1:T .

(ii) Sample θ given x1:T and y1:T .

This is a so called Gibbs sampler, originating from the method proposed by Geman and
Geman (1984). Under appropriate conditions, the distribution of the θ-samples will con-
verge to the target distribution (2.5). Hence, these samples provide an empirical represen-
tation of the posterior distribution which is the object of interest in Bayesian learning. The
precise way in which the states x1:T are sampled in Step (i) will be discussed in detail in
Paper A. For now, we note that the Gibbs sampler requires us to generate samples from
a, typically, complicated and high-dimensional distribution in order to impute the latent
state variables.

Data augmentation is useful also when addressing the ML problem (2.4). Indeed, the
technique was popularized in the statistics community by the introduction of the expecta-
tion maximization (EM) algorithm by Dempster et al. (1977). EM is a data augmentation
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algorithm which leverages the idea of missing data to construct a surrogate cost function
for the ML problem. Using the relationship

pθ(x1:T | y1:T ) =
pθ(x1:T , y1:T )

pθ(y1:T )
, (2.10)

the observed data log-likelihood function can be written as

log pθ(y1:T ) = log pθ(x1:T , y1:T )− log pθ(x1:T | y1:T ). (2.11)

For any θ ∈ Θ, pθ(x1:T | y1:T ) is a PDF and it thus integrates to one. Hence, by taking
an arbitrary θ′ ∈ Θ, multiplying (2.11) with pθ′(x1:T | y1:T ) and integrating w.r.t. x1:T

we get,

log pθ(y1:T ) = Q(θ, θ′)− V (θ, θ′), (2.12)

where we have defined the auxiliary quantities,

Q(θ, θ′) ,
∫

log pθ(x1:T , y1:T )pθ′(x1:T | y1:T ) dx1:T

= Eθ′ [log pθ(x1:T , y1:T ) | y1:T ] (2.13)

and V (θ, θ′) , Eθ′ [log pθ(x1:T | y1:T ) | y1:T ]. From (2.12) it follows that, for any
(θ, θ′) ∈ Θ2,

log pθ(y1:T )− log pθ′(y1:T ) = (Q(θ, θ′)−Q(θ′, θ′)) + (V (θ′, θ′)− V (θ, θ′)) . (2.14)

The difference V (θ′, θ′)−V (θ, θ′) can be recognized as the Kullback-Leibler divergence
between pθ′(x1:T | y1:T ) and pθ(x1:T | y1:T ), which is known to be nonnegative (Kull-
back and Leibler, 1951). Hence, as an implication of (2.14) we get,

Q(θ, θ′) ≥ Q(θ′, θ′)⇒ log pθ(y1:T ) ≥ log pθ′(y1:T ). (2.15)

This result implies that the auxiliary quantity (2.13) can be used as a substitute for the log-
likelihood function when solving the ML problem (2.4). More precisely, any sequence
of iterates which increase the value of the Q-function, will also increase the value of the
log-likelihood. This is exploited in the EM algorithm, which iterates between computing
the expectation in (2.13) (the E-step) and maximizing the auxiliary quantity Q(θ, θ′) (the
M-step).

The auxiliary quantity of the EM algorithm is defined as the expectation of the complete
data log-likelihood according to (2.13). The main challenge in using the EM algorithm
for learning of general SSMs lies in the computation of this expectation. However, one
possibility is to make use of Monte Carlo methods. That is, we generate samples from the
latent states x1:T and approximate the expectation in (2.13) by the sample average. Again,
the details of how this simulation can be carried out will be discussed in Paper A.

2.5 Online learning

In the previous sections we have considered batch-wise learning. That is, we have as-
sumed that a complete data set y1:T , for some final time point T , is available throughout
the learning process. In some applications, it is more natural to do the learning online,
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by continuously updating the system model as new observations are obtained (Ljung and
Söderström, 1983).

For instance, in the Bayesian, parametric setting, online learning amounts to sequentially
computing the posterior PDFs, p(θ | y1:t) for t = 1, 2, . . . . Similarly, we can construct
a sequence of optimization problems as in (2.4) for online ML learning. Online learning
is useful in situations where the properties of the system are changing over time. Since
the online learning algorithm continuously receive feedback from the system, it can adapt
to situations which are previously unseen. Online learning can also be useful in big data
applications. If the data set is very large, it may be more efficient to process it in an online
fashion, i.e. one data item at a time.

We will primarily be concerned with batch-wise learning in this thesis. However, in Pa-
per F, an algorithm for online Bayesian learning of a specific class of SSMs is presented.





3
Monte Carlo methods

This chapter provides an introduction to basic Monte Carlo methods, such as rejection
sampling and importance sampling. These are the building blocks for the more advanced
methods which are studied throughout the thesis. For a thorough elementary treatment of
the Monte Carlo idea, see the books by Robert and Casella (2004) and Liu (2001).

3.1 The Monte Carlo idea

The idea of Monte Carlo methods (see Metropolis and Ulam (1949) for an early discus-
sion) is to make use of random simulation to carry out a computation which is otherwise
tedious, or intractable, to perform. For instance, consider the problem of evaluating the
intermediate quantity of the EM algorithm in (2.13). This amounts to computing an ex-
pected value w.r.t. pθ(x1:T | y1:T ), i.e. to solve a generally high-dimensional integration
problem. In many cases, and in particular for learning of nonlinear SSMs, this integration
lacks a closed form solution. In such situations, Monte Carlo methods can be used to
approximate the expected value with a sample average over samples generated from the
underlying random variable.

More generally, let γ(x) be a PDF, referred to as the target density, which is defined on
some space X. Let x be a random variable distributed according to γ(x) and assume that
we seek the expected value,

E[ϕ(x)] =

∫
ϕ(x)γ(x) dx, (3.1)

for some test function ϕ (cf. (2.13)). Let us start by making the assumption that we can
generate independent samples {xi}Ni=1, distributed according to γ(x). This is in fact a
very restrictive assumption and a large part of this thesis is concerned with strategies for
generating realizations from random variables with complicated distributions. Neverthe-

23



24 3 Monte Carlo methods

less it is instructive to make this assumption in order to be able to focus on the key idea
underlying all Monte Carlo methods. Based on these samples, we can approximate (3.1)
by the sample average,

ϕ̂NMC ,
1

N

N∑

i=1

ϕ(xi). (3.2)

An equivalent interpretation of this Monte Carlo estimator is to let the samples {xi}Ni=1

define an empirical approximation of the target distribution,

γ̂NMC(dx) =
1

N

N∑

i=1

δxi(dx), (3.3)

where δx′(dx) denotes a Dirac point-mass located at x′. Hence, we approximate the
target distribution (which may be continuous) with a discrete probability distribution, by
placing a point-mass probability of 1/N at each of the generated samples. Inserting the
approximation (3.3) into (3.1) results in

∫
ϕ(x)γ(x) dx ≈

∫
ϕ(x)

1

N

N∑

i=1

δxi(dx) =
1

N

N∑

i=1

ϕ(xi), (3.4)

i.e. we indeed obtain the Monte Carlo estimator (3.2). The idea of letting a collection of
samples define an empirical point-mass distribution as in (3.3) is very convenient and it
will be frequently used in the sequel.

The Monte Carlo estimator (3.2) comes with many desirable properties, which to a large
extent explains the popularity of the Monte Carlo method. First, it is unbiased, i.e.
E[ϕ̂NMC] = E[ϕ(x)] where the former expectation is w.r.t. the random realizations {xi}Ni=1.
Second, the strong law of large numbers implies almost sure convergence, ϕ̂NMC

a.s.−→
E[ϕ(x)] asN →∞. Additionally, if the variance of ϕ(x) is finite, i.e. σ2

ϕ = Var[ϕ(x)] <
∞, then a central limit theorem (CLT) holds,

√
N
(
ϕ̂NMC − E[ϕ(x)]

)

σϕ

D−→ N (0, 1), N →∞, (3.5)

where D−→ denotes convergence in distribution. In fact, the variance of the estimator
(3.2) is explicitly given by Var[ϕ̂NMC] = σ2

ϕ/N . From (3.5) if follows that the Monte
Carlo error decreases as O(N−

1
2 ). Interestingly, the convergence rate is independent of

the dimension of X. This clearly distinguishes Monte Carlo methods from deterministic
integration methods, where the latter have an approximation error that grows with the
dimension.

As pointed out above, the vanilla Monte Carlo method described above relies on the,
often unrealistic, assumption that it is possible to generate independent and identically
distributed (i.i.d.) samples from the target distribution. The rest of this chapter, and to
a large extent Part II of this thesis, is devoted to strategies for generating samples from
complicated target distributions, effectively rendering the use of Monte Carlo methods
possible for challenging inference and learning problems.
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ρq(x′)× u

γ̄(x′)

ρq(x′)

x′

Figure 3.1: Illustration of rejection sampling. The graph of γ̄(x) (gray area) is
bounded by the graph of ρq(x) (black curve). A sample is generated uniformly over
the area under the black curve. If the sample falls is the gray area, it is accepted as a
draw from γ(x), otherwise it is rejected.

3.2 Rejection Sampling

An often encountered difficulty is that the target density γ(x) can be evaluated only up
to proportionality. That is, we can write γ(x) = γ̄(x)/Z, where γ̄(x) can be evaluated
point-wise, but where the normalization constant Z is unknown. The typical setting is
when Bayes’ rule is used to express a posterior PDF in terms of the prior, the likelihood
and the (unknown) normalizing constant. For instance, consider the Bayesian learning
criteria (2.5). Even in situations when the likelihood function is available, if the model is
non-conjugate, then the normalization constant p(y1:T ) is typically unknown.

Rejection sampling (von Neumann, 1951) is a Monte Carlo method which, under these
conditions, can be used to generate samples exactly distributed according to the target
density γ(x). To introduce the idea, let γ̄(z) be given by the function shown by the gray
area in Figure 3.1. Let the two-dimensional random vector (x, y) be distributed uniformly
over the gray area. The area under the graph of γ̄(x) is

∫
γ̄(x) dx = Z which implies that

the PDF of (x, y) is,

p(x, y) =

{
1/Z if 0 ≤ y ≤ γ̄(x),

0 otherwise.
(3.6)

Hence, the marginal PDF of x is,

p(x) =

∫
p(x, y) dy =

γ̄(x)∫

0

1

Z
dy = γ(x), (3.7)

i.e. it holds that x is marginally distributed according to the target distribution.

The problem is that sampling uniformly over the gray area is just as hard as the original
problem, i.e. sampling from γ(z). However, it leads us to the following idea. Let q(x)



26 3 Monte Carlo methods

Algorithm 1 Rejection sampling

1: L← {1, . . . , N}.
2: while L is not empty do
3: n← card(L).
4: δ ← ∅.
5: Sample independently {x′(k)}nk=1 ∼ q(x).
6: Sample independently {u(k)}nk=1 ∼ U([0, 1]).
7: for k = 1 to n do
8: if u(k) ≤ γ̄(x′(k))

ρq(x′(k)) then
9: xL(k) ← x′(k).

10: δ ← δ ∪ {L(k)}.
11: end if
12: end for
13: L← L \ δ.
14: end while

be a user-chosen PDF which is easy to sample from. Such a distribution is referred to
as a proposal distribution. Furthermore, assume that there exists a constant ρ such that
γ̄(x) ≤ ρq(x) for all x ∈ X. Now, if we sample independently and uniformly under
the graph of ρq(x), but only keep the samples that fall under the graph of γ̄(x), then the
surviving samples are i.i.d. draws from the target distribution.

More generally, let x′ be sampled from the proposal and let u be drawn uniformly over
the unit interval, i.e.

x′ ∼ q(x), (3.8a)
u ∼ U([0, 1]). (3.8b)

The variable u serves as an indicator on whether we should accept x′ as a valid sample
from the target distribution or not. More precisely, if ρq(x′)u ≤ γ̄(x′) we set x = x′,
otherwise we reject x′ and repeat the procedure (3.8) until a sample is accepted. The
method is summarized in Algorithm 1, in which N i.i.d. samples {xi}Ni=1 are generated
in parallel.

To see the validity of the algorithm, consider the probability that x falls in some subset
A ⊂ X,

P(x ∈ A) = P(x′ ∈ A | x′ is accepted) =
P(x′ ∈ A ∩ x′ is accepted)

P(x′ is accepted)
. (3.9)

Since x′ is distributed according to q(x) and u is uniform on [0, 1], the numerator can be
expressed as

P(x′ ∈ A ∩ u ≤ γ̄(x′)/(ρq(x′))) =

∫

A

γ̄(x′)
ρq(x′)

q(x′) dx′ =
Z

ρ

∫

A

γ(x′) dx′. (3.10)

Analogously, the denominator in (3.9) is given by P(x′ is accepted) = Z/ρ. Inserting this
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into (3.9) we get,

P(x ∈ A) =

∫

A

γ(x) dx. (3.11)

Since the setA is arbitrary, we conclude that x is indeed distributed according to the target
density γ(x).

The choice of proposal density q(x) and the constant ρ are very important from a practical
point of view. As noted above, the acceptance probability is given by P(x′ is accepted) =
Z/ρ. Consequently, the average number of candidate samples that need to be drawn to
generate one sample from the target distribution is ρ/Z. It is therefore imperative that this
ratio is not too large. However, for the algorithm to work, we also require that the graph
of γ̄(x) is completely below the graph of ρq(x), i.e. ρ is at least as large as the largest
discrepancy between the proposal q(x) and the (unnormalized) target γ̄(x). Finding a
proposal density in close agreement with the target density is easy for the toy problem
considered above. However, as the target density becomes more complicated and, in
particular, as the dimension of X increases, this becomes harder.

For the sake of illustration, assume that we wish sample from the d-dimensional, standard
normal distribution using rejection sampling. As proposal, we use a d-dimensional, zero-
mean normal distribution with covariance matrix σ2

qId. For the ratio between the target
and the proposal densities to be bounded, we require that σq ≥ 1. The smallest bound
is then given by ρ = σdq . Hence, the acceptance probability decays exponentially as we
increase the dimension of the problem. This is referred to as the curse of dimensionality.
In high dimensions, what appears to be a small discrepancy between the proposal and the
target densities, can in fact have a huge impact, rendering the method impractical.

3.3 Importance sampling

Importance sampling (Kahn and Harris, 1951; Marshall, 1956) offers a solution to the
problem of evaluating integrals of the form (3.1), but it does not generate exact draws
from the target distribution. In the rejection sampler introduced above, we first gener-
ate candidate samples from some proposal density q(x). These samples are then either
accepted or rejected with certain probabilities, depending on how well they fit the tar-
get distribution. Importance sampling proceeds similarly, by generating draws from a
proposal distribution. However, rather than discarding some of the simulated values all
samples are kept, but they are assigned individual weights depending on how well they fit
the target.

Let x′ ∼ q(x) be an instrumental random variable, distributed according to the proposal.
We can then express (3.1) as,

E[ϕ(x)] =

∫
ϕ(x)γ(x) dx =

∫
ϕ(x)

γ(x)

q(x)
q(x) dx

=

∫
ϕ(x)W (x)q(x) dx = E[ϕ(x′)W (x′)], (3.12)
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where we have introduced the weight function W (x) , γ(x)/q(x) and where we have
assumed that q(x) > 0 for all x where ϕ(x)γ(x) > 0 (i.e. suppϕγ ⊂ supp q). By
construction, it is easy to generate samples from q(x). We can thus construct a Monte
Carlo estimator for (3.12) by sampling independently xi ∼ q(x) for i = 1, . . . , N and
computing,

ϕ̄NIS ,
1

N

N∑

i=1

W (xi)ϕ(xi). (3.13)

This estimator is similar to (3.2), but we see that the samples are weighted by so called
importance weights, accounting for the discrepancy between the proposal and the target
densities. Intuitively speaking, the importance weights contain information about how
useful each proposed value xi is for computing integrals on the form (3.1).

As mentioned in the previous section, it is common that it is only possible to evaluate the
target density up to an unknown normalization constant. That is, we can write γ(x) =
γ̄(x)/Z, where γ̄(x) can be evaluated but the constant Z is unknown1. We then have,

E[ϕ(x)] =

∫
ϕ(x)

γ̄(x)

Zq(x)
q(x) dx =

1

Z

∫
ϕ(x)W (x)q(x) dx, (3.14)

where (with abuse of notation) we have redefined the weight function as

W (x) ,
γ̄(x)

q(x)
. (3.15)

Hence, the importance sampling estimator (3.13) is given by,

ϕ̄NIS =
1

NZ

N∑

i=1

w̄iϕ(xi), (3.16)

where we have explicitly introduced the weights w̄i = W (xi) for i = 1, . . . , N . Note
that, since w̄i is given by a transformation of a random variable, it is itself a random
variable. From the above expression it appears as if we have just moved the problem
with the unknown normalization constants from one place to another. However, we can
make use of the samples {xi}Ni=1 to compute an approximation of the unknown constant.
Indeed, the normalization constant is given by,

Z =

∫
γ̄(x) dx =

∫
γ̄(x)

q(x)
q(x) dx ≈ 1

N

N∑

i=1

w̄i. (3.17)

By inserting this approximation into (3.16), we obtain the normalized importance sam-
pling estimator,

ϕ̂NIS =
N∑

i=1

wiϕ(xi), (3.18)

where {wi}Ni=1 denote the normalized importance weights: wi , w̄i/
∑
l w̄

l. Analo-

1Similarly, we may assume that the proposal density can only be evaluated up to proportionality, but that is
less common in practice.
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gously to (3.3), an alternative interpretation of the above is that the importance sampler
provides an empirical point-mass approximation of the target distribution, according to,

γ̂NIS (dx) =
N∑

i=1

wiδxi(dx). (3.19)

Hence, even though the importance sampler does not provide samples from the target
distribution, the weighted samples {xi, wi}Ni=1 define an empirical distribution approxi-
mating the target. Inserting this empirical distribution into (3.1) straightforwardly results
in the estimator (3.18). Note that, even if the constant Z is known, the importance weights
must be normalized for the point-mass approximation (3.19) to be a probability distribu-
tion. The above development is summarized in Algorithm 2.

Algorithm 2 Importance sampling (all operations are for i = 1, . . . , N)

1: Draw xi ∼ q(x).
2: Compute w̄i = W (xi).
3: Normalize: set wi1 = w̄i1/

∑
l w̄

l.

From the discussion on the rejection sampler in Section 3.2, we recall that the choice of
proposal distribution is important in order to obtain a practical algorithm. This holds true
also for the importance sampler. A large discrepancy between the target and the proposal
densities will lead to high variance in the importance weights, which carries over to the
estimator (3.18).

3.4 Particle filters and Markov chains

Rejection sampling and importance sampling are important tools in the construction of
Monte Carlo inferential methods. However, alone they do not provide satisfactory solu-
tions to the challenging inference problems associated with learning of dynamical sys-
tems. When dealing with SSMs, data augmentation schemes typically introduce the state
sequence x1:T as auxiliary variables (see Section 2.4). Hence, the dimensionality of the
problem increases with the length of the data record T , which is typically large. For
these learning problems, rejection sampling and importance sampling algorithms are of-
ten impractical, due to the difficulty of designing efficient proposal distributions in high
dimensions. Consequently, there is a need for Monte Carlo methods which are more apt
at addressing high-dimensional integration problems.

Two classes of algorithms play a central role in this thesis and, indeed, in the study of
Monte Carlo methods as a whole. These are, respectively, methods based on interacting
particle systems and on Markov chains. However, despite the relevance of these algo-
rithms for this thesis, this background section only provides a very brief introduction to
the concepts. The reason is that both classes of algorithms are introduced and more thor-
oughly described in Section 1 of Paper A.

The former class of methods are referred to as particle filters or sequential Monte Carlo
(SMC) methods (Stewart and McCarty, 1992; Gordon et al., 1993); see also Doucet and
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Johansen (2011); Gustafsson (2010); Doucet et al. (2001). Particle filters are useful for
approximating a sequence of target distributions. For instance, in the context of SSMs,
it is common to target the sequence of joint smoothing densities pθ(x1:t | y1:t) for t =
1, 2, . . . . Initially, for t = 1, the density pθ(x1 | y1) is approximated using importance
sampling. This is much simpler than targeting, say, pθ(x1:T | y1:T ) directly, due to the
high dimensionality of the latter density for large T . Hence, we obtain an empirical point-
mass approximation as in (3.19);

p̂Nθ (dx1 | y1) =
N∑

i=1

wi1δxi1(dx1). (3.20)

In the SMC literature, the samples {xi1}Ni=1 are called particles and {xi1, wi1}Ni=1 is re-
ferred to as a weighted particle system. The particles can be thought of as (random) hy-
potheses about the state of the system at time t = 1. The belief in each of the hypotheses
is represented by the corresponding importance weight.

The essence of the particle filter is a systematic procedure for updating these hypotheses
to obtain an approximation of the next target density in the sequence. That is, given (3.20)
we seek a point-mass approximation of pθ(x1:2 | y1:2), then of pθ(x1:3 | y1:3), and so on.
Basically, this is accomplished by propagating and reevaluating the belief in the particles
according to the model (2.1). By discarding or duplicating particles according to their
importance weights, the particle filter is able to put emphasis on high-probability hypothe-
ses, which are more likely to be useful for approximating the next target distribution in
the sequence.

The second class of methods are so called Markov chain Monte Carlo (MCMC) samplers.
A Markov chain is a memoryless stochastic process. That is, the next state of the chain
depends only on the current state and not on the past history of the process. In MCMC,
Markov chains are used to represent a sequence of hypotheses about some variable of in-
terest, e.g. the state of a dynamical system at some specific time point or some unknown
model parameter. MCMC samplers are thus iterative Monte Carlo methods where each
sample (i.e. each hypothesis) is statistically dependent on the previous one. For this ap-
proach to be useful for inference, the Markov chain has to be constructed in such a way
that, in the long run, the samples are representative for the target distribution. That is, the
limiting distribution of the chain should coincide with the target distribution. In MCMC
theory, there are systematic ways of constructing Markov chains with this specific prop-
erty. The Metropolis-Hastings sampler (Metropolis et al., 1953; Hastings, 1970) and the
Gibbs sampler (Geman and Geman, 1984) are the most well-known techniques. The latter
method was briefly mentioned in the context of data augmentation in Section 2.4,

It is also possible to combine SMC and MCMC to construct composite algorithms, draw-
ing on the strengths of both classes of methods. This thesis puts particular emphasis
on a class of methods referred to a particle MCMC (PMCMC) algorithms (Andrieu et al.,
2010). PMCMC relies on SMC for generating samples of the often highly auto-correlated
state trajectory. Combined with MCMC, this results in powerful Monte Carlo methods
which are capable of addressing both inference and learning problems in complex dynam-
ical systems.
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3.5 Rao-Blackwellization

In the mid 40’s, Rao (1945) and Blackwell (1947) established a fundamental result in
estimation theory, which has later become known as the Rao-Blackwell theorem (see also
(Lehmann, 1983, page 50)). Let θ be an unknown parameter and let Y be some data drawn
from a distribution parameterized by θ. Given the data Y , we compute an estimator of
θ denoted as θ̂(Y ). Furthermore, let S be a sufficient statistic for Y , i.e. informally S
contains the same amount of information about θ as Y does. Then, basically, the Rao-
Blackwell theorem states that

θ̂RB(S) = E[θ̂(Y ) | S] (3.21)

is typically a better estimator than θ̂(Y ), and it is never worse. Hence, from a crude
estimator θ̂(Y ) we can construct a better estimator θ̂RB(S), depending only on the suffi-
cient statistic S, by computing a conditional expectation. This transformation is known
as Rao-Blackwellization.

In this thesis, we are concerned with the implication of the Rao-Blackwell theorem for es-
timators constructed using Monte Carlo methods. Any Monte Carlo estimator is affected
by variance due to the random simulation used in its construction. For instance, consider
the vanilla Monte Carlo estimator in (3.2),

ϕ̂NMC(X) =
1

N

N∑

i=1

ϕ(xi). (3.22)

Here, we have explicitly introduced the dependence on the random samplesX , {xi}Ni=1

in the notation. As previously mentioned, if the variance of the test function ϕ(x) is finite,
we have

Var(ϕ̂NMC(X)) =
Var(ϕ(x))

N
. (3.23)

This Monte Carlo variance reveals that there is a random error in the estimator. In fact,
since (3.22) is unbiased the mean-squared-error is given by the variance (3.23). Hence, to
obtain an accurate estimator it is desirable to keep the variance as small as possible.

By making use of Rao-Blackwellization, it is possible to reduce the Monte Carlo variance
and thereby improve upon (3.22). Let the random vector x be split into two components,

x =

(
z
ξ

)
. (3.24)

The samples {xi}Ni=1 are split accordingly and we can thus identify X = {Z,Ξ}, where
Z = {zi}Ni=1 and Ξ = {ξi}Ni=1. Furthermore, the test function can be written as ϕ(x) =
ϕ(z, ξ) and it follows the estimator (3.22) can be written,

ϕ̂NMC(Z,Ξ) =
1

N

N∑

i=1

ϕ(zi, ξi). (3.25)
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Now, consider the Rao-Blackwellized estimator,

ϕ̂NRB(Ξ) = E[ϕ̂NMC(Z,Ξ) | Ξ] =
1

N

N∑

i=1

ϕc(ξi), (3.26)

where we have introduced the function ϕc(ξ) = E[ϕ(z, ξ) | ξ]. Note that (3.26) depends
only on Ξ. Similarly to (3.23), the variance of the estimator (3.26) is given by

Var(ϕ̂NRB(Ξ)) =
Var(ϕc(ξ))

N
. (3.27)

From the law of total variance, it follows that

Var(ϕ(z, ξ)) = Var(E[ϕ(z, ξ) | ξ]) + E[Var(ϕ(z, ξ) | ξ)]︸ ︷︷ ︸
≥0

. (3.28)

The term on the left-hand-side corresponds to the variance of the vanilla Monte Carlo
estimator (3.22) and the first term on the right-hand-side corresponds to the variance of
the Rao-Blackwellized estimator (3.26). Since the second term on the right side is non-
negative, it follows that (3.26) dominates (3.22), as claimed.

For the Rao-Blackwellized estimator (3.26) to be practical, it is necessary that the condi-
tional expectation,

ϕc(ξ) = E[ϕ(z, ξ) | ξ] =

∫
ϕ(z, ξ)γ(z | ξ) dz, (3.29)

can be computed efficiently. Hence, Rao-Blackwellization is useful when, in some sense,
part of the integration problem in (3.1) is analytically tractable. In fact, if we set Z = X
(and thus Ξ = ∅), the Rao-Blackwellized estimator (3.26) is given by ϕ̂NRB = E[ϕ(x)].
Clearly, if it is intractable to solve the integration problem in (3.1) in the first place, then
computing this “fully Rao-Blackwellized” estimator is also intractable (since they coin-
cide). Hence, there is a trade-off between using Monte Carlo methods to construct ran-
domized estimators, and the application of Rao-Blackwellization to these estimators. The
general idea that will be applied in this thesis is to make use of Rao-Blackwellization to
an as large degree as possible; see Papers E and F.

In the context of SMC, Rao-Blackwellization is often used to analytically marginalize
over part of the state-space. That is, similarly to (3.24), the state is split into two com-
ponents, xt = (zt, ξt). The component ξt is represented using particles, whereas zt
is marginalized. This results in the so called Rao-Blackwellized particle filter (RBPF)
(Chen and Liu, 2000; Doucet et al., 2000; Schön et al., 2005). The most well-known ap-
plication of the RBPF is for a class of SSMs in which zt is conditionally linear Gaussian.
The aforementioned marginalization then amounts to running a conditional Kalman filter
(Kalman, 1960) for each particle to marginalize zt.

For the vanilla Monte Carlo method, the variance reduction offered by Rao-Blackwelliza-
tion is straightforwardly quantified by considering a decomposition of variance as in
(3.28). This analysis, however, does not apply to more advanced Rao-Blackwellized
Monte Carlo methods, such as the RBPF. This issue is addressed in Paper G, where
the RBPF is analysed and a variance reduction expression akin to (3.28) is given.



4
Concluding remarks

This chapter concludes the first part of the thesis and points out possible directions for
future work. Note, however, that more detailed discussions can be found in the concluding
sections of the individual papers in Part II of the thesis.

4.1 Conclusions and future work

The contributions of the thesis can be grouped into two categories – those based on PGAS
and those based on Rao-Blackwellization.

The PGAS algorithm has been found to be a useful tool for a range of tasks related to infer-
ence and learning of dynamical systems. Various algorithms have been developed around
PGAS, addressing both Bayesian and maximum-likelihood-based learning as well as state
inference. It has been illustrated how PGAS can be used to solve the classical problem
of Wiener system identification in a challenging setting. Basic convergence results have
been obtained for PGAS. However, it remains a topic for future work to establish stronger
and more explicit ergodicity results, providing informative rates of convergence of the al-
gorithm.

Another direction for future work is to adapt PGAS to certain model classes for which
the basic algorithm is not applicable. PGAS relies heavily on so called ancestor sampling.
To implement this procedure, it is necessary to evaluate point-wise the transition density
function of the model under study (see Papers A and B for details). However, for many
models encountered in practice this is not possible. Indeed, the transition density function
may not even exist! One option is to study these specific models in more detail and thereby
try to modify the PGAS algorithm so that it becomes applicable in these scenarios.

Another possibility, however, is to note that many of the models for which ancestor sam-

33
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pling is problematic can be reformulated as non-Markovian latent variable models (see
Section 4.6 of Paper A). This is interesting, since we have shown that PGAS can be
useful for inference and learning of precisely such non-Markovian models. Hence, this
opens up for using PGAS also for the aforementioned model classes, for which ancestor
sampling is not directly possible. This is an encouraging result, since there has not been
much progress made in solving inference and learning problems for non-Markovian mod-
els. However, it remains to evaluate and to better understand the properties of the PGAS
method when applied to these models.

There are, of course, other limitations of the PGAS method as well. In particular: (i)
the method may converge slowly when there are strong dependencies between the states
and the parameters of the model, and (ii) the method can only be used for batch data (i.e.
offline). One interesting direction of future work is to investigate possible ways in which
these limitations can be mitigated.

The contributions of the thesis which are based on Rao-Blackwellization include the de-
velopment of a Rao-Blackwellized particle smoother (RBPS) and a method for online
Bayesian parameter estimation. Furthermore, the asymptotic variance of the RBPF has
been analysed and compared to that of the standard particle filter. An interesting topic for
future work is to establish a similar variance reduction result for the proposed RBPS, i.e.
to answer the question of how much we benefit from Rao-Blackwellization when address-
ing the smoothing problem.

The proposed method for online Bayesian parameter estimation is based on the RBPF.
The algorithm can be used for identification of nonlinear SSMs with an affine depen-
dence on the parameters. A Gaussian mixture representation of the posterior parameter
distribution p(θ | y1:t) is maintained. To mitigate the so called path degeneracy prob-
lem, which prevents accurate learning of the model parameters using a standard RBPF, a
mixing step is incorporated in the algorithm. Unfortunately, this gives rise to a computa-
tional complexity which scales quadratically with the number of particles. Future work
is needed in order to obtain a computationally more efficient algorithm. Furthermore, it
would be interesting to modify the algorithm so that it can be used also for non-affine
models. In particular, it should be possible to use the same idea for any model belonging
to the exponential family.

Finally, one direction of future work which applies to all the methods discussed through-
out the thesis, is to evaluate them in real applications. So far, the methods have primarily
been tested in simulation studies. While this is of course very useful as a first level of
evaluation, it is not until the methods are used to solve real and relevant problems that
their true values can be determined.

4.2 Further reading

The learning problem is discussed in a general setting in the textbooks by Hastie et al.
(2009) and Barber (2012). The latter contains one part dedicated to dynamical systems.
Ljung (1999); Söderström and Stoica (1989) provide a detailed coverage of the problem
from a system identification point of view. For readers who are interested in learning
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more about Monte Carlo methods, the books by Robert and Casella (2004); Liu (2001)
provide a thorough introduction. MCMC and SMC methods are discussed in detail in
the collections by Brooks et al. (2011) and Doucet et al. (2001), respectively. See also
Part VII of (Crisan and Rozovskii, 2011). Del Moral (2004) provides a extensive collec-
tion of convergence results for SMC. Finally, the textbooks by Cappé et al. (2005); Schön
and Lindsten (2013) focus on using Monte Carlo methods for inference and learning of
dynamical systems.
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