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We consider the analysis of data under mixture models where the number of components in the mixture
is unknown. We concentrate on mixture Dirichlet process models, and in particular we consider such
models under conjugate priors. This conjugacy enables us to integrate out many of the parameters in
the model, and to discretize the posterior distribution. Particle filters are particularly well suited to
such discrete problems, and we propose the use of the particle filter of Fearnhead and Clifford for
this problem. The performance of this particle filter, when analyzing both simulated and real data
from a Gaussian mixture model, is uniformly better than the particle filter algorithm of Chen and Liu.
In many situations it outperforms a Gibbs Sampler. We also show how models without the required
amount of conjugacy can be efficiently analyzed by the same particle filter algorithm.
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1. Introduction

Monte Carlo methods are commonly used tools for Bayesian
inference. Markov chain Monte Carlo (MCMC; see Gilks et al.
1996, for an introduction) is often the method of choice for batch
problems, where interest is in the joint posterior distribution of
static parameters conditional on a single batch of observations.
However, MCMC is inefficient for real-time, dynamic problems
such as target-tracking. In these dynamic problems the interest
is in the value of an unobserved, time-varying state, and new ob-
servations are obtained through time in order to make inference
about the value of this state at different time points. As each
new observation is made, there is a new posterior distribution
of interest, and it is often computationally infeasible to run an
MCMC sampler for sufficiently long to obtain a representative
sample from this new posterior. As a result of this problem with
MCMC, there has been much recent research into sequential
Monte Carlo methods, known as particle filters. A particle filter
approximates each posterior distribution by a swarm of weighted
particles, which are updated sequentially as each new observa-
tion is obtained. The first particle filters were suggested by West
(1992) and Gordon, Salmond and Smith (1993), and there is a
vast literature on how to implement particle filters efficiently
(see for example Liu and Chen 1998, Pitt and Shephard 1999,
Carpenter, Clifford and Fearnhead 1999, Gilks and Berzuini
2001, Fearnhead 2003). A good introduction to particle filters,
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which includes examples of their use in practice, is given by
Doucet, de Freitas and Gordon (2001).

Due to the success of particle filters for dynamic problems,
there is current interest in applying them to batch problems as
a competitive alternative to MCMC (e.g. Chopin 2002). In this
paper we use a particle filter to analyse data from mixture mod-
els. While Chopin (2002) gives an example of a particle filter
being applied to a Gaussian mixture with a known number of
components, we consider mixture of Dirichlet process (MDP)
models (see Antoniak 1974), where the number of components
(or clusters) is unknown. A simple view of these models is that
each observation can be assigned to a “cluster”, with all obser-
vations from a given cluster being independently drawn from
the same distribution. Observations from different clusters are
drawn independently from different distributions, and the num-
ber of clusters in this model is unknown. These models have been
used for nonparametric and semiparametric Bayesian analysis
(Escobar 1994, Bush and MacEachern 1996), Bayesian den-
sity estimation (Escobar and West 1995, Muller, Erkanli and
West 1996) and generalized linear models (Mukhopadhyay and
Gelfand 1997).

We consider a subset of MDP models where:

(C1) conditional on the assignment of observations to clusters,
the joint posterior probabilty of all unknown parameters can
be calculated analytically.
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(C2) the posterior probability of any assignment of the first »
observations to clusters can be calculated analytically (up to
a normalising constant).

(These two conditions are closely related, as if the integration
required for (C1) is tractable, then so will the integration re-
quired for (C2).) For models which satisfy (C1) and (C2), the
posterior distribution can be written explicitly as a mixture distri-
bution. Each term in the mixture relates to a different assignment
of observations to clusters. (The intractability of the inference
problem is due to the number of terms in this mixture increasing
exponentially with the number of observations).

The general particle filter approach to this problem is well
established (see Quintana 1998, MacEachern, Clyde and Liu
1999, Chen and Liu 2000), with each particle consisting of a
specific assignment of observations to clusters. The key to the
efficiency of a specific particle filter is how the particles are
updated as each new observation is processed. For each possi-
ble assignment of the first #» observations to clusters, with say
k distinct clusters, there are k£ 4 1 possible assignments of the
(n + 1)st observation to a cluster (it can be assigned to any
of the existing clusters, or to a new cluster). Thus given N
particles for the first n observations, there will be M(>2N)
possible particles for the first (n 4+ 1) observations. Particle
filters differ in how they “resample” these M possible parti-
cles to produce N particles for the first (n + 1) observations.
(This is necessary to stop the cost of processing each observa-
tion from increasing exponentially.) Numerous resampling algo-
rithms exist (for example Akashi and Kumamoto 1977, Tugnait
1982), but currently the standard method is that of Chen and Liu
(2000). Instead of using this resampling method, we propose us-
ing the resampling algorithm of Fearnhead and Clifford (2003).
This algorithm propagates a subset of the M particles which
have largest weight, and uses stratified resampling (Carpenter,
Clifford and Fearnhead 1999) to resample from the remaining
particles. This resampling is unbiased, and optimum in the sense
of minimizing some mean square error loss (see Section 4 for
more details). In Fearnhead and Clifford (2003) it was shown
to be between one and two orders of magnitude more effi-
cient than the method of Chen and Liu (2000) for analyzing
a change-point model. We discuss the comparitive efficiencies
of the particle filter and Gibbs sampler methods in detail in
Section 5.

We illustrate our method using a Gaussian mixture model. In
this model each observation is drawn from a Gaussian density
with an unknown mean and variance that varies between clusters.
We assume conjugate priors for the unknown parameters, so
that conditions (C1) and (C2) hold. We use this model in our
simulation studies, where we evaluate the performance of our
particle filter. We compare our particle filter to both a particle
filter using the resampling scheme of Chen and Liu (2000) and
a Gibbs sampler. In general, our method is the more efficient
particle filter method. In fact for some problems our particle
filter is “super-efficient”, in the sense that inference based on N
weighted particles is more accurate than inference based on an
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independent sample of size N from the posterior distribution of
assignments of observations to clusters. It also out performs the
Gibbs sampler on many of the data sets we consider. In particular
the particle filter performs well when analyzing the smaller data
sets, and data from models where each observation is informative
about the corresponding cluster’s parameters (relative to the prior
for these parameters).

In practice it is possible to weaken the conditions (C1) and
(C2) that we imposed on our MDP models. In this case, any
intractable integration needs to be computed using either Monte
Carlo or numerical integration. We illustrate the practicality of
this by considering the Gaussian mixture model under non-
conjugate priors the clusters’ means and variances. When an-
alyzing the galaxy data of Postman, Huchra and Geller (1986),
for a fixed number of particles and using a simple Monte Carlo
integration scheme, the particle filter was about half as accurate
as the particle filter when analyzing the same data under a model
with conjugate priors. See Section 4.3.

2. Mixture Dirichlet process models

Mixture Dirichlet process (MDP) models were introduced by
Ferguson (1973). They are commonly used in Bayesian nonpara-
metric and Bayesian semi-parametric methods. One motivation
behind such methods is to pool information across a number of
similar experiments. Another application of MDP models is for
Bayesian density estimation. See the introduction for references
which describe the use of MDP models in practice.

Blackwell and MacQueen (1973) introduced a Polya-Urn for-
mulation of MDP models, which we use in the following model
formulation. Consider data y;., = (y1, ..., y,) from n experi-
ments Under the MDP model each y; belongs to a cluster. For
any given cluster, all observations belonging to that cluster are
independent draws from the same distribution. Let an assigment
Z1. = (z1, ..., z,) be a vector of cluster labels, and & (which
is a function of z;.,) be the number of distinct clusters in the
assignment z;.,. Thenz; € {1,...,k} foralli =1,...,n, and
each cluster contains at least one observation.

We will assume that each observation is drawn from a member
of a family of distributions, which is parameterized by 6. Let
f(»;0) denote the density of y for a given value of 8. (There
will be a different value of 6 for each cluster.)

The probability distribution for y;., under a MDP model has
a hierarchical form. Firstly we have a Dirichlet-based prior for
Z1.m, 7(21:n). Then conditional on there being & clusters under
our assignment, we have k parameters 6;.; = (61, . .., 6;), which
are independently drawn from a known prior 7 (). Finally, con-
ditonal on z;., and 0;., observation y; is drawn independently
from f(y;0:,). Thus we have the following joint density

k n
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The prior for z;.,, is parameterized by «, and can be defined
recursively by

nj/(l+()l) f0rj=1,...,k,‘

a/(i +a) j=k+1 ' &

pziv1 =Jjlz1i) = {
where k; is the number of clusters in the assignment z;.;, and
is the number of observations that z;.; assigns to cluster j.

In this paper, we mainly consider a special class of MDP
models. We will assume that:

(C1) conditional on knowning the assignment, the joint poste-
rior probabilty of all unknown parameters can be calculated
analytically.

(C2) the posterior probability of any assignment of the n ob-
servations to clusters can be calculated analytically (up to a
normalising constant).

A sufficient condition for both (C1) and (C2) to hold is that
the integral of (1) with respect to 6, is tractable. The structure
of the MDP model is such that conditional on the assignment,
the parameters 6; and 6; are independent for i # j. Thus (C1)
and (C2) will hold providing a conjugate prior for 6 is used
(for example see the multinomial-Beta model of Quintana and
Newton 2000, and the example below).

The analysis of MDP models simplifies if conditions (C1) and
(C2) hold. In particular we can write

P(len, 01k | yl:n) = Z p(zlzn | yl:n)p(elzk | Yins Zl:n)a (3)
Zln

where the p(0;.x | Y11, Z1:n) terms can be calculated analytically,
and the p(zy., | y1.x) terms can be calculated up to a constant
of proportionality. In practice it is not possible to work with
(3) as the number of terms in the sum increases exponentially
with n, and the analysis of MDP models, even when conditions
(C1) and (C2) hold, is still very challenging. As we will see, the
usefulness of (3) is that an approximation to p(z1.,, O1:% | Y1:n)
can be obtained from an approximation to p(z1., | ¥1.,). The
latter distribution is over a (discrete) space of smaller dimension
than the former, and is substantially easier to approximate using
particle filters.

One example of an MDP models satisfying these conditions
is the following Gaussian mixture model.

Example 1 (Gaussian mixture model). Each observation is
drawn from a univariate Gaussian distribution with unknown
mean and variance. For this model § = (i, 0'2), the mean and
variance of the Gaussian distribution. We assume an inverse
gamma prior for o2; so that if s = 1/0% then

7(s) = s b exp{—bs}/ T'(a),

where the shape parameter, a, and the scale parameter, b, are
known, and I'(@) is the gamma function. Conditional on s, w
has a normal prior distribution with mean n and variance t/s.
This is the standard conjugate prior (see, for example West and
Harrison 1997, Sections 2.5 and 17.3). Conditional on an assign-
ment zy.,, the posterior distribution of s; and u; (the parameters
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for the jth cluster) depend on 7; the number of observations in
the jth cluster, y; the mean of these observations, and c}f the
variance of these observations.

We get that p(s; |n;, 7;, (7 2) is a Gamma density with
shape parameter a + n;/2 and scale parameter b+n j(a +
- 77)2/(1+n]r))/2 While p(u; | nj, y;, a/,sj)rsaGaussmn
density with mean (n +#n,7y;)/(1 +n;7) and variance 7 /(s; +
Sjl’ljf).

Furthermore, the posterior probability of assignment z;., is
proportional to

JT(Zln)l_[{baF(a +n1/2)(b+nj[6jg +()7j _ n)z

I(a)y/n;t +1
/a +njr)]/2)‘("+”f/2)}.

3. Particle filter approach

Particle filters were developed for analysing dynamic problems
in real-time. For example, consider inference about an unob-
served state which varies over time. Inference is based on a set
of observations made at discrete points through time. We let y,
denote the observation at the nth time point, and x,, denote the
value of the state at that time point. We assume a prior for x;, and
a model which specifies p(x,+1 | x,) and p(y, | x,). Interest is
often in the posterior distributions p(x, | y;.,) for all time points
n=12,....

For a given time point #n, a particle filter will approximate
the posterior distribution p(x, | y1.,) by a set of N weighted
particles. The particles, {x,g) i1, are just potential realisations of
the state. Each partlcle is assigned a weight, and we denote the set
of weights by {w)’ }¥ |, and assume the set of weights has been
normalised to sum to 1. The posterior distribution, p(x, | y1:1),

is approximated by a discrete distribution with support {x,(1 DN il

and which, fori = 1, ..., N,assigns weight w,,)tothevaluex( ),

Thus for any function of the state, g(xn) we get the approximation

E(g(Xy) | y1a) & Z wg(x). )

i=1

Thus given a set of particles at time n, {x }1 1» and their nor-
malised weights {wn }¥_,, we can approximate both the prior at
time n + 1:

N
DPXnt1 | 1) = Z wﬁ,i)P(an | x,(,i)); (5)

i=I

and the posterior at time n + 1:

N
PGt | Y1) o Y wp(xurr | x0) pOngt |xas1). (6)
i=1

In particle ﬁlters on receipt of the latest observation y, |, the
particles {x,, l |» and weights {wn } .|, are updated to approx-
imate (6). The simplest method to do this is to use importance
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sampling with (5) as the proposal density (Gordon, Salmond
and Smith 1993). This involves simulating the new particles,
®© 13X, from (5) and assigning particle x,(qlll a weight pro-
portional to p(y,+1 |xff}r1). More efficient algorithms exist; for
example using a better proposal density (Pitt and Shephard
1999), using stratified sampling to simulate from (5) (Carpenter,
Clifford and Fearnhead 1999), or MCMC (Gilks and Berzuini
2001, Fearnhead 2003). A review of particle filters is given
by Liu and Chen (1998) and Doucet, de Freitas and Gordon
(2001). All (sensible) particle filters satisfy convergence results
which give convergence in probability of estimates of the pos-
terior mean of (well-behaved) functions of the state (see equa-
tion (4)) as the number of particles tends to infinity (see Crisan
and Doucet 2000). Under certain regularity conditions a central
limit theorem also holds (Del Moral and Guionnet 1999).

For our problem we introduce artificial time, so that observa-
tion y, is thought to occur at time n. For general MDP models our
choice of state would be (z.,, 6;.x). However for MDP models
satisfying our conditions (C1) and (C2) We can choose our state

to be just z;. " Given a set of particles, {z1 o and associated

{x,

l 1°
weights, {wn }l |» we can estimate the full posterior by

N
PE1n, Ok | yim) & Z wg,’)P(lek, Z1mn |Z(11;)n’ yl:n)-
i=1

The densities in the sum on the right-hand side of this equation
can be calculated explicitly due to assumption (C1). (Remember
that, although it is not explicit in our notation, k is a function
of z1.,). Furthermore, posterior expectations of functions of z1,,
and 6., can be approximated by

N

E(g(zlzna elzk) | y1:n) ~ Z wﬁz[)E(g(Z(ll:)n’ 01 k) | Zl o Yl n)

i=1
The expecations on the right-hand side of this equation can either
be evaluated analytically or approximated by simulation. See
Quintana and Newton (2000) for examples of this in practice.

The idea of reducing the dimension of the state via integration
(in our case by integrating out the parameters 6;.;) has been
termed collapsing (Liu and Chen 1998, see also Chen and Liu
2000) or marginalising (Liu, Chen and Logvinenko 2001), and
can result in a substantial increase in efficiency of the particle
filter. For a Binomial mixture model, Liu (1996b) implements
a particle filter with state (zy.,, 6.x) while MacEachern, Clyde
and Liu (1999) implement a marginalised particle filter with state
z1.,. The latter is up to an order of magnitude more efficient that
the former (see MacEachern, Clyde and Liu 1999). Hence we
consider only implementing the marginalised particle filter in
the following.

Given a set of N particles which approximate p(zi., | yi.,)
we can obtain a discrete approximation of p(zy.,+1 | Vi:ne1) ina
way analagous to (6). For any given particle z(lij,, with k; distinct
clusters, there are k; + 1 possible allocations for the (n + 1)st ob-
servation. Thus our discrete approximation to p(zi.+1 | Vim+1)
has support(zln,]) forj=1,...,kk+1landi =1,..., N.
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The probability mass assigned to point (z1 ..» J)is proportional to

o) [ i)
T p(E [ )
which can be evaluated (up to a common normalizing constant)
under out assumption of condition (C2).

We can view this discrete approximation as an approximation
basedon M = Z,N: 1 (ki +1) particles each with some associated
weight. We denote these “putative” particles (upon renumber-
ing) by {ZT;(,I;)H}i:l _____ v, and their weights by {w;‘i)l}, I
order to limit the computational cost of the particle filter algo-
rithm we need to reduce this set of M weight particles to a set
of N weighted particles, and we do this via resampling. Various
possible resampling strategies exist, and we discuss the possi-
bilities next.

’

3.1. Resampling algorithms

As stated above, the basic idea of the particle filter is to se-
quentially update the particles, commonly by using importance
sampling to generate a weighted sample from (6), using (5) as
a proposal density. The resampling stage of these algorithms is
used when generating a sample from the proposal density. Gener-
ating independent samples from (5) is equivalent to multinomial
resampling of the particles {x, l)}N | (see for example Gordon,
Salmond and Smith 1993); so that if K; is the number of times
particles x s resampled then

(K1, ..., Ky) ~ Multinomial(N, w", ..., w{").

This produces a set of resampled particles {x,,(’ )}N | such that,
fori = 1,..., N, precisely K; of these resampled particles
are rephcates of xn) The particles at time n» + 1 are then
obtained by drawing, for j = 1,..., N, x(’)1 independently

from p(x,41 | XY )). (Itis straightforward to show this is equiv-
alent to drawing an independent, identically distributed sample
from equation (5)). Improvements on this strategy exist, such as
residual sampling (Liu and Chen 1998) and stratified sampling
(Carpenter, Clifford and Fearnhead 1999), which aim to reduce
the variance of each K;.

While such resampling algorithms are standard practice, there
are two features of our problem that means that these algorithms
are inefficient. These features are that the state-space is discrete,
and that there are sufficiently few distinct descendants of each
current particle that it is feasible to calculate the weights of all
possible putative particles at the next time-step. As a result, there
is no advantage of having multiple copies of particles.

To illustrate this consider a simple example. The set of five
particles {1, 1, 1, 2,2} with weights {0.3,0.1,0.2,0.3, 0.1} is
equivalent to the following set of two particles, {1,2} with
weights {0.6, 0.4}. (In a similar way all the information in any set
of N weighted particles which contains only D distinct values
can be conveyed in a set of just D weighted particles.) Further-
more there is no advantage in having multiple copies of particles
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(e.g. 3 copies of particle 1) in terms of being able to explore
more fully the future values of particles which currently have
large weights (this is the main reason for resampling and hav-
ing multiple copies of particles in more standard applications
of particle filters). Even if we store just one copy of each dis-
tinct particle, all their possible descendants at the next time-step
will be considered. Thus the set of putative particles of the two
current particles, {1, 2}, will be as rich as the set of putative par-
ticles of the five current particles, {1, 1, 1, 2, 2}. Although only
a single copy of each particle is kept, multiple descendants of
any particle may appear in the resampled particles at the next
time-step. Thus duplicated particle values in a set of particles is
wasteful.

Here we consider two resampling algorithms specifically de-
signed for the type of problem that we are considering, and
which avoid wasteful duplication of particle values. We outline
each briefly below. In order to help the discussion of these re-
sampling algorithms it is useful to think about the resampling
algorithms in the following way. Using the notation of the pre-
vious section, prior to resampling the particle filter has a set of
M (> N) putative particles, {21(:1)+1 = 1> with associated weights
{w Z:’_l} . A resampling algorithm then produces a new set of
weights {w L (Wthh is arealisation of some vector-valued
random variable {W +1} 7 1) where precisely N of these new
weights are non-zero. (To reduce the number of particles to N
as required, all those putative particles whose new weight is zero
are removed.)

We define such a resamphng algorithm to be unbiased if
E( W(')l) =w'D foralli = 1,..., M. If the resampling al-

n+1
gorithm is unbiased then for any sultable function g,

(1) (1) *(l)
(Z +1g 1n+l> an-Hg 1n+1

So the expected value of any function of the particles after resam-
pling is equal to its value prior to resampling. Both the following
resampling algorithms are unbiased.

The first resampling algorithm was devised by Chen and Liu
(2000) Given N particles at time 7, {z(1 Wli=1,...n, With weights
{w,, }i=1....N, the new particles at time » + 1 are obtained by

(l) @ . .
i1 = (1,,,]) fOI'l:l,_,_,N’

where j is drawn from a discrete distribution with sup-
port {1 , ki + 1}, and a probability mass proportional to
p((zl . ]) | Vi:n+1) assigned to value j. Regardless of the choice
of j, the weight assigned to particle 2(131 +1 1s proportional to

ki+1

w > p((
=

After calculating the set of new particles and their weights, a
further resampling (called rejuvenation) occurs if the sum of the
square of the (normalised) weights exceeds some abitrarily cho-
sen constant. This rejuvenation consists of independent draws

1an)|J/1n+1)/P( ln|y1n)
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from the discrete distribution that places probability mass w,

on point 2(1’31 4

Without the rejuvenation stage, this method is equivalent to
the sequential imputation scheme method of Kong, Liu and
Wong (1994) (see also Akashi and Kumamoto 1977). The draw-
back with sequential imputation is that the weights can become
very skewed, with a large number of particles having negligible
weight. Rejuvenation allows such particles to be removed and
replaced by extra copies of particles with larger weights. (While
this temporarily allows duplicated values in our set of particles,
this duplication vanishes as each particle is then propogated for-
ward.) See Quintana and Newton (2000) for an example of how
rejuvenation can increase the efficiency of the particle filter over
that of sequential imputation.

The second resampling algorithm was devised by Fearnhead
and Clifford (2003), and is the resampling procedure that we
propose using for analyzing data from the models we are consid-
ering. The basic idea is to keep all of the putative particles whose
weight is greater than some threshold, 1/c, and resample from
the remaining putative particles (the stratified sampling algo-
rithm of Carpenter, Clifford and Fearnhead 1999, is used, which
ensures no putative particle is resampled more than once). This
threshold is chosen so that the resulting resampling algorithm
is optimum, over all unbiased resampling algorithms (which in-
cludes the resampling algorithm of Chen and Liu 2000), in terms
of minimising

M 2
S E(, — w)). g

i=

—_

a measure of the variability introduced through the resampling
(see Fearnhead and Clifford 2003, for the proof). The reciprocal
of the threshold, ¢, is the unique solution of

> minfen;). 1

i=1

}=N.

The weight of resampled particles is set to 1 /¢, and the weight of
the propagated particles is kept unchanged. (There are similari-
ties between this resampling appraoch, and the rejection control
idea of Liu, Chen and Wong 1996, both methods employ a cut-
off, with particles whose weight is larger than this cutoff being
automatically kept.) For the changepoint problem analyzed in
Fearnhead and Clifford (2003), a particle filter using this re-
sampling algorithm was nearly two orders of magnitude more
efficient than one using the resampling algorithm of Chen and
Liu (2000). The following Section contains a comparison of par-
ticle filters based on these two resampling methods for the MDP
model.

4. Results

The aim of our simulation study is to see whether particle filters
offer a competitive alternative to MCMC for mixture models,
and what characterizes the problems where this occurs. Similar
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comparisons have previoulsly been done; for example, a com-
parison of a particle filter (using the resamplig algorithm of
Chen and Liu 2000) and a Gibbs sampler is given in Quintana
and Newton (2000). In that comparison, each observation con-
sists of a binary time series, which was modelled by a first order
Markov model. In the simulation study the Gibbs sampler was
consistently, and often substantially, more efficient than the par-
ticle filter. Quintana and Newton (2000) concluded that it is
doubtful whether a particle filter could be designed to efficiently
analyze a large data set from such mixture models.

More encouraging are the results from Fearnhead and Clifford
(2002) where a particle filter using their resampling algorithm
was shown to be between one and two orders of magnitude more
efficient than the particle filter of Chen and Liu (2000). If a
similar increase in efficiency occurs for the MDP models that
we are considering, then such a particle filter will be competitive
with, and at times more efficient than MCMC methods such as
the Gibbs sampler.

In order to guage the efficiency of particle filters relative to
MCMC, we compared both particle filters with a Gibbs sampler.
We chose the Gibbs sampler which is most similar to the particle
filter. For a data set containing n observations, the state of the
Gibbs sampler that we used is z;., (i.e. the same state as is used
in the particle filter). In one iteration of the Gibbs sampler we
sequentially update z;, fori = 1, ..., n, by drawing a new value
from the full conditonal of the assignment of the ith observation
conditional on the data and the assignments of the other n — 1
observations. The computational cost of running such a Gibbs
sampler for N iterations is similar to running a particle filter with
N particles. This Gibbs sampler takes advantage of the conjugate
priors by integrating out the parameters, 0;.;. This collapsing
scheme generally improves the efficiency of the Gibbs sampler
(see Liu 2001, pp. 146—-151).

Our comparisons of these three algorithms are based primar-
ily on analyses of simulated data. We tested each algorithm on
data sets simulated from a Gaussian mixture model. We analyzed
the data under the model described in Example 1. We also com-
pared each algorithm on the galaxy data (Roeder 1990), which
is a standard test data-set for mixture models. Throughout our
comparison our aim was purely to compare the computational
efficiency of the three algorithms.

We summarize the performance of each method on a given
data set using the effective sample size (ESS) of Carpenter,
Clifford and Fearnhead (1999). (This is different to the effec-
tive sample size of Liu 1996a, which cannot be used to measure
the performance of particle filters which use resampling). This
involves running each particle filter (or Gibbs sampler) indepen-
dently 100 times on each data set. For a specific function of the
state of interest, the ESS is just the ratio of the estimate of the
posterior variance of this function to the variance in estimates
of the posterior mean of this function. For example, if the ith
independent run of a particle filter produces an estimate, M;, of
the posterior mean of the number of components in the model,
and an estimate, (M?);, of the posterior mean of the square of the
number of components in the model, the the ESS (for estimating
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the number of components in the model) is

100 2 72 100
2H(M?); /100 — M §
Z’Toh( /19 . where M = M;/100.
2= (Mi — M)?/100 i=1

This measure of efficieny can be used for both particle filters
and MCMC algorithms. The interpretation of the ESS is that if
a particle filter, say, has an ESS of L, then inference based on
that particle filter is roughly as accurate as inference based on an
independent sample of size L from the full posterior distribution.
A comparison based on this ESS is equivalent to a comparison
based on the variability of estimates of the function of interest,
across independent runs of the particle filter or Gibbs sampler.
Such a comparison is sensible as any bias of each filter appears
negligible.

For simplicity, in the following results we choose our func-
tion of interest to be the number of clusters. (This avoids the
problems of summarizing the output that is caused by the poste-
rior distribution being invariant under relabelling of the mixture
components, see Stephens 2000b). Similar results would be ob-
tained for different choices of this function. For ease of exposi-
tion we will denote the particle filter algorithm which uses the
Fearnhead and Clifford (2003) resampling algorithm as FC, the
particle filter which uses the Chen and Liu (2000) resampling
algotihm as CL, and the Gibbs sampler as GS in the following
sections.

4.1. Gaussian mixture models

We simulated data from a 3-component Gaussian mixture model:
N(0,0.5%) with probability 1/2,
N(u,0.5%) with probability 1/6,
N(Qu,o?) with probability 1/3.

X ~

We simulated 8 data sets, each consisting of 200 observations.
Four data sets were simulated witho = 0.5and u = 0.5, 1,2, 5
respectively, and four witho = 2.5and u = 0.5, 1, 2, 5 respec-
tively. We analyzed each data under the Gaussian mixture model
of Example 1, with prior parameters « = 1/2,a = 1,b = 1,
n = 0and t = 5°. (We did not simulate data directly from this
model of Example 1, partly because it is unrealistic in practice
to believe that the model used for analysis is the true model; but
also because the Gaussian mixture model we did simulate from
enables us to directly alter the features of the density of X;, and
to see how that effects the computational performance of each
of the three algorithms.)

We analyzed each data set independently with each of the
three algorithms. Both particle filter algorithms used 5,000 par-
ticles, where as the Gibbs sampler was run for 5,500 iterations,
with the results from the first 500 iterations being discarded.
(Note increasing the number of particles or iterations will affect
the ESS of the corresponding algorithm proportionately: for ex-
ample, doubling the number of particles will roughly double the
accuracy of the particle filter.) The performace of CL depends on
the what rule for performing rejuvenation (the extra resampling
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Table 1. Comparison of the efficiency of two particle filters, FC using the resampling algorithm of Fearnhead and Clifford (2003) and CL using
the resampling algorithm of Chen and Liu (2000), and a Gibbs sampler, GS, at analysing 200 observations from different Gaussian mixture models

o=05 o=25
uw=20.5 n=1 w= nw=>= n=20.J5 n=1 nw=2 nw=>=
FC 2.8 x 10* 730 110 2.4 x 10° 380 29 97 600
CL 5,300 340 11 870 270 9 43 54
GS 370 330 470 270 300 220 380 370

The values in the table are the ESS for estimating the number of components in the mixture; the larger the ESS the more efficient the algorithm is.
The computational cost of the GS is 10% greater than that of either particle filter.

Table 2. Comparison of the efficiency of two particle filters, FC using the resampling algorithm of Fearnhead and Clifford (2003) and CL using
the resampling algorithm of Chen and Liu (2000), and a Gibbs sampler, GS, at analysing 100 observations from different Gaussian mixture models

o=05 oc=25
uw=20.5 n=1 u=2 nw=>= n=20.5 n=1 nw=2 nw=>=
FC 1.8 x 10° 1,200 160 3.0 x 10° 850 41 3,900 1,900
CL 5,500 320 18 750 350 13 1,700 140
GS 590 580 350 720 780 410 720 790

The values in the table are the ESS for estimating the number of components in the mixture; the larger the ESS the more efficient the algorithm is.
The computational cost of the GS is 10% greater than that of either particle filter.

stage used when the weights become skewed) is chosen. Rejuve-
nation was used when the coefficient of variation of the particles’
weights exceeded some threshold. We experimented with val-
ues of this threshold between 2 and 50, and found the results we
got to be qualitatively similar. The results we present are for a
coefficient of variation of 50.

As mentioned above, we summarized the performance of the
three algorithms by their ESS at estimating the number of com-
ponents in the mixture. The results are given in Table 1. In order
to see the effect that the size of the data set had on the perfor-
mance of each algorithm, we repeated our study, but just ana-
lyzed the first 100 observations from each data set. See Table 2.

The FC particle filter performs uniformly better than the CL
particle filter. On 11 of the 16 data sets it also out performs
the Gibbs Sampler (GS), though the GS gives a more robust
performance, with its ESS varying least across the different data
sets. For four of the data sets, the ESS of the FC particle filter is
greater than the number of particles used. In these cases, the FC
algorithm is “super-efficient” in the sense that inference based on
5,000 particles generated by the FC algorithm is more accurate
than inference based on an independent sample of 5,000 from
the posterior distribution of the assignments. (For smaller data
sets, the FC algorithm is super-efficient more frequently; results
not shown.)

In general, the size of the data set affects the performance
of the FC algorithm most, and the increase in efficiency of the
FC algorithm, as compared to the GS, is more marked when
analyzing smaller data sets. Conversely, we would expect that
the GS would be relatively more efficient, as compared to the
FC algorithm, if larger data sets were analyzed.

The performance of both particle filters, and in particular the
FC algorithm, varies between data set. The FC algorithm per-
formed best for data sets simulated under u = 0.5 and u = 5.0.
When p = 0.5 both particle filters performed well, but it is the
n = 5.0 case that shows the largest difference between the FC
and the CL algorithms.

The difference between the two algorithms is due to the re-
sampling algorithm used. The difference between FC resampling
and other resampling algorithms (such as the CL algorithm) is
that putative particles with large weights are automatically kept.
If the weights of the putative particles are heavily skewed then
many particles will be kept, and the loss of information due
to resampling, for example as measured via (7), will be small.
Conversely, if the weights of all putative particles were identical
then the FC resampling algorithm is just a stratified version of
multinomial sampling, and is very similar to the CL resampling
algorithm. When p = 5.0, the weights of the putative particles
are skewed (since the densities in the mixture model are well
seperated, and hence any new observation can be placed in the
correct cluster with high probability) and hence we see a large
improvement in the performance of the particle filter when the
FC resampling algorithm is used.

4.2. Galaxy data

We also compared the efficiency of the three algorithms at an-
alyzing the galaxy data of Postman, Huchra and Geller (1986).
We actually analyzed the version of this data given in Roeder
(1990), which omits one of the original observations (this is the
form of'the data that has previously been analyzed by Richardson
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density

0 10 20 30 40

Fig. 1. The galaxy data. The data is shown by the points. Two density
estimates are shown. The full-line is the posterior estimate of the density
under the MDP model. (The plot is based on the output of the FC particle
filter with 50,000 particles). The dotted line is a kernel density estimate,
obtained using the Splus function density

and Green 1997, Stephens 2000a, amongst others). The data is
shown in Fig. 1.

To analyze this data, we again assumed the Gaussian mix-
ture model of Example 1, with prior parameters« = 1, a = 1,
b =1,n=20and T = 15°. We ran each particle filter with
50,000 particles, and we ran the Gibbs sampler for 55,000 iter-
ations, discarding the output from the first 5,000 iterations. The
performance of each method, as again measured via the ESS
for estimating the number of mixture components, is shown in
Table 3. The GS and the FC particle filter perform similarly (the
GS takes about 10% more time to run than the FC algorithm),
with the CL algorithm substantially less efficient.

The posterior expectation of the number of components is
5.75 under this model. Figure 1 shows an estimate of the mixture
density, obtained from the output of the FC algorithm.

4.3. Dealing with non-conjugate priors

So far we have solely considered models with sufficient conju-
gacy that all necessary integrations, required to marginalise the

Table 3. Comparison of the efficiency of two particle filters, FC using
the resampling algorithm of Fearnhead and Clifford (2003) and CL
using the resampling algorithm of Chen and Liu (2000), and a Gibbs
sampler, GS, at analysing the galaxy data

Algorithm ESS

FC 1,640
CL 436
GS 1,800

The values in the table are the ESS for estimating the number of compo-
nents in the mixture; the larger the ESS the more efficient the algorithm
is. The computational cost of the GS is 10% greater than that of either
particle filter.

Fearnhead

posterior density to solely the posterior density for the cluster as-
signments, can be done analytically. For many problems this will
not be the case, and here we give an example of how marginalis-
ation can still be performed, with integrals being evaluated via
Monte Carlo methods were necessary.

Consider the Gaussian mixture model of Example 1, but as-
sume that the prior for the mean associated with cluster j is
now Gaussian, with mean 7 and variance 7. The resulting joint
prior for (1, s;) (remember that s; is the inverse of the variance
associated with cluster j) is no longer conjugate.

Conditional on s, the posterior for u; is still Gaussian, with
mean

ntTsny;
1+ 1sn;

and variance t/(1 + ts;n;), where n; is the number of obser-
vations assigned to cluster j, and y; is the mean of those ob-
servations. However the posterior for s; can be only written up
to a normalising constant, and is proportional to the following
function (the dependence of this function on z;., and yy., is not
made explicit in this notation), for s; > 0:

fis)) =m(s)sy"?

52
sjn;o;

Sin; _ —
JJ (n_yj)Z_—}(1+Sjan) 1/2’

XEeXpy — ———— el
2 +2Sjl’ljf 2

where & ]2 is the variance of the observations assigned to cluster ,
and 77 (s;) is the Gamma prior for s ; (which has parameters a and
b). Furthermore the posterior distribution for the assignments is

k o0
p(zlzn|y1:n)0(7[(zl:n)1_[</ f(Sj)de),
i=1 \70

where k is the number of components in z1.,.
To simulate from the posterior for s; we found that rejection
sampling with a Gamma proposal density

q(s) oc sTm/271 exp{—(b —i—nj&f/Z)s}, fors > 0,

was efficient. To calculate p(z, | z1.n—1, Y1:n), requires evaluating
the integral |, 0°° f(s;)ds;, which we evaluated using importance
sampling with proposal density g(s).

We analyzed the Galaxy data under this model, using the
same parameter values as in the previous section. We just tried
the FC particle filter algorithm (the non-conjugacy means that
the Gibbs Sampler algorithm we had been using could not be
applied to this problem). The results (again measured in terms of
the ESS for estimating the number of components) are shown in
Table 4, for different numbers of particles, NV, and for different
numbers of draws, Nys, from the importance sampling density
which were used to evaluate the integrals required to calculate
P(zn | z1:0—1, Y1:n)- Despite the intractability of some integrals
for this problem, the performance of the particle filters is still
good. Even for the particle filter with 50,000 particles, and which
used 40 draws in the importance sampling, it takes only a few
minutes to analyze the galaxy data on a fast PC.



FParticle filters for mixture models

Table 4. The efficiency of a particle filter, using the resampling algo-
rithm of Fearnhead and Clifford (2001), when analyzing the Galaxy
data under a non-conjugate prior. Results are given for algorithms us-
ing different numbers of particles N, and different numbers of draws
from the proposal density, Nis, in the importance sampling step

Nis
N 10 20 30 40
10,000 77 150 167 171
50,000 145 270 337 405

The values in the table are the ESS for estimating the number of compo-
nents in the mixture; the larger the ESS the more efficient the algorithm
is.

There are two forms of inaccuracy in the particle filter algo-
rithm: the inaccuracy through approximating the posterior dis-
tribution for assignments by a finite number of particles; and in-
accuracies in calculating p(z, | zj.,—1, V1.n)- The former is con-
trolled by the number of particles, N, used, and the latter by
the number of draws from the proposal density, Nis, that are
used in the importance sampling. To increase the performance
of the particle filter, both have to be increased together. For ex-
ample, if we fix N = 10,000, and consider increasing Nyg, we
see a noticeable improvement in accuracy as we we increase Nyg
from 10 to 20, but little improvement in accuracy as we increase
Nis further. This is because, for N = 10,000 and Nig = 20,
it is the approximations due to the number of particles that is
most affecting the accuracy of the particle filter. Any further
increase in Nyg only reduces errors in the less important approx-
imations (those in calculating p(z,, | z1:n—1, V1:n)), and hence has
little effect on the overall performance of the particle filter. By
comparison, with N = 50, 000, the performance of the particle
filter is substantially improved by each increase in Njs.

5. Discussion

In this paper we have considered using particle filters to analyze
data from mixture models. Whilst this has been previously con-
sidered, we have proposed the use of the resampling algorithm
of Fearnhead and Clifford (2003), in the particle filter algorithm.
Simulation results show the resulting particle filter to be more
efficient than the particle filter of Chen and Liu (2000). It has
been pointed out by a referee that the CL algorithm can be im-
proved by performing resampling of the particles at time ¢ based
on their weights given the observations up to time # + 1. The
result, particularly if the resampling is performed via residual
or stratified resampling, is for the CL algorithm to more closely
mimic the FC algorithm. The resulting version of the CL algo-
rithm will still suffer from occasions where there are multiple
copies of identical particles, which will lead to inefficiencies
when compared to the FC algorithm.

The particle filter with the Fearnhead and Clifford (2003)
resampling algorithm is also a competitive alternative to an
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MCMC method. It is particularly well suited to smaller data
sets. Sequential methods tend to struggle for large data sets, as
Monte Carlo error acculumates over time. However, if observa-
tions are very informative about which cluster they belong to,
then the extra Monte Carlo error introduced by the FC algorithm
processing that observation will be small, and the FC algorithm
can maintain its efficiency as a large number of observations
are processed. (This can be related to a large skewness in the
weights of the putative particles, which means that the error in-
troduced by the FC resampling algorithm will be very small.)
In some cases, this particle filter was super-efficient, that is in-
ference based on N particles from the filter was more accurate
than inference based on an independent sample of size N from
the posterior distribution.

To demonstrate the difference between the Gibbs Sampler and
the FC particle filter, consider analyzing data from the following
2-dimensional model (see Fig. 2):

N((0,0), 0%1) with probability 1/3
N((4,4+/3),0%I) with probability 1/3 ,
N((8,0), 0%1) with probability 1/3

Xi"“

where 7 is the 2 x 2 identity matrix and 0 = 0.1. We denote
the three components of this model by the letters A, B and C
respectively.

Lets assume that we analyze the data under the following two
component model (while this is unrealistic in practice, it will
help to demonstrate the difference between the two methods):

X N(u1,071)  with probability p
' N(p2,031) otherwise. ’

where the prior for p is uniformly distributed on [0, 1], and

we assume the usual conjugate prior for u;, ;. We have con-

structed our example so that the true posterior distribution for the
assignments will place nearly all its mass on only three different

Fig. 2. Simulated data from a three component Gaussian mixture
model
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assignments: where all observations from either components A
and B, clusters A and C, or clusters B and C are assigned to
one cluster, and all the remaining observations are assigned to
another cluster.

When the FC particle filter analyzed the data shown in Fig. 2
under this model, (which can be done as the prior probabil-
ity of assigning observation i + 1 to the first cluster, given n;
of the first i observations have already been assigned to that
cluster, is (n; + 1)/(i + 2)) it estimated the posterior distribu-
tion of assignments almost exactly, for any number of particles
N > 3. By comparison, the Gibbs sampler will almost never
move between the three assignments which have non-negligible
posterior probability, and will estimate the posterior distribu-
tion of assignments by a point-mass on just one of these three
assignments.

Whilst the particle filter methods are best suited to models
where there is sufficient conjugacy that the cluster parameters
can be analytically integrated out of the posterior density, we
have shown how they can also be applied to problems without
this property. In this case some numerical or Monte Carlo inte-
gration is necessary, and we found that even an unsophisticated
approach, such as using Importance Sampling to evaluate the
intractable integrals, could give decent results. (More sophis-
ticated numerical integration schemes may lead to even more
efficient algorithms.) Note that implementing MCMC for such
problem is possible, via the reversible jump methodology of
Green (1995). However designing sensible proposal moves for
such a reversible jump MCMC algorithm is nontrivial.

One aspect of inference for mixture models that we have not
touched on is how to summarize the output. This can be diffi-
cult as the posterior distribution is invariant under relabelling of
the mixture components, due to this symmetry the distribution
of the parameters of each mixture component will be identical.
A simple way around this problem is to impose constraints, so
that the mixtures labels are defined based on the parameters of
each component. One simple example is to label components
in order of increasing means (see Richardson and Green 1997).
(Such a simple approach can lead to problems, and better ap-
proaches exist, see Stephens 2000b). Our only comment on this
point is that the particle filter naturally imposes a constraint that
defines the mixture labels. This constraint is based on the order
in which observations are processed, so that the first observation
processed is assigned to the first component, the next observa-
tion that belongs to a new component is assigned to the second
component, and so on.

Our example, and simulation study, has been based on a one-
dimensional Gaussian mixture model. The particle filter method-
ology is easily extended to higher dimensions. For models with
conjugate priors, the number of dimensions should not affect
the performance of the particle filter, as the extra parameters
necessary for modelling higher dimensional data are intergrated
out. For models with non-conjugate priors, the number of di-
mensions may be crucial to the performance of the filter if it
increases the dimension of any integrals that must be calculated
numerically.

Fearnhead

We have also only considered one specific type of mixture
model, the mixture Dirichlet process. In practice, the methods
introduced here could be applied to other mixture models, pro-
viding the probability distribution p(z,1; |z1.,) can be calcu-
lated analytically.

Recent research has suggested that incorporating MCMC into
particle filters can substantially improve its performance (see
Gilks and Berzuini 2001, Fearnhead 2003). We did not consider
such an approach here, but it may be that using MCMC could
improve the performance of the particle filter, and in particular
its performance at analyzing larger data sets.
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