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Particle Filters for Positioning, Navigation,
and Tracking

Fredrik Gustafsson, Fredrik Gunnarsson, Niclas Bergman, Urban Forssell, Jonas Jansson, Rickard Karlsson, and
Per-Johan Nordlund

Abstract—A framework for positioning, navigation, and
tracking problems using particle filters (sequential Monte Carlo
methods) is developed. It consists of a class of motion models
and a general nonlinear measurement equation in position. A
general algorithm is presented, which is parsimonious with the
particle dimension. It is based on marginalization, enabling a
Kalman filter to estimate all position derivatives, and the particle
filter becomes low dimensional. This is of utmost importance for
high-performance real-time applications.

Automotive and airborne applications illustrate numerically the
advantage over classical Kalman filter-based algorithms. Here, the
use of nonlinear models and non-Gaussian noise is the main expla-
nation for the improvement in accuracy.

More specifically, we describe how the technique of map
matching is used to match an aircraft’s elevation profile to a
digital elevation map and a car’s horizontal driven path to a street
map. In both cases, real-time implementations are available, and
tests have shown that the accuracy in both cases is comparable
with satellite navigation (as GPS) but with higher integrity.
Based on simulations, we also argue how the particle filter can
be used for positioning based on cellular phone measurements,
for integrated navigation in aircraft, and for target tracking in
aircraft and cars. Finally, the particle filter enables a promising
solution to the combined task of navigation and tracking, with
possible application to airborne hunting and collision avoidance
systems in cars.

I. INTRODUCTION

RECURSIVE implementations of Monte Carlo-based sta-
tistical signal processing [19] are known asparticle filters;

see [13] and [14]. The research has, since [21], steadily intensi-
fied; see the recent first article collection [13]. The particle fil-
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ters may be a serious alternative for real-time applications clas-
sically approached by model-based Kalman filter techniques
[29], [24]. The more nonlinear model, or the more non-Gaussian
noise, the more potential particle filters have, especially in ap-
plications where computational power is rather cheap and the
sampling rate is moderate.

The paper describes a general framework for a number of
applications, where we have implemented the particle filter. The
problem areas are the following.

• Positioning, where one’s own position is to be estimated.
This is a filtering problem rather than a static estimation
problem, when an inertial navigation system is used to
provide measurements of movement.

• Navigation, where, besides the position, velocity, attitude
and heading, acceleration, and angular rates are included
in the filtering problem.

• Target Tracking, where another object’s position is to be
estimated based on measurements of relative range and
angles to one’s own position.

Another related application fitting this framework, not explicitly
included here, isrobot localization; see, for instance, [43] and
[44]. The problems listed above are related in that they can be
described by quite similar state-space models, where the state
vector contains the position and derivatives of the position. Tra-
ditional methods are based on linearized models and Gaussian
noise approximations so that the Kalman filter can be applied
[1]. Research is focused on how different state coordinates or
multiple models can be used to limit the approximations. In con-
trast to this, the particle filter approximates the optimal solution
numerically based on a physical model, rather than applying an
optimal filter to an approximate model. A well-known problem
with the particle filter is that its performance degrades quickly
when the dimension of the state dimension increases. A key
theoretical contribution here is to apply marginalization tech-
niques [36], adopted and extended from [12], leading to where
the Kalman filter can be used to estimate (or eliminate) all posi-
tion derivatives, and the particle filter is applied to the part of the
state vector containing only the position. Thus, the particle filter
dimension is only 2 or 3, depending on the application, and this
is the main step to get real-time high-performance algorithms.

The applications we will describe are the following.

• Car Positioning by Map Matching: A digital road map is
used to constrain the possible positions, where a dead-
reckoning of wheel speeds is the main external input to
the algorithm. By matching the driven path to a road map,
a vague initial position (order of kilometers) can be im-
proved to a meter accuracy. This principle can be used as
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a supplement to, or even replacement for, a global posi-
tioning system (GPS).

• Car Positioning by Radio Frequency (RF) Measurements:
The digital road map above can be replaced by, or supple-
mented by, measurements from a terrestrial wireless com-
munications system. For handover (to transfer a connec-
tion from one base station to another) operation, the mo-
bile stations (MS) monitor the received signal powers from
a multitude of base stations and report regularly to the net-
work. These measurements provide a power map that can
be used in a similar manner as above. Mobile stations in a
near future will, moreover, provide the possibility of mon-
itoring the traveled distance of the radio signals from a
number of base stations [16]. Such measurements can also
be utilized in the same manner as with the power measure-
ments.

• Aircraft Positioning by Map Matchingor Terrain Nav-
igation: A geographical information system contains,
among other information, terrain elevation. The aircraft
is equipped with sensors such that the terrain elevation
can be measured. By map matching, the position can be
deducted [5].

• Integrated Navigation: The aircraft’s inertial navigation
system (INS) uses dead reckoning to compute naviga-
tion and flight data, i.e., position, velocity, attitude, and
heading. The INS is regarded as the main sensor for navi-
gation and flight data due to being autonomous and having
high reliability [10]. However, small offsets cause drift,
and its output has to be stabilized. Here, terrain naviga-
tion is used.

• Target Tracking: A classical problem in signal processing
literature is target tracking, where an IR sensor measures
relative angle, or a radar measures relative angle, range
and possibly range rate, to the object [4]. For the case
of a bearings-only measuring IR sensor, either the state
dynamics or measurement equation is very nonlinear, de-
pending on the choice of state coordinates; therefore, the
particle filter is particularly promising.

• Combined Navigation and Tracking: Because the target
tracking measurements are relative to one’s own platform,
positioning is an important subproblem. Since the sensor
introduces a cross-coupling between the problems, a uni-
fied treatment is tempting.

• Car Collision Avoidance: This is very similar to the target
tracking problem. Here, we are interested in predicting
the own car’s and other objects’ future position; see [40].
Based on the prediction, collision avoidance actions such
as warning, braking, and steering are undertaken when
a collision is likely to happen. In order to have enough
time to warn the driver, the prediction horizon needs to be
quite long. Therefore, utilizing knowledge about road ge-
ometry and infrastructure becomes important. One way to
improve the prediction of possible maneuvers is to use in-
formation in a digital map. Thus, this is a specific project
including all aspects of the problems listed above.

The outline is as follows. We will start with a general framework
of models covering all of our applications in Section II. Then, a
general algorithm is presented, covering all applications, where

TABLE I
INTERESTINGSIGNALS IN NAVIGATION AND TRACKING APPLICATIONS. INDEX

(1) AND (2) INDICATES SIGNALS RELATED TO ONE’S OWN AND ANOTHER

PLATFORM, RESPECTIVELY. ALL QUANTITIES CAN BELONG TO EITHER ONE-,
TWO-, OR THREE-DIMENSIONAL SPACES, DEPENDING ON THEAPPLICATION

special attention is paid to practical problems as divergence test,
initialization, and real-time requirements. Each application in
the list above is devoted its own section, and conclusions and
open questions of general interest are discussed in Section VIII.

II. M ODELS

Central for all navigation and tracking applications is the mo-
tion model to which various kind of model based filters can be
applied. Models that are linear in the state dynamics and non-
linear in the measurements are considered:

(1a)

(1b)

Here
state vector;
measured inputs;
unmeasured forces or faults;
measurements;
measurement error.

We assume independent distributions for and , with
known probability densities and , respectively, not
necessarily Gaussian. Motion models (1a) are further discussed
in Section II-A. These are to a large extent similar in all appli-
cations and standard in the literature. The model (1) takes only
movements into account, and we do not attempt to model for in-
stance mechanical dynamics in the platform. That is, the equa-
tions in (1) have no model parameters. The difference between
the applications mainly lies in the availability of measurements.
Section II-B provides an extensive list of possible measurement
equations (1b).

A. Motion Models

The signals of primary interest in navigation and tracking ap-
plications are related to position, velocity, and acceleration as
summarized in Table I.

Newton’s law relates known and unknown external forces on
the platforms to acceleration. From the differential equations

and , we obtain relations like
if velocity is assumed constant and if
acceleration is assumed constant. If we here plug in the sample
period , we get a discrete-time model for motion between
two consecutive measurements, as will be frequently used in the
sequel.

Depending on whether the signals are measurable or not, they
may be components of either the state vectoror the input
signal . The ambition here is to discuss models through which
the applications are naturally related. In specific applications,
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however, other parameterizations might provide better under-
standing of design variables and algorithm tuning.

In positioning and navigation applications, the signals related
to the own platform are of interest. If the velocity is assumed
measurable (and thus part of the input signal), the state dynamics
can be modeled as

(2a)

In several navigation applications, such as airborne, measure-
ments of the acceleration are used instead of velocity. These are
typically biased, and the true acceleration can be expressed as

where is the measured acceleration, and is the bias.
The position is extracted by dead reckoning of the measured
acceleration, and therefore, the presence of acceleration bias is
critical. The natural thing to do is to include the bias in the state
vector and the measured acceleration in the input signal. The
resulting motion model is

(2b)

Analogously, a bias in any other measured signal [e.g., a bias in
the velocity in (2a)] can be considered by incorporating it in the
state equation.

Thus far, the focus has been on the own platform. In a simple
model of the movements of the other platform, the assumption
is that its velocity is subject to an unknown acceleration.
This yields

(2c)
In the target tracking literature, a popular choice of motion
model is given by the “coordinated turn”-model [4].

When considering tracking of another platform, while
moving the own platform, joint navigation and target tracking

can be employed. Essentially, the total motion model comprises
the motion models (2b) and (2c):

(2d)

B. Measurement Equations

The main difference between the considered applications is
the measurements available. Basically, the measurements are re-
lated to the positions of one’s own platform and to the other
object . Therefore, the measurement equations can be cate-
gorized as depending on only or depending on both
and :

(3a)

(3b)

where the measurement noise contributions and are
characterized by their distributions. If not explicitly mentioned,
a Gaussian distribution is used.

In the studied applications, measurements from at least one
of the categories above are available. It is important to note that
any combination of the sensors is possible. The presented appli-
cations are just a few examples.

1) Measurements of Relative Distance:As always, any po-
sition has to be related to a coordinate system and a reference
position. Several types of sensors (e.g., GPS, RF) basically mea-
sure the distance relative to that reference point. One possibility
is distance measurements of the own position relative to points
of known positions , which yields mea-
surement equations with

(3c)

This is also applicable when the position of another object is
related to one’s own position (e.g., radar, sonar, ultrasound):

(3d)

Some sensors do not measure the relative distance explicitly
but rather a quantity related to the same. One example is sensors
that measure the received radio signal power transmitted from
a known position . This received power typically decays as

, where and depend on
the radio environment, antenna characteristics, terrain, etc. In
a logarithmic scale, the measurements are given by

(3e)
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Fig. 1. Aircraft measures absolute altitude and height over ground from which
terrain heighty is computed.

where [26]. Analogously, we can consider the
situation when we focus on the power or intensity transmitted
or reflected from an object and received at one’s own position.
The measurement is thus modeled by

(3f)

2) Measurements of Relative Angle:Similarly, the sensors
can measure the relative angle between two positions (e.g.,
radar, IR, sonar, ultrasound). Given points of known positions

, the relative angle measurements can be
described by

angle (3g)

When relating the angle of an object to one’s own position, we
have

angle (3h)

3) Measurements of Relative Velocity:Some sensors (e.g.,
radar) typically measure the Doppler shift of signal frequencies
to estimate the magnitude of the relative velocity. This is essen-
tially only applicable when relating the velocity of an object to
one’s own velocity. The measurements are categorized by

(3i)

4) Map-Related Measurements:Fig. 1 illustrates how
ground altitude is computed from radar measurements of
height over ground and barometric measurements from which
altitude is computed. The measured terrain height together with
relative movement from the INS build up a height profile, as
illustrated in Fig. 2, and the task is to find the current position
and orientation of this profile on the map.

The measurement in terrain navigation is the measured
ground height, and is the height at point ac-
cording to the Geographical Information System (GIS). Much
effort has been spent on modeling the measurement error
in a realistic way. It has turned out that a Gaussian mixture with
two modes works well. One mode has zero mean, and the other
has a positive mean that corresponds to radar echoes from the
tree tops. The ground type in GIS can be used to switch the

Fig. 2. Measured terrain elevationy together with measured velocity can be
seen as the profile above the terrain elevation maph(p ).

mean and variances in the Gaussian mixture. For instance, over
sea there is only one mode with a small variance.

For map matching in the car-positioning case, there is no
real measurement. Instead, denotes the distance to the
nearest road, and the measurement

should therefore be equal to zero. A simple and relevant noise
model is white and zero mean Gaussian noise.

C. Applications

The applications discussed briefly in Section I are explored
in further detail in the sequel. Typical state vectors, input sig-
nals, and available (nonlinear) sensor information are summa-
rized in Table II. Motivations and more elaborative discussions
regarding the applications and appropriate models are found in
Sections IV–VII.

III. PARTICLE FILTER

A. Recursive Bayesian Estimation

Consider systems that are described by the generic state space
model (1). The optimal Bayesian filter in this case is given
below. For further details, consult [5].

Denote the set of available observations at timeby

The Bayesian solution to compute the posterior distribution
of the state vector, given past observations, is given

by [5]

(4a)

(4b)
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TABLE II
LIST OF CONSIDEREDAPPLICATIONSWITH THE CORRESPONDINGSTATE VECTOR(cf. TABLE I), INPUT SIGNAL, AND SENSORINFORMATION

(4c)

(4d)

where
Moore–Penrose pseudo-inverse;
normalization constant;
minimum mean square (MMS) estimate.

If the noise distributions are independent, white, and zero
mean Gaussian with E , E and the mea-
surement equation is linear in the state, i.e., , the
optimal solution is given by the Kalman estimator [29]. Table III
summarizes the time and measurement update equations for the
Kalman estimator.

B. Particle Filter Implementation

A numerical approximation to (4) is given in the following
algorithm.

Algorithm 1:Particle Filter :

1) Initialization: Generate . Each
sample of the state vector is referred to as aparticle.

2) Measurement Update: Update the weights by the likeli-
hood (more generally, any importance function; see [13])

and normalize to . As an approximation
to (4c), take

3) Resampling:

a) Bayesian Bootstrap: Take samples with replace-
ment from the set , where the probability

to take sample is . Let . This step is
also calledsampling importance resampling (SIR).

b) Importance Sampling: Only resample as above
when the effective number of samples is less than
a threshold

see [5], [14], [34], and [35]. Here, ,
where the upper bound is attained when all particles
have the same weight, and the lower bound when
all probability mass is at one particle. The threshold
can be chosen as .

4) Prediction: Take a , and simulate

5) Let , and iterate to item 2).
The key point with resampling is to prevent high concentration
of probability mass at a few particles. Without this step, some
will converge to 1, and the filter would brake down to a pure sim-
ulation. The resampling can be efficiently implemented using a
classical algorithm for sampling ordered independent identi-
cally distributed variables [5], [39].

It can be shown analytically [11] that under some conditions,
the estimation error is bounded by . The function grows
with time but does not depend on the dimension of the state
space. That is, in theory, we can expect the same good perfor-
mance for high-order state vectors. This is one of the key rea-
sons for the success of the particle filter compared with other
numerical approaches such as the point mass filter (a numerical
integration technique that can be seen as a deterministic par-
ticle filter) [5] and filter banks [24]. The computational steps
are compared with the Kalman filter in Table III. Note that the
most time consuming step in the Kalman filter is the Riccati
recursion of the matrix , which is not needed in the particle
filter. The time update of the state is the same. Letdenote
the dimension of the state vector and similar definitions for
and . As a first-order approximation for large , the Kalman
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TABLE III
COMPARISON OFKF AND PF: MAIN COMPUTATIONAL STEPS

filter is from the matrix times matrix multiplication
, whereas the particle filter is from the matrix times

vector multiplication . This indicates that the particle filter
is about 100 times slower in an application with and

. The difference becomes less whenincreases, in
which case, the measurement update becomes more complex.
The nonlinear function evaluation (preferably implemented as a
table lookup) of in the particle filter has a counterpart of
computing the gradient in the Kalman filter or
any other linearization that is needed. In a multisensor applica-
tion, the matrix inversion may no longer be neg-
ligible. All in all, a precise comparison is hard to make, although
it is worth pointing that the particle filter runs in real time, even
in Matlab in several of the applications presented here.

C. Sample Impoverishment

When the particle filter is used in practice, we often wish to
minimize the number of particles to reduce the computational
burden. For many applications using recursive Monte Carlo
methods, depletion or sample impoverishment may occur, i.e.,
the effective number of samples is reduced. This means that the
particle cloud will not reflect the true density. Several different
methods are proposed in the literature to reduce this problem.

By introducing an additional noise to the samples, the deple-
tion problem can be reduced. This technique is calledjittering
in [17], but a similar approach was introduced in [21] under the
nameroughening. In [15], the depletion problem is handled by
introducing an additional Markov chain Monte Carlo (MCMC)
step to separate the samples.

In [21], the so-calledprior editing method is discussed. The
estimation problem is delayed one time-step; therefore, the like-
lihood can be evaluated at the next time step. The idea is to reject
particles with sufficiently small likelihood values since they are
not likely to be resampled. The update step is repeated until a
feasible likelihood value is received. The roughening method
could also be applied before the update step is invoked. The
auxiliary particle filter [37] is constructed in such a way that
we will simulate from particles associated with large predictive
likelihoods directly. A two stage resampling may be used by this
method.

D. Rao–Blackwellization

Despite the theoretical independence of accuracy on the par-
ticle dimension, it is well-known that the number of particles
needs to be quite high for high-dimensional systems; see, for
instance, Section VI for an illustration. To be able to use a small

and to reduce the risk of divergence, a procedure known as
Rao–Blackwellization can be applied. The idea is to use the
Kalman filter for the part of the state space model that is linear
and the particle filter for the other part. As a motivation, the state

vector in inertial navigation can have as many as 27 states, and
here, the Kalman filter can be used for the 24 states, whereas the
particle filter applies on the 3-D position state. The extra work-
load here is minor.

The motion models given in Section II can actually be
rewritten in the form

(5a)

(5b)

where (where pf is short for particle filter) and (where kf
is short for Kalman filter) is a partition of the state vector with

assumed Gaussian. Theand can have arbitrarily given
distributions. As the indices indicate, the Kalman filter will be
applied to one part and the particle filter for the other part of the
state vector.

For a derivation of the algorithm, see the Appendix or [36]. A
similar result is presented in [12] for the general case, where the
state space equation is linear and Gaussian, but one observes a

instead of , where the relation is known. An algo-
rithmically similar approach is given in [5], as an approximate
solution to an altitude offset in terrain navigation. The result is a
particle filter with particles estimating . The difference to
the standard particle filter algorithm (Algorithm 1) here is that
the prediction step is done using

Moreover, for each particle, one Kalman filter estimates
using

where ( denotes the Moore–Pen-

rose pseudo-inverse), and .
Remark 1: The covariance and the Kalman gain

are the same for all particles, implying a very efficient imple-
mentation of the parallel Kalman filters, where the and
updates in Table III are done only once per time step.

Remark 2: The distribution for does not necessarily have
to be Gaussian. We can approximate arbitrarily well by

.
Remark 3: The derivation still holds if an additional non-

linear term enters the state dynamics for .
Remark 4: The Kalman filter here applies to a state vector of

dimension , which is an improvement compared with
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Fig. 3. Car positioning: Sequence of illustrations of particle clouds (white dots) plotted on a flight image for visualization. The center point “+” shows the true
position and “x” the estimate.

dimension as to where the derivation in [12] leads. For
large , the reduction in complexity is approximately

The estimate of the particle filter part is computed in the normal
way, and for the Kalman filter part, we can take the MMS esti-
mate (4c)

with covariance (4d)

IV. CAR POSITIONING

Wheel speed sensors in ABS are available as standard compo-
nents in the test car (Volvo V40). From this, yaw rate and speed
information are computed, as described in [22]. Therefore, the
velocity vector is considered available as an input signal,
and the motion model in (2a) with measurement equation given
by (3a) is thus appropriate. The initial position is either marked
by the driver or given from a different system, e.g., a terrestrial
wireless communications system, where crude position infor-
mation is available today [16] or GPS. The initial area should
cover an area not extending more than a couple of kilometers to
limit the number of particles to a realizable number. With infi-
nite memory and computation time, no initialization would be
necessary.

The car positioning with map matching has been imple-
mented in a car, and the particle filter runs in real time with
sampling frequency 2 Hz on a modern laptop with a commercial
digital road map. This corresponds to a measurement equation
specified by in Section II-B4.

Fig. 3 shows a sequence of images of the particle cloud on
a flight image of the local area. The driven path consists of a
number of 90turns. Initially, the particles are spread uniformly
over all admissible positions, that is, on the roads, covering an
area of about 1 km. After the first turns, a few clouds are left.

Fig. 4. Car positioning: RMSE for particle filter and GPS, respectively.

After four to five turns, the filter essentially has converged. One
can note that the state evolution on the straight path extends
the cloud along the road to take into account unprecise velocity
information. Details of the implementation are found in [23] and
[25], whereas some comments on the divergence problem are
given in the conclusions.

GPS is used as a reference positioning system. It provides re-
liable position estimates in rural areas but is hampered in non-
line-of-sight situations and when the signals are attenuated by
foliage, etc. After convergence, the map-matching particle filter
is seen equal to, or even slightly better than, GPS in terms of
performance; see Fig. 4. However, in test drives along forests,
close to high buildings, and tunnels, the GPS performance dete-
riorates quickly. Furthermore, the GPS has a convergence time
of about 45 s when turned on; this is not shown in Fig. 4.

For comparison, the particle filter using map matching and
filters based on measurements from a fictive terrestrial wireless
communications system are applied to data from a simulation
setup mimicking the real case above. The area is essentially cov-
ered by one macro cell, but yet another base station is assumed
within measurable distance.

The base stations in a terrestrial wireless communications
system act as beacons by transmitting pilot signals of known
power. The mobile station monitors the [in Global System
for Mobile Communications (GSM), ] strongest signals
and reports regularly (or event-driven) the list to the network.
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Fig. 5. RF positioning: Monte Carlo performance over time in the simulated
scenario. The map matching (solid) needs some 25 s to converge, but after this
burn-in time, the algorithm provides RMSE= 8.7 m. This is almost as good as
with ideal distance measurements to two base stations (dashed) with RMSE=

7.0 m. For comparison, power measurements (dash-dotted) yield RMSE= 36
m and dead reckoning (dotted) a steadily increasing error with RMSE= 50 m.

Based on these lists, the network centrally transfers connections
from one base station to another (hand-over) when the mobile is
moving during the service session. According to the empirical
model by Okumura–Hata [26], this provides measurement
equations as in (3e), one for each available base station (in this
simulation, ), and , where dB.
Similar measurements, but with a different motion model (the
velocity is unknown), are used in [28]. Point-mass implementa-
tion of estimators based on RF measurements is also discussed
in [9].

To provide more accurate positioning via RF measurements,
future mobile stations will be able to estimate the traveled dis-
tance of radio signals from a multitude of base stations. In the
ideal case, the signals have traveled without reflections to the
mobile station (line-of-sight situation), and the estimates de-
scribe the distance to the base stations. The( is typically
1–3) measurement equations can thus be modeled by (3c), and
they represent a rather ideal situation. Moreover, the noise is
modeled as , where dB. The received
power measurements discussed above are available today but
are of worse accuracy due to unmodeled power variations.

A third alternative is to simply integrate the relative move-
ments provided by the ABS (dead-reckoning). Monte Carlo sim-
ulations based on these different approaches are summarized in
Fig. 5. It is interesting to note that map matching provides a po-
sition accuracy of roughly the same accuracy as with accurate
distance measurements (which would almost never be the case
in a real situation), without relying on external signals. Further-
more, integrating the ABS signals directly yields an increasing
error over time.

V. TERRAIN ELEVATION MATCHING

The air fighter JAS 39 Gripen is equipped with an accurate
radar altimeter and a digital map. This corresponds to the mea-
surement equation characterized by in Section II-B4.
The velocity vector is obtained by integrating the acceleration

Fig. 6. Terrain navigation: Test track over a part of southeastern Sweden.

Fig. 7. Terrain navigation: Estimation error relative a GPS reference, as a
function of sample number. Note the growth in error over open water.

provided by the inertial navigation system. Since is avail-
able as an input signal, the motion model in (2a) is appropriate.

The particle filter has been applied to a number of flight tests
on the fighter JAS 39 Gripen, and Fig. 6 shows the path in one
of them. In these tests, differential GPS (DGPS) is taken as the
true position, and the resulting position error is shown in Fig. 7.
The accuracy beats the first-generation system and comes down
to the value of the point mass filter described in [8]. Since the
point mass filter satisfies the Cramér–Rao lower bound (see [6]),
there is no better filter. The advantage of the particle filter over
the point mass filter is first a much less complex algorithm oc-
cupying only some 30 lines of code (Ada) and, second, the pos-
sibility to extend the functionality by including other parame-
ters such as barometric height offset in the state vector (that is,
increasing the particle dimension). Saab has evaluated the de-
terministic particle filter in Gripen in parallel with the first gen-
eration system with superior results, whereas the particle filter
described herein, so far, is run offline.

VI. I NTEGRATED NAVIGATION SYSTEMS

As a simplified study to illustrate the Rao–Blackwellization
procedure, a 2-D navigation model with six states is used ac-
cording to (2b), and the measurement of position is taken from
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Fig. 8. RMSE based on 100 Monte Carlo simulations for the particle filter
using 60 000 particles (dashed lines) and the Rao–Blackwellized filter using
4000 particles (solid lines).

the terrain navigation algorithm according to Section II-B4. It
should be noted that the 2-D navigation model is valid only
when the earth is modeled as flat. As soon as one accounts for
the curvature of the earth, the model becomes more compli-
cated; see [10]. In practice, there also exist gyro sensor errors
that further complicate the problem.

In Fig. 8, the result is shown for the particle filter when using
particles (dashed lines). The performance is pretty

bad, and it quickly deteriorates even more when the number of
particles is decreased. In particular, the transient requires many
particles. The basic problem is high dimensionality and small
process noise. On the other hand, following the Rao–Black-
wellization procedure, we partition the state vector and rewrite
the motion model according to (5) with

The result from applying this Rao–Blackwellized filter using
only particles is also shown in Fig. 8 (solid lines),
and the performance enhancement is significant.

VII. T ARGET TRACKING

The standard approach to target tracking is based on (ex-
tended) Kalman filters [3], [42]. Bearings-only target tracking
was introduced as the illustration of particle filters in [21]. Since
then, bearings-only target tracking has been used in many in-
vestigations; see, for instance, several of the chapters in [13]. A

TABLE IV
TARGET TRACKING: RMSE COMPARISON FORATC MONTE CARLO

SIMULATIONS

Fig. 9. Target tracking: Trajectory for the 100 Monte Carlo simulations, 800
particles.

more realistic scenario is investigated in [31]. Here, the case of
radar measurements where range is also available is discussed,
which occurs in different applications, such as air traffic control
(ATC) and collision avoidance. Linear models such as (1) can
often be used, but nonlinear state equations are also used. For
instance, when the tracking object is moving in straight paths or
on circular segments, different variations of the so-called coor-
dinated turn model [4] can be utilized. For maneuvering targets,
multiple models are used to enhance tracking performance. The
interacting multiple model (IMM) [4] is one classical multiple
model algorithm based on the interaction of several extended
Kalman filters [1]. Hard constraints on system states, such as ve-
locity and acceleration boundaries or obstacles from the terrain,
may introduce nonlinearities in many applications, which could
degrade performance if not handled by the tracking filter. Two
different applications will be presented in more detail below. It
is important to note that realistic measurements (3g) can easily
be used, modeling the radar loob in the angle noise distribution,
and (3c), with uniform range noise distribution.

An important aspect of target tracking isassociation[3], [42]:
To which object should a certain measurement be associated?
This is a discrete problem, and attempts to include this in a par-
ticle filter framework are described in [2], [7], [18], [20], [27],
[32], [38], and [41].

A. Air Traffic Control (ATC)

In [30], a simple nearly coordinated turn model [4] was used
for an ATC radar application. In the simulation study presented
in Table IV, two different simulation-based methods are com-
pared to the state-of-the-art IMM method. The particle filter al-
gorithms tested are the Bayesian bootstrap method (3a) and APF
[37]. The particle filters are here extended to the multiple model
case, where target maneuvers are according to a Markov chain.
Three different turn assumptions were made (right/left turn or
straight flying) in the simulations presented. The true path pro-
jected in the horizontal plane is viewed in Fig. 9. It was gener-
ated with a true turn rate value chosen as an intermediate value
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Fig. 10. Target tracking: Particle cloud and density.

Fig. 11. Collision avoidance: The left rectangle is the own car, which is
approaching rapidly the right rectangle. The trajectories indicate 31-step ahead
prediction using 100 particles. There are still possible trajectories avoiding
collision, of which the driver will most probably choose one. Thus, no active
control is needed at this stage.

of the turn rate used in the multiple model conditioning, thus al-
lowing the IMM to mix between models, and the particle filter
process noise to perform the turn interaction. The incorporation
of hard constraints on the velocity is also straightforward for the
particle filter case. The radar sensor used in the application mea-
sures range, azimuth, and elevation at a rather low update rate
to emulate a track-while-scan (TWS) behavior. In Table IV, the
IMM method is compared with the particle filters and measure-
ments only, viewing the position RMSE for 100 Monte Carlo
simulations. For the Bayesian bootstrap case, two simulations
diverged. Depending on the choice of process noise, the slight
difference between the IMM and the Bayesian bootstrap may
change. The marginalized density is also shown in Fig. 10 to-
gether with the particle cloud.

B. Collision Avoidance

The coordinated turn model can be used for collision avoid-
ance to track the car position and predict future positions. The
goal of the prediction in this case is not necessarily to get as
good a point estimate as possible. Instead, we are interested in
the whole distribution of possible maneuvers. Fig. 11 shows a
simulation where the collision is still avoidable. This would not
be obvious from just looking at the point estimate.

The main contributions to the process noise come from the
driver’s action via steering wheel, gas, and brake. A lot of ef-
fort has to be spent on how to choose the process noise so that
it corresponds to the driver’s behavior and the physical limita-
tions of the car. The vehicle and driver behaviors change signif-
icantly for different speeds of the vehicle. Thus, in order to get a
good prediction with this model, it is necessary to let the process
noise change with different speeds. It is also important in this
application to incorporate knowledge about the environment to
improve the prediction. For example, it is likely that the car will
travel on the road and if there are some hard boundaries like
rails or other stationary objects. These are hard constraints on
the car’s movement.

VIII. C ONCLUSIONS ANDDISCUSSION

We have given a general framework for positioning and nav-
igation applications based on a flexible state space model and
a particle filter. Five applications illustrate its use in practice.
Evaluations in real-time, off-line, on real data and in simulation
environments show a clear improvement in performance com-
pared with existing Kalman filter-based solutions, where the
new challenge is to find nonlinear relations, state constraints,
and non-Gaussian sensor models that provide the most infor-
mation about the position. Thus,modelingis the most essential
step in this approach, compared with the variousimplementa-
tions of the Kalman filter found in this context (linearization
issues, choice of state coordinates, filterbanks, Gaussian sum
filters, etc.).

General conclusions from the implementations are as follows:
A choice of state coordinates making the state equation linear
is beneficial for computation time and opens up the possibility
for Rao–Blackwellization. This procedure enables a significant
decrease in the particle state dimension. The evaluation of the
likelihood one step ahead before resampling (APF, prior editing)
is, together with adding extra state noise (jittering, roughening),
crucial for avoiding divergence and implies that the number of
particles can be decreased further. Our implementations run in
real time (2 Hz), even in Matlab, and have some 2000 particles.

Open questions for further research and development are as
follows.

• Divergence Tests: It is essential to have a reliable way to
detect divergence and to restart the filter (for the latter, see
the transient below). For car positioning, the number of re-
samplings in the prior editing step turned out to be a very
good indicator of divergence. Another idea used in the ter-
rain navigation implementation where the sampling rate is
higher than necessary, is to split up the measurements to a
filterbank so that particle filter number
gets every th sample. The result of theseparticle filters
are approximately independent, and voting can be used to
restart each filter. This has turned out to be an efficient way
to remove the outliers in data.

• Transient Improvement: The time it takes until the esti-
mate accuracy comes down to the stationary value (the
Cramér–Rao bound) depends on the number of particles.
Given limited computational time, it may be advantageous
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to increase the number of particles after a restart and
discard samples in such a way that is constant.

• Since the particle filter has shown good improvement over
linearization approaches, it is tempting to try even more
accurate nonlinear models. In particular, the flight dy-
namics of one’s own vehicle is known and, indeed, used
in model-based control but is very rare in navigation ap-
plications; see [33] for one attempt in this direction. In
that study, it seems that the computational burden and lin-
earization errors imply no gain in total performance. As
a possible improvement, the particle filter may take full
advantage of a more accurate model, where parts of the
nonlinear dynamics from driver/pilot inputs are incorpo-
rated.

APPENDIX

For the derivation of the Rao–Blackwellized algorithm
given in Section III-D, suppose first that the particle filter
part of the state vector is known. That is, the sequence

is known. We can, temporally, consider
as the measurement. The state space model

here is

Since this model is linear and Gaussian, the optimal solution is
provided by the Kalman filter. We then know that is
Gaussian; therefore

where and are given by the Kalman filter equations
adjusted for correlated noise [24]

where ( denotes the Moore–Pen-
rose pseudo-inverse).

Now, to compute , note that

We only have to compute . Repeated use of Bayes’
rule gives

We have a nonlinear and non-Gaussian measurement equation;
therefore, to solve the measurement update, the particle filter

will be used to approximate this distribution. The particle pre-
dictions are given by

so that is given by

Finally, note that the derivation does not change if we use the
fictitious measurement for an arbitrary
nonlinear function, which is Remark 3.
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