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Particle Filters for Positioning, Navigation,
and Tracking

Fredrik Gustafsson, Fredrik Gunnarsson, Niclas Bergman, Urban Forssell, Jonas Jansson, Rickard Karlsson, and
Per-Johan Nordlund

Abstract—A framework for positioning, navigation, and ters may be a serious alternative for real-time applications clas-
tracking problems using particle filters (sequential Monte Carlo sjcally approached by model-based Kalman filter techniques
methods) is developed. It consists of a class of motion models[zg]' [24]. The more nonlinear model, or the more non-Gaussian

and a general nonlinear measurement equation in position. A . th tential ticle filt h ially i
general algorithm is presented, which is parsimonious with the noise, the more potenual particle niters have, especially In ap-

particle dimension. It is based on marginalization, enabling a Plications where computational power is rather cheap and the
Kalman filter to estimate all position derivatives, and the particle sampling rate is moderate.
filter becomes low dimensional. This is of utmost importance for The paper describes a general framework for a number of

high-performance real-time applications. _ applications, where we have implemented the particle filter. The
Automotive and airborne applications illustrate numerically the .
problem areas are the following.

advantage over classical Kalman filter-based algorithms. Here, the o=e o )
use of nonlinear models and non-Gaussian noise is the main expla- ¢ Positioning where one’s own position is to be estimated.
nation for the improvement in accuracy. This is a filtering problem rather than a static estimation

More specifically, we describe how the technique of map problem, when an inertial navigation system is used to
matching is used to match an aircraft's elevation profile to a .
provide measurements of movement.

digital elevation map and a car’s horizontal driven path to a street L . . . .
map. In both cases, real-time implementations are available, and ~ * Navigation where, besides the position, velocity, attitude

tests have shown that the accuracy in both cases is comparable and heading, acceleration, and angular rates are included
with satellite navigation (as GPS) but with higher integrity. in the filtering problem.
Based on simulations, we also argue how the patrticle filter can « Target Trackingwhere another object’s position is to be

be used for positioning based on cellular phone measurements, timated b d ts of relati d
for integrated navigation in aircraft, and for target tracking in estimated based on measurements of relative range an

aircraft and cars. Finally, the particle filter enables a promising angles to one’s own position.
solution to the combined task of navigation and tracking, with  Another related application fitting this framework, not explicitly
possible _application to airborne hunting and collision avoidance jncluded here, isobot localization see, for instance, [43] and
systems in cars. [44]. The problems listed above are related in that they can be
described by quite similar state-space models, where the state
. INTRODUCTION vector contains the position and derivatives of the position. Tra-
ECURSIVE implementations of Monte Carlo-based stdlitional methods are based on linearized models and Gaussian

tistical signal processing [19] are knownggticle filters  noise approximations so that the Kalman filter can be applied

see [13] and [14]. The research has, since [21], steadily interidi- Research is focused on how different state coordinates or
fied; see the recent first article collection [13]. The particle filmultiple models can be used to limit the approximations. In con-
trast to this, the particle filter approximates the optimal solution

numerically based on a physical model, rather than applying an
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a supplement to, or even replacement for, a global posi- TABLE |

tioning system (G PS). INTERESTINGSIGNALS IN NAVIGATION AND TRACKII\!G APPLICATIONS INDEX
SO . ! (1) AND (2) INDICATES SIGNALS RELATED TO ONE’'S OWN AND ANOTHER

Car Positioning by Radio Frequency (RF) Measurementsp arrorm, RESPECTIVELY. ALL QUANTITIES CAN BELONG TO EITHER ONE-,

The digital road map above can be replaced by, or suppleFwo-, or THREEDIMENSIONAL SPACES DEPENDING ON THEAPPLICATION

mented by, measurements from a terrestrial wireless com-

L - v Velocity | Acceleration
munications system. For handover (to transfer a connec- ngECt ngmon M a(fge 62“) T
. . . v ) .
tion from one base station to another) operation, the mo- ngr Z ) e )

bile stations (MS) monitor the received signal powers from
a multitude of base stations and report regularly to the net-
work. These measurements provide a power map that eiecial attention is paid to practical problems as divergence test,
be used in a similar manner as above. Mobile stations inrtialization, and real-time requirements. Each application in
near future will, moreover, provide the possibility of monthe list above is devoted its own section, and conclusions and
itoring the traveled distance of the radio signals from @pen questions of general interest are discussed in Section VIII.
number of base stations [16]. Such measurements can also

be utilized in the same manner as with the power measure- Il. M ODELS

ments.
Aircraft Positioning by Map Matchingr Terrain Nav- Central for all navigation and tracking applications is the mo-
igation. A geographical information system containstion model to which various kind of model based filters can be

among other information, terrain elevation. The aircrafiPPlied. Models that are linear in the state dynamics and non-

is equipped with sensors such that the terrain elevatiii€ar in the measurements are considered:

can be measured. By map matching, the position can be

deducted [5]. Tet1 = Az + Buwe + By fy (1a)
Integrated NavigationThe aircraft’s inertial navigation ye = h(x) + e (1b)
system (INS) uses dead reckoning to compute naviga-

tion and flight data, i.e., position, velocity, attitude, andiere

heading. The INS is regarded as the main sensor for navi-t:  State vector;

gation and flight data due to being autonomous and havingw: ~ measured inputs;

high reliability [10]. However, small offsets cause drift, Jft ~ unmeasured forces or faults;

and its output has to be stabilized. Here, terrain naviga-¥:  measurements;

tion is used. e,  measurement error.

Target Tracking A classical problem in signal processing/Ve assume independent distributions fr ¢, and zo, with
literature is target tracking, where an IR sensor measutg¥wn probability densitieg., , py, andp.,, respectively, not
relative ang|e, or a radar measures relative ang|e' raﬁwessar"y Gaussian. Motion models (13.) are further discussed
and possibly range rate, to the object [4]. For the cadie Section II-A. These are to a large extent similar in all appli-
of a bearings-only measuring IR sensor, either the sttations and standard in the literature. The model (1) takes only
dynamics or measurement equation is very nonlinear, déovements into account, and we do not attempt to model for in-
pending on the choice of state coordinates; therefore, thi@nce mechanical dynamics in the platform. That is, the equa-
particle filter is particularly promising. tions in (1) have no model parameters. The difference between
Combined Navigation and Trackin@ecause the target the applications mainly lies in the availability of measurements.
tracking measurements are relative to one’s own p|atforr§gection 11-B provides an extensive list of possible measurement
positioning is an important subproblem. Since the sens@fuations (1b).

introduces a cross-coupling between the problems, a uni-

fied treatment is tempting. A. Motion Models

Car Collision AvoidanceThis is very similar to the target  The signals of primary interest in navigation and tracking ap-
tracking problem. Here, we are interested in predictinglications are related to position, velocity, and acceleration as
the own car’s and other objects’ future position; see [40dymmarized in Table |.

Based on the prediction, collision avoidance actions suchNewton'’s law relates known and unknown external forces on
as warning, braking, and steering are undertaken whgfe platforms to acceleration. From the differential equations
a collision is likely to happen. In order to have enough, = v, ands: = a:, we obtain relations like: = py + vot

time to warn the driver, the prediction horizon needs to levelocity is assumed constant apd = po + vot + apt?/2 if

quite long. Therefore, utilizing knowledge about road gescceleration is assumed constant. If we here plug in the sample
ometry and infrastructure becomes important. One way friod 7, we get a discrete-time model for motion between
improve the prediction of possible maneuvers is to use ifwo consecutive measurements, as will be frequently used in the
formation in a digital map. Thus, this is a specific projectequel.

including all aspects of the problems listed above. Depending on whether the signals are measurable or not, they

The outline is as follows. We will start with a general frameworknay be components of either the state veetpor the input
of models covering all of our applications in Section Il. Then, signalw,. The ambition here is to discuss models through which
general algorithm is presented, covering all applications, whehe applications are naturally related. In specific applications,
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however, other parameterizations might provide better undeen be employed. Essentially, the total motion model comprises

standing of design variables and algorithm tuning. the motion models (2b) and (2c):
In positioning and navigation applications, the signals related (4, 1
to the own platform are of interest. Ifthe veIociIS}) isassumed [ Prt1 by
i i 1
measurable (and thus part of the input signal), the state dynam csut<+)1 X Ut(l)
can be modeled as i AL 0 (1)
ba, 0y | = 0 A® bay
2
(L (L (L) (L pgl p§ |
1 1 1 1
= T, T, . 2a 2 (2)
Pein &/‘i‘ v+ T fy (2a) Ut(-i—)l vy
T e Bk BY\ o, (BY 0 Y
o o : + a;’ + . (2d)
In several navigation applications, such as airborne, measure- 0 o B ft(2)
f

ments of the acceleration are used instead of velocity. These are
typically biased, and the true acceleration can be expressed as ,
B. Measurement Equations
The main difference between the considered applications is
the measurements available. Basically, the measurements are re-
lated to the positions of one’s own platfoptt) and to the other

objectp(®. Therefore, the measurement equations can be cate-

whereagl) is the measured acceleration, a&nxf,}l) is the bias. gorized as depending gi® only or depending on both(V)
The position is extracted by dead reckoning of the measurgﬁidp@):

acceleration, and therefore, the presence of acceleration bias is

Ghrne e = g + S0

critical. The natural thing to do is to include the bias in the state y =pW (pgl)) + e (3a)
vector and the measured acceleration in the input signal. The
resulting motion model is y§2) N (p§1>,p§2>) + 652) (3b)

where the measurement noise contributieﬁ% and e§2) are
p§+>1 I T,-1 T2/2-1 pgl) characte_nzed. by.the_|rd|_str|but|ons. If not explicitly mentioned,
a Gaussian distribution is used.

Ut(—ll—)l =10 I T,-1 051) In the studied applications, measurements from at least one
sa't) 0 0 I saV of the categories above are available. It is important to note that
t+1 “ t . . . . .
Re any combmr_mon of the sensors is possible. The presented appli-
cations are just a few examples.
/21 17/6-1 1) Measurements of Relative DistancAs always, any po-
+| 71 [P 4| 1221 | Y. (2b) sition has to be related to a coordinate system and a reference
0 T, 1 position. Several types of sensors (e.g., GPS, RF) basically mea-
~ ~ sure the distance relative to that reference point. One possibility
B B is distance measurements of the own position relative to points
of known positiong;, ¢ = 1, ..., M, which yieldsM mea-

Analogously, a bias in any other measured signal [e.g., a biasirement equations with

the velocity in (2a)] can be considered by incorporating it in the

state equation. hfll)z (pgl)) = ‘pv‘, —p”
Thus far, the focus has been on the own platform. In a simple . ) - o

model of the movements of the other platform, the assumptidRiS iS @lso applicable when the position of another object is

is that its velocitys(?) is subject to an unknown acceleration'€lated to one’s own position (e.g., radar, sonar, ultrasound):

This yields
Y hy? (pgl), p§2)) = ‘p§2) - pgl)‘ : (3d)

Some sensors do not measure the relative distance explicitly
Pgi)l I 1.1 p§2> 12/2-1 @) but rather a quantity related to the same. One example is sensors
@ | = <0 I ) 2) < ) Jo that measure the received radio signal power transmitted from
Vi1 Yt a known positiorp;. This received power typically decays as
AR B® ~Ki/lpi — p§1)|a, a € [2, 5], whereK; and « depend on
(2c) the radio environment, antenna characteristics, terrain, etc. In
In the target tracking literature, a popular choice of motioa logarithmic scale, the measurements are given by
model is given by the “coordinated turn”-model [4].
When considering tracking of another platform, while hﬁli (pgl)) =K —alog|pi —pt"|, i=1,....M
moving the own platform, joint navigation and target tracking (3e)

, i=1, ..., M. (3c)
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Altitude Ground clearance

e

Mean sea-level N

Terrain elevation

Fig. 2. Measured terrain elevatigntogether with measured velocity can be
Fig. 1. Aircraft measures absolute altitude and height over ground from whiggen as the profile above the terrain elevation in@p"’).
terrain heighty is computed.
_ mean and variances in the Gaussian mixture. For instance, over
whereK = log), K1 [26]. Analogously, we can consider thesea there is only one mode with a small variance.
situation when we focus on the power or intenSity transmitted For map matching in the Car-positioning case, there is no

or reflected from an object and received at one’s own positiofyg| measurement. Insteaixﬁf)(pgl)) denotes the distance to the

The measurement is thus modeled by nearest road, and the measurement
hc(12) (pgl) p§2)) = K — alogy ‘pgl) - p§2)‘ : (3f) yt(l) = hj(»l) (p§1)> + egl)

2) Measurements of Relative Angl&imilarly, the sensors gy, 4 therefore be equal to zero. A simple and relevant noise
can measure the relative angle between two positions (e gnqel is white and zero mean Gaussian noise.

radar, IR, sonar, ultrasound). Given points of known positions
pi, ¢ = 1,..., M, the relative angle measurements can ke Applications

described by The applications discussed briefly in Section | are explored

) (pgl)) — angle {p“ pgl)} 7 i=1,...,M. (3g) infurther detail in the sequel. Typical state vectors, input sig-
” nals, and available (nonlinear) sensor information are summa-
When relating the angle of an object to one’s own position, wized in Table 1. Motivations and more elaborative discussions
have regarding the applications and appropriate models are found in

Sections IV-VII.
P (b7, p7) = angle {pfV, o7} (30)

3) Measurements of Relative Velocitgome sensors (e.g.,
radar) typically measure the Doppler shift of signal frequenciés Recursive Bayesian Estimation

to estimate the magnitude of the relative velocity. This is essen-cqnsjder systems that are described by the generic state space
tially only applicable when relating the velocity of an object tg, el (1). The optimal Bayesian filter in this case is given
one’s own velocity. The measurements are categorized by pajow. For further details. consult [5].

B2 (051)7 Ut(z)) _ Ut(z) _ Ut(l)‘ . 3i) Denote the set of available observations at tirhg

g,
4) Map-Related Measurement§&ig. 1 illustrates how Yi=1{vo, .-, vt

ground altitude is computed from radar measurements phe Bayesian solution to compute the posterior distribution

height over ground and barometric measurements from whig .|Y;) of the state vector, given past observations, is given
altitude is computed. The measured terrain height together wifs [5

relative movement from the INS build up a height profile, as
illustrated in Fig. 2, and the task is to find the current position s, |v;) = /p(a:t+1|a:t)p(a:t|Y})da:t
and orientation of this profile on the map.

I1l. PARTICLE FILTER

The measurement in terrain navigation is the measured i
ground height, andh,(p*)) is the height at poinp*) ac- = /Pft (Bf(x“rl_Axt B B’U“t)) p(we|Ye)da,
cording to the Geographical Information System (GIS). Much (4a)

effort has been spent on modeling the measurement eﬁlr)or v,
in a realistic way. It has turned out that a Gaussian mixture with p(z,|Y;) = pyelzop(ee]Ye 1)

two modes works well. One mode has zero mean, and the other PlyelYe-1)

has a positive mean that corresponds to radar echoes from the Pe, (yr — h(xe))p(xe[Yy_1)
tree tops. The ground type in GIS can be used to switch the - cr

(4b)
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TABLE I
Li1sT oF CONSIDEREDAPPLICATIONS WITH THE CORRESPONDINGSTATE VECTOR (Cf. TABLE [), INPUT SIGNAL, AND SENSORINFORMATION

Application State vector Input | Measurement equations

pgl) vt(l) Road map h; (pgl)), possibly GPS or base station
distances hf,lz (p"), base station powers h£12 M)
Aircraft positioning pil) aEl) Altitude map h]-(pgl)), GPS or other reference
beacons hf,{,?(pgl))

Car positioning

Navigation in aircraft pM) i) Ea(l) aEl) Altitude map h (ptl)), GPS or other reference
beacons h (p

Tracking pﬁz),v,m distance h(z) (p(l) (2)) bearing h; 2 (pg (1) (2))
Doppler h( )(pil),pf)) intensity h(z)(p(l),p(z))

Navigation and tracking pil),vt(l), 6a§1), pﬁ’), vt(Q) aﬁl) Altitude map h; (pt )), GPS or other reference

in aircraft beacons h(l)(p 1))

distance h(z)(p(l) (2)) bearing h(2)(p(1) (2))
Doppler h(2) (p( ) 2)), intensity h(z)(p b (2))

s onti : (1) (1) ¢ (1) (2}  (2) (1) (1) " :
Navigation and tracking | p; ', v, ', 0a; ', p; ", v, Road map h;(p, '), possibly GPS or base station
in cars distances hglz (pﬁl)) base station powers h(l)(p 1))
distance h(2) (p(l) 2)) bearing h(”(pﬁ",p‘”),
Doppler h(z)(p(l),ptz)), intensity h(z)(pm,pm)

FMMS _ / weplee|Vy) dg (4¢) to take samplé is w§ Letw! = 1/N. This step is
also calledsampling importance resampling (SIR)
MMS _ AMMS ~MMS\T b) Importance SamplingOnly resample as above
F / ) (e = 30) plan¥e) e when the effective number of samples is less than
(4d) a thresholdv,;,
where Neg = # < N

t Moore—Penrose pseudo-inverse; Z wt)

Ct normalization constant; ¢

#MMS minimum mean square (MMS) estimate. see [9], [14], [34], and [35]. Herd, < Neg < N,

If the noise distributions are independent, white, and zero where the upper bound is attained when all particles
mean Gaussian with(g;¢l) = R, E(f, f¥') = Q and the mea- have the same weight, and the lower bound when
surement equation is linear in the state, ids,) = Cuy, the all probability mass is at one particle. The threshold
optimal solution is given by the Kalman estimator [29]. Table IlI can be chosen a%y;, = 2N/3.

summarizes the time and measurement update equations for thé) Prediction Take af; ~ py,, and simulate

Kalman estimator. ; ; ; )
T4 = Axy + Byuy + By fy, i=1,2,..., N.

B. Particle Filter Implementation 5) Lett := ¢+ 1, and iterate to item 2).
A numerical approximation to (4) is given in the fO”OW|ngThe key point with resampling is to prevent high concentration
algorithm. of probability mass at a few particles. Without this step, sarhe
Algorithm 1:Particle Filter : will converge to 1, and the filter would brake down to a pure sim-

ulation. The resampling can be efficiently implemented using a
classical algorithm for sampliny ordered independent identi-
cally distributed variables [5], [39].
It can be shown analytically [11] that under some conditions,
e estimation error is bounded by/N. The functiong, grows
3 (373)) with time buF d(_)es not depend on the dimension of the state
space. That is, in theory, we can expect the same good perfor-
mance for high-order state vectors. This is one of the key rea-
sons for the success of the particle filter compared with other
numerical approaches such as the point mass filter (a numerical
integration technique that can be seen as a deterministic par-
ticle filter) [5] and filter banks [24]. The computational steps
By A Z wizl, are compared with the Kalman filter in Table Ill. Note that the
most time consuming step in the Kalman filter is the Riccati
recursion of the matrix’, which is not needed in the particle
3) Resampling filter. The time update of the state is the same. hetdenote
a) Bayesian Bootstraplake N samples with replace- the dimension of the state vector and similar definitionsidpr
ment from the se{z%}Y ;, where the probability andn ;. As a first-order approximation for large,, the Kalman

1) Initialization: Generater{ ~ p,,,i = 1, ..., N. Each
sample of the state vector is referred to gmdicle.

2) Measurement UpdatéJpdate the weights by the likeli-
hood (more generally, any importance function; see [134%

wy = wy_1p (e |2}) =wi1pe, (e —
i=1,2,....N

and normalize ta} := wj/ >, w;. As an approximation
to (4c), take
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TABLE Il vector in inertial navigation can have as many as 27 states, and
COMPARISON OFKF AND PF: MAIN COMPUTATIONAL STEPS here, the Kalman filter can be used for the 24 states, whereas the
Algorithm Kalman flter Particle Rlter particle filter applies on the 3-D position state. The extra work-
Time update z:= Az + Buu fr~pr ~ load here is minor.
P:= APAT + B;,QBY | z':= Ac'+ Byu+ Bsf' h . dels ai in Section Il v b
Measurement update | K = PCT(CPCT + BT [0 = w'pe(y - h(@)) T 'e motion models given in Section Il can actually be
z:=z+K(y - Cz) rewritten in the form
P:=P—KCP " ; " ; of
W) _ (1 A [ By BY
_— . . o = Kt i | T pue J0 T e
filter is O(2n2) from the matrix times matrix multiplication ai 0 A Ty B, Bf
AP, whereas the particle filter §(Nn?2) from the matrix times (5a)
vector multiplicationAx. This indicates that the part|cle filter Y pf) n (5b)
is about 100 times slower in an application with ~ 5 and Yo =T “

N = 10°. The difference becomes less whepincreases, in wherez?' (where pfis short for particle filter) anck! (where kf

which case, the measurement update becomes more Comanhort for Kalman filter) is a partition of the state vector with

The nonlinear function evaluation (preferably implemented asfaassumed Gaussian. Thﬁandng can have arbitrarily given

table lookup) of(x) in the particle filter has a counterpart ofdistributions. As the indices indicate, the Kalman filter will be

computing the gradier® = dh(x)/dx in the Kalman filter or - applied to one part and the particle filter for the other part of the

any other linearization that is needed. In a multisensor appligaate vector.

tion, the matrix inversiofC'PC* 4+R)~* may no longerbe neg-  For a derivation of the algorithm, see the Appendix or [36]. A

ligible. Allin all, a precise comparison is hard to make, althougéimilar result is presented in [12] for the general case, where the

itis worth pointing that the particle filter runs in real time, eveRtate space equation is linear and Gaussian, but one observes a

in Matlab in several of the applications presented here. 2, instead ofy;, where the relatiop(z;|y;) is known. An algo-

rithmically similar approach is given in [5], as an approximate

solution to an altitude offset in terrain navigation. The resultis a
When the particle filter is used in practice, we often wish tparticle filter with N particles e:stlmatmgpf The difference to

minimize the number of particles to reduce the computationdle standard particle filter algorithm (Algorithm 1) here is that

burden. For many applications using recursive Monte Carlbe prediction step is done using

methods, depletion or sample impoverishment may occur, i.e., < .

pf,e

C. Sample Impoverishment

f Ak, ¢ f
4 APIGEL T BTy,

the effective number of samples is reduced. This means that ﬂfé{ ~N &y,

particle cloud will not reflect the true density. Several different
methods are proposed in the literature to reduce this problem. § § N T

By introducing an additional noise to the samples, the deple- Al letlt (A f) + B}th (B}f) ) :
tion problem can be reduced. This technique is cgitézting . i .
in [17], but a similar approach was introduced in [21] under th %Eef)ver for each par_tlcle, one Kalman filter estimates
nameroughening In [15], the depletion problem is handled by" Tfrest = L - N} using
introducing an additional Markov chain Monte Carlo (MCMC) -1
step to separate the samples. K, =Py (APHT <A1’fP iy (AP )T+B;?th (B?f)v

In [21], the so-callegrior editing method is discussed. The
estimation problem is delayed one time-step; therefore, the likgkt.i _Akf( P K, ( _ ppEgkEi ))
lihood can be evaluated at the next time step. The idea is to reje&t Ttle-1 Ttle-1
particles with sufficiently small likelihood values since they are
not likely to be resampled. The update step is repeated until a
feasible likelihood value is received. The roughening method oy
could also be applied before the update step is invoked. TR&t1; =4 ( N — K APTPS 1) (A )
auxiliary particle filter [37] is constructed in such a way that
we will simulate from particles associated with large predictivethered < = Ak — BYH(BY)T APt (1 denotes the Moore—Pen-
likelihoods directly. A two stage resampling may be used by thisse pseudo-inverse), anfl= iPL/ — iPh?,

= T41 t

method. Remark 1: The covarlanc:ePkar , and the Kalman gair,
are the same for all particles, implying a very efficient imple-
mentation of thaV parallel Kalman filters, where thE and K

Despite the theoretical independence of accuracy on the papdates in Table Il are done only once per time step.
ticle dimension, it is well-known that the number of particles Remark 2: The distribution forc§' does not necessarily have
needs to be quite high for high-dimensional systems; see, forbe Gaussian. We can approximafet’) arbitrarily well by
instance, Section VI for an illustration. To be able to use asmélN(Alglf ”1, Pé‘lf Dit=1,..., N}
N and to reduce the risk of divergence, a procedure known afRemark 3: The derlvatlon still holds if an additional non-
Rao-Blackwellization can be applied. The idea is to use tlieear termg(z") enters the state dynamics fe'.
Kalman filter for the part of the state space model that is linear Remark 4: The Kalman filter here applies to a state vector of

and the particle filter for the other part. As a motivation, the statkmensionn, — n,, which is an improvement compared with

-
+ BNy, + BY! (Bi?f) 2

D. Rao-Blackwellization
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Fig. 3. Car positioning: Sequence of illustrations of particle clouds (white dots) plotted on a flight image for visualization. The center"[sbiows the true
position and %" the estimate.

400

dimensiondim x as to where the derivation in [12] leads. For ' ' ' | — AMSE

« - AMSE+a

largen,., the reduction in complexity is approximately ssof o . PR -~y

_ 3

n3
The estimate of the particle filter part is computed in the normal
way, and for the Kalman filter part, we can take the MMS esti-

mate (4c)

N e
SKE i skl,d
Ty = Z Wi Lye—1 so| -
i=1 .
with covariance (4d) ° s e =0 0
N
. ; ; T Fig. 4. Car positioning: RMSE for particle filter and GPS, respectively.
ki . pkl i [ ~Kkf,d Ak AKf i Akl [¢] p 9 p , resp Y.
P = By +Z Wy ($t|t—l_$t|t—1) ($t|t—l_$t|t—1)
=1

After four to five turns, the filter essentially has converged. One
can note that the state evolution on the straight path extends
the cloud along the road to take into account unprecise velocity

Wheel speed sensors in ABS are available as standard compfrmation. Details of the implementation are found in [23] and
nents in the test car (Volvo V40). From this, yaw rate and spefb], whereas some comments on the divergence problem are
information are computed, as described in [22]. Therefore, th&en in the conclusions.
velocity vectorvt(l) is considered available as an input signal, GPS is used as a reference positioning system. It provides re-
and the motion model in (2a) with measurement equation giviable position estimates in rural areas but is hampered in non-
by (3a) is thus appropriate. The initial position is either markeihe-of-sight situations and when the signals are attenuated by
by the driver or given from a different system, e.qg., a terrestrifidliage, etc. After convergence, the map-matching particle filter
wireless communications system, where crude position infag-seen equal to, or even slightly better than, GPS in terms of
mation is available today [16] or GPS. The initial area shoulserformance; see Fig. 4. However, in test drives along forests,
cover an area not extending more than a couple of kilometerstose to high buildings, and tunnels, the GPS performance dete-
limit the number of particles to a realizable number. With infiriorates quickly. Furthermore, the GPS has a convergence time
nite memory and computation time, no initialization would bef about 45 s when turned on; this is not shown in Fig. 4.
necessary. For comparison, the particle filter using map matching and

The car positioning with map matching has been implditers based on measurements from a fictive terrestrial wireless
mented in a car, and the particle filter runs in real time witbommunications system are applied to data from a simulation
sampling frequency 2 Hz on a modern laptop with a commercigdtup mimicking the real case above. The area is essentially cov-
digital road map. This corresponds to a measurement equaiiwed by one macro cell, but yet another base station is assumed
specified byh " (pi")) in Section 11-B4. within measurable distance.

Fig. 3 shows a sequence of images of the particle cloud onThe base stations in a terrestrial wireless communications
a flight image of the local area. The driven path consists ofsystem act as beacons by transmitting pilot signals of known
number of 90turns. Initially, the particles are spread uniformlypower. The mobile station monitors thé [in Global System
over all admissible positions, that is, on the roads, covering or Mobile Communications (GSM}{ = 5] strongest signals
area of about 1 ki After the first turns, a few clouds are left.and reports regularly (or event-driven) the list to the network.

IV. CAR POSITIONING
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Fig. 5. RF positioning: Monte Carlo performance over time in the simulated _. . I
sc?enario. ThFe) map magtching (solid) ngeds some 25 s to converge, but after tHidg- 6. Terrain navigation: Test track over a part of southeastern Sweden.
burn-in time, the algorithm provides RMSE 8.7 m. This is almost as good as
with ideal distance measurements to two base stations (dashed) with RMSE
7.0 m. For comparison, power measurements (dash-dotted) yield RMSE&

m and dead reckoning (dotted) a steadily increasing error with RMSB m.

Based on these lists, the network centrally transfers connections
from one base station to another (hand-over) when the mobile is
moving during the service session. According to the empirical
model by Okumura—Hata [26], this providdé$ measurement
equations as in (3e), one for each available base station (in this
simulation,M = 2), andp.(e) € N(0, %), wheres, = 6 dB.
Similar measurements, but with a different motion model (the
velocity is unknown), are used in [28]. Point-mass implementa- -
tion of estimators based on RF measurements is also discussed - i
in [9]. samplenumber

To pro"'qe morg accu_rate positioning ,Vla RF measuremen&g. 7. Terrain navigation: Estimation error relative a GPS reference, as a
future mobile stations will be able to estimate the traveled digmction of sample number. Note the growth in error over open water.
tance of radio signals from a multitude of base stations. In the
ideal case, the signals have traveled without reflections to the L o ) . )
mobile station (line-of-sight situation), and the estimates qBrovided by the inertial navigation system. S'mgé) is avail-
scribe the distance to the base stations. ThéM is typically able as an input signal, the motion model in (2a) is appropriate.

1-3) measurement equations can thus be modeled by (3c), an'&he particle filter has l:_)een applieq to a number of flight_ tests
they represent a rather ideal situation. Moreover, the noise?fs the fighter JAS 39 Gripen, and Fig. 6 shows the path in one
modeled ag. (¢) € N(0, 02), wheres. = 3 dB. The received of them. In these tests, differential GPS (DGPS) is taken as the

power measurements discussed above are available today'Bift POSition, and the resulting position error is shown in Fig. 7.
are of worse accuracy due to unmodeled power variations. The accuracy beats the first-generation system and comes down

A third alternative is to simply integrate the relative movel0 the value of the point mass filter described in [8]. Since the

ments provided by the ABS (dead-reckoning). Monte Carlo sifRoint mass filter satisfies the Cramér—Rao lower bound (see [6]),

ulations based on these different approaches are summarize@'ﬁ{e is no better filter. The advantage of the particle filter over

Fig. 5. It is interesting to note that map matching provides a p[p_e point mass filter is first a much less complex algorithm oc-

sition accuracy of roughly the same accuracy as with accur&fét,’ying only some 30 Iine; of cpde (Ada) apd, second, the pos-
distance measurements (which would almost never be the c3&dity to extend the functionality by including other parame-

in a real situation), without relying on external signals. Furthe}€'S Such as barometric height offset in the state vector (that is,

more, integrating the ABS signals directly yields an increasidgcr€asing the particle dimension). Saab has evaluated the de-
error over time. terministic particle filter in Gripen in parallel with the first gen-
eration system with superior results, whereas the particle filter

described herein, so far, is run offline.

V. TERRAIN ELEVATION MATCHING

The air fighter JAS 39 Gripen is equipped with an accurate VI. INTEGRATED NAVIGATION SYSTEMS

radar altimeter and a digital map. This corresponds to the meaAs a simplified study to illustrate the Rao—Blackwellization
surement equation characterized/gy(p™)) in Section I-B4. procedure, a 2-D navigation model with six states is used ac-
The velocity vector is obtained by integrating the acceleratiaording to (2b), and the measurement of position is taken from
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position error (m) TABLE IV
' " ) ' TARGET TRACKING: RMSE (OMPARISON FORATC MONTE CARLO
SIMULATIONS

APF | Bootstrap | IMM-3 | Measurements
RMSE | 34.03 | 40.84 42.20 63.96

—o~ True
L N . N L L1 50001 I % _Measurement

0 50 100 150 200 250 300 x
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Fig. 9. Target tracking: Trajectory for the 100 Monte Carlo simulations, 800
particles.

0.01F
more realistic scenario is investigated in [31]. Here, the case of
radar measurements where range is also available is discussed,
- s - . . N which occurs in different applications, such as air traffic control

0 50 100 150 200 250 300 .. . .

sec (ATC) and collision avoidance. Linear models such as (1) can
_ , _ ___often be used, but nonlinear state equations are also used. For
Fig. 8. RMSE based on 100 Monte Carlo simulations for the particle filter t hen the tracki biect i ing in straiaht path
using 60000 particles (dashed lines) and the Rao—Blackwellized filter usiHE;S %nce’ whenthe rac_lng objec _'5 movmg In straight paths or
4000 particles (solid lines). on circular segments, different variations of the so-called coor-

dinated turn model [4] can be utilized. For maneuvering targets,

the terrain navigation algorithm according to Section |1-B4. lrinultlple models are used to enhance tracking performance. The

should be noted that the 2-D navigation model is valid Onlmteracting multiple model (IMM) [4] is one classical multiple

when the earth is modeled as flat. As soon as one accounts ﬁ(;?;:flﬁt%':;h[rﬂ Za:rzdcggstt?aeir:?sfir:gu(s)tner%fsstg;sraéfc):(r:eansd\?i
the curvature of the earth, the model becomes more compli- ) Y '

cated; see [10]. In practice, there also exist gyro sensor erré)]rgt%rir:g diccceelneorﬁltilr?gabrﬁiigdi?:ﬁ:\r?rgbsfszggir:;o;nvr:?citscr)ﬁlljn’
that further complicate the problem. y y-app ’

In Fig. 8, the result is shown for the particle filter when usinéegrade performance if not handled by the tracking filter. Two

N = 60000 particles (dashed lines). The performance is pret ifferent applications will be presented in more detail below. It

bad, and it quickly deteriorates even more when the number%i’mportant to note that realistic measurements (3g) can easily

particles is decreased. In particular, the transient requires mgrﬂa used, modeling the radar loob in the angle noise distribution,

. ; o ; . : d (3c), with uniform range noise distribution.
particles. The basic problem is high dimensionality and sm Animportant aspect of target trackingissociatiorfa], [42]]

process noise. On the other hand, following the Rao—Black- which obiect should rtain m rement b iated?
wellization procedure, we partition the state vector and rewrife .”". ch object should a certa casurement be assoclated:
is is a discrete problem, and attempts to include this in a par-

the motion model according to (5) with ticle filter framework are described in [2], [7], [18], [20], [27],
€8] [32], [38], and [41].
pf (1 Kt _ < Uy ) .

0.0051

Ty =Dy Ty

6a§1) A. Air Traffic Control (ATC)

The result from applying this Rao—Blackwellized filter usinq In [3'2_]|_’g S|g1ple nelgrlyilcoolrd[[r;]ateq turlntrnodil ([14] was uste%
only N = 4000 particles is also shown in Fig. 8 (solid Iines),Or an radar appiication. in the simuiation study presente

PR, in Table 1V, two different simulation-based methods are com-
and the performance enhancement is significant. pared to the state-of-the-art IMM method. The particle filter al-
gorithms tested are the Bayesian bootstrap method (3a) and APF
[37]. The patrticle filters are here extended to the multiple model

The standard approach to target tracking is based on (ea&se, where target maneuvers are according to a Markov chain.
tended) Kalman filters [3], [42]. Bearings-only target tracking hree different turn assumptions were made (right/left turn or
was introduced as the illustration of particle filters in [21]. Sincstraight flying) in the simulations presented. The true path pro-
then, bearings-only target tracking has been used in many jeeted in the horizontal plane is viewed in Fig. 9. It was gener-
vestigations; see, for instance, several of the chapters in [13]afed with a true turn rate value chosen as an intermediate value

VII. TARGET TRACKING
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2o Y Froded & resamplediparioe 100 The main contributions to the process noise come from the
driver’s action via steering wheel, gas, and brake. A lot of ef-
2°5°§ - 0% fort has to be spent on how to choose the process noise so that
e Bl * E Lo E it corresponds to the driver’s behavior and the physical limita-
d i T tions of the car. The vehicle and driver behaviors change signif-
1950 1850 icantly for different speeds of the vehicle. Thus, in order to get a
1900 1000 good prediction with this model, it is necessary to let the process
° o 1950 2000 2050 2400 2150 2200 2250 noisef, change with different speeds. It is also important in this
006 application to incorporate knowledge about the environment to
e e i) N 008 x improve the prediction. For example, it is likely that the car will
. Partele demslty / ‘\ o0z travel on the road and if there are some hard boundaries like
1900 00 210 z=o0 = rails or other stationary objects. These are hard constraints on

the car's movement.
Fig. 10. Target tracking: Particle cloud and density.

» y - - y y " y VIIl. CONCLUSIONS AND DISCUSSION

We have given a general framework for positioning and nav-
igation applications based on a flexible state space model and
a patrticle filter. Five applications illustrate its use in practice.
Evaluations in real-time, off-line, on real data and in simulation
environments show a clear improvement in performance com-
pared with existing Kalman filter-based solutions, where the
new challenge is to find nonlinear relations, state constraints,
and non-Gaussian sensor models that provide the most infor-
mation about the position. Thusiodelingis the most essential
-1sp T step in this approach, compared with the variouplementa-
tions of the Kalman filter found in this context (linearization
issues, choice of state coordinates, filterbanks, Gaussian sum

o m £ e m % % 75
Fig. 11. Collision avoidance: The left rectangle is the own car, which i@lters’ etc.). ) ) )
approaching rapidly the right rectangle. The trajectories indicate 31-step aheadGeneral conclusions from the implementations are as follows:
prediction using 100 particles. There are still possible trajectories avoidiw choice of state coordinates making the state equation linear
collision, of which the driver will most probably choose one. Thus, no active .. . . i
control is needed at this stage. IS beneficial for computation time and opens up the ppss_l_b|l|ty
for Rao—Blackwellization. This procedure enables a significant

) . o decrease in the particle state dimension. The evaluation of the
of the turn rate used in the multiple model conditioning, thus alyejihood one step ahead before resampling (APF, prior editing)
lowing the IMM to mix between models, and the particle filtefg (ogether with adding extra state noise (jittering, roughening),
process noise to perform the turn interaction. The incorporatigp,cia| for avoiding divergence and implies that the number of
of hard constraints on the velocity is also straightforward for ”}f‘articles can be decreased further. Our implementations run in
particle filter case. The radar sensor used in the application mgas| time (2 Hz), even in Matlab, and have some 2000 particles.

sures range, azimuth, and elevation at a rather low update rat@)pen questions for further research and development are as
to emulate a track-while-scan (TWS) behavior. In Table 1V, thg)ows.

IMM method is compared with the particle filters and measure-
ments only, viewing the position RMSE for 100 Monte Carlo
simulations. For the Bayesian bootstrap case, two simulations
diverged. Depending on the choice of process noise, the slight
difference between the IMM and the Bayesian bootstrap may
change. The marginalized density is also shown in Fig. 10 to-
gether with the particle cloud.

 Divergence Testdt is essential to have a reliable way to
detect divergence and to restart the filter (for the latter, see
the transient below). For car positioning, the number of re-
samplings in the prior editing step turned out to be a very
good indicator of divergence. Another idea used in the ter-
rain navigation implementation where the sampling rate is
higher than necessary, is to split up the measurements to a
filterbank so that particle filter number:i =1, 2, ..., n
gets everyith sample. The result of theagpatrticle filters
The coordinated turn model can be used for collision avoid-  are approximately independent, and voting can be used to
ance to track the car position and predict future positions. The restart eachfilter. This has turned out to be an efficient way
goal of the prediction in this case is not necessarily to get as to remove the outliers in data.
good a point estimate as possible. Instead, we are interested irr Transient ImprovemeniThe time it takes until the esti-
the whole distribution of possible maneuvers. Fig. 11 shows a mate accuracy comes down to the stationary value (the
simulation where the collision is still avoidable. This would not Cramér—Rao bound) depends on the number of particles.
be obvious from just looking at the point estimate. Given limited computational time, it may be advantageous

B. Collision Avoidance
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to increase the number of particl@é after a restart and will be used to approximate this distribution. The particle pre-

discard samples in such a way tiétT; is constant.
* Since the particle filter has shown good improvement over
linearization approaches, it is tempting to try even more

accurate nonlinear models. In particular, the flight dys thatp(

namics of one’s own vehicle is known and, indeed, used

pf

dictionsp(x: | XP") are given by

pf
Tyl

f £ £ kf f f T
XP=abt + AP XY+ BYu, + BY

pf

aP | XP") is given by

in model-based control but is very rare in navigation apy ( ,f Apfil{ﬁ | + BPlu,
— u

plications; see [33] for one attempt in this direction. In

that study, it seems that the computational burden and lin-
earization errors imply no gain in total performance. As

a possible improvement, the particle filter may take full.
advantage of a more accurate model, where parts of %
nonlinear dynamics from driver/pilot inputs are incorpo-
rated.

APPENDIX

For the derivation of the Rao-Blackwellized algorithm
given in Section III-D, suppose first that the particle filter,
part of the state vector is known. That is, the sequengs
XPU= {22 ... 2P'}is known. We can, temporally, consider.
z = xP, — 28" as the measurement. The state space mo
here is

pf pkf piNT pt pf T
AVTPEE (APHT 4 BPQ, (Bf) .

|é1ally, note that the derivation does not change if we use the
ictitious measurement, = P, — g(«}") for an arbitrary
nonlinear function, which is Remark 3.
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zZr = Apf.’flt{f + B,Efut + B‘Ifjfft.

Since this model is linear and Gaussian, the optimal solution is
provided by the Kalman filter. We then know that:5f| X ) is

Gaussian, therefore 2]
ayt Xf?f = Zo1 ~ N (‘%hft—l’Pt]Tff,—l) (3]
whereia{_l andP}/ | are given by the Kalman filter equations
adjusted for correlated noise [24] (4]
kf NT f pkf IN\NT f f ! 5]
K :Pt|t71(AP ) <AP Pt|t71(AP ) +B} on (B} )T>
Akf — Kt (L kf pf Akf 1
L1t =4 ($t|t71 + K (Zt -4 $t|t71>)
f (7]
+ B,}jfut + Bl}f (B;?f) 24
(8]
— kf N —kf\ T
Ptl:f-1|t =4 (Ptkﬁc—l - KA fPtle—l) (A )

_ 9]
whereA ™ = AN _ B‘;f(Bﬁif)TAl‘f (t denotes the Moore—Pen-
rose pseudo-inverse). [10]

Now, to computen(z;|Y;) = p(a*, 25|Y}), note that
[11]
p (tif7x1t<f Y}) =p (xlt<f| tif)p (tif Y;) .
" [12]
We or)ly have to computg(X}"|Y;). Repeated use of Bayes'’
rule gives [13]
(XDf Y) p (yt|$$f>p (xi‘f tifl) (pr ‘Y ) 14l
PAA) = p(ye|Yeo1) PRt

We have a nonlinear and non-Gaussian measurement equati(J)lnS,]
therefore, to solve the measurement update, the particle filter
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