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Abstract

In this paper particle filters for dynamic state space models handling unknown
static parameters are discussed. The approach is based on marginalizing the static
parameters out of the posterior distribution such that only the state vector needs
to be considered. Such a marginalization can always be applied. However, real-
time applications are only possible when the distribution of the unknown parameters
given both observations and the hidden state vector depends on some low-dimensional
sufficient statistics. Such sufficient statistics are present in many of the commonly
used state space models. Marginalizing the static parameters avoids the problem of
impoverishment which typically occur when static parameters are included as part
of the state vector. The filters are tested on several different models, with promising
results.
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1 Introduction

Dynamic state space models [1, 2, 3] are useful for describing data in many different areas,
for instance engineering [4], finance mathematics [5], environmental data [6], geophysical
science [7] and disease data [8].

Using p(-|-) for a generic conditional distribution, the general (discrete time) state space
model is given by

X ~p(Xp|Xg-1;8), system (la)

zp ~p(2Zk|Xk; ), observations (1b)

where z; contains the observations at time t;, while {x;} is an unobserved underlying
stochastic process. In some cases X; may have a physical meaning while in other cases
merely is included in order to describe the distribution of the observation process properly.
0 is a vector containing static parameters which in some cases can be specified but in many
cases are unknown. Typically, some prior distribution is placed on xg.

An important task when analyzing data by state space models is estimation of the
underlying state process based on measurements from the observation process. The interest
might be on x; itself (or a function of xj), or Xy, is a tool for making prediction on z;. Given
data z;.ny = (21,...,2xN), estimation of x;.x is usually referred to as off-line estimation,
while on-line estimation is sequential estimation of x; based on zy; for £ =1,2,3,.... In
this paper, our effort will be on the latter problem. In particular the focus will be on
problems where new observations arrive frequently (hours/minutes/seconds) and real-time
estimation/prediction is essential.

In a few cases, including linear Gaussian models and hidden Markov chains, the distri-
bution of x;, given the observations z;.; can be computed exactly using recursive formula’s.
For situations where analytical solutions are impossible to obtain, stochastic simulation
can be applied. Numerous papers have been written on construction of algorithms based
on Markov Chain Monte Carlo (MCMC) dealing with general state space models (see
Gamerman [9] and the references therein). Although such procedures may be effective for
off-line estimation, there are problems with full MCMC in the case of on-line estimation.
The MCMC algorithm needs to be restarted at each time point. Further, the dimension
of the vector to be simulated increases with time.

An alternative to full MCMC at each time point is construction of simulation algorithms
for sequential updating the posterior distributions. Such (slightly different) algorithms
have been developed independently in many fields [10, 11, 12, 13, 14, 15] with different
names (Bootstrap filter, Monte Carlo filter, Particle filter, Condensation algorithm). The
excellent review by Doucet [16] even contains some references back to the late 60’s. A
collection of papers describing the state of the art in this field can be found in [17]. In this
paper, such algorithms will be denoted particle filters.

The main idea behind particle filters is to represent the posterior distributions p(xy.x|Z1.x)
through a finite set of samples or particles which can be used to estimate any property of
p(X1:£|21.1) in an ordinary Monte Carlo estimation framework. When a new observation zj



arrives, the particles are updated in order to represent the new posterior p(Xi.kt1|Z1.541)-
Techniques for performing this updating include rejection sampling [10], importance sam-
pling [18], sampling/importance resampling [11] and MCMC [14, 19]. A main computa-
tional problem with the general approach is that the dimension of the distribution increases
with time. In many cases only p(xX|z1.x) is of interest. If earlier state variables can be
disengaged [14], fast computation can be performed. Disengagement in this setting means
that variables at previous time points can be neglected in the sequential computation
algorithm.

Although particle filters have been successful in many simulation experiments and in
analysis of real data, a main problem with such an approach is how to handle the presence
of unknown static parameters. A common trick in engineering is to include the parameters
as part of the state space vector x;. Berzuini et al. [14] put this approach into a formal
Bayesian setting. However, the non-dynamics in the parameters makes the parameter
samples degenerate into one or a few different values when £ increases.

Gordon et al. [11], West [20], Bglviken et al. [21] and Liu and West [22] introduced
diversity in the set of particles by adding random noise to the particles, which in this
context is similar to approximate the non-dynamic parameters by some slowly changing
dynamic ones. In addition to the problem of choosing the “diversity” procedure, this
results in old observations being down-weighted and the parameter estimates obtained at
a given time is mainly depending on the most recent observations.

This paper considers an alternative approach. Suppose that for given xy.; and zy.; the
distribution of @ is analytically tractable. In particular, the distribution of 8 is assumed
to depend on xi.; only through some low-dimensional sufficient statistics. In such cases,
only samples of x;.; given z is needed, since estimates of the posterior distribution for
the static parameters can be obtained either through Rao-Blackwellization or by a simple
additional simulation step. Furthermore, updating the particle set to a new particle set
one time-step further on can be performed by simulation of the state vector and the
parameters simultaneously. The approach can be considered as a marginalization of 8
from the posterior.

The main idea has been suggested several places before. Liu and Chen [18, section 5] call
the procedure Rao-Blackwellization, but state that “when disengagement is implemented,
Rao-Blackwellization is no longer directly applicable”. In this paper we demonstrate that
by including the sufficient statistics for 8 into the state vector, the procedure is possible
to combine with disengagement. Sufficient statistics were also applied in [23] for models
with discrete valued state variables. No general treatment of this approach has however
been given in the literature. The main contribution of this paper is to demonstrate the
usefulness of marginalization in certain classes of state models when estimation of static
parameters and dynamic state variables is performed simultaneously.

Although the required assumptions will restrict the set of models possible to process
by this approach, many important (and widely used) models are included. In particular,
models for which the underlying process is Gaussian and linear in the parameters involved
(but not necessarily linear in the x-process) can be handled by this approach. Further,
the assumption about Gaussian noise in the system process can be relaxed to include



“partial non-Gaussian” processes as defined by Shephard [24]. Both T-distributions and
mixture of Gaussians fall into this group of models. Also discrete-valued Markov models
and mixtures of these and Gaussian-based models can be used. These system processes
can be combined with any observational distribution which do not contain any additional
unknown parameters. Many observational distributions with unknown parameters can be
handled by this approach, but typically special treatment is needed in each case.

In Section 2 the general particle filters are reviewed. Section 3 introduces the particle
filters for situations with unknown static parameters. Section 4 considers some particular
classes of models which fit into this framework, while the filters are applied on different
types of models in Section 5. Finally, a summary and discussion is given in Section 6.

2 Particle filters in general

This section discusses particle filters in situations where the static parameters are known.
For the time being 6 will be suppressed in the notation.

Today many different versions of particle filters exist (see Doucet et al. [17]). Two
different motivations are typically used in construction of a filter. One approach is based
on importance sampling. In this case x; is simulated sequentially from some importance
distribution fr(xg|X1.k-1,21.1) and the whole trajectory x;. is given importance weight

p(XO:k|Z1:k) ,
Jo(x0) Hf:l Jilxa|X1.-1, Z1;1)' (2)

Wwg =

N such sequences are simulated in parallel, giving a weighted particle set Sy = {(X(IZL, w,(;)),
i = 1,...N} at each time point t;. Restrictions on the importance distributions are
needed both for ease in simulation and in order to make the computation of the weights
possible. See [18] for further discussion on this approach, which usually is named sequential
importance sampling (SIS). A problem with this approach is that when time evolves the
variance of the weights will increase [25] making the estimate (5) unstable. A common
trick to avoid this is to resample from S; with probabilities proportional to w,(;). Liu and
Chen [18] give some heuristics on when to resample.

An alternative approach is based on the ordinary histogram approximation of the den-

sity p(x1.5|Z1:5-1):
2521 w1(21[(x1:k—1 = X(12;L—1)
Efvﬂ w,(jll

where I(A) is the indicator function for event A.
By Bayes rule and (1),

(3)

}/7\(X1:k—1|Z1:k—1) =

p(X1:k|Z1:k) O<p(X1:k—1|Z1:k—1)p(Xk|Xk—1)p(Zk|Xk)

RD(X1:k—1|Z1:k—1) P(Xk [Xkm1 ) (28 X ). (4)



A new particle set Si can now be obtained by simulating from this approximative distri-
bution.

A possible rejection sampling procedure [10] for simulation from (4) is to sample xy.;
from p(x1.x|Z1.k—1) and accept the sample with probability proportional to p(zy|xx). This
procedure can be repeated N times in order to obtain a new (unweighted) particle set Sy, =
{x},...,xP}. In practice the acceptance probability for this simple algorithm will be far to
low, making the need for other approaches. In [19] constructions of more efficient proposal
distributions are given and some other sampling approaches including sampling /importance
resampling and MCMC are discussed. Note that the use of MCMC here is on a much
smaller dimension than if a full MCMC scheme was to be applied.

A main problem with the particle filters described so far is that when simulating x;.x
at time k, the first £ — 1 components can only take the values given in S;_;. Gilks and
Berzuini [26] and Carpenter et al. [27] introduced the possibilities of changing the whole
vector Xy according to some Markov transition kernel having p(xi.x|z1.x) as stationary
distribution. Such an approach does solve some of the degeneracy problems that can occur
for the more standard particle filters, but not in general. The complexity of simulating
from the Markov transition kernel will increase with time, giving similar problems as for
full MCMC simulation.

Given the main framework, much freedom is available to the user on how to specify the
algorithm. However, care has to be taken in order to make the algorithm work properly
both at a fixed time point ¢, for large enough N and for fixed N with time increasing.
Storvik [28] demonstrated through some simulation experiments that the numerical errors
introduced can accumulate linearly for some particle filters. This is particularly the case
when unknown static parameters are present. Using more sophisticated filters can however
remove this error accumulation. This is the aim of the filter that will be presented in the
next section.

Assuming f(xy.x) is of interest, the posterior expectation E,{ = E[f(x1.k)|Z1.4] is ap-
proximated by

N

N
El =3 wl f(xi)) Y wl). (5)
=1

=1

Recently, some theoretical results on particle filters and their associated Monte Carlo es-
timates have appeared. Berzuini et al. [14] established a central limit theorem for the
estimator (5) for the sequential importance sampling approach with resampling at each
stage. More general results on convergence is given in [29], which shows that most algo-
rithms proposed will converge properly. These results are however based on increasing the
number of particles N to infinity. In [3] it is proven that under certain conditions the error
in the approximative distribution remains stable if N grows like k% as k increases. The
order k? can probably be improved by introducing additional conditions or by constructing
more efficient filters. Still however, to the author’s knowledge, theoretical results on how
errors propagate in time when N is fixed, is missing.



3 Particle filters including non-dynamic parameters

In this section an approach for particle filtering in the presence of unknown parameters will
be discussed. The usual approach is to include the parameters as part of the state vector
(xk, 0). Because of the non-dynamic feature of the parameters, samples of 8 at time ¢), can
only take the values given at time ¢;_;. Since some of these values become very unlikely
when new observations arrive, this will result in an impoverishment of the set of distinct
0 values.

The approach taken in this paper is based on a different idea. Assume that the posterior
distribution of 8 given zy.; and x1.;, depend on some sufficient statistics Ty = Tr(X1.1, Z1:1),
where T}, is easy to update recursively.

Assume that an approximate particle set S;_; is available from the posterior distribu-
tion p(X1.k—1|Z1.k-1). Again the particle set Sy_; is to be updated to a new particle set
Sk at time ¢;. Even though only the {x;} process in addition to the sufficient statistics
{T:} will be stored, simulation simplifies if € is included as an ancillary variable in the
simulation step. The approach is based on the following

P(X1:k,0|21:) = Op(X1:1, 0, 21| 21251

CP(X1:k—1 |Z1:k—1)p(9|X1:k—1, Z1:k—1) X
(
(

P Xk|X1:k—17 Z1:k—1, e)p(zk|X1;k, Z1:k—1, 9)
= Cp Xl:k—l|Z1:k—1)p(0|Tk—1)p(xk|xk—17e)p(zk|xk70)7 (6)

~1, a constant not depending on x;.; or 8. Using the approxima-

where C' = [p(z|21.5-1)]
tion in (3), simulation from (6) can be performed as before, but with the additional step
that also @ needs to be simulated. The simplest approach would be to simulate xy.;_; from
P(X1:k—1|Z1:5-1), 0 from p(@|Tr_1), xi from p(xk|X1.5-1; ) and accept with probability pro-
portional to p(zg|xx; ). However, any simulation technique such as sampling/importance
resampling or MCMC can be applied. Also the SIS approach can be used.

The important part about this approach is that the parameter 8 simulated at time ¢
does not depend on values simulated at previous time points. This avoids the problem
with impoverishment.

In principle, the existence of a low-dimensional sufficient statistic for 8 is not necessary,
because only evaluation or simulation from p(0|x;.x,Z1.1) is needed, as noted by Liu and
Chen [18]. However, in order to make the filter run fast and not have increasing complex-
ity as time evolves, the need for p(0|xX1.k,Z1.x) only to depend on (Xi.,2Z1.x) through T
becomes apparent.

Following [25], a SIS with resampling (SISR) algorithm which includes static parameters
is defined as follows:

Importance sampling: Fori=1,...., N,

e sample 8 ~ fk71(9|XéiL_1,Z1:k)7



e sample )N(Ej) ~ fk,z(Xk|XéZ;L_17Zk70) and define )Nc(&

A (G ~ (i
= (:) ())7
e evaluate the importance weights

oy POITEL e L O)p(za %, 0)

We = Wr- i ~ (1) (i :
L (O1xE) ) fra RO XD | 24, 0)

Resampling: Fori=1,..., N,

e sample an index j; from {1,..., N} with probabilities proportional to @,(;"),

o put xj; = X, Ty = (TP xi), 2) and wy) = N7,

Here fk71(0|xéi2_1, z1.;) and fk72()2§:)|xgﬁl, 7z, 0) are proposal distributions for 8 and xj, re-
spectively. Typically fk71(0|xéi2_1, Z1g) = fk71(0|T§21, zy) in order to make both simulation
and computation fast. 7'(-) is a function updating the sufficient statistics.

As for the ordinary SISR algorithm, resampling can be performed at each time step or
according to some specific rules [12]. Stratified sampling [27] and other variance reduction
methods can also easily be incorporated. ' '

In the case of resampling at each time step and with fk71(0|xéi2_1, Z1g) = p(0|T§Ql) the
algorithm can be seen as a special case of the resample-move algorithm due to [26] where
the move step at time ¢ — 1 corresponds to sampling 8 from p(0|XéZ;L_1, Z1ik—1)-

Samples of 8 based on z;.; are directly available through the algorithm. In order to
estimate 8, a better approach is to use Rao-Blackwellization, as described in [25].

4 Gaussian-based system processes

In this section some particular classes of models will be discussed. Only models for system
processes will be considered, because these can be discussed in general terms. When
unknown parameters are present in the observational distribution, special treatment usually
is needed. This is therefore discussed through specific examplesin Section 5. In many cases,
the parameters involved in the observation process are given from other sources. In such
cases, no extra treatment is needed.

We will concentrate on Gaussian-based models. This is both because such models are
commonly applied as system processes and because sufficient statistics are easily calculated
for this class of models.

4.1 Gaussian system processes

A particular useful class of models is obtained when the underlying state process is Gaus-
sian, but where the observation distribution is arbitrary (though following (1b)). Assume

x, = F.B+er, e.~N(0,0°Q), (7)



where Fj, = F(x;_1) is a matrix with elements possibly non-linear functions of xz_;. The
unknown parameters are in this case 8 and o (Q is assumed known, the general case can
also be handled but becomes much more complex).

Assume B and o2 to have priors 8 ~ N(B,,72Cy) and o2 ~ I1G(2, %) where IG is the

272
inverse Gamma distribution. Then a trivial extension of the standard theory [2] yields

[B1%1:1, Z1.:k, 07 ~N(my, 0>Cy,) (8a)
UV dk

(02X 1.5, Z1.:1] NlG(?v ?)

(8b)
where the sufficient statistics my, Cy, dy and vy are updated according to the equations

D, =F,C;_,F; + Q, (9a)
Cy =Cj_1 — C;_1FD'F,.Cy_4, (9b)
my; =my_; + C, 1 F; Dy [x — Fymy_y], (9¢)
dy =dy—1 + (xx — Fymy_)' D} (x), — Fimy_y), (9d)

(9e)

Vp =V +4q.

where ¢ is the dimension of x;. The particle filter approach described in Section 3 can
therefore easily be applied.

The choice of distributions for priors on 3 and &2 are crucial in order to obtain the
analytical tractable forms (8a) and (8b), but should be sufficient in most cases. Priors
with little information can be obtained choosing a large Cy and 14 and dy small. More
complex priors are possible to obtain by using mixtures of Gaussians (for 3) and mixtures
of inverse gamma distributions (for ¢2). Choosing such mixtures as priors will change
the posteriors (8a) and (8b) to mixtures of Gaussians and inverse gamma distributions,
respectively.

4.2 Partial non-Gaussian state space

Shephard [24] introduced a class of non-Gaussian time-series models allowing the noise
process to be T-distributed or a mixture of Gaussians. The particle filter approach pre-
sented in this paper is also applicable for this type of models. For illustration purpose,
only T-distributed noise will be considered.

Rewrite model (7) as

xi = B4+ & /VEr. &~ N(0.0°Q) and wy ~ v, (10

with & and w; being independent. The posterior distributions of 3 and &? given both
X1 and wy. become equal to (8), but the updating formula’s (9) are slightly changed by
replacing Q in (9a) by Q/wg.

The state vector needs in this case to be extended to include wy. Simulation conditional
on wy, can be performed as in the Gaussian case with small modifications. Simulation of



wy given all the other variables is also easy,

v+qg 1 1 _
wig ~ G ( 5 1, S+ — 00 —Fi.8)/Q Hxp — F?ﬁ))) ;
where ¢ is the dimension of x;. Direct simulation of all variables involved is however not
longer possible, but a blocked Gibbs sampler approach switching between sampling wy and
a block containing all the other variables can be applied.

5 Experiments

In this section some examples of dynamic models will be considered in order to evaluate
the performance of the particle filter when some static parameters are unknown. For each
example, a SISR filter including static parameters using fk,1(9|XéZ:L_1,Z1:k) = p(0|Tr-1)
and fro(Xk|Xok—1,Z1:k Zk, @) = p(Xg|Xk—1,0) is applied. Resampling is performed at each
time step. The result is that the weights w,(:) in (2) reduces to p(zk|§<§j), 0). More efficient
filters, where the proposal distribution depends on the new observation zj, can however be
constructed similar to the standard SISR filters.

In each case, the estimated posterior distributions is compared to those obtained from
a full MCMC run at each time step using a huge number of iterations. For the example in
Section 5.1, a comparison is made towards other methods used in the literature.

In all examples, the number of particles has been chosen such that a reasonable agree-
ment with the results obtained by the MCMC runs was obtained. Guidelines for specifying
N in practice is still missing, the rule of thumb being try and fail.

5.1 A linear partial Gaussian process

The first example is a simple linear model where the observation noise is assumed to follow
a T-distribution. The model can be written as

Ty =ax,_q1 + Ocy, (11a)
2y =T + TU, (11b)

where {e} and {v;} are independent zero-mean white noise processes, the first being
Gaussian with variance equal to one, while the other follows a T-distribution with v degrees
of freedom. Such models can be used to allow for outliers in the observations [24]. The
unknown static parameters are in this case 8 = (a,0? 7%) (v is assumed known).

Since the system process follows the model discussed in Section 4.1, the sufficient statis-
tics for (a,c?) can be updated according to the equations in (9). Given the model formu-
lation above, no sufficient statistic for 7 is available. Rewrite, however, the observation

model as

Zp = l’k—I-TTJk/\/(Sk,



where ¥ is a Gaussian variable, while §; is an independent yZ-variable. The distribution
for zj is of course unaltered, but the point is that a sufficient statistic for 7 given zy.x, 1.
and &y, is available. In particular,

221t 21, 1] ~ 1G(E,
[T |$1.k721.k7 l.k] (27 2)

where

er =€p—1 + op(zp — $k)27

Nk =Nk—1 + 1.

Similar to the approach discussed in Section 4.2, (xg,d;) is used as state vector in the
particle filter. Note that simulation from the prior of d;, is simply to draw from a \?
distribution, since there is no dynamic structure in this variable.

Data was simulated from this model with ¢ = 0.9,62 = 1,72 = 1 and v = 5. For o2
and 72, an inverse Gamma distribution with both shape and scale parameters equal to 0.5
was used. The prior distribution for a was chosen to be N(0,1/10). In Figure 1, posterior
means and quantiles obtained from the SISR filter using N = 2000 particles is plotted
together with the same quantities calculated using full MCMC at each time step. For the
{x}} process and the estimates of a at each time step, both posterior means and quantiles
are almost identical. Some discrepancy is present for the o estimates, but the results are
still acceptable. Also the estimates for 7 are very good.

Figure 1 around here.

Other filters have been proposed in the literature for handling static parameters. We
have compared the filters discussed in this paper with two other approaches. Both ap-
proaches include 8 into the state vector. The first approach retains the assumption that
0 is static (as in Kitagawa [30]). In the second approach, following Bglviken et al. [21],
and Liu and West [22], diversity is introduced into the parameter. In both cases, variance
parameters are included on a log scale in order to ensure positivity. For further reference
we will denote the filter based on marginalization and sufficient statistics by Fg, while the
filters based on including 8 into the state vector will be denoted Fy and F;, Fy including
diversity into the parameter.

None of Fy and Fy worked properly with the priors used for @ = (a,0,7). The main
problem was to get proper estimates of 7. In order to give some comparison, the prior for 72
was therefore changed to an inverse Gamma distribution with shape and scale parameters
equal to 10. This gives a more informative prior, making estimation of 7 easier. For all
filters N = 5000 was used. Figure 2 compares these approaches. Fy gave in this case
almost identical results compared to MCMC. For Fy, the problems in estimating 7 is
clearly seen. Reasonable estimates of o is obtained, but the quantiles are very different
from the ones obtained by MCMC. The problems in estimating the static parameters also
influences the inference for xj, in that the credibility intervals become wider. The problem
with impoverishment is clearly seen for algorithm F3. At k& = 40 only a single value of 8
from the N particles initially drawn has survived. This value is then impossible to change
at later time points.

10



Figure 2 around here.

For this example, a comparison of computer times for the different algorithms were
performed. Figure 3 shows computer times used for each time point for the particle filter
Fo (solid line), filter Fy (dotted line) and the MCMC algorithm (dashed line). Times
used for Fy and F) are almost identical. The number of iterations used for MCMC was
fixed for each time step, giving the linear increase in computation time. This number was
chosen such that there was reasonable agreement with results obtained using huge number
of MCMC iterations. A block Gibbs sampler (with the whole state vector (xy,...,2,)
sampled simultaneously) was used for the MCMC algorithm. All computer times were
obtained from C-programs run on a Dual Pentium II 350 MHz computer with 128 MB
RAM and 512 kB Cache. The differences in computer time between algorithms Fy and F}
are negligible The advantage in computer time using the particle filters compared to MCMC
is clearly seen. In practice, with the number of time points increasing, also the number
of iterations in the MCMC algorithm typically need to be increased, giving even higher
computational cost for the MCMC algorithm. Better MCMC algorithms using Metropolis-
Hastings steps could possibly decrease computation time, but would not change the main
picture that while the computational cost for particle filters remains constant with time,
it increases (linearly or more) for MCMC algorithms.

Figure 3 around here.

5.2 A dynamic generalized linear model

West et al. [31] considered a general class of dynamic Bayesian models. They studied the
case where the underlying system process is linear and the distribution for the observation
z;, conditioned on the underlying state vector x; is in the exponential family. We will
consider applications where the observed data are (possibly multivariate) binary, making
the logistic model an obvious choice. Such models have been used in e. g. ecology [32]
where a number of observers indicate whether the population at the current time is either
high or low. Here, only a simplified version will be considered:

zy ~N(azp_1,0%), (12a)
z, ~Binom(r, logit{a + Ba1}), (12b)
for k =1,2,.... The unknown static parameters are 8 = (a,0?, a, 3).

Data were simulated according to the model with @ = 0.9,06%> = 1 and o = 3 = 0.5.
Assume first the parameters in the observation process, o and (3, are known, while a priori
a ~ N(0,4/10) and 6% ~ 1G(0.5,0.5). In this particular case the recursions given in (9) can
be applied to update the sufficient statistics. Figure 4 shows posterior means and quantiles
obtained from the SISR filter using N = 2000 particles. The same quantities calculated
using full MCMC at each time step are also plotted for comparison. For all estimates, both
posterior means and quantiles are almost identical.

Figure 4 around here.
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Turn now to the case when also o and 3 are unknown. In this case it will be advanta-
geous to reparameterize the model such that all the parameters become part of the system
process. This can be done by defining #;, = o + $x;. Then the model can be written as

ip ~N(a + a(ip_y — a), %), (13a)
2, ~Binom(r, logit{Zs}), (13b)

where & = 3o. Note that 3 and o are only identifiable through their product. This means
that the {z)} process can only be recovered up to an unknown scale factor. In the ecology
example referred to above this is not a serious concern since interest is primarily in the
seasonal patterns of the process.

We will assume a priori a ~ N(0,07), 6% ~ IG(%, dZ—O) and a ~ N(0,02). In this case,
the model does not fit into (7) because a and « appear in the model through their product.
Also direct simulation from p(a,&?, a|Ty) is not possible. It is however easy to show that

[6-2|a7 057 :El:]m Zl:k] N[G(Vk/27 dk/2)
[a|é-27 057 :El:]m Zl:k] NN(mZ, Cz)

[a]6?, a, #14, 214) ~N(mf, cf),

where
v =t + k
k k
dy =do + Z i — 2a(l — a)ozz 1y + a? Z i —
=1 =1 =1
k
2(1 —a)o[y dr—a i)+ (k= 1)1 - a)’e’
=1 =1
o ey iy — a T (Bt Fi) + (k= 1)a?)
C e 4ol dE — 20 D, dimr + (k= 1)a?)
u ol5?
Ck

5 + 03(2521 j/'lz—1 —2a Ef:l T+ (k—1)a?)

me :Ufy(l — a)(Zle T —a Ef:l Zi-1)
k 524 (k—1)o2(1 — a)?

232
oLo

52+ (k—1)o2(1 —a)?’

¢ =

showing that

is a sufficient statistic for (a,&5?% a) given (#1.4,21%). A SISR algorithm which samples
(a, 52, ) approximately from p 2 a|Ty) using a few Gibbs sampling steps was therefore

Q¢

a

~~

9
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applied. 7y was simulated from p(#g|a, 5% o, 75_1). The weights 7])](;) were put to p(zg|ix),
ignoring the error introduced by using the approximative Gibbs sampling algorithm for
simulating the static parameters.

In Figure 5, posterior means and quantiles obtained from the SISR filter using N = 2000
particles and 5 Gibbs sampler steps is plotted together with the same quantities calculated
using full MCMC at each time step. The free software BUGS [33] was used for the MCMC
runs. Also in this case, there is a nice agreement between the estimates obtained by the
particle filter and the ones given by the full MCMC runs.

Figure 5 around here.

5.3 A Gamma-Poisson model

Consider the model

zp ~N(az_1,0%) (14a)
yr ~Poisson(x}) (14b)
Note that marginally z7 ~ Gamma(%, %), so this can also be described as a Gamma-
Poisson process where a controls the autocorrelation of the Gamma-process, while 3 = %
defines the scale of the Gamma variable. Gamma-Poisson processes has been considered

in e.g. [8].

Figure 6 shows the results obtained by using a SISR filter on this example where
data were simulated from the true model using ¢ = 0.9 and ¢ = 1. An inverse Gamma
distribution with shape and scale parameters equal to 0.5 was used as prior for o2, while
a~ N(0, \/E) a priori. Because the posterior distribution of x; becomes bimodal in this
case, the ordinary Monte Carlo estimate (5) for x; would not be sensible to use. Rather
the whole distribution should be reported. In order to evaluate the performance of the
algorithm in this case, estimates and quantiles of |z;| are shown instead.

The filter was applied with N = 2000 particles. Constructing efficient MCMC algo-
rithms for this model is difficult. Instead, a comparison with a filter using N = 50000
particles was performed. Again the results are quite satisfactory.

Figure 6 around here.

6 Discussion

The particle filter is a powerful method for processing a huge range of dynamic models. This
paper discusses an approach based on the particle filter for tackling unknown parameters.

The approach has been tested on several different models, all giving estimates almost
identical to the ones obtained by running full MCMC at each time point. Running full
MCMUC is not practical in real time processing, because the number of variables to be
simulated increases in time. In contrast, the particle filters discussed in this paper only
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need a fixed amount of computation at each time point, making real time processing
possible.

In order to make this approach work in real time, a crucial assumption is that the
posterior distribution for the parameters depends on the underlying system process only
through some sufficient statistics that can be updated recursively. For many models com-
monly applied, such sufficient statistics exist. In some other cases, the state vector can
be extended by an additional variable, for which the extended model fits into the frame-
work. When sufficient statistics are not available, the approach can still be applied, but
the computational complexity will increase with time.

In this paper, only Gaussian based system processes combined with general observation
distributions have been considered, in which case the sufficient statistics involved can be
updated using Kalman type filters. The approach should however be possible to apply
also for many other types of models for the system process. In particular, cases where
the underlying state vector is a discrete valued Markov model can be handled using hid-
den Markov chain algorithms for updating the sufficient statistics [23]. Also mixtures of
discrete valued Markov models and Gaussian based models can be handled. Any kind of
distribution can be approximated by Gaussian mixtures by making the number of mixtures
large enough. The computation time will however increase with the number of mixtures.
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Estimates of x

Estimates and true values of zj,

Estimates of a

Estimates of o

Estimates of 7

Figure 1: Model (11). Posterior expectations (solid lines) and 0.025 and 0.975 quantiles
(dashed lines) based on a particle filter (black) and full MCMC (grey). In the middle left

panel, the estimates of {x} are given in black while the true values are given in grey.
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Figure 2: Model (11) with an informative prior on 7. Posterior expectations (solid lines)
and 0.025 and 0.975 quantiles (dashed lines) from particle filters (black) and MCMC (grey).

First row shows estimates for xy, second row for a, third row for o and last row for T. First
column is algorithm Iy, second is Fy and third is Fy.
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Figure 3: Comparison of times using particle filters (Fo solid line and Fy dotted line) and
an MCMC algorithm (dashed line). The scale on the y axis is in seconds.
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Estimates of a Estimates of o

Figure 4: Model (12) with o and 3 known. Posterior expectations (solid lines) and 0.025
and 0.975 quantiles (dashed lines) based on a particle filter (black) and full MCMC' (grey).
In the upper right panel, the estimates of {x1.} are given in black while the true values are
given in grey.
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Figure 5: Model (12) with o and 3 unknown. Posterior expectations (solid lines) and 0.025
and 0.975 quantiles (dashed lines) based on a particle filter (black) and full MCMC (grey).

In the middle left panel, the estimates of {:1;5% are given in black while the true values are

given in grey.
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Estimates of |z

Posterior expectations (solid lines) and 0.025 and 0.975 quantiles

Estimates of a

(dashed lines) based on a particle filter using N = 2000 particles (black) and N = 50000
particles (grey). In the upper right panel, the estimates of {x;} are given in black while

the true values are given in grey.

Figure 6: Model (14).



