
20Particle Flow for aQuasi-Geostrophic
Model

This chapter discusses the application of a particle-flow filter to a two-layer quasi-
geostrophicmodel. The reasons for including this example are twofold. First, it shows
that it is possible to apply fully nonlinear data assimilation to high-dimensional
systems, even without localization. Second, we introduce how to set up such an
experiment in more detail and discuss the choices one must make.

20.1 Introduction

We start by demonstrating how the evolution of the particles in pseudo-time pro-
gresses in a highly idealized model to understand the basic ideas behind particle-
flowmethods better. We look at one specific gridpoint in a 1000-dimensional Lorenz
1996model for an observation that is the square of the state variable at that gridpoint,
so d = x2true + ε. The value of d = 7.3 with observation-error standard deviation
equal to 0.2. The prior is a wide Gaussian with mean 0.5 and standard deviation 1,
represented by 100 particles as depicted by the lower red dots in Fig. 20.1. The blue
lines denote the movement of the particles in the one-dimensional state space of this
gridpoint. The vertical axis is pseudo time, scaled between 0 and 1. We made many
iterations with small steps to accurately illustrate the movement in this part of the
state space.

Figure20.1 shows that the particles flow towards the posterior pdf, centered on
the possible gridpoint values corresponding to x2 = d = 7.3, hence x = ±√

7.3 =
±2.7, with a standard deviation of order 0.1. The pseudo-time trajectories seem
to cross each other, e.g., in the lower right corner of the plot. An actual crossing
of trajectories would lead to the failure of the method, indicating the use of too
large pseudo time steps. However, this crossing is not actual because we only plot
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Fig. 20.1 The plot shows
the evolution of 100 particles
(colored lines) in pseudo
time (horizontal axis) at one
gridpoint in a
1000-dimensional Lorenz
1996 data-assimilation
experiment. Note the motion
from the relatively narrow
prior distribution to the two
modes

the flow of the 1000-dimensional particles in a one-dimensional projection. In the
1000-dimensional full space, the particles do not cross.

The particle-flow filter demonstrates behavior that is impossible to obtain with an
ensemble Kalman filter, not even an iterative ensemble Kalman filter that uses the
ensemble gradient for the adjoint of the observation operator. The reason is that the
gradients will have different signs for the two posterior modes, while the ensemble
provides only one average gradient. Only iterative methods that use either the adjoint
of H or different ensemble gradients for different state-variable values can accurately
find the twomodes.Variationalmethodswill converge to one of themodes, dependent
on the first guess. Finally, a standard particle filter will not move the particles, only
their weights. The relatively narrow prior in Fig. 20.1 does not cover the two posterior
modes, and no particles will end up in these modes. Resampling would produce two
artificial modes at the extremes of the prior. Only a particle-flow filter can produce
these modes in its standard configuration.

20.2 Application to the QGModel

The quasi geostrophic (QG) model solves the following equations for a 2-layer
system

∂p1
∂t

+ J (ψ1, p1) = A�q1, (20.1)

∂p2
∂t

+ J (ψ2, p2) = A�q2, (20.2)

where the potential vorticity pi in each layer is the sum of the relative vorticity, the
planetary vorticity, and a stretching term,

p1 = ∇2ψ1 + f − F1(ψ1 − ψ2), (20.3)

p2 = ∇2ψ2 + f + F2(ψ1 − ψ2). (20.4)

Here ψ1 and ψ2 are the stream functions in the two model layers, and A is the
horizontal diffusion or mixing coefficient. The Jacobian J (ψ, p) = ∂ψ

∂x
∂p
∂y − ∂ψ

∂y
∂p
∂x
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denotes the advection of potential vorticity. The Coriolis parameter is f = f0 + βy
in which y is the meridional coordinate (the so-called β-plane approximation), and
the Fi are constants related to the densities and height of the two layers.

A practical scheme to solve the QG model equations is the following. First, cal-
culate the potential vorticity from the stream-function fields. Next, propagate the
potential-vorticity fields over one time step. Then solve the Helmholtz equations
for the new stream-function fields, which the advection terms use to propagate the
potential vorticity over the next time step.

The model setup uses two layers of 257 by 129 gridpoints with a grid spacing of
100 km. The dimension of the state vector is 66306. The time step is 30 min, and
F1 = F2 = 2.8 × 10−12 m−2. The Coriolis parameter in the middle of the domain
is f0 = 7.28 × 10−5 s−1 and β = 2.0 × 10−11 m−1s−1.

20.3 Data-Assimilation Experiment

We initialized the model with a meandering jet of wavenumber four in the upper
layer with maximum stream-function value 5× 107 m2s−1, and the stream function
in the lower layer was taken as a factor 0.03 times that of the upper layer. This model
state was spun up for 250 time steps, approximately five days.

Figure20.2 gives examples of the true model stream function in the upper layer at
different time steps during the data-assimilation experiment. The plots show different
stages of the evolution of the flow field, with the Jet Stream flowing from East to
West at the boundary between reddish and greenish colors.We observe several eddies
(low- and high-pressure cells) north and south of the meandering Jet Stream. The
three plots show the shedding of high-pressure cells for a little more than two days.

An initial ensemble of 100 members was created by adding Gaussian random
noise with a decorrelation length scale of 20 gridpoints to a similarly perturbed true
spun-up state. The standard deviation of the perturbations was 100 m2s−1. At every
time step, we added model errors drawn from a Gaussian with zero mean and the
same decorrelation length scale and a standard deviation of 0.005 times the one in
the true initial fields.

We assimilated observations every 10 time steps, corresponding to 5h. We ob-
served the stream function at 600 equally-distributed gridpoints in each layer. This
number corresponds to a fraction of 0.036 of the total number of gridpoints. Obser-
vation errors were uncorrelated, with standard deviation 5 × 105 m2s−1.

To understandwhat else is needed,we show the evolution equation for the particles
in pseudo time s,

dx j

ds
= D

1

N

N∑

l=1

(
K(x j , xl)∇x log f (xl |d) + ∇xlK(x j , xl)

)
. (20.5)

This equation shows we need to provide three ingredients: the likelihood f (d|x), a
continuous version of the prior f (x), and the matrix-valued kernelK. We assume the
likelihood is known, and we do have a representation of the prior by a set of particles.
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Fig. 20.2 The plots show the upper-layer stream-function fields from the true run 25h apart from
top to bottom
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In the evolution equation for the particles, we need to take the gradient of the prior pdf
to the state x, so a representation in terms of delta functions is not sufficient. Several
possibilities for approximations are possible. One is to assume the prior is a Gaussian
mixture model centered on the particle positions. Another is to use a single Gaussian
as the prior pdf. Note that this approximation is only needed to find an approximate
gradient of the prior. The prior particles can still represent a non-Gaussian pdf. This
situation is similar to EnKF, which updates each ensemble member separately. In
the EnKF, the posterior pdf can retain non-Gaussian structures present in the prior
ensemble even though it uses a Gaussian approximation to define the update. In this
application, we assumed that the prior particles represent a Gaussian pdf, defined by
the ensemble mean and ensemble covariance.

We use a matrix-valued kernel with off-diagonal entries equal to zero, and on the
diagonal a scalar Gaussian kernel,

kii
(
x j , xl

) = exp

(
−1

2

(
xij − xil

)2

σ 2
i

)
, (20.6)

where σ 2
i is the prior variance in state variable i . In the limit of an infinite number of

ensemble members, theory tells us that any smooth, symmetric kernel will result in
the prior particles converging to the posterior pdf. In practice, with a small number
of particles, care has to be taken to ensure fast convergence.

20.4 Results

Figure20.3 shows the prior mean, the truth, and the posterior mean of the lower
layer stream-function fields at day 10 of the assimilation experiment as an example
of the outputs. The posterior mean is indeed much closer to the truth than the prior
mean, as expected. The data assimilation manages to deepen low-pressure areas,
make high-pressure regions less deep, and generate a more accurate splitting of the
Jet Stream around the gridpoint (200, 70).

Figure20.4 compares the time evolution of the spatially averaged mean-square
errors of the ensemble mean and the ensemble variance. We see the typical decrease
of errors at assimilation times and the growth of the actual and predicted errors
between assimilation times. The two curves closely follow each other, showing that
the ensemble spread is a realistic estimate of the true error (defined as the square of
the difference between ensemble mean and the truth run).

The particle-flow filter is an iterative scheme that reduces the KL-divergence at
every time step. To illustrate this property, the right plot in Fig. 20.4 shows the mean
square error spatially averaged between the ensemblemean and the truth as a function
of the iteration number. Each line corresponds to a different observation time. The
error converges to a fixed value, mainly determined by the observation error. For
practical reasons, we limited the number of iterations to 50, but additional iterations
could have reduced the divergence even further.
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Fig. 20.3 The plots show the lower-layer stream-function fields’ prior mean, truth, and posterior
mean at day ten from top to bottom

We obtained these experimental results by observing the stream-function value
directly at 600 points in each layer at each observation time. It is interesting to see
what happens when using a nonlinear observation operator. We also performed an
experiment where we observed the square of the stream function at each observation
point. This situation typically leads to a skewed posterior pdf when all prior particles
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Fig. 20.4 The left plot shows the time evolution of the true error (red line) and the ensemble
variance (blue) over 19d. The right plot shows the convergence of the ensemble mean to the truth as
a function of the pseudo time step (or iteration). The different curves correspond to the observation
times in the left plot

are positive. The likelihood is bimodal, but the prior only sees one of the modes.
The skewness arises because of the nonlinear transformation between state and ob-
servation space. The more exciting situation appears in observed gridpoints where
prior particles have different signs for the stream-function value. In that case, both
the positive and the negative root of the observation are covered by the prior. Thus,
the likelihood will be bimodal in the domain where the prior is non-zero. Figure20.5
depicts what can happen in such a case. Since the observation is the square of the
stream-function value, it points to two possible solutions, one positive and one neg-
ative. The blue histogram represents the prior pdf. The red bars indicate the possible
values of the observation at this gridpoint, and the orange histogram represents the

Fig.20.5 The figure shows the QGmodel’s particle-flow filter results in a selected gridpoint using a
quadratic observation operator. The two red bars denote the two possible positions of the observation
in state space. The prior (blue) and posterior (orange) histograms represent the distribution of the
100 prior and posterior particles
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posterior pdf. The prior pdf is a wide pdf with no particular structure. The likelihood
in state space is bimodal, and the posterior pdf is indeed bimodal as expected.

This example demonstrates how to set up a particle-flow filter in a large-
dimensional system.Localization is not needed explicitly. Research on thesemethods
is still in its infancy, but fully nonlinear data assimilation seems to have come within
reach.
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