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The effect of small particles on decaying grid-generated turbulence is studied
experimentally. Using a two-camera system, instantaneous fluid-phase and particle-
phase measurements can be obtained simultaneously. The data obtained with this
system are used to study the decay behaviour of the turbulent flow. The role of
particle size, particle density and volume load is studied in a number of different
cases. These cases are chosen so that the individual role of these parameters can
systematically be evaluated. Addition of particles to the flow has significant effects
on the decaying turbulence: first, the onset of the turbulent decay appears to shift
upstream; second, the flow becomes anisotropic as it develops downstream. The latter
is observed as an increase in integral length scale in the vertical direction. The rate
at which the flow becomes anisotropic can be predicted using a new parameter: the
product of the non-dimensional number density and the Stokes number (referred
to as the ‘Stokes load’). This parameter, combining the relevant fluid and particle
characteristics, is a measure for the energy redistribution leading to anisotropy. In
addition to redistributing energy, the particles also produce turbulence. However, this
only becomes evident when the grid-generated turbulence has decayed sufficiently,
relatively far downstream of the grid. The turbulence production by particles can also
account for the observed decrease in slope of the power spectrum, which leads to
a ‘cross-over’ effect. The production of turbulence by the particles can be predicted
using a model for the momentum deficit of the particle wakes. The validity of this
approach is confirmed using conditional sampling of the fluid velocity field around
the particles.

1. Introduction
Turbulent dispersed two-phase flows are widespread in both nature and industry.

Examples in nature include sediment transport by rivers, rain clouds and sand
storms. In industry, examples include the pneumatic transport of solids, fluid catalytic
cracking and cyclonic dust collectors. An extensive overview can be found in e.g.
Sommerfeld, Tsuji & Crowe (1997). Despite their abundance, a generally applicable
theory or model for predicting the behaviour of particle-laden flows is currently not
available. A thorough analysis is hampered by the lack of consistent experimental
data available in the literature. Even for apparently straightforward metrics, such as
e.g. the change in the turbulent kinetic energy of a flow when particles are added,
contradictory results are reported in the literature. For an overview of experimental
data, see e.g. Gore & Crowe (1989) or Poelma & Ooms (2006). The latter also gives
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an overview of a number of analytical models and numerical studies that describe an
important idealized case of particle-laden flows: homogeneous, isotropic turbulence.

In this paper, the influence of small suspended particles on a decaying, nearly
homogeneous and isotropic turbulent flow is studied using simultaneous whole-field
measurements of both the fluid and particle phase. Apart from obtaining single-point
statistics such as changes in the turbulence level, dissipation rates and length scales,
the whole-field character of the measurements can provide supporting evidence to
explain the observed changes. An example of the need for whole-field measurements is
the phenomenon of ‘preferential concentration’. This effect, as observed for instance in
experimental work by Eaton & Fessler (1994) and in a numerical study by Ferrante &
Elghobashi (2003), is difficult to study using classic ‘single-point’ techniques. Here,
whole-field velocity information can give direct insight into the interaction processes,
rather than only measure the resulting integral quantities.

The focus of this paper is the so-called ‘two-way coupling’ regime (Elghobashi
1994): in this regime, the volume load is sufficiently high so that there is some kind of
interaction between the particles and the fluid, yet the load is low enough to neglect
particle–particle interactions.

1.1. Background

The difficulty in predicting particle–turbulence interaction arises from the large
number of physical quantities that are involved. In principle, the system is described
by the amount of dispersed phase present, the dispersed-phase characteristics (size,
density) and the turbulence characteristics (length, time and velocity scales). However,
these primary parameters are in practice not sufficient. Many ‘derived’ quantities exist
such as the response time of a particle (τp , usually derived using Stokes’s drag law)
and the terminal velocity (uT V , also referred to as settling velocity). These parameters
describing the particle behaviour are a function of the flow conditions, which indicates
the entanglement of the governing physical properties; their exact relationship is still
poorly understood.

From all these quantities, a number of dimensionless numbers can be derived,
such as the ratio of the characteristic time of a particle and a turbulence time scale,
commonly referred to as the Stokes number. Another example is the ratio of the
terminal velocity of a particle and a typical fluid fluctuation (β ≡ uT V /u′), which can
be used to evaluate the influence of gravity (Yang & Shy 2005). Many different
regimes exist in particle-laden turbulence, but a precise classification or prediction is
currently difficult. In table 1 a non-exhaustive list is given of some parameters that
are commonly used in the literature, together with a very brief description of their
use. This list is given primarily to show the many different approaches found in the
literature, while none of these parameters has emerged as being ‘conclusive’.

The two most commonly used parameters mentioned in table 1, apart from the
volume load, are the Stokes number and the ratio of particle size and fluid length
scale, dp/Λ (Gore & Crowe 1989). The Stokes number describes the ability of a
particle to follow fluid motions. Very small values indicate ‘tracer’-like behaviour of
the particles, whereas for large values the particles will hardly be affected by the
fluid motion. An interesting phenomenon occurs at values in the range of 0.1 to
unity. Here, particles can only follow certain fluid motions, leading to ‘preferential
concentration’ or ‘clustering’ effects (Eaton & Fessler 1994). Most theoretical models
implicitly assume a homogeneous distribution of particles; it is currently not known
exactly to what extent these non-homogeneities affect particle–fluid interaction.
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Symbol Parameter, description

Φv, Φm particle volume, mass load (Elghobashi 1994)
Φv < 10−6: one-way coupling (fluid→particles)
10−5 < Φv < 10−2: two-way coupling (fluid↔particles)
Φv > 10−2: four-way coupling (fluid↔particles, particles↔particles)

δ/dp ≈ 0.5Φ−1/3
v − 1 mean spacing between randomly distributed particles

δ/dp � 1: inter-particle collisions negligible
δ/dp < 10: particle–particle interactions (hydrodynamic, collisions)

dp/Λ particle size vs. fluid integral length scale (Gore & Crowe 1989)
dp/Λ > 0.1: turbulence augmentation
dp/Λ < 0.1: turbulence attenuation

Rep = u′dp/ν particle Reynolds number, using fluid fluctuation
ReT V = uT V dp/ν particle Reynolds number, using terminal velocity

ReT V < 100: turbulence attenuation (Hetsroni 1989)
ReT V > 400: turbulence generation

Stp = τp/τK particle Stokes number
Stp � 1: particle follows all fluid motions (‘tracer’)
Stp � 1: particle hardly responds to fluid motions
Stp ≈ 0.1 − 1: preferential concentration (Eaton & Fessler 1994)
Stp > 100: turbulence enhanced (Elghobashi 1994)
Stp < 100: turbulence dampened

Table 1. Overview of some commonly used parameters to describe dispersed two-phase flows.

The second parameter, dp/Λ, has been obtained using a significant amount of
experimental data and predicts with reasonable accuracy whether particles will
increase or decrease the turbulence level. Similar criteria for predicting turbulence
augmentation versus attenuation have been introduced by e.g. Hetsroni (1989), who
used the Stokes number, and Elghobashi (1994), who used the particle Reynolds
number. In practice, it is far from straightforward to vary a single parameter such
as the Stokes number, while keeping all other parameters in the experiment constant.
For instance, a particle with a higher Stokes number (in the same flow conditions) will
automatically be more susceptible to gravitational forces, so that the ratio uT V /u′ also
changes. This obviously complicates a systematic study, since observations cannot be
linked directly to changes of a single parameter.

1.2. Earlier work

The influence of particles on turbulent flows has been studied extensively. However,
most experimental work has been done in (fully developed) pipe flows, see e.g.
Tsuji & Morikawa (1982), Kiger & Pan (2002) and Kussin & Sommerfeld (2002).
In this case there is a continuous generation of turbulent kinetic energy at the wall.
Though the quasi-steady nature of such a system may simplify the measurements, the
inhomogeneity and anisotropy complicate a physical interpretation in terms of e.g.
only two-way coupling effects. Additionally, in the work using horizontally oriented
pipes, there is often a strong gradient in the local particle density (Kiger & Pan 2002).

Work using grid-generated turbulence has been performed by Schreck & Kleis
(1993), Geiss et al. (2004) and Hussainov et al. (2000). The first used a vertical water
channel, while the latter two studied an air/solid system. All three found that, even
for a relatively modest volume load, there is an overall decrease in turbulent kinetic
energy. Moreover, the flow appeared to become more anisotropic downstream of the
grid (Geiss et al. 2004).
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Related experimental work worth mentioning are studies of the effective settling
velocity of particles in a homogeneous isotropic turbulent flow by e.g. Aliseda et al.
(2002) and Yang & Shy (2005). These studies are closely related, but their focus is
on different aspects of two-way coupling (i.e. the change in the settling velocity of
a particle due to turbulence). Similarly, studies have been performed to primarily
investigate the so-called clustering of particles due to the interaction of fluid and
particles (Eaton & Fessler 1994). Finally, we mention work relating to the production
of turbulence by particles falling in a quiescent medium, see e.g. Parthasarathy & Faeth
(1990) and Lee, Faeth & Chen (2003). The interaction of particles with a turbulent
fluid often entails both damping of turbulence and production of turbulence due to
particles (commonly at different scales). The ‘falling particles’ experiments can help to
give insight into two-way coupling phenomena by effectively eliminating one aspect
of the interaction (i.e. the turbulent ambient fluid), so that the turbulence production
can be studied in detail.

Apart from these experimental studies, there have also been a number of numerical
studies of particle–fluid interaction in turbulent flows. Owing to the very high
numerical demands, most of these have used a number of simplifications: the dispersed
phase is often modelled as point particles (Elghobashi & Truesdell 1993; Boivin,
Simonin & Squires 2000). Rather than solving the full equation of motion of the
particles, it is usually considerably simplified by considering cases with a large density
ratio (Squires & Eaton 1990; Ferrante & Elghobashi 2003). More recently, fully
resolved simulations with finite particle diameter have become possible. These studies
give insight into the fundamentals of the interaction between a single particle and its
turbulent surroundings. Examples of this can be found in e.g. Bagchi & Balachandar
(2004) and Burton & Eaton (2005). However, to date results of a fully resolved direct
numerical simulation with moderate particle load such as reported in this study have
not been published.

1.3. Scope and outline of this paper

It is not feasible to study all relevant aspects of the two-way coupling between
particles and a turbulent fluid in a single study. In this study, the focus will be on the
effects that the particles have on the continuous phase. In particular, we will study
the decay rate of the turbulence. In § 2, the experimental facility will be described,
together with a characterization of the single-phase flow in this facility. Subsequently,
particles will be added to this flow to study their effect on the decay rate (§ 3). In
§ 4, a number of cases will be studied to clarify the role of some parameters, such as
particle size, particle density and mass/volume load. As indicated in the introduction,
the exact role of these parameters is not yet understood. By a careful selection of
combinations, such as two experiments with identical mass load, yet with different
volume load, their exact role can be clarified. The motivation for the choice of the
experimental conditions is described in § 3.1. The outcome of these experiments will
also be used to evaluate a number of the rules-of-thumb mentioned in § 1.2.

We will use the turbulence power spectrum to investigate the physical basis of
the observed results, i.e. to clarify the coupling effects between the two phases. This
approach also allows a direct comparison with earlier studies, some of which have
hinted at a so-called ‘cross-over’ in the spectrum. This ‘cross-over’ or ‘pivoting’ effect
refers to an observed decrease in energy at large scales, combined with an increase
at energy at small scales. One physical explanation given for this effect assumes that
particles take up energy from large-scale fluid motions (thus damping energy in this
part of the spectrum), while they release it at smaller scales, due to e.g. wake shedding
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(adding energy at higher wavenumbers). While many models exist that aim to predict
the overall change in turbulent kinetic energy (Yuan & Michaelides 1992; Yarin &
Hetsroni 1994; Geiss et al. 2004), only a few theoretical models try to describe
the underlying changes in the turbulence structure in detail. For instance, L’vov,
Ooms & Pomyalov (2003) derived a single-fluid model for homogeneous isotropic
turbulent suspensions. They accounted for the coupling between particles and fluid by
introducing a wavenumber-dependent effective density and a wavenumber-dependent
damping term that expresses the (Stokes) drag between fluid and particles. They
found that the particles decrease the effective kinematic viscosity of the suspension,
so that the inertial subrange of the spectrum is elongated. In combination with the
damping at large scales, this can lead to the observed pivoting.

The pivoting effect has so far been observed in a number of numerical studies
(Boivin, Simonin & Squires 1998; Sundaram & Collins 1999b; Ferrante & Elghobashi
2003; Ten Cate et al. 2004). Theoretical models have been proposed that can predict
it (L’vov et al. 2003; Ooms & Poelma 2004; Ooms & Poesio 2005). However,
experimental verification of this phenomenon, mainly using experiments involving
grid-generated turbulence, has so far been ambiguous. For a more thorough discussion
of previous experimental work see the review by Poelma & Ooms (2006) here we
will only report the main conclusions: Schreck & Kleis (1993) found a small decrease
at large scales and an increase at small scales for neutrally buoyant particles in
water for the longitudinal spectrum. Hussainov et al. (2000) also found a very
small increase at small scales, yet no change at large scales. Geiss et al. (2004)
performed comparable experiments, but did not find any changes in the spectrum. A
study by Yang & Shy (2005) describes particle–turbulence interaction in stationary
homogeneous and isotropic turbulence. They find significant changes in the shape of
the spectra, depending on the Stokes number of the particle: (1) for small particles
(Stp = 0.36), they find an attenuation at large scales and augmentation at scales larger
than the Taylor microscale (in both the horizontal and vertical velocity spectrum),
(2) for intermediate particles no changes are observed at large scales, while there is
again an increase at scales larger than the Taylor microscale (again both horizontal
and vertical), (3) for heavy particles (Stp > 1.9), the large scales are damped and small
scales are augmented in the horizontal direction, while all scales are augmented in
the vertical direction.

It should be noted that direct comparison between these experiments is difficult,
owing to the differences in particle types and mass and volume loads, measurements
techniques and data presentation (especially the choices for the normalization of the
spectrum).

1.4. Flow geometry and conditions

The flow geometry that is chosen for this study is grid-generated turbulence. This
type of flow is nearly homogeneous and isotropic and therefore it allows great
simplifications in mathematical as well as physical analyses (Pope 2000). Many well-
documented classic single-phase experiments are available in the literature that can
serve as reference cases for the current measurements (Batchelor & Townsend 1948;
Van Atta & Chen 1968; Comte-Bellot & Corrsin 1971; Sirivat & Warhaft 1983).

The mean flow direction is chosen to be vertical, so that no gravity-induced
concentration inhomogeneities are to be expected. Again, this simplifies the problem
under investigation, because of the increased symmetry.

For the choice of combinations of continuous and dispersed phase, several
possibilities exist. For the dispersed phase, we decided to use small solid particles,
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rather than small (liquid) droplets, because, any uncertainty in the size distribution
due to e.g. coalescence or breakup can be eliminated. The particles are furthermore
chosen to be roughly spherical. For the continuous phase, a gaseous or liquid phase
can be chosen. Here, water is chosen as working medium, for several reasons. In
solid/liquid systems, the slip velocity (i.e. the difference in mean convective velocity
of the two phases) is lower than in solid/gas systems. Furthermore, the time scales of
the fluid phase are larger than in air. Both these effects have significant advantages in
the design of the measurement system. As will be discussed in a subsequent section, the
measurement technique requires the use of relatively large fluorescent tracer particles.
The use of water and the corresponding relatively large time scales are better suited
for the relatively large response times of these particles. Furthermore, they are more
easily distributed in a liquid flow due to less settling.

Apart from these practical considerations, there are a number of physical
consequences of these choices. The most important consequence results from the
density ratio of the order of unity. For small particles in air, significant simplifications
can be made for the particle equation of motion. The most complete description is
the Basset–Boussinesq–Oseen (BBO) equation (Maxey & Riley 1983). This equation
contains some rather challenging terms, especially the ‘history’ term, describing the
unsteady drag, but for small particles in air it reduces to three terms: the change in
particle momentum, buoyancy and Stokes drag. However, for particle–fluid systems
with a density ratio of order unity, it is a priori not known which terms of the
BBO equations can be neglected. This highlights the need for detailed measurements,
especially in this regime.

2. Experimental methods
2.1. Flow facility

Turbulence is generated by placing a grid in a vertical recirculating water channel,
see figure 1. The mean flow is in the upward direction. The grid consists of a
perforated plate with 7.5 × 7.5 mm2 square holes with a total solidity of 0.45. It is
placed upstream of a glass circular test section with a diameter of 0.10 m and length
of 0.66 m, which is enclosed in a rectangular glass box to limit optical distortion
by curved media transitions. Grid-generated turbulence is slightly anisotropic, which
is compensated by using a sudden 1:1.11 area ratio contraction (Comte-Bellot &
Corrsin 1966). Typically, the mean flow velocity (U ≡ uz) is 0.5 m s−1, corresponding
to a bulk Reynolds number of 50 × 103 and a mesh-size-based Reynolds number
of 3750 (details of the flow will be discussed in § 2.5 and summarized in table 2).
The mean mass flow rate is measured using an electromagnetic flow meter (Krohne
Altoflux), which is placed in the return pipe.

Particles are introduced at the top and recycled through the facility during the
measurements. They can be removed by placing a fine filter in the return pipe. This
filter captures the dispersed phase (typically larger than 200 µm), while the tracer
particles (approximately 20 µm) can pass through the filter. This filter is enclosed by
two ball valves, so that the water and tracer particles can remain in the facility when
the dispersed phase is replaced.

2.2. Volume load measurements

Owing to the relatively large size and complexity of the experimental facility, it is
difficult to estimate the actual particle volume load in the test section based purely
on the system volume and the number of particles that has been introduced. Because
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Figure 1. Schematic drawing of the vertical water channel with turbulence-producing grid.

of e.g. sedimentation in corners, the particles will most likely not be distributed
homogeneously over the entire system. Therefore, a method to determine the actual
volume load during the measurements is desirable. This is done by measuring the
increased pressure drop over the test section compared to the equivalent single-phase
case. This observed pressure drop is due to wall friction effects and the hydrostatic
pressure difference. The former is assumed to be unaffected by the presence of the
particles. Though this assumption cannot be validated a priori, it is found that the
required power input of the system, i.e. the pump setting to maintain a certain mean
flow rate, hardly increased when particles were added. The latter is a result of the
relatively low mass loads that are used. Additionally, the increase of the effective
viscosity of the suspension (Landau & Lifshitz 1987) is negligible at the volume loads
under consideration.

The hydrostatic pressure over the test section is determined by the effective density
of the suspension:

�p = ρeffgh, with ρeff = Φvρp + (1 − Φv)ρf . (2.1)

Using the height difference between two pressure taps (h), the observed pressure
difference (�p) and the single-phase reference pressure drop (�psp), the volume load
can be determined using

Φv =
�p − �psp

(ρp − ρf )hg
. (2.2)
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The accuracy of this method is limited by the error in the pressure difference
method. In this study, the pressure drop over the test section is measured using
a differential membrane transducer. One side of this transducer measures the total
pressure drop over the test section, while the other side measures a column of water
of exactly the same height. Owing to this differential nature of the measurement, the
relatively small changes in the pressure drop (of the order of 50–100 Pa) due to the
particles can still be measured with reasonable accuracy (estimated at 5 Pa based on
repeated calibrations and single-phase experiments). A moving average over 15 s is
used to smooth out high-frequency fluctuations.

The accuracy of the load measurement is proportional to the density difference:
the accuracy in pressure measurement corresponds to an error in the volume load
of 0.019% for ceramic particles, while the error for glass particles is of the order of
0.035% (see the next section for particle details). These errors are relatively large,
but still an order of magnitude smaller than the volume loads used in this study. For
relatively light particles (for which no settling is expected), the volume load obtained
from the pressure drop agreed well (within 10–15%) with estimates based on the total
mass of particles added to the total system volume.

Alternatively, the volume load could have been determined using optical
measurements (e.g. light transmission/attenuation). The problem with this method
is that the calibration is very elaborate, since very controlled, homogeneous volume
loads have to be maintained in situ, for each particle type and size separately. The
pressure method does not need a calibration, apart from the single-phase pressure
drop at the desired flow rate.

2.3. Measurement techniques

Simultaneous fluid- and particle-phase measurements are obtained using a dual-
camera particle image velocimetry (PIV) system specifically developed for this facility.
A detailed description can be found in e.g. Poelma (2004) and Poelma, Westerweel &
Ooms (2006). Here, only a general description will be given.

The measurement system consists of two cameras that are focused on the same
field of view, using a mirror and a beam splitter plate, see figure 2. To ensure that
each camera only records one phase, tracer particles containing fluorescent dye and
an appropriate wavelength cutoff (i.e. ‘colour’) filter are used. Previous applications
of a similar approach can be found in e.g. Lindken & Merzkirch (2002) and Deen,
Hjertager & Solberg (2000), both in bubbly flows.

The measurement volume is illuminated using a pulsed Nd:YAG laser (New Wave,
20 mJ/pulse @ 532 nm, light sheet thickness approx. 0.5 mm). The scattered light
from both particle types (tracer and dispersed phase) are captured on one of the two
cameras (Roper Scientific ES4.0, 2048 × 2048 pixels, both fitted with 105 mm f/2.8
Micro Nikkor lenses). The tracer particles are more than an order of magnitude
smaller than the dispersed phase, so their images cannot be distinguished from the
background noise of the ‘particle’ camera, while the dispersed-phase particles will
be clearly visible. In fact, the strong scattering of the dispersed particles requires
the use of a neutral density (nd) or ‘grey’ filter to avoid over-exposure even at very
small apertures. The tracer particles contain fluorescent dye (Rhodamine 6G), so that
they will emit light at a higher wavelength than the original laser wavelength. By
placing a wavelength cutoff filter in front of the second (‘fluid’) camera, reflections
and scattering at the original wavelength can be blocked, while the fluorescent light
from the tracer particles will pass through. Visual inspection of the images from each
camera indicated that indeed no ‘cross-talk’ between the two phases occurred.
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Figure 2. (a) Schematic illustration and (b) photograph of the simultaneous measurement of
the fluid and dispersed phases using fluorescent tracer particles.

Using this optical system, each camera records a pair of images with a short time
delay, determined by the laser pulse delay time �T , which is typically 1500–2000 µm,
depending on the flow conditions. Increasing the delay time leads to a larger dynamic
range of velocity. However, a too long delay time results in loss of correlation due
to out-of-plane motion. The choice for the optimum delay time is discussed in detail
in Poelma et al. (2006). These image pairs are subsequently processed to obtain the
particle- and fluid-phase velocities, respectively. Because the two image pairs have
very different characteristics (e.g. particle size, number density), each of the pairs is
processed with a dedicated processing technique.

The number of dispersed-phase particles in each image is relatively low (of the order
of 100). Therefore, a particle tracking velocimetry (PTV) algorithm is most suitable
for these images (Raffel, Willert & Kompenhans 1998). For these images, the ‘particle
mask correlation’ algorithm was found to be the most suitable (Kiger & Pan 2000;
Poelma 2004). In this algorithm, particles are detected by cross-correlating the images
with a ‘mask’ or model particle. This mask is a two-dimensional Gaussian grey-value
distribution; the size of this mask is estimated from the real images (typically 10–20
pixel). The cross-correlation will yield the locations of the particles in both frames,
evident as local maxima in the correlation result. From Gaussian peak fits to each of
these local maxima, the particle locations can be obtained with subpixel accuracy. The
corresponding particles in both frames are matched using a simple nearest-neighbour
approach. This method is well suited for these images, since the fluctuating component
of the displacement of the particles is significantly smaller than the mean particle
spacing.

The fluid-phase images have a significantly higher number density than the particle-
phase images. Therefore, they are more suited for processing using particle image
velocimetry (PIV) (Willert & Gharib 1991). In PIV, the local fluid velocity is estimated
from the displacement of groups of tracer particles in small segments of the total
image, the so-called interrogation areas. The displacement is generally estimated by
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Figure 3. Schematic representation of the data processing to obtain simultaneous velocity
measurements of the fluid and particle phases.

cross-correlating the interrogation areas and subsequently determining the location of
the maximum in the correlation field (‘displacement peak’). In this study, a three step
analysis is performed: an initial estimate using interrogation areas of 64 × 64 pixels
and subsequently two iterations using 32 × 32 pixels. No overlap of the interrogation
areas is used to avoid oversampling effects due the relatively low number density,
which was a result of the presence of the dispersed phase, which is described in detail
by Poelma et al. (2006).

After obtaining the velocity measurements of both phases, they have to be
combined. We have implicitly assumed until now that the cameras are focused on the
same field of view. In practice, it is very difficult to get an exact overlap of the two
recorded images owing to the relatively high magnification factor and the large total
number of degrees of freedom of the optical components. To overcome this problem,
we use the ‘disparity’ approach (Willert 1997). The overlap of the two cameras is
optimized as much as possible using a calibration image. Using local cross-correlation
similar to a PIV analysis these two images are then compared. This will yield the
local disparity field of the two images, which is used to ‘map’ one of the images
onto the other. This correction was always smaller than 10–15 pixels (equivalent to
0.18–0.27 mm), i.e. lower than the spatial resolution of the fluid-phase result (discussed
below).

The measurement process is represented schematically in figure 3. The hardware
control and data acquisition is done using a commercial LaVision Flowmaster system
(running DaVIS 6.0). The images are processed using in-house software (Westerweel
1993; Poelma 2004).

In figure 4 a typical example of a single ‘snapshot’ of the flow using the system
is given: the disks represent particle locations, while the bold vectors indicate their
velocity. The vectors on the regular grid (64 × 64) represent the local fluid velocity.
Note that the mean velocity of both phases has been subtracted in this figure for
clarity (note that the mean slip velocity is in fact significantly larger than the fluid
fluctuations). The vector spacing is 0.63 mm, roughly twice the Kolmogorov length
scale λk as determined using laser Doppler anemometry in earlier experiments. This
in-plane resolution is comparable to the light sheet thickness of 0.5 mm. The total
field of view is approximately 4 × 4 cm2, approximately eight times the integral length
scale, Λ. Measurements can only be recorded with a frequency of 0.5 Hz, while
the eddy turnover time (T = Λ/u′) is estimated at 0.5–1.0 s. Therefore, the temporal
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Figure 4. Example of a simultaneous recording of both fluid and particle velocities. Vectors
on the regular grid represent fluid velocities, disks and bold vectors represent the particle
locations and velocities.

development of the flow cannot be studied. The results reported in this study are based
on the statistics of 128 or 512 statistically independent measurements. Measurements
are performed at five downstream locations (z/M =43−100, with z the distance from
the grid and M the grid size) for each flow condition (e.g. particle size, load).

2.4. Data processing

In dispersed two-phase flows, it is inevitable that some signal loss occurs. In
preliminary experiments, it was found that generally 10–20% of the PIV data were
missing even at a moderate particle volume load of 0.5%. The missing data are
a result of the reduced image quality due to the presence of the dispersed phase:
particles in front of the light sheet block the light emitted by the tracer particles.
Therefore, the observed tracer density decreases dramatically (Poelma et al. 2006).
This leads to a higher noise level in the correlation plane and thus to more spurious
vectors in the PIV result. The decrease in tracer density is also the reason why no
overlapping interrogation areas are used in this study (as mentioned earlier), since
there is an increased chance of oversampling and associated bias.

To obtain turbulence statistics from the PIV/PTV measurements, the
autocorrelation functions of the velocity data are calculated. This is done using
the ‘slotting’ method originally developed for the processing of non-equidistant data
obtained using laser Doppler anemometry (Tummers & Passchier 2001). It has been
shown that it can readily be applied to PIV data too (Poelma et al. 2006). Also, the
method has been extended so that it can process unstructured data (i.e. not on a
regular grid, such as obtained from e.g. PTV). The idea behind the method is that
the autocorrelation function of a signal is constructed by an explicit multiplication of
all possible combinations of the data records. Subsequently, these products are sorted
according to their spatial or temporal separation and averaged for discrete ‘slots’ to
obtain a smooth estimate for the covariance function, which can be normalized using
the variance to obtain the autocorrelation function.
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The advantage of the slotting method is that it gives improved estimates for the
turbulence statistics, because there is no need for interpolation of any missing data,
required if conventional methods are used (e.g. using Fourier transforms to obtain a
power spectrum). Interpolation gives rise to bias, especially if the percentage of signal
drop-out is more than 10%. This bias affects the shape of the spectrum up to length
scales an order of magnitude larger than the vector spacing. More importantly, the
bias effects on these small scales can even contaminate integral quantities if noise
correction techniques are used. For example, a commonly used technique is fitting
a parabola to the autocorrelation function to remove uncorrelated noise, giving a
better estimate for the variance of a signal, see e.g. Benedict & Gould (1998). With
significant signal loss, this variance will be biased (generally it will be overestimated),
but also ‘derived’ quantities such as the Taylor microscale, the dissipation rate, etc.
are affected (Poelma et al. 2006).

Two implementations of the slotting method are used in this work: the ‘row-by-row’
approach for PIV data and the ‘decomposition’ approach for PTV data. Here, they
will only be discussed briefly; a more detailed description can be found in Poelma et al.
(2006). Both implementations use the same principle, but they are optimized for the
data under consideration (respectively data on a regular grid and sparse unstructured
data). In the ‘row-by-row’ approach, one covariance function is reconstructed by
adding the contributions from each row of vectors, for all realizations. This results
in a spatially and temporally averaged covariance function of the quasi-steady flow,
using typically up to 2 million vectors for each measurement location and condition.
The assumption of quasi-stationarity and homogeneity was supported by earlier
measurements using laser Doppler anemometry (Poelma 2004). In the ‘decomposition’
approach, all possible combinations of particle velocity vector pairs in one realization
are decomposed into transversal and longitudinal components. Subsequently, these
are processed using the slotting method, i.e. their multiplications are added to find an
average covariance function. Typically, up to 50 000 dispersed-phase particle velocities
are available.

From the covariance function, all turbulence statistics that will be reported in the
next sections can be derived (Pope 2000). More importantly, the particle statistics
can be analysed in a similar manner. For instance, the particle correlation function
can be used to determine length scales and to correct the variance in the fluctuations
of the particles (by removing uncorrelated noise, as mentioned above). The latter is
critical since the error in the velocity obtained for a single (dispersed-phase) particle
is typically an order of magnitude higher than for an ensemble of tracer particles
(Poelma 2004). Therefore, the energy contained by the particle phase is overestimated
significantly if this correction is not applied.

2.5. Single-phase flow

As a reference for the particle-laden measurements, the flow in the facility is first
characterized for the single-phase case. This is done using the same measurement
system as will be used for the two-phase flow, to ensure that any observed changes
in turbulence statistics cannot be caused by the measurement method. As stated in
§ 1.4, single-phase grid-generated turbulence is relatively well-understood and there is
a large body of experimental data available in the literature for comparison. We only
report the main turbulence characteristics here, a more extensive discussion can be
found in Poelma (2004).

The mean velocity profile in the centre of the test section was found to be flat:
there was less than 1% deviation of the mean velocity (Poelma 2004). The boundary
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Figure 5. Decay of the turbulent kinetic energy for the single-phase case. Symbols represent
PIV measurement data, the lines are power-law fits.

layer thickness (defined here as the distance from the wall to reach 95% of the mean
axial centreline velocity) was 11 mm at the bottom of the test section, so that the
centre of the pipe is sufficiently homogeneous; as mentioned earlier, the field of view
is approximately 4 × 4 cm2. The downstream growth of the boundary layer influenced
the mean centreline velocity: at the exit of the test section it was 7% higher than near
the entrance.

Figure 5 shows the development of the axial (i.e. vertical) and transverse (i.e.
horizontal) variance of the fluid fluctuations (respectively 〈u′

xu
′
x〉 and 〈u′

zu
′
z〉, with

〈. . .〉 denoting an ensemble average and a prime indicating the root-mean-square
value), as a function of the dimensionless downstream distance (z/M). The variance
of the velocity fluctuations is normalized using the mean centreline velocity, which is
kept constant throughout all measurements at U = 0.53 m s−1. As can be seen in the
graph, the turbulence decays according to a power law (note that the reciprocal value
of the variance is plotted) and the flow is nearly isotropic: the anisotropy ratio u′

z/u
′
x

decreases from 1.06 to 1.02 in the test section.
An overview of the relevant turbulence statistics at the five downstream locations

is given in table 2. All of these parameters were derived from the autocorrelation
function, as obtained from the PIV data using the slotting method. The integral
length scale was calculated by integrating the longitudinal autocorrelation function.
The second derivative of the transversal autocorrelation function at r = 0 was used to
determine the Taylor microscale. The dissipation rate was calculated from the decay
of the variance, as well as from the Taylor micro scale, using

ε = 15ν
u′2

λ2
g

. (2.3)

Note that this equation is only valid for isotropic turbulence, i.e. u′
x,y = u′

z (Pope
2000). Nonetheless, the results for the dissipation rate from these two methods were in
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Downstream distance z/M 42.9 56.3 70.0 86.3 100

Turbulence intensity I ≡ u′/U [%] 2.0±0.04 1.6 1.4 1.3 1.2
Integral/macro length scale Λ [ × 10−3 m] 4.9±0.37 5.7 6.0 6.7 7.4
Streamwise r.m.s. of fluctuations u′

z [ × 10−3 m s−1] 10.8±0.22 8.8 7.7 6.9 6.2
Transverse r.m.s. of fluctuations u′

x [ × 10−3 m s−1] 10.1±0.14 8.6 7.6 6.7 6.1
Anisotropy u′

z/u
′
x 1.06±0.019 1.02 1.01 1.04 1.02

Eddy turnover time, Λ/u′ T [s] 0.45±0.038 0.65 0.78 0.97 1.16

Dissipation rate, from decay ε [ × 10−5 m2 s
−3

] 18.9±1.76 11.4 7.14 4.42 3.19

Dissipation rate, from λg ε [ × 10−5 m2 s
−3

] 22.3 12.1 7.22 4.71 3.16
Kolmogorov length scale λk [ × 10−3 m] 0.27±0.007 0.31 0.34 0.39 0.42
Kolmogorov velocity scale uk [ × 10−3 m s−1] 3.7±0.09 3.3 2.9 2.6 2.4
Kolmogorov time scale τk [ × 10−3 s] 73±3.9 94 118 150 177
Taylor micro scale λg [ × 10−3 m] 2.8±0.025 3.1 3.5 3.9 4.3
Reynolds number Reλ 28.8±0.74 27.0 26.3 25.7 27.1

Table 2. Summary of single-phase PIV results at the five measurement locations; for the first
location the 95% confidence interval is given.

good agreement, see table 2. From the dissipation rates, the Kolmogorov scales could
be estimated using their definitions: λK =(ν3/ε)1/4, uK =(εν)1/4 and τK = (ν/ε)1/2.

The results reported in table 2 were also determined using laser Doppler
anemometry (LDA). The differences between the results obtained using the two
methods were typically of the order of 5%, which is similar to the confidence interval
of the measurements (Poelma et al. 2006). More importantly, the results are in
agreement with earlier grid-generated turbulence experiments and theory (Batchelor
1953; Comte-Bellot & Corrsin 1971). Examples of the consistency of the data are the
power-law decay of the variances, the fact that the Reynolds number stays constant
and the growth of the length scales proportional to (z/M)1/2.

3. Two-phase measurements
3.1. Particles and measurement conditions

Five particle types were selected with a relative density ranging from nearly unity
(polystyrene) to 3.8 (ceramic)† in the size range of 150–500 µm. The bottom limit
of this size corresponds roughly to the Kolmogorov length scale. The upper limit
was determined by practical considerations: denser and larger particles could not
be suspended consistently in the current facility. The particles response time ranges
from 4.4 ms to 35.3 ms, equivalent to Stokes numbers from 0.06 to 0.48 (based on the
turbulence quantities of the single-phase flow at z/M =42). In table 3, a summary
is given of some of properties for the five different particle types used. Note that
the values for UT V , ReT V and β are all based on experimental results. The measured
terminal velocities were all significantly lower (up to a factor 2 for P1) than the
values predicted using Stokes’s drag law. This was to be expected, given the particle
Reynolds numbers (see table 3). Using a standard drag coefficient curve these finite-
Reynolds-number effects can be taken into account. These predictions were in good
agreement with the observed terminal velocities.

† The polystyrene particles are ‘expandable polystyrene’ particles, supplied by Nova Chemicals,
Breda, The Netherlands. Glass and ceramic particles were supplied by Würth Abrasives, Bad
Friedrichshall, Germany.
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Code Material Size Density τp Stp UT V ReT V β≡uT V /u′

[µm] [kg m−3] [ms] [cm s−1]

P0 polystyrene 275 ± 43 1050 4.4 0.06 0.47 1.3 0.44
P1 glass 509 ± 122 2450 35.3 0.48 5.87 29.9 5.54
P2 glass 254 ± 37 2450 8.8 0.12 3.66 9.7 3.45
P3 ceramic 280 ± 83 3800 16.6 0.23 6.04 16.9 5.70
P4 ceramic 153 ± 42 3800 5.0 0.07 2.46 3.76 2.32

Table 3. Summary of the properties of the used particle types. The particle sizes are reported
as a symmetric range covering 90% of the particle sizes, centred around the (number)-mean
particle diameter.

dp Φv Φm np

Exp. ρp/ρf [µm] [%] [%] Locations [cm−3]

1 3.8 153 0.12 0.44 r1, r2,r3, r4 640
2 3.8 280 0.10 0.38 r0, r1, r2, r3, r4 87
3 2.5 254 0.26 0.65 r0, r1, r2, r3, r4 303
4 2.5 254 0.072 0.18 r0, r1, r2, r3, r4 83
5 3.8 280 0.18 0.67 r0, r1, r2, r3, r4 157
6 2.5 254 0.42 1.05 r0, r1, r2, r3 489
7 2.5 509 0.37 0.92 r0, r1, r2, r3, r4 54
8 1.035 275 0.08 0.08 r0, r1, r2 285

Table 4. Summary of main experiments performed (see text for details). The mass/volume
load of the neutrally buoyant particles could not be measured. Therefore, the amount added
was divided by the total system volume to obtain an estimate. This was typically within 25%
of estimations using the observed number density in the images.

In total, eight experiments were performed using various particle types and loads.
In table 4, the conditions are reported for each experiment. The goal was to set up
a range of experiments in which a number of direct comparison could be made. For
instance, experiments 1 and 2 have the same mass and volume load, yet different
particle sizes. Experiments 5 and 3 have the same mass load, same particle size,
yet a different particle density (and thus different volume load). As a final example,
experiments 2 and 4 have a comparable particle size and volume load, yet a different
mass load. As can be seen in the table, the mass and volume loads are not exactly
identical. In practice, it was difficult to accurately predict the effective mean load
beforehand: particles had to be added and removed iteratively, which was rather
cumbersome. Nevertheless, it is expected that these choices will provide sufficient
information to elucidate the importance of the various parameters. The maximum
volume load that was acceptable for PIV measurements in this facility was around
0.5–0.6%, depending on the particle material properties.

Similarly to the single-phase measurements, at least 128 image pairs were recorded
at five downstream locations. This number of uncorrelated realizations was sufficient
for convergence of the turbulence statistics. To enable more advanced analyses (such
as conditional averaging), as many realizations as possible were collected. Owing to
practical considerations (measurement time, storage space), the maximum number
of realizations was 512, which corresponds to 20 Gb of raw image data for each
experiment mentioned in table 4.
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Figure 6. The longitudinal and transverse autocovariance functions of the fluid phase (lines)
and particles (symbols) at z/M = 56.3. Ceramic particles with ρp/ρf = 3.8, dp = 280 µm,
Φv =0.10%, Φm = 0.38% (Exp. 2). The separation axis has been scaled using the Taylor
microscale λ obtained from the corresponding function.

3.2. General observations

In figure 6, an example is shown of the autocovariance function Γαβ(r) ≡
〈u′

α(x)u′
β(x + r)〉 obtained at location z/M =53.6 in an experiment using ceramic

particles (dp =280 µm, ρp = 3800 kg m−3) with a volume load of Φv = 0.10% (Exp.
2). The fluid autocovariance function was obtained from the PIV data using the
row-by-row slotting approach, while the particle covariance function was obtained
from the PTV data using the decomposition method (as described in § 2.4). For both
cases the uncorrelated noise has been removed by replacing the value for Γ (0) with
the value obtained from extrapolation of a quadratic fit to the subsequent two data
points (Benedict & Gould 1998). This method of noise removal can act as a low-pass
filter if the spatial resolution is insufficient. For the single-phase case, comparison
of the results after this noise removal step with earlier LDA results showed good
agreement (Poelma et al. 2006). As this single-phase case had the most stringent
resolution criteria, we assume that this noise removal did not bias our results. For
the fluid phase, the noise level was usually a few percent, while for the particles this
could be up to 25%. This difference can be explained by the fact that in PIV groups
of tracer particles are used for velocity estimates, while in PTV a single particle is
used (Poelma et al. 2006).

Only the separation axis in figure 6 has been made dimensionless, using the
respective Taylor microscales (λf and λg for longitudinal and transverse functions,
respectively) obtained from a parabolic fit. The ordinate axis has not been scaled, so
that the difference in ‘energy’ between the particle and fluid phase can be observed
directly. As can be seen in the figure, the particles have a correlation function similar
to that of the fluid, albeit with a slightly lower ‘energy’, i.e. variance of fluctuation
Γ part.

αα (0) = 〈u′
αu

′
α〉part which was the case for all particle types and flow conditions.

This is in agreement with the fact that the Stokes numbers of the particles are finite.
Based on a numerical study by Sundaram & Collins (1999a), we can expect a value
for the particle variance that is 2–10% lower than the fluid variance for the Stokes
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Figure 8. The decay of the horizontal and vertical variance of the fluid velocity fluctuations
for Exp. 2 (ρp/ρf =3.8, dp = 280 µm, Φv = 0.10%, Φm = 0.38%) and the single-phase reference
case. Errorbars indicate the 95% confidence interval.

number range of the particles used. An example of the downstream evolution of the
fluid and particle variances in Exp. 2 is shown in figure 7.

In figure 8, an example is given of the decay of the horizontal and vertical variance
of the fluid-phase velocity fluctuations, in comparison with the single-phase reference
case. The results were again obtained using ceramic particles with dp = 280 µm,
ρp/ρf =3.8 and a mass load Φm = 0.38% (Exp. 2). The error bars shown represent
the 95% confidence interval. The standard error of the variance is determined by
the limited number of realizations of each experiment and is approximately 3%.
In figure 9, the corresponding total turbulent kinetic energy (e) is shown. It was
calculated by assuming that the ‘out-of-plane’ component, which could not measured,
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Figure 9. The decay of the total turbulent kinetic energy for Exp. 2 (ρp/ρf = 3.8,
dp = 280 µm, Φv = 0.10%, Φm = 0.38%) and the single-phase reference case.

is of the same order as the other horizontal component, i.e. e = 1
2
(2〈u′

xu
′
x〉 + 〈u′

zu
′
z〉).

Again, the single-phase results are reported as reference (dashed line).
As can be seem in figure 8, even the addition of a relatively small number of

particles can have a substantial influence on the turbulence, compared to the single-
phase reference case with the same centreline velocity. The two main effects are the
increasing anisotropy with increasing downstream distance (z/M) and the energy at
the beginning of the test section being significantly lower than the single-phase case.
This type of behaviour is observed for all the particles and mass loads that were
studied. The decay of the turbulent kinetic energy appears to follow a power-law
decay, see e.g. the results for Exp. 2 in figure 9. Note that the reciprocal value of the
energy is plotted. The slopes of the decay curves are similar for the single-phase and
particle-laden case, yet the actual dissipation rate is always lower than the single-phase
case for a given value of z/M .

The slower decay rate of the particle-laden cases seems in contrast to the observed
lower energy at the beginning of the test section; it indicates that the initial flow
conditions of the decaying turbulent flow must have changed significantly due to the
addition of the particles. These are several possible explanations:

(i) Influence of the upstream turbulence level. Tan-atichat, Nagib & Loehrke (1982)
found that increased turbulence levels of the upstream conditions could lead to
different decay behaviour. Owing to the presence of particles, there can be such an
increased turbulence level in the flow before the grid with respect to the single-phase
flow conditions. However, Tan-atichat et al. (1982) found different slopes, rather than
the shift in the decay that we observe in figure 9.

(ii) Regime change in particle–fluid interaction. In the region just behind the grid,
there is significantly more turbulence than in the test section. Also, the turbulence
length and time scales are smaller than during our measurements. This could lead
to a different particle–fluid interaction regime (e.g. because of expected larger Stokes
number). However, the scale changes are comparatively small and the Stokes numbers
of the different particles vary over almost an order of magnitude. As the shift is
observed for all particle types, this explanation seems unlikely.
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Figure 10. Adjustment of the virtual origin of the particle-laden case to match initial
conditions. See text for details (Exp. 2, ρp/ρf = 3.8, dp = 280 µm, Φv = 0.10%, Φm = 0.38%).

(iii) Change in the onset of decay. Turbulence is generated at the grid by the
breakdown of individual jets emerging from the grid, see for instance the well-known
visualization in figure 152 of Van Dyke (1982). In single-phase flow, the traces of
this breakdown process typically last up to 20 mesh spacings before the flow can be
considered to be ‘homogeneous, isotropic turbulence’. When particles are added, they
can influence this breakdown process: an increase in the turbulence level upstream of
the grid can possibly trigger a faster transition of the individual jets. This would lead
to an earlier onset of the turbulent decay.

The last explanation seems the most plausible. If the decay curves are extrapolated
to lower values of z/M , we can determine the so-called virtual origin–the abscissa
with the horizontal axis. We find that this virtual origins shifts from z/M =10 (a
typical value for grid turbulence) to z/M = − 4. Note that no correlation could be
observed between the location of the new virtual origin and the suspension conditions.
While the virtual origin is a theoretical concept and its physical interpretation is far
from trivial, this result can suggest that the onset of turbulent decay process (e.g.
the breakup and merger of individual jets emerging from the grid) starts earlier, i.e.
directly at the grid.

The observed change in initial conditions complicates a straightforward comparison
with the single-phase flow case and between the different particle-laden cases. To
enable some sort of comparison, we propose the following adjustment method (see
also figure 10):

(a) The data of the axial and transverse variance for the particle-laden flow are
extrapolated to lower values of z/M to obtain the location at which the flow would be
virtually isotropic (i.e. 〈u′

xu
′
x〉 = 〈u′

zu
′
z〉, the intersection point in the graph, indicated

by � in figure 10). This location will be referred to as the ‘virtual isotropic origin’
(VIO) and is denoted zi , with turbulent kinetic energy ei .

(b) In the single-phase data, the location zsf where e = ei is determined. This
location is indicated by + in figure 10.

(c) The two-phase data are translated over the distance zsf − zi . The new
dimensionless downstream distance is referred to as ζ , and for convenience the origin
is set at the VIO. Note that the absolute value of ζ is only of minor importance in
the following analyses, as only the decay rates will be considered.

The justification for applying this adjustment is the following: at ζ =0, the turbulent
kinetic energy is identical for the particle-laden and single-phase flow. The downstream
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Figure 11. Decay of the total turbulent kinetic energy after virtual origin adjustment for
the single-phase and a particle-laden case (Exp. 2, ρp/ρf = 3.8, dp =280 µm, Φv = 0.10%,
Φm =0.38%). The 95% confidence intervals are indicated with the dotted lines.

temporal development of the flow can be studied, regardless of the absolute spatial
location of the measurement locations. Obviously, the fact that the variances (and
total turbulent kinetic energy) are identical at the new reference point does not mean
that all the flow conditions are identical. For instance, the macroscopic length scales
of the particle-laden cases are smaller by 10–20% (Poelma 2004). However, this
method seems the best way to obtain direct comparisons of decay behaviour with
comparable initial conditions. The need for this adjustment also highlights the fact
that comparisons of particle-laden and single-phase experiments have to be done with
great care. We cannot simply compare the two cases for each downstream location in
an experiment and conclude that there is either attenuation or augmentation, as we
need to take care that the initial conditions are identical. As we will see in the next
section, we will also need to evaluate more than the turbulence level alone to fully
understand the behaviour of particle-laden flows.

4. Results from the particle-laden experiments
Numerous possibilities exist to evaluate the data set obtained. In this study, the focus

will be on the downstream evolution of the variance (i.e. turbulent kinetic energy)
of the fluid phase. As mentioned in the previous section, all experiments showed the
behaviour in figure 8: the variance of the horizontal and vertical component both
show power-law decay behaviour. However, owing to a difference in decay rate, the
flow becomes more and more anisotropic as it develops.

4.1. Effect of particles on the decay rate of the turbulent kinetic energy

If the total turbulent kinetic energy is considered using the adjustment described
above, we find that the decay rate is not significantly different from the single-
phase reference case, see e.g. figure 11. This was the case for all experiments with a
‘subcritical’ volume load (this term will be discussed in § 5.4). The confidence intervals,
determined in earlier experiments (Poelma et al. 2006), are shown as the dotted lines.
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If a linear function (1/e = A z/M + B) is fitted to the data as shown in figure 11,
we find that the slope does not differ very significantly from the single-phase value
(A0): the ratio of the slopes, A/A0, is respectively 0.94, 1.01, 1.00, 0.98 and 1.10 for
Exps. 1–4 and 8.

Changes in the overall decay rate of the turbulent kinetic energy are reported in
a number of publications, using either numerical simulation (Ferrante & Elghobashi
2003) or theoretical methods (Ooms & Poelma 2004). Using the same classification as
introduced by Ferrante & Elghobashi (2003), all particle types can be characterized
as ‘ghost particles’ (Stp ≡ τp/τK ≈ 0.1, see table 3). For this type of particles, both
Ferrante & Elghobashi (2003) and Ooms & Poelma (2004) find no change in the total
decay rate, which is confirmed by our experimental data. Note that these previous
studies do not take gravitational effects in account, however.

4.2. Departure from isotropy

Although the decay rate does not change, this does not mean that the turbulence
is not affected at all. On the contrary: as could be seen in figure 8, the evolution
of the individual components showed a clear trend of increasing anisotropy. Similar
behaviour was observed by Geiss et al. (2004). A more detailed analysis of the decay of
the horizontal and vertical ‘energy’ components† shows that the increase in horizontal
decay rate is exactly half the decrease in vertical decay rate.

For instance, the data in figure 10 can be described by the linear fit:

U 2

〈u′
xu

′
x〉 = 85ζ + 3.6 × 103 (horizontal), (4.1)

U 2

〈u′
zu

′
z〉

= 84ζ + 3.4 × 103 (vertical), (4.2)

while the particle-laden case can be described by:

U 2

〈u′
xu

′
x〉 = 100ζ + 3.5 × 103 (horizontal), (4.3)

U 2

〈u′
zu

′
z〉

= 60.8ζ + 3.4 × 103 (vertical). (4.4)

This indicates that the decay of the horizontal component(s) is 18% faster than the
single-phase case, while the vertical decay is 33% slower. Using the assumption of
axisymmetry, we thus find that these effects largely cancel out with respect to the total
decay rate. This indicates that the presence of particles merely acts as a redistribution
of energy from horizontal to vertical components. The quantitative behaviour of this
energy transfer is discussed in § 5.

4.3. Change in turbulence structure

To find out what may cause the observed anisotropy, we need to investigate how the
structure of the turbulence changes as a result of the addition of the particles. This
can be done by comparing integral quantities, such as the turbulent kinetic energy
and integral length scale. More detailed information can be obtained by considering
the turbulence power spectra and/or autocorrelation functions. First, we need to

† While turbulent kinetic energy is obviously a scalar quantity, for convenience we assume that
we can split it in the individual contributions, i.e. the variances of the horizontal and vertical fluid
velocity.
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Figure 12. Vorticity snapshots for (a) the single-phase flow and (b) a particle-laden case
(ζ ≈ 47). The vorticity is normalized using the local Kolmogorov time scale. Particle-laden case:
Exp. 1 (ρp/ρf = 3.8, dp = 153 µm, Φv =0.12%, Φm = 0.44%). Particle locations are indicated
by the dots.

decide which cases will allow a meaningful comparison. In this study, we have chosen
to compare the particle-laden case to the single-phase case for a given turbulent
kinetic energy, rather than comparing the data at a fixed location. As mentioned
earlier, comparing two downstream locations is far from trivial. Therefore, we will
again apply the origin adjustment and compare two cases at the same value of ζ .
In figure 12, we show a snapshot of the vorticity field for both the single-phase case
(a) and a particle-laden case (b). The vorticity was calculated at each vector location
using the circulation method (Raffel et al. 1998). Superimposed on this vorticity map
are the particle locations, shown as the dots. The data are obtained at z/M = 100 for
the single-phase flow and z/M = 86.3 for the particle-laden case (Exp. 1, ρp/ρf = 3.8,
dp = 153 µm, Φv =0.12%, Φm = 0.44%). As can be seen in figure 11, at these locations
the experiments have approximately the same turbulent kinetic energy.

The vorticity field shown in figure 12 appears to have smaller length scales in the
particle-laden case than in the single-phase case. When the integral length scale is
calculated, we find that it decreases from 7.4 mm (single-phase) to 6.2 mm (Exp. 1),
a 19% decrease. An even larger decrease can be found in the Taylor microscales:
4.3 mm (single phase) compared to 2.6 mm for the particle-laden case. While the
Taylor microscales do not have a well-defined physical interpretation (though it can
be stated that dissipation and transfer are in equilibrium for eddies of this size),
we can postulate that the energy is present at smaller scales than the single-phase
reference case. A similar reduction in length scales was found for all particle-laden
experiments.

Because of the whole-field nature of the measurements, it is possible to calculate
the integral length scale in both a horizontal and vertical direction. We find that
the vertical length scale is always higher than the horizontal length scale, which
would not be the case if the flow is isotropic. In figure 13, the ratio of the length
scales calculated in the vertical and horizontal directions (Λz/Λx) is shown as a
function of the anisotropy (〈u′

zu
′
z〉/〈u′

xu
′
x〉). This plot contains data obtained in all

eight experiments, as well as the single-phase case. In some cases the effect of particles
led to an increase in length scales that was so large that it was difficult to determine
the integral length scale in our limited field of view. This was especially the case for
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lines; single-phase and Exp. 2 (ρp/ρf =3.8, dp = 280 µm, Φv = 0.10%, Φm = 0.38%).

Exp. 5, which had the highest mass load of all experiments. The reason for plotting
the length scale ratio as a function of anisotropy is evident from figure 13: with an
increasing anisotropy, there is also an increase in the ratio of the length scales.

Further insight into the changes of the turbulence can be given by the evolution
of the turbulence power spectrum. In figure 14, the longitudinal power spectrum is
shown for three downstream locations (z/M = 42, 70 and 100) of Exp. 2, as well as
the single-phase reference case at z/M = 42 and z/M =100. For one particle-laden
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case, the error bars are shown for a number of wavenumbers to indicate the 95%
confidence interval. The data are made dimensionless using Kolmogorov scaling (Pope
2000). As can be seen in figure 14, the slope of the spectrum decreases as the flow
develops: in the initial stage (z/M =42), the spectrum of the particle-laden case has a
shape comparable with the single-phase case. However, at the top of the test section
(z/M =100), the spectrum shows a region with a relatively constant slope (which is
approximately −5/3). In contrast, the single-phase case far downstream (z/M = 100)
closely resembles the initial spectrum for kλk > 0.02. The differences at large scales
between the two downstream locations are due to the turbulent decay. The change in
slope for the particle-laden case, which is also observed in the transverse spectrum,
results in a clear ‘pivoting’ in the spectrum, which confirms a number of theoretical
and numerical studies, as mentioned in the introduction.

The longitudinal spectra can also be calculated in the vertical direction. figure 15
shows the spectra obtained in both directions, as well as the single-phase reference
case. While the general shape of the spectrum is the same for the two orientations,
there is a significant difference in energy at the small wavenumbers (i.e. large scales).
This is in agreement with the observed increase in anisotropy (both length scales and
velocity variance).

The single-phase flow has a relatively low Reynolds number (Reλ ≡ λgu
′/ν ≈ 29),

which means that there is no complete separation of large energy-containing eddies
and the dissipative small eddies. Energy will not only be dissipated by the Kolmogorov
eddies, but also by large-scale eddies. Therefore, the total transfer for a given
wavenumber (as a result of the energy cascade plus dissipation) will be negative. This
results in the observed slope that is steeper than the −5/3 following from Kolmogorov
theory. As will be seen in the next section, there can be additional production of
turbulence by the particles, which can be expected to appear at moderate wavenumber
(i.e. of the order of the particle size) in the spectrum. This can explain the observed
change in slope: for each wavenumber, there is now not only cascadal transfer and
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dissipation, but also an extra production term due to the particles. An alternative
interpretation of the change in the spectrum at large wavenumbers is an enlargement
of the inertial subrange by the particles, as predicted by L’vov et al. (2003). This is
also in agreement with the observed decrease in the Taylor microscales.

Our results for the change in spectrum mostly agree with those obtained by Yang &
Shy (2005). Their experiment that is the most comparable with our work was done
using particles with Stp =0.36. Using these particles, they also observe a decrease
at large scales and an increase at smaller scales compared to the single-phase case.
However, they find a rather sudden change in the slope of the spectrum: up to
the Taylor microscale, the inertial-subrange part of the single-phase and particle-
laden spectra are comparable, while the slope decreases above the Taylor micro
scale (indicating an increase in energy at small scales). It should be noted that their
Reynolds number was significantly higher (Reλ ≈ 120 versus Reλ = 29). The absence
of a complete separation of scales in our experiment may lead to a ‘merging’ of the
two effects. Another difference between the two studies is the different values for β ,
which are significantly smaller in the study by Yang & Shy (2005) compared to ours
(β = 0.2 versus β > 1 for all but the neutrally buoyant particles). This means that the
role of gravity is different in the two studies, making a direct comparison difficult.

4.4. Preferential concentration effects

The Stokes numbers of the particles used in our experiments are in the range of 0.1–0.5
(see table 3). This would make them susceptible to preferential concentration effects
(Eaton & Fessler 1994). Owing to the high magnification of the measurement system,
the average number of particles in the field of view is relatively low. This complicates
a study of the extent of clustering. The most commonly used method is ‘box counting’
(Fessler, Kulick & Eaton 1994). In this method the image is subdivided in smaller
regions and a histogram of the number of particles per region is determined. This
histogram can then be compared to a fully random case (i.e. a Poisson distribution).
In the current study, the number of particles per region is so low (100–150 particles
in the field of view) that this method cannot be used. The ‘dynamic range’ of the
number of particles in a reasonably sized box is simply too low for a meaningful
interpretation.

A number of other tests was performed to see if preferential concentration effects
occur. First, the distributions of particles with respect to each other was considered.
Histograms of the distance to the nearest neighbouring particle were made, which did
not deviate significantly from the result obtained in a completely random system. The
second test consisted of conditionally sampling fluid quantities at the particle locations.
Again, there seemed to be no evidence of a preferential location of particles in e.g.
low-vorticity regions or regions of downward flow, as was observed by Ferrante &
Elghobashi (2003). A full description of these test can be found in Poelma (2004).
Because of the low number of particles, it is difficult to determine if preferential
concentration effects are absent or if the particle statistics are insufficient. However,
one could argue that preferential concentration effects will not be significant owing
to the relatively high values of the ratio of the particle terminal velocity and the fluid
fluctuations, β = utv/u

′ (Yang & Shy 2005). This corresponds to a low ‘residence time’
of the particles in a typical vortical structure. The particles thus hardly have time to
respond to e.g. vorticity fluctuations, which are strongest at Kolmogorov scales. Note
that the neutrally buoyant particles have a lower value of β , yet their Stokes number
is too low to exhibit preferential concentration effects.
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Figure 16. The decay of the turbulent kinetic energy for three different mass loads (Exps. 4,
3 and 6, ρp/ρf = 2.5, dp = 254 µm, Φv = 0.072%, 0.10% and 0.42%, Φm = 0.18%, 0.65% and
1.05%). The dashed line labelled ‘eq.’ will be discussed in a later section.

5. Discussion
As was seen in the previous section, most of the experiments followed a similar trend

with an increasing anisotropy as the flow develops. To get a better understanding
of this behaviour, including the influence of the suspension parameters, a number
of cases will be discussed in this section. The same data will be used in a more
quantitative analysis in § 5.3.

5.1. Influence of particle load on decay behaviour

The results from three experiments with increasing mass load of particle type P2
(Exps. 4, 3 and 6 in table 4) are shown in figure 16. Similarly, results of experiments
with particle type P3 for two mass loads (Exps. 2 and 5) are shown in figure 17.

Figures 16 and 17 show that the mass load Φm has a strong influence on the extent
of the turbulence modification by particles: as can be expected, the rate at which the
flow becomes anisotropic increases with mass load. However, the mass load in itself
is not sufficient for predicting modification effects. To illustrate this, two different
experiments with a comparable mass load (Φ = 0.38% and 0.44%, respectively) are
shown in figure 18, for particles with the same density, but different size (153 and
280 µm, respectively). Despite the relatively small difference in mass (and volume load,
since the particle density is the same) of only 15%, the number density np (calculated
from the volume load and particle size using np = 6Φv/πd3

p). is more than 7 times

higher owing the size difference (np =618 versus 87cm−3). Obviously, the number
density in itself is also not sufficient to describe the behaviour. This is exemplified by
the fact that Exps. 2 and 4 have comparable number densities (87 and 83 cm−3, the
lowest loads in figures 16 and 17), but show significantly different decay behaviour
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(a 26% difference in slope for the horizontal decay). This difference in behaviour can
be explained by the fact that these particle have different characteristics (i.e. density
and size).

5.2. Comparison with empirical rules

The results described in the previous sections can be compared to the rules of thumb
mentioned in the introduction and which are summarized in table 1. As can be seen
in table 3, all particles are significantly smaller than the integral length scale: dp/Λ

is in the range of 0.02 (P4) to 0.08 (P1). For simplicity, the value of the single-phase
result at the middle of the test section was chosen for the integral length scale, i.e.
Λ =6 mm. According to the rule of thumb suggested by Gore & Crowe (1989),
particles should dampen the turbulence in these conditions. However, after the VIO
adjustment we find no apparent change in energy decay, except far downstream. The
latter, as will be discussed in the next section, results from the fact that far downstream
the grid-generated turbulence has decayed to such a level that the particle-generated
turbulence starts to dominate.

Similarly, the rules using the particle Reynolds and Stokes numbers can be
evaluated. The values of Rep , using particle size and measured terminal velocity,
range from 1.3 (P0) to 30 (P1). Again, this would indicate a damping of turbulence
(Elghobashi 1994), while only an increase is observed far downstream. The Stokes
numbers range from 0.06 (P0) to 0.48 (P1). Also using this criterion damping, rather
than enhancement, is predicted (Hetsroni 1989).

The reason for this discrepancy is the fact that the flow under consideration is
significantly influenced by gravity. This is exemplified by the high ratios of settling
velocities and turbulent fluctuations (i.e. β values). The rules-of-thumb must therefore
consider this parameter.

5.3. Quantitative analysis of the dissipation rate

The effect of particles on the turbulence is here quantified by considering the change
in decay behaviour, i.e. the slope of the decay curves. Intuitively, this effect can be
expected to be a function of the number of particles present and their characteristics.
For the former, the number density is chosen, rather than the volume or mass load.
This allows a clear distinction between the amount of dispersed phase and the particle
quantities. The particle number density is made dimensionless using the Kolmogorov
length scale (λk):

n′ ≡ 6

π

Φvλ
3
k

d3
p

. (5.1)

This parameter can be interpreted as the average number of particles in a dissipative
eddy. The particle characteristics are usually combined to form the Stokes number.
This parameter combines the particle density and size and fluid viscosity to form the
‘response’ time of a particle, which is made dimensionless with the Kolmogorov time
scale:

Stp =
d2

pρp

18ρf ν

1

τk

. (5.2)

We postulate that the influence of the particles on the turbulence is proportional
to the product of the dimensionless number density and the Stokes number, which
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we will refer to as the ‘Stokes load’:

ΦSt ≡ n′Stp =
6

π

Φvλ
3
k

d3
p

d2
pρp

18ρf ν

1

τk

=
Φvρp

3πηdp
︸ ︷︷ ︸

Stokes

λ3
k

τk

. (5.3)

In this equation, η represents the dynamic viscosity. The response time of a particle
has been derived using Stokes’s drag law, so the reappearance of the Stokes-like term
here is not unexpected. Note that the ratio of Kolmogorov length and time scale can
be expressed solely in terms of dissipation and viscosity: λ3

k/τk = ν7/4ε−1/4.
In order to study the influence of the particle characteristics and loads, we need to

quantify the changes in the turbulence decay. The dissipation rate is not constant over
the observed region as it depends on the local turbulence level. This complicates a
straightforward comparison between the experiments. However, as we have observed
earlier, the reciprocal of the variances shows linear behaviour. We here define the
apparent dissipation rate ε ′

i as the slope of the reciprocal values of the variance†:

U 2

〈uiui〉
= ε ′

i

z

M
+ C. (5.4)

For clarity, we will omit the prime in the notation of the apparent decay rate
(i.e. slope). The single-phase reference for the horizontal variance is denoted by ε0.
Changes in the ratio εi/ε0 can now be used to quantify the change in decay behaviour,
following the approach introduced by Schreck & Kleis (1993). Again, we stress the
fact that the dissipation rate is a scalar quantity, but for modelling purposes we split
it into three contributions. As mentioned in a previous section, the overall two-phase
decay does not significantly differ from the single-phase flow, i.e. 2εx + εz ≈ 3ε0.

For all the experiments measurements reported in table 4, the values of εx/ε0

and n′Stp were calculated. If the decay followed a power law (as is the case e.g. in
figure 9), a linear fit was performed using all five values of the reciprocal energy. For
experiments with very high loads, the decay curve slope decreases as the flow develops
(see next section). In this case, only the initial data points that showed power-law
decay were used. The resulting data are shown in figure 19.

As can be seen in figure 19, there seems to be a linear relationship between the
energy redistribution εx/ε0 and the Stokes load:

εx

ε0

∼ 1 + n′St. (5.5)

The proportionality constant, determined from the linear fit, is 22.7. The error
bars in the horizontal direction are mainly determined by the uncertainty in the
mass load (derived from the pressure drop, as described in § 2.2). The vertical error
bars are dominated by the uncertainty in the variance (cf. figure 11). Also shown in
figure 19 are three experiments in grid-generated turbulence by Geiss et al. (2004),
using a constant particle size, but with increasing volume load. Using the same
scaling, they collapse onto the current data set with good agreement. While the value
of n′St varies only over approximately an order of magnitude, it should be realized
that this corresponds to a relatively wide range of experimental conditions (particle
characteristics, load, air or water as continuous medium). Note that while we chose

† The ‘true’ dissipation rate can also be calculated from the temporal derivative of the fit of the
turbulent kinetic energy: ε ≡ d〈uiui〉/dt = − ε ′

iU
3/M/(ε ′

iz/M + C)2.
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the Kolmogorov length scale to scale the number density (n′ = nλ3
k), arguments can

be given for the use of e.g. the integral length scale. Owing to the fixed ratio between
integral length scales and Kolmogorov scales, either length scale will give a similar
collapse on a line. However, using the Kolmogorov scale we found a slightly better
agreement between our work and that of Geiss et al. (2004). The Reynolds number
of the latter study is comparable with that of our work (ReM ≡ MU/ν =4000 for the
current experiment, 3500 and 7000 for Geiss et al.). Experiments with very different
Reynolds numbers would make it possible to study the role of the choice of the length
scale for the scaling.

For εz/ε0, a similar linear relationship could be found (not shown). However,
the proportionality constant was twice as high and negative, as expected from the
fact that the total decay rate does not change. The value of the proportionality
constants (approximately 23 and −40, respectively) will contain the influence of
gravity. However, the current data set is not sufficient to clarify the exact formulation
of this constant; more experiments with significantly different conditions (e.g. in an
inclined or horizontal flow) will be needed. Alternatively, experiments similar to the
work by Wells & Stock (1983) could performed that use electrically charged particles
to vary the effective gravitational forces.

As the observed changes in the horizontal and vertical decay rates are not due
to a true dissipation process, but rather a redistribution process, we suggest the use
of the energy transfer T . We assume that this transfer is independent of the actual
turbulence decay. We can then rewrite the left-hand side of equation (5.5) as

εx

ε0

=
ε2p + T

ε0

≈ ε0 + T

ε0

= 1 +
T

ε0

. (5.6)
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For the energy transfer from the horizontal to vertical (i.e. gravitational) direction,
we thus find

T ∼ ε0n
′St. (5.7)

Note that T here is the apparent energy transfer, analogous to the actual versus
the apparent energy dissipation rate, as discussed in the text preceding equation (5.4).

5.4. Turbulence generation by particles: critical versus subcritical volume loads

For all particles heavier than water, there is a mean ‘slip’ velocity between the fluid
and the particles. This will result in an energy input in the suspension, as potential
(gravitational) energy is converted owing to the drag of the particles. Under some
conditions, this can lead to an increase in turbulence. Initially, the grid-generated
turbulence will be significantly higher than the turbulence generated by the particles.
However, depending on the particle characteristics and load, their production can
become significant. To evaluate the contribution of particle-generated turbulence,
we estimate its order of magnitude. This can be done using the momentum deficit
generated by each particle (Chen, Wu & Faeth 2000):

Π = nd2
pCDu3

tv (5.8)

In this equation, Π denotes the production rate of turbulent kinetic particles due
to ‘laminar-like turbulent wakes’ of the particles (Chen et al. 2000; Parthasarathy &
Faeth 1990). Note that in this equation, the number density per unit of mass n is used,
rather than the number flux of Chen et al. A simplification used in equation (5.8)
is the assumption that any turbulence production is proportional to the number
density n. This assumes that there are no particle–particle interactions, either through
collisions or particle–wake interaction. The volume loads of the current study are
relatively low, so we assume that these interactions can be ignored for the purpose
of the analysis in this section. The effective drag coefficient CD can be derived from
the observed terminal velocities (see table 3). This resulted in values for CD of 21.8,
2.05, 4.24, 2.91 and 8.76 for particle types P0–P4, respectively. Note that they cannot
be predicted easily a priori because of the unknown effects of free-stream turbulence
on the drag coefficient.

In figure 20, the dissipation rate is compared to the production rate of turbulent
kinetic energy by particles. The figure shows two curves for the viscous dissipation:
the single-phase reference case and two particle-laden cases (Exps. 4 and 5). All
three curves were derived from the experimentally determined values of the turbulent
kinetic energy. For the two particle-laden experiments the production of turbulence by
particles is also shown, as obtained using equation (5.8). As can be seen in this graph,
there is an order of magnitude in difference in the turbulence production rates for
the different experiments. For low values of z/M , the difference between dissipation
and production is more than an order of magnitude. This suggests that in these
early stages no effects due to particle-generated turbulence are expected. However,
far downstream (z/M = 100) the dissipation decreases and the (constant) level of
production by the particles can become significant; this is especially the case for Exp.
5. To quantify the balance between the decay of turbulence and the production of
turbulence by particles (equation (5.8)), we can study their ratio:

γ =
nd2

pCDu3
tvΛ

u′3 . (5.9)

In this equation, we have assumed that the dissipation scales as ε = u′3/Λ. The
values for γ as a function of downstream distance z/M are shown for the same two
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and the dissipation. Exp. 4: ρp/ρf = 2.5, dp = 254 µm, Φm =0.18%; Exp. 5: ρp/ρf = 3.8,
dp =280 µm, Φm =0.67%

experiments in figure 21. For Exp. 4, γ is well below 0.1 throughout the test section,
indicating that particle-generated turbulence will not be significant. On the other
hand, in Exp. 5 the value grows to 0.35–0.4 for high values of z/M . Thus turbulence
production by particles can no longer be ignored in this case.

Ignoring production of turbulence at the walls, far downstream the production of
turbulence by particles will be balanced by viscous dissipation, Π = ε. If we again
estimate the dissipation rate using u3/Λ, we can estimate the ‘equilibrium’ turbulence
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Figure 22. Example of a conditionally sampled fluid velocity around particle locations
(dp = 500 µm, ρp/ρf = 2.5, Φv = 0.37%, Φm = 0.92%). (a) The two-dimensional mean velocity
field, scaled with a typical fluid fluctuation, χ = 〈u〉p/u′. (b) A velocity profile at x/dp = 0,
scaled with the terminal velocity of the particles.

level, expressed as a typical fluid velocity fluctuation:

ueq = (ΠΛ)1/3. (5.10)

To show the meaning of this quantity, the values for some conditions are indicated
in figures 16 and 17 as the short dashed line (note that it is made dimensionless
using the mean velocity, i.e. U 2/u2

eq). The dashed lines are labelled ‘eq’. and the
corresponding mass load of the experiment.

Two different cases can be distinguished: first, if the equilibrium turbulence level is
very low compared to the grid-generated turbulence (γ � 1), the observed decay will
follow a power-law decay. This behaviour is found in e.g. figure 17, for Φ = 0.38%. On
the other hand, if the equilibrium level is close to the grid-generated turbulence level
(γ > 0.1), the decay rate will decrease: the decay curve will asymptotically approach
the equilibrium level. This behaviour can be found in e.g. figure 17 for Φ = 0.67%,
especially the vertical component (circles).

This decrease in decay rate can be linked with observation in the numerical work
by Ferrante & Elghobashi (2003). They calculated, with and without gravity, the
influence of ‘ghost’ particles on a decaying turbulent flow. They found that, in the
absence of gravity, the decay rate did not change compared to the single-phase flow.
However, when gravity was included they found a decrease in decay rate. The former
case corresponds to our results for low values of γ , where gravitational effects (i.e.
production of turbulence) are overshadowed by the grid-generated turbulence, so
that the decay rate is hardly affected. The latter case corresponds to higher values
of γ where gravitational effects start to dominate over the decaying grid-generated
turbulence, decreasing the overall decay rate.

Equation (5.8) is based on the fact that particles generate a momentum deficit in
their wake, which results in additional turbulence in the fluid. For some conditions (e.g.
for particles much smaller than the Kolmogorov scale), these disturbances may well be
dissipated immediately. To investigate the flow around the particles, the conditionally
sampled velocity around the particles has been calculated: at each detected particle
location, a region in the fluid velocity result was ‘cut out’. Subsequently, these were
ensemble averaged. A typical result of this calculation is shown in figure 22. Part (a)
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shows the ‘two-dimensional’ mean flow around a particle (500 µm glass, type P1),
while Part (b) shows a profile at x/dp =0 of the same data set.

While figure 22 appears to show a (very large) wake region, we need to stress that
this is an average over many particles in a turbulent flow: the size of the actual
individual wakes is expected to be of the order of the particle size. The wake-like
structure observed in the figure is the average ‘footprint’ of many individual wakes.
This also explains why the velocities in figures 22(a) and 22(b) are relatively low (both
compared to a fluid fluctuation and to the terminal velocity). However, the vertical
momentum deficit contained in the large wake region is comparable to that expected
in a single particle wake. It should be noted that all the measurements are taken in a
single plane, while the wakes of the particles can be expected to be three-dimensional
owing to the free-stream turbulence. Nevertheless, this conditional sampling exercise
shows that there clearly is an effect of the particles on the fluid and that their wake
disturbances are not dissipated directly.

6. Conclusions
The addition of even a moderate number of particles to grid-generated turbulence

has significant effects on the development of this turbulent flow. While the overall
or ‘apparent’ decay rate does not change significantly, there is a redistribution of
energy from horizontal to vertical scales, most likely driven by the anisotropic forcing
due to the slip velocity of the particles. The redistribution rate can be predicted if
the non-dimensional ‘Stokes load’ is introduced: the product of the non-dimensional
particle number density and their Stokes number. This new parameter seems a better
scaling parameter than the commonly used volume or mass load, as it combines the
mass load with the particle properties. Earlier experimental work reported in the
literature appears to confirm the validity of the parameter, see figure 19.

The redistribution can also be observed as a change in the structure of the turbulent
flow: the length scales in the horizontal and vertical direction change as the flow
develops. This is accompanied by additional energy at large length scales for the
vertical component. Further observations of the turbulent power spectrum confirmed
the ‘cross-over’ effect that has been reported in a number of studies, which is due to
a decrease in the observed slope compared to the single-phase flow.

While the number of particles was too low for standard clustering test (‘box
counting’), alternative tests indicate that the particles are randomly distributed over
the flow. The explanation for this lies in the fact that the particle settling velocity is
relatively high compared to a typical fluid fluctuations, so that the particles do not
have time to respond to gradients.

In addition to the energy redistribution effect, the particles also generate turbulence.
This is only evident when the grid-generated turbulence has decayed sufficiently. The
production of turbulence by the particles can be predicted using a model based on the
momentum deficit caused by the particle wakes. A study using conditional sampling
showed that the particles do indeed impose such a momentum deficit on the flow and
that the particle wakes are not dissipated directly. While this model seems to correctly
predict the amount of turbulence that is generated, it is intriguing that this microscopic
model (i.e. energy is added at the scale of a particle) appears to end up at the integral
length scale in the power spectrum. An alternative explanation could be that the
observed increase at low wavenumber is due to the redistribution effect, while the
turbulence generated by the particles is distributed over higher wavenumbers. Further
research is needed to elucidate the exact mechanisms behind this.
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The results obtained in this study show that even in a seemingly simple turbulent
flow (i.e. decaying homogeneous isotropic turbulence), several regimes exist: in this
case initially energy redistribution and then turbulence generation by particles. This
partially explains why often-used rules-of-thumb fail to predict correctly the behaviour
of the flow under consideration. None of the previously available parameters takes
into account all physical quantities that play a role. In particular, in the current case,
the role of gravity cannot be neglected, as it is the driving force behind the observed
phenomena in both regimes. To help evaluate the role of gravity, we have introduced
a new parameter, γ , which represents the ratio of turbulence production of particles
and the viscous dissipation of the turbulent flow. The current study has provided
a number of clues that in the future should provide better ways of predicting the
behaviour of particle-laden flows.
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Science Division of NWO and the technology programme of the Ministry of
Economic Affairs, the Netherlands (project grant DSF.4996). The authors would
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