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sections of pre-equilibrium nuclear reactions are reviewed. Using the equidistant
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restrictions due to the Pauli principle and the finite depth of the nuclear potential.
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Figure 1. The calculated spectra of nucleons emitted from the 1, 214 and 70 stage
of the ®®Nb(n,n’) reaction at 14.6 MeV. These are shown as the dashed, dotted and
dash-dotted lines, respectively. The total cross section (which includes the compound
nucleus cross section that dominates at small energies) is shown by the full line (Herman
et al 1992).

the transit time, about 10722 s to 10~ s depending on the incident energy and target
nucleus, whereas the compound nucleus stage takes about 10718 s to 10~ .

The number of excitons during the compound nucleus stage fluctuates about a
mean value, and although the probability of emission per unit time is extremely small,
the total compound nucleus cross-section is often greater than the pre-equilibrium cross
section. This is shown in figure 2 for the interaction of 14 MeV neutrons by titanium. For
small exciton numbers the cross-section decreases, and then passes through a minimum
at about n = 5, which marks the transition from pre-equilibrium to compound nucleus
emission. At higher energies, the switch from pre-equilibrium to the equilibrium emission
occurs at correspondingly higher exciton numbers. The broad peak at higher exciton
numbers corresponds to compound nucleus emission. A time-dependent picture of the
development of a nuclear reaction with respect to the exciton numbers participating is
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1. Introduction

For many years it was assumed that nuclear reactions take place in two stages, a
direct stage that occurs in the time it takes the projectile to cross the target nucleus
and a compound stage when emission takes place from the fully equilibrated nucleus.
Theories enabling the cross-sections for emission of particles from both stages to be
calculated have been developed, and are extensively used to analyze experimental data.
More extensive measurements showed, however, that some cross-sections cannot be
understood in this way, and this is interpreted as evidence for the emission of particles
after the direct stage but before the establishment of statistical equilibrium, These pre-
equilibrium reactions, as they are called, have been extensively studied (Gadioli and
Hodgson 1992).

The first model of pre-equilibrium reactions, the exciton model, was formulated by
Griffin (1966) and used to calculate the energy distributions of the emitted particles.
The model was developed by Blann (1971), Gadioli et al (1973) and others and used to
analyze a wide range of experimental data (Blann 1975, Gadioli et al 1976, Gruppelaar
et al 1986, Zhivopistsev et al 1987, and Gadioli and Hodgson 1992). Subsequently the
quantum-mechanical theories (Feshbach et al 1980, Tamura et al 1982, Nishioka et al
1986, 1988a and 1989) made it possible to calculate the angular distributions of the
emitted particles.

In the pre-equilibrium theories of nuclear reactions it is assumed that the excitation
process takes place by successive nucleon-nucleon interactions in a series of stages. Each
interaction produces a particle-hole (p — h) pair and each particle and hole is called an
exciton. The first few states are therefore 2plh, 3p2h, and so on. The number of
excitons n = p + h and the stages are labelled by s, so that n = 2s + 1. Usually
each nucleon-nucleon interaction produces another exciton, but occasionally a particle
receives enough energy for it to be emitted; these are the pre-equilibrium reactions. The
energy distribution of these pre-equilibrium particles changes as the reaction proceeds:
as expected, those emitted in the earlier stages have on the average more energy than
those emitted in later stages, as shown in figure 1 for 14.6 MeV neutrons on %Nb.

In general, the cross-section for pre-equilibrium emission falls rapidly as the incident
energy is shared among the nucleons of the target nucleus, and emission becomes
increasingly unlikely. Eventually the compound nucleus attains statistical equilibrium
and emits particles very slowly until this is no longer energetically possible. These times
are on a nuclear scale: the pre-equilibrium stage takes place in a time of the order of
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Population of states

Figure 3. Three-dimensional plot showing the time evolution of a reaction given by
the master equation of the exciton model (without the emission term). Each curve
shows the distribution of exciton numbers n at the time indicated (in relative units).
The distribution broadens as the reaction proceeds (Blann 1974).

golden rule
2m
Xe(n, E) = S |M P (n, B) 3)

where [M|? is the mean squared transition matrix element and wi are the densities of
the final accessible states, where the =+ refers to the An — +2 transitions. Here, the
final accessible states are those which can be reached by a single two-body interaction
from the initial configuration, and their number is generally (much) less than the total
number of states with given exciton number and excitation energy.

In order to calculate these cross-sections and the intranuclear transition rates it is
necessary to know the density of possible states w(p, h, E) (defined as the number of
states per unit energy between E — jAF and E — LAE, where the energy interval AE
includes a large number of states) as a function of the numbers of particles and holes
and the excitation energy E. This is essentially a combinatorial problem, subject to
some restrictions that will be mentioned later on. The number of states increases very
rapidly with n, as shown for some illustrative examples in table 1. This increase is so
rapid that it is impracticable, even for quite small exciton numbers, to evaluate the
number of states by a numerical algorithm. Analytical methods are therefore essential,
and these form the main subject of the present review.

These calculations must be carried out for all values of J , and then the total sum
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Figure 2. The neutron emission cross section as a function of exciton number for 14
MeV neutrons on Ti (Chatterjee and Gupta 1981).

shown in figure 3.

The rate of emission A;(n, E, €) of a nucleon z of energy ¢ from a state of n = p+h
excitons in a nucleus of excitation energy E, neglecting spin variables (apart from the
statistical weight factor (2s; + 1)) (see, e.g., Gadioli and Hodgson 1992, pp. 19 and
235) is given by the product of a statistical weight factor, the cross-section ofyy (€) of
the inverse reaction and the ratio of two state density functions w(p, h, E)

e, E,6) = 2l Lceoy (6220 ) (1)
where (1, is the nucleon reduced mass and U = E— B, —¢ is the energy of residual nucleus
which is produced in an (n — 1)-exciton state. Some authors include an additional factor
which takes account of the charge composition of the excitons with respect to the ejectile
(see below). A similar equation can be obtained for cluster emission; this depends on
the assumptions made about the complex particle creation and emission.

The particles emitted from each exciton state have different energy distributions, as
shown in figure 1. The resulting particle spectra therefore depend on the contributions
from separate exciton states. Thus, for the energy spectra

dos _ o S r(n)As(n, E,¢) (2)

de
where og is the cross-section for the formation of the composite system, and 7(n) is
the time spent by a nucleus in the n-exciton state. These quantities depend on the
equilibration process, whose course, consequently, depends on the intranuclear transition
rates A*(n, E) between two neighbouring exciton numbers, i.e. n — (n =+ 2). They can
be obtained either using a known interaction in given potential, or using the Fermi
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2. The equidistant-spacing model

As a first approximation, we consider the equidistant-spacing model (ESM) suggested
by Bethe (1936). In this model all the single-particle levels are equally spaced in energy.
In the ground state of a nucleus with mass number A, all the A lowest-lying levels
are occupied and the highest one specifies the Fermi level. The excitation energy of a
nucleus is distributed in some way among the excited particles above and the empty
holes below the Fermi level. The ESM is a great simplification, but nevertheless it is
very useful and gives quite a good energy dependence of the total density of states and
at the same time shows the basic properties of the densities and how and where they
originate. The principal advantages of the equidistant spacing model is that it facilitates
the analytical calculation of the exciton state densities. If a more realistic spacings are
used, this becomes practically impossible. The following sections give expressions for
the state densities subject to various restrictions.

2.1. Densities of states without Pauli principle
Strutinski (1959) and Ericson (1960) showed that the equidistant spacing model (ESM)
gives

gnEn—l
—_— 4
plhl(n — 1)’ (4)
where p (h) is the number of particles (holes), n = p+ h is the total exciton number. If
g is the single-particle level density,

w(1,0,E) =w(0,1,E) = g¢. (5)

w(n, E) =w(p,h,E) =

The formula (4) can then be obtained by successive application of the recursion relations
(see Gadioli et al 1973)

L e U)d
w(p,o,Ej,,)—I;/0 gw(p —1,0,U)dU

1 rEn
w(0, h, Ey) = E/o 9w(0,h — 1,U)dU (6)
and finally
E
w(p,h E) = [ w(p,0,U)w(0, b, E ~ U)dU | (7)
0

The last equation specifies the generally valid procedure used to obtain particle-hole
densities from those for particles and for holes separately. The particle and hole densities
in (7) need not necessarily be obtained from the ESM*.

'To have some feeling for typical values of the densities of particle-hole states in real
pre-equilibrium problems, we use also some knowledge beyond the scope of the present
review, namely the range of energies and nuclei where the standard formulations of the
pre-equilibrium models are well justified. These arguments have been given by Agassi

* An updated version of this approach appeared also in a recent paper by Bogila et al (1996a)
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Table 1. Some of typical values of the numbers of states and their densities for
some important configurations for two selected nuclei and energies calculated using
the Ericson formula (see the next section). The equilibrium exciton number is 7.

Quantity A=350 A=200
E=15MeV E=100 MeV

i 9 43

Nmaz 15 77

No. of states

3 excitons 830 590 000

i excitons 1.1 x 108 8.9 x 104!

Density of states (MeV~!)
3 excitons 3 200 9.1 x 108
7 excitons 4.1 x 108 1.4 x 1043

corresponds to the level density that is obtained by thermodynamical arguments (Gadioli
and Hodgson 1992, ch. 2; Bethe 1936 and 1937). This provides a useful constraint on
the exciton density calculations.

Many formulae for the particle-hole state densities have been used in calculations
of the cross sections of pre-equilibrium nuclear reactions. The earlier calculations used
simple models of the particle-hole excitations (Strutinski 1959, Ericson 1960, Williams
1971), but many improvements have been made taking into account the finite depth of
the nuclear potential (Bétdk and Dobes 1976), spin dependence of the decay (OblozZinsky
1987, Oblozinsky and Chadwick 1990) and the conservation of linear momentum (Méadler
and Reif 1980, Chadwick and Oblozinsky 1991 and 1992). These models are described
in sections 2 and 3.

The success of the pre-equilibrium theories makes it desirable to standardize
all parts of the calculations, and the expressions used for the particle-hole densities
are among the more important. The more sophisticated calculations of particle-hole
densities are available only in specialized papers, and in addition it is not always clear
which is the best formula to use in a particular practical calculation. The aim of the
present work is therefore to collect together and review the main results of many partial
studies and to present them in a coherent form suitable for numerical calculations.

It is possible in principle to calculate the exciton state density by counting all
possible configurations numerically. Even for small exciton numbers this requires very
large computing times. Furthermore, it fails to give the insight that can be attained by
analytical methods, however approximate. Nevertheless, we mention these calculations
and discuss their possible applications in the last section of the review.
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2.2. Densities of states with Pauli principle

The inclusion of the Pauli principle greatly complicates the calculation of the density of
states. In the languague of pre-equilibrium models, the Pauli principle requires that no
two excitons of the same type are allowed to be in the same state, which implies that
they cannot have the same energy.

The state densities have been obtained under these conditions by Bohning (1970).
He studied the partition of an integer M into no more than N integer parts. This
problem was essentially solved by Euler (1753). Let the energies of particle levels to
be 1/g,2/g, 3/g, ... and let there be N particles with total excitation energy E. The
minimal energy needed due to the Paulj principle is N(N +1)/(2g), so that the ” energy
space” available for excitation is

1
M=gE--N(N+1). (11)

The number of partitions pn{(M) of N particles with energy M satisfies the recurrence
relation (Williams 1971)

pn(M) = py_1(M) + py(M - N) (12)
with

pn(0) =1

po(M) = bop (13)

For N > M, py(M) is independent of N and so is degenerate.
The total number of particle-hole states r(p, h, E) is obtained by folding those of
the particles and holes, as in (7)

r(p,h, E) = Z_: Pp(m)pa(M —m) . (14)

The structure of (12) suggests that the resulting number of states and therefore also the
densities for M > N (as is the real case for nuclear reactions) can be approximated by
2 polynomial in M of order (N — 1). Neither (12) nor (14) are continuously increasing
functions of energy, and they can remain constant even if the energy M is increased by
several integer units.

While the recipe for obtaining the state densities within the ESM as given by
Bohning is correct and precise, it is seldom used; simple analytical formulae or the
relatively precise realistic densities that are easily obtained with modern computers are
generally preferred.

A feasible method to obtain an analytical formula was suggested by Williams (1971).
Though the results are only approximate, it is quite accurate and it is easily programmed
for numerical calculation. The derivation is based on the Darwin-Fowler method for non-
localized particles (see Miinster 1969) with subsequent use of the Cauchy theorem in
conjunction with the saddle-point approximation.
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et al (1975), who showed that the necessary conditions for the statistical assumptions
to be valid are

TP,n > (Tcoll,n,Tdec,n) > TNN 3 (8)

where Tp , is the Poincaré recurrence time (the time needed for the statistical system to
return to its original, very nonequilibrium configuration) for the n-exciton configuration,
Teon,n the average time interval between two successive interactions, T4ec,n the time of
the decay of given n-exciton state by emission of either particle or gamma and Tyy the
duration of the nucleon-nucleon interaction. If we express the conditions (8) in terms
of energies, nuclei and their single-particle densities, we find that they are satisfied for
nuclei with A 2 40 and E R 15 MeV. The upper energy limit is given by the possible
appearance of non-nucleonic degrees of freedom, which limits the simple approach to
about 150 MeV excitation energy.

Table 1 gives the numerical values (rounded) for the most probable (or
"equilibrium”) exciton number 7@ §, the maximum exciton number n,,,, allowed by
the Pauli principle and the corresponding numbers of states and densities for the 3-
exciton state (the most important one for the nucleon emission under usual conditions)
and the equilibrium exciton number 7, which dominates the equilibrium (compound
nucleus) emission. The number of states at n,,,. is very small again, much less than at
3 excitons, and small departures from this tiny value can be fully attributed just to the
approximate nature of the formulae. The table 1 shows the numbers of states for nuclei
and energies close to the lowest and highest ”corners” of the applicability of the model.

The total density of states which has to be compared with classical compound
nucleus (i.e. equilibrium) theories is

wE)= Y wnE), 9)

n
An =2

where the summation is over all possible exciton states. The exciton number changes
in steps of two because n = 25+ 1 (see Introduction). The maximum exciton number is
limited in practice by the Pauli principle (since two identical excitons cannot share the
same state) and, in the extreme case of very high energies, by twice the total number of
nucleons in a nucleus. (We do not discuss the applicability of the model at such energies
here.)

The density of final accessible states needed for the calculation of intranuclear
transition rates (Williams 1970, corrected for the indistinguishability of excitons of the
same type by Ribansky et al 1973) is given by

1
wp = §gph(n -2)

wF = g (gE)2
f 2(n+1)’
where the superscripts 4+ and — refer to the An = +2 transitions, respectively.

(10)

} We have used a more refined expression for state densities than that given by Ericson to obtain 7,
namely that given in the next paragraph.
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Table 2. Typical values of the numbers of states and their densities for some important
configurations for two selected nuclei and their energies calculated using the Williams
formula with ¢ = A/13 (MeV~1). For comparison, the total density of states is also
given.

Quantity A=50 A=200
E=15MeV E=100 MeV

No. of states
3 excitons 800 590 000
7 excitons 3.0x 108 1.4 x 103°

Density of states (MeV~!)
3 excitons 3100 9.1 x 108
7 excitons 1.1 x 108 2.0 x 1040

Total density of states (MeV~!) 2.8 x 108 7.2 x 1040

This term arises partially from the minimal energy oy, and partially as the result of the
integration over the saddle in the complex plane when evaluating eq. (20)f.

In the more general case of different spacings g and § for particles and holes, the
density of n-exciton states becomes (Dobes and Bétdk 1976)

_ GPGM(E — Apy)Pth-1

w(p, h, E) = PR+ h -1 O(E — apy) , (24)
where
L2 1
ah = 5, +1) + 5= (W~ h) (25)
and
1 1
App = ;1;(?2 +p) + E(fﬁ — 3h) (26)

As in the preceding section, we make some comparisons in table 2 for two ”case
studies”, with densities calculated using the Williams formula (21). The densities for
low exciton numbers remain practically at their previous values, whereas in the vicinity
of the equilibrium exciton number 7 the difference is essential (and is still much greater
at higher exciton numbers) due to the rapidly growing correction term for the Pauli
principle Apy.

One can see how good approximation to the ESM (21) is from figure 4 taken from
the original Williams’ paper. The consistency of the particle-hole state densities (21)
summed over all exciton numbers with the classical compound nucleus level density (see
(9) has been verified by Williams (1971) (figure 5) and later on for more sophisticated
cases by other authors (Avrigeanu and Avrigeanu 1989, Zhang 1993). The comparison
of Williams (1971) is shown in figure 5.

t The © function on the r.h.s. of (21) is often neglected when the density formula is used. One
must keep in mind, however, the range of variables for which the formula has been derived since this
determines its range of validity.
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Let aj,ay, ... be the occupation numbers of the single-particle states and €1,E9,
. the corresponding energies. Then,

Zat =f
ZatEt Ey (15)

where f stands for a given type of exciton (i.e. particles or holes).

In the following, let us consider the ESM of for the particle and hole energies,
which are 1/g, 2/g, 3/g, ... for particles and and 0, 1/g, 2/g, .. .for holes. The system
partition function is

Zsys = ZpZp, (16)
where Z, and Z, are the partition functions for particles and holes, respectively. They

are subject to the conditions (15), so Z, for particles is given by the coefficient of z/ yEs
in the expansion of the function

Z, =1 (1 +2y'/9) (17)
i=1
and similarly for holes (Miinster 1969, p. 108; Williams 1971)
Zo=TI (1 +2y*9) . (18)
k=0

These generating functions may be rewritten in the form

o0 pm yzm(m+1)/g

=1+ 19
m=1 1 - z/g) ( )
and similarly for holes. The number of states for particles and holes (see (14)) is
dx dy
r(£,€) (2 o $ 2 s (20)

Here, € is the energy of system of f fermions, where f stands for either p or h.
The integrals may be evaluated by the saddle-point method, and the resulting
density is

gp+h(E _ Aph)p+h—1

where © is the Heaviside (step) function and
1
Oph = 2—9'[(192 +p) + (h* - h)] (22)

is the minimal energy needed to put p particles and A holes in the levels taking account
of the Pauli principle and the correction term which lowers the energy in (21), and

A = 2216 +5) + (47— 30)] (23)
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Figure 5. Comparison of total density of states as obtained summing particle-hole
densities (9, 20) and from the CN formula w(E) = exp(n\/2gE/(V48¢E) (Williams
1971).

2.3. Densities of final accessible states with Pauli principle

The calculation of the densities of final accessible states is a straightforward, though
rather complicated generalization of what has just been shown above. In the following,
we allow for different numbers of particles and holes, and also for different energies,
by a method due to Dobes and Bétik (1976). To do this, let a;,as, ... be the
occupation numbers of the one-fermion states of the initial and b1, b2, ... those of
the final configuration, respectively. In this way, we also allow for transitions, as both
the configurations may be different. Let €1,€2, ... be the energies of the corresponding
single-fermion states and &; and & those of the initial and final states. Let us define the
occupation function

y(a;) =1 forae, =0,1
¥(ay) =0 fora, <Oora,>1. (27)
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Figure 4. Comparison of approximate particle-hole state density computed from (20)
and the exact values within the ESM. The graph shows the ratio of the aproximate to
the exact value, and the numbers next to each curve identify the number of particles
and holes, taken to be equal here. Note that the energy is given in units of the ESM
spacing, not in MeV. (Williams 1971).

Baguer et al (1989) used the computer code REDUCE to obtain corrections to all
available orders due to the Pauli principle. They obtained to so-called ”exact” formulae,
including all possible energy terms, but still however containing the approximations of
the Darwin-Fowler method. As the BShning results cannot be expressed as polynomials,
the densities of Baguer et al fluctuate with energy in a very interesting semi-periodic
manner (see figure 6).

There is one very important difference between the properties of the densities
(21) and of the more refined approaches published later on (Bétdk and Dobes 1976,
Oblozinsky 1986, Baguer et al 1989, Anzaldo-Meneses 1995) and those suggested by
Ericson (4), namely that they do not extend at given excitation energy to infinite exciton
numbers but are cut off at some maximal value np,,,.
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the generation function is

Z(l‘, v, 2,u, w) — E H,Y(Gt),y(bt)maeyate:zbte:ubt—aewlbt—ad , (29)
(a)b) ¢

and the total number of configurations

1 dz dy dz du dw
Cis(f, &, &) = m}(}{f‘f}{‘z Ty EH & kA Ty k4T (30)

The integrations over u and w in (30) are easily performed even in a general case.
The rest of the calculation must be done for a specific scheme of particle and hole states.
The number of realisations of final accessible states obtained using (30) (Dobes and
Bétak 1976) is
Cto.h BB = [ [ [CPp, B - U, B - U)C™ (b, U, Uy
+C%(p, B — U;, B — Up) C2 (b, U, Up)
+ C%p, Bi — Ui, By — U)C™ (h, Us, Uy)] AU dU; (31)
and similarly for the other possible processes.
The densities of final accessible states on the energy shell E; = F; = FE are
wi(p,h,E) =C*(p,h,E, E)/w(p, h, E)
wi(p, h, E) = C%p, h, E, E)/w(p, h,E)
wi (ph, E) =C*(p —1,h— 1, E, E)Jw(p, h, E) . (32)
The equations (31) and (32) are valid in general. For simplicity, we use g = 1 in

the following formulae. The explicit results for the densities of final accessible states
when only the highest power of energy is retained, are (Dobes and Bétak 1976)

wi (p, h, E) = -;—ph(n -2) [1 T3 ;)(—El_ ) (p—1D)p-2)+(h—1)(h - 2))}

R i R [ i
n(n — 1)
+4ph [1 - h4(E — Aph)])
“f (oo b, B) (5(;:-11)1’1)) [ - n(fy;ljjlph) (gp(p -1)+ gh(h — 1)+ ph+ %n)] (33)

The expression for w; is identical to that obtained by Oblozinsky et al (1974) by a
much simpler and sufficiently transparent method where, unfortunately, the same form
of the Pauli principle correction is assumed for different exciton states.

More complete expressions than that given by (33) (up to the second order of
corrections) for the densities of final accessible states were obtained by Isaev (1985).
However, even the (33) are not often used and they are replaced by simpler though less
precise results.

For practical use, an even more straightfoward approximation is available. If we
ingore the influence of the Pauli principle on the An = —2 intranuclear transitions where
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Figure 6. Comparison of the energy-dependence of the density of states within the
ESM, as given by the Williams expression (20) (dashed line) and by "exact” formula
of Baguer et al (full line), with respect to the exact (B6hning) results for the case
of 4 particles. The energy here is that above Pauli threshold aphn. At lower particle
numbers, both formulae just oscillate around zero. When considering the deviations,
one must remember that the absolute number of the densities at the right edge of the
plot (at gE = 60) is 1900, so that even the largest oscillation in the Williams case is
only about 0.25%.

We define the total number of possible configurations with f fermions in the initial state
and (f +j—k) fermions in the final state as Ci;(f, &, &). Here, k and j are the numbers
of fermions which undergo the intranuclear transition; k is the number of states that are
unoccupied after the transition and j the number that become occupied, respectively.
Thus, k = j = 0 for the simple calculation of the density of states without any transition.
The typical number of single-particle states considered in pre-equilibrium reactions (i.e.
the maximum value of t) is several hundreds or thousands, whereas we have to deal
with huge sets {a} of different distributions (the typical dimension of such a set may be
10'° or even much more, depending on the complexity of state and the corresponding

energy).
The constraints are

dolbi—al =j+k, (28)
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and neglecting the factors g(lh — J7) in the energy terms on the r.h.s. of (37) we finally
arrive at the easily usable formula

A _
. h (E — App, — lEp)™!

h,E) = g°g" ~) O(E - oy — LE £ 40
oo B) =95 (] ) () O oy - 1) A~ LB (40)
For approximate calculations, the above equation can be further reduced to

ho(h (E = lEp)™!
b, E) = gPth -)! —IE d :
oh B =ty () ) o - i BNy

The associated transition rates can be derived in the same manner as the preceding
section for the case of an infinite well (Bétdk and Dobes 1976). The final formulae
are rather lengthy and not very suitable for practical use. For such cases, they can be
replaced by

w(p*1l,ht1, E;Ep)
wlptl,h+1,E;Ep = 00) ’ (
where wi(p, h, E; Er = 00) are the rates for the infinite well, given e.g. by (32). For
a sufficiently wide range of energies, this expression agrees within 5 per cent with the
exact one (Bétdk and Dobes 1976).

Distinguishing between bound and unbound states in the theory of pre-equilibrium
decay (Feshbach 1973), corresponding to the multi-step compound and multi-step direct
reactions, led to an increased demand for explicit expressions for state densities for
bound states, for use in multi-step compound theories (Feshbach et al 1980, Tamura et
al 1982, Nishioka et al 1986, 1988a and 1989).

Though these densities are only a special case of (37) or (40), with the same type
of energy constraint as was for holes (holes are not allowed to have higher energy than
is the Fermi energy, Er) to be applied also to particles (their energy must not exceed
now the particle binding energy B), they have not been used immediately. Stankiewicz
et al (1985) derived the densities with the help of integral equations of the type given
by (6) and (7) neglecting the Pauli principle. Kalbach (1981) consistently distinguished
active and passive particles and holes and finally Oblozinsky (1986) gave an analogue
to the (40). His expression reads

w(p b E) = 3 33 ( P ) ( ’; ) (=) O(E — aps — kB — 1Ep)

wi(p, h, E; Fp) = wE(p, h, E; Fp = 00)

42)

k=01=0
(E — Aph — kB — [Ep)™~1
43
ph!(p+ h— 1) ’ (43)

or, approximately

o i~ P\/[ A o\ (E—kB—1Ep)"!
w(p,h, E) =~ g hég(k)(l)(—)’ O(E — kB - |Ey) TR ho D (44)

Later on, similar equations have been reported also by some other groups (Zhang and
Yang 1988, Mao and Guo 1993).
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it is least important, the steady-state equilibrium conditions give directly (Ribansky et
al 1973)t

+ — g [9(E — Apy1p)]" !
GORE 5T - Al

(34)

in close analogy with (10).

2.4. Finite potential depth and bound-state constraints

The importance of the finiteness of the nuclear potential well on the pre-equilibrium
decay was first pointed out by Blann (1972). He gave the correction for the two exciton
configurations, which mostly influence the calculation of the pre-equilibrium nucleon
emission, namely 2plh and 1plh. Under simplifying assumptions such as the neglect
of the Pauli principle, expressions can be obtained easily by the integration procedure
already given in (6).

'The correct derivation of the densities of states taking account of the Pauli principle
should however be made using the methods of statistical physics that give (20). The
hole generation function including the finiteness of the nuclear potential well is not that
given by (18), but (Bétdk and Dobes 1976)

§Ep-1

Zv=II (1+z*?), (35)

k=0
where Ef is the Fermi energy. This leads to

1o 1-— yEF—(ﬂ—k)?J
Zy =1+ gryn-1/d - 36
" nzl Y ,,I;II (1 —y*/9) (36)
Hence, one straightforwardly finds
h .
w(p, h, B) = ¢?§" 3° 3 G (=)' O(E — apn — LEg + §(Ih - 3))
1=0 j
(B — Aph = LEr + §(th — )™ (37
plhl(p + h — 1)!
with
CP =1
cy = 1 forlh—-ll(l—l <41
h 2 =3
O<k1<..<k<h
k1 +k2+...+k; =7
Cl =0 for j < %l(l-{- 1) and for j > lh — %l(l —-1). (38)
Using

ZC" = ( " ) (39)

1 The first densities of final states with some correction due to the Pauli principle have been published
by Cline (1972b). The form of the Pauli principle correction is not given there correctly.
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one-fermion formulation with inclusion of some effective charge factor. In these two-
fermion calculations, however, one has to fix the relative strength of different types of
intranuclear transitions and there is very little information from the experimental data
which could usefully distinguish among various suggested approaches.

In practice, therefore, another way is used, namely the introduction of some effective
charge factor in the emission rates (different charge factors were proposed by various
authors, see below).q This method is only an effective and approximate one, and must
be understood as such. Strictly speaking, the appearance of the effective charge factor
in the emission rates is an intrusive element in the pre-equilibrium calculations, as it
violates the proper equilibrium limit, some physicists therefore deny its presence in the
emission rates.

The philosophy behind the charge factor is probably best justified in the case of
factor K introduced by the Milano group (Braga-Marcazzan et al 1972 for the lowest
emitting state, Birattari et al 1973, and finally Gadioli Erba and Sona 1973, see also
Gadioli and Hodgson 1992, par. 2.5.4). Let us for simplicity consider the case of a (p, n)
reaction. The incoming proton may interact with either a proton or a neutron, thus
creating a 3-exciton configuration of type 27# or mvir. Neutron emission is impossible
from the first possible 3-exciton configuration and it leads to a 2-exciton configuration
of a 77 type in the residual nucleus from the latter one. The ratio of densities on the
r.h.s. of (1) in this case is therefore

w(1,0,0,1,U)
w(2,1,0,0,F) + w(1,0,1,1,F) ’
in reality, whereas in the one-fermion formulation of the pre-equilibrium decay one has
w(2,1,U)
w(2,1,E)
If we therefore use the simpler one-fermion formulation, we have to multiply the emission
rate in this case by the ratio K of both the expressions (47) and (48). This ratio may be
easily evaluated assuming g, = §, = g, = §, = 9/2 and neglecting the Pauli principle
correction. This procedure yields K, (3) ~ 0.667.
It is easy to prove that (see Gadioli and Hodgson 1992, par. 2.5.4, p. 87)

K, +K,=2 (49)

(47)

(48)

for every exciton number, independently of the incident projectile. In the very same
way, one can also derive the charge factor K for cluster (e.g. a) emission.

The charge factor K of the Milano group clearly assumes that i) intranuclear
transitions to more complex states are governed only by the available phase space, i.e.
the matrix element of a transition (|M|?) is independent of the initial proton/netron
exciton composition and is the same for an excitation of a proton as for a neutron; i)
that the never-come-back approximation may be used for its derivation, i.e. that there
9 Similarly, the charge factors were suggested and are used also in other models, e.g. in the hybrid

model (Blann 1973 and 1975). Their connection to the particle-hole state densities is not emphasized
and we shall not go discuss them here.
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2.5. One- and two-fermion densities

So far, we have divided excitons only into particles and holes. The real nucleus, however,
is not composed of nucleons of just one type, but of neutrons and protons. We should,
therefore, make a further distinction in our calculations. The formulae given above are
usually refered to as one-fermion ones to distinguish them from the two-fermion case,
where we consider the neutrons separately from the protons §.

A straightforwad way to do this has been already introduced in the derivation of
densities by Williams (1971). Let us denote the proton particles (holes) as 7 (#) and
the neutron ones as v (7). The total number of excitons is n is it was in the one-fermion
case, n =7 + T + v + V. The two-component density is now

= (E - B.- ;)1
w(ﬂ', v, D, E) = gﬂ,’”gﬂ_’fguuguu( 7r1ruu)

7ol (n — 1)! (45)

with

— 1 2 1 ~2 ~ 1 2 1 ~2 ~
B7r1ruu— 4g7r(7T +7T)+ 4§,r(7r 37T)+ 4gu(1/ +V)+ 4§U(V 3l/) (46)

The two-fermion densities with shell corrections were published by Berger and
Martinot (1974). Their calculation stems from the same grounding as that of Williams
(1971) and Dobes and Bétdk (1976), but it avoids the use of the Cauchy residue theorem.
At modest energies (up to about 80 MeV), the results agree well with those of Williams,
but at significantly higher energies and high exciton numbers, Williams formula seems
to be an overestimation. The method of Berger and Martinot is used also to study the
shell effects, which are found to be significant in some cases.

The complete two-fermion calculations can be found in paper by Gupta (1981),
who used the two-fermion master equations to describe the equilibration in the case
when neutrons and protons are distinguished. The two-fermion version of the exciton
model was studied in detail by Dobes and Bétdk (1983). They finalized the form of
the transition rates for all occuring transitions (in the two-fermion case, there are more
different transitions than only An = +£2, as it was in the one-fermion formulations)
and investigated the different matrix elements governing the intranuclear transitions.
Subsequent important refinements can be found in Kalbach (1986) and Herman et al
(1989), but these papers are essentially concerned with other aspects of the densities
and will be treated in detail in other sections of this review.

One can treat some selected problems of the two-fermion approach (see Bétik et
al 1974, Bétdk and Dobes 1979, Avrigeanu et al 1997), or make calculations taking
full account of two-fermion nature of the problem (Gupta 1981, Dobes and Bétsk 1983,
Kalbach 1984 and 1986, Jingshang 1994 and Fu 1994).]] These calculations are very
time-consuming and the agreement with the data is of the same quality as in the

§ Rather frequently, one meets the terms "one-component” and “two-component”. That is
unfortunately not used consistently in all papers, as some denote the two-fermion case as ”four-
component” and consequently the one-fermion one as ”two-component”.

{| We do not consider here two-fermion calculations which go beyond the ESM model, as they will be
treated in section 5.
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emission. The general behaviour of the  factor is similar to that of the K factor of the
Milano group. It tends to the value of 1 at equilibrium, but there is no normalization
condition of type (49) which should be valid throughout the reaction.

A closely related factor ) has been obtained from comparison of the one- and two-
fermion results by Gupta (1981). His factor for Z = N coincides with that of Kalbach,
but differs in the other cases *.

When using the one-fermion formulation with some form of the charge factor, we
must be aware of the introduced shortcomings. Apart from that, the numerical results
are nearly indistinguishable, up to a necessary renormalization of the transition matrix
element (|M|?) by a factor of two in the case of the R factor with respect to the three
others*.

The proper approach would be a real two-fermion calculation, but this is very
seldom perfomed, and we find only the one-fermion calculations in practice. Because
of the disadvantages of all charge factors proposed until now, and especially for the
purity of the model approach and to keep the well-established equilibrium limit, many
calculations are performed (though in one-fermion version of the model) without any
effective charge factor.

3. Densities with spin, isospin and linear momentum

3.1. Spin dependence - general

In the compound nucleus (i.e. equilibrium) case, the nucleon emission rates are (Gadioli
and Hodgson 1992, p. 256)

1 p(U, S) S+1/2  J+j - .

ho(E, J) j=l~§-—:1/2ll=|zl:—jl IJ( ) (%2)
where the emission proceeds from a composite system of excitation energy E and spin
J to the residual nucleus of an energy U and spin S, and [ is the orbital momentum of
the emitted particle. The densities are assumed to be factorized (see, e.g., Kikuchi and
Kawai 1968 (par. 1.7, p. 32), Bohr and Mottelson 1969 (p. 155 and App. 2B), Gadioli

and Hodgson 1992 (par. 2.1, p. 40))

PE,J) = w(B) et exp (—5"—7;;2/2—)) . (53)

* One more charge factor has been suggested by Zhang (1990, 1993), yielding in practice close results
to the two @ factors given above.

* The effective rerplacement of the two-fermion densities by the one-fermion ones also includes the
assumption of the relative interaction of 77, 7v, and vnu pairs. Thus Gadioli et al (1971) and Gupta
(1981) assume equal strength of all these interactions, Cline (1972a) and Kalbach (1977) excitations
proportional to N/A and Z/A, Blann et al (Blann and Mignerey 1972, Blann 1973) proportional to
Orv/0uy, Dobed and Bétdk (1983) use the same assumption and approximate it by a value of 3 and
recently Kalbach (1995c) assumes the strength of the 77 and vv interaction to be by a factor of 1.7
higher than that of the mv one. In her former paper (Kalbach 1986), she relates the absolute values of
the matrix elements in the one- and the two-fermion case, the former one being roughly one half of the
latter.

Au([E,J) S [U,S) =
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is no configuration mixing and/or feeding from more complex states eventually reached
earlier in the reaction, and — and what is the most serious one — i) that we are
fully justified to replace the single-fermion state density in the denominator of (48) by
the sum of all two-fermion configurations (of the same exciton number) entering the
denominator of (47), i.e. that we have the right to effectively consider also the exciton
configurations which do not contribute to the emission at all in the specific case. In
addition, there are 1v) some simplifying assumptions (neglect of the Pauli principle and
assuming of all g’s equal) that enable the charge factor K to be expressed in a convenient
closed form. All the above assumptions, however, may be a subject to discussion and
none of them is of a basic importance. From the physical point of view we consider the
K factor to be the clearest and best justified of all charge factors developed.

Another charge factor R was suggested by Cline (1972a). Its philosophy is different
from that of the K factor. For illustration, we shall consider the same reaction as above,
namely (p,n). If we assume that the interaction between the neutron and the proton is
of the same strength, the incoming proton excites another proton with probability Z /A,
and a neutron with probability N/A. In the 3-exciton state, we have 2 particles (and 1
hole). It follows that of these two particles there are 1+ Z/A protons and N/A neutrons,
on average. As we have two particles, the probability of getting a neutron is N/(2A4),
and this is a factor which should be taken to multiply the one-fermion emission rates to
account for proper charge composition. For states significantly different from the initial
configuration and close to the equilibrium we assume that the charge composition of
excitons which is the same (proportional to) as that of the composite system, which
gives N/A for the neutron and Z/A for the proton emission. Obviously,

R.+R, =1 (50)

at each stage of the reaction. The philosophy of the R factor can be easily put into
closed formulae for both nucleon and cluster emission, and we refer the reader to the
original source in this case (Cline 1972a).

The equilibrium limit of R for nucleon emission in the case of Z = N is clearly %
(and e.g. g for the a-particles). This implies a disagreement with the equilibrium
emission expression by the same factor introduced artificially from outside and is
therefore not justified. This handicap is of much deeper nature than the objections
raised against the K factor above.

To remove the improper equilibrium limit of the R factor, Kalbach (1977)
introduced another charge factor ). It has a proper compound nucleus limit of 1,
and the explicit expression is

)= (3) (7) ZLRale), G

where R is the charge factor introduced earlier, ps is the mass number of the emitted
particle consisting of 73 protons and vz neutrons. As is easily seen, the ratio of the
proton to the neutron emission is amplified by a factor of N/Z with respect to that
obtained using R charge factor for the lowest exciton state contributing to the nucleon



Particle-hole state densities 24

and the angular momentum density of pair states

.2
PG = Do+ DRGI @+ 0RG) (5 5 B) e
hjz 2 T2

An approximation to these formulae has been given by Bogila et al (1995b), which
also facilitates this kind of calculations with smaller computers.

3.2. Spin cut-off

The first expression for the spin-dependent particle-hole density was already given in
the original work of Williams ( 1971). Generally, the spin cut-off parameter is a product
of the mean number of unpaired particles and holes Vpr and an averaged square of the
projection of the individual spins on the axis (m?) (Ericson 1960)

0% = vy (m?) . (62)

According to Ericson (1960), the number of unpaired particles and holes increases with
temperature ¢ in the compound nucleus theory,

Vph = g t. (63)

Williams (1971) took the same relation as a starting point to express the spin cut-off
in the particle-hole scheme. As the temperature at a given excitation energy E can be
easily expressed via the exciton number using the state density

_ [dlnw(p, b, E)]™
“{“ﬁm—ﬁ ’ (64)
we straightforwardly get
2 __ gE - §n2 2 65
o2 = "2 () (65)

The form of (65) assumes equal numbers of particles and holes. From (65) the limiting
value of ¢2 for small n, the most significant one for the pre-equilibrium emission, is
gE 2
—— (m%, (66)

which is clearly wrong for n = 1 and also implies that the lower the number of
particles and holes, the higher the number of unpaired particles and holes — an obvious
contradiction. For these reasons the Williams formula for the spin-dependent density
has never been used in real calculations.

Combining the (62) and (63) from the classical theory of the compound nucleus we
get the spin cut-off in the form

E - F
o* = (m?)gt = g(m’)| ——, (67)
where Ej is the pairing correction (see below). The spin projection is (m?) oc A%/3 with
the proportionality contant varying from 0.146 (Jensen and Luttingen 1952) to 0.24
(Facchini and Saetta-Menichella 1968).



Particle-hole state densities 23

where o is the spin cut-off parameter of the compound nucleus.
Similarly, in the pre-equilibrium case one has (Shi et al 1987)

) _1lp(n=1U,5) S H
/\w,u([E’ J, TZ] — [U, S,n 1]) = hmRﬂ,y(n) jzlsgl/zll:%jlﬂj(ﬁ) . (54)

The particle-hole state density p(n, E, J) is

g(iﬁ!(‘nf‘_”"l);— Ra(d) | (55)

where g is the single-particle level density, and A, is the correction term due to the
Pauli principle. In the limiting case of infinite number of levels, the spin distribution is

p(n, E,J) =

Rul) = o exp (- (56)

where ¢, is the spin cut-off parameter. This form is in practice assumed and used also
for finite numbers of levels. This distribution is normalized so that

S@I+)R.(N)=1, (57)

J
so that although it contains the factor o3, the main effect of increasing o3 is to broaden
the distribution rather than to decrease the overall magnitude.

We need to distinguish between the cut-off parameter for a fully equilibrated
compound nucleus and that appropriate for the pre-equilibrium stage.

The densities of particle-hole states with spin are the basis for pre-equilibrium
angular-momentum dependent calculations. For the transition rates, one usually

assumes that they are factorized. For the An = —2 transitions, the densities of the
final accessible states are (Oblozinsky 1987, Oblozinsky and Chadwick 1990)
wf+(na E, J) = wt:‘-(n’ E)XiJ ) (58)

with the energy part wi(n,E) equal to the spin-independent density of the final
accessible states for such a transition (e.g., (10) or (34), and the spin part is (Oblozinsky
1987)

Xost = El(—ﬁ 5 Ri(QF(QRn-1() (@) - (59)

The density of the inverse process is obtained via the steady-state equilibrium conditions.
In (59), the R’s are the spin parts of the density of states, J is the spin of the state (it
is conserved during the transition) and is decomposed into the spin of the inert ”core”,
Ja and @, the spin of the exciton initiating given transition (j; to j3 are spins of the
excitons created in such a transition). The proper relation of all spins is expressed by
A(QjsJ), which is 1 for |Q — 74| < J < Q + 74 and 0 otherwise and by functions

) . Q 2
F(Q)=z(2j5+1)R1(j5)<2j3+1)F(j3)({5 Js ) , (60)

Jajs 2 0 - 2
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A similar relation has been reported by Reffo and Herman (1982), Plyuiko (1978), and
Gardner and Gardner ( 1989). The proportionality constants, when referred to explicitly,
were 0.28 (Reffo and Herman) and 0.16 (Plyuiko). The original method of Reffo and
Herman (1982) based on the BCS calculations, has been tailored to low exciton numbers,
whereas the formula of Feshbach et al (1980), on the other hand, is more appropriate
at n x~ 7.

In their subsequent papers, Herman and Reffo (1987b and 1992) used their
combinatorial code to obtain so-called realistic level densities (see section 5.3). From
the fit to the levels produced by their computer code, the energy dependence of the spin
cut-off is weak. They found that the energy-averaged spin cut-off can be approximated
by

oh = cnAY3 £ 0.14%3 1 4 (73)
with ¢ = 0.22. This is approximately

02 = cnA*? (74)
with ¢ = 0.26. If we want to keep at least some energy dependence, we can write

¢=0.24 + 0.0038F . (75)

However, o2 for 2-exciton configurations of type 2p0h (171v) are about 5 units higher
than those for the 1p1h (171# or 1v15) ones; this effect reduces to 2 units for 4-exciton
configurations and is negligible for 6 excitons and more. With ¢ given by (75),

or =n-(0.24 + 0.0038F) A3 . (76)

Herman and Reffo (1992) also studied the effects of the shell structure. Generally, the
Williams formula is found to be good, though at lower energies some differences may
be significant. However, collective phenomena like deformation are clearly absent in the
Williams formula.
The detailed study of spin effects by Chadwick and Oblozinsky (1992) used
o =n (Tom) - (77)
which in the case of the equidistant scheme gives

_2p(p+1)plp+ 1L,k E) g

av ng oo,y B) =+ Ep, (78)
where
E=E—(p-h)Ep. (79)
Finally, one obtains
02 =n.0.2824%3 (80)

very close to the results of Herman and Reffo.
Bogila et al (1992) studied both the exciton dependence of the spin cuf-off as well
as the influence of the Pauli principle. The formula (69) identifies (m?) with o2, the
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The difficulties of the Williams suggestion (65) were overcome by Ignatyuk and
Sokolov. They (Sokolov 1972, Ignatyuk 1973, Ignatyuk and Sokolov 1973 and 1978,
Ignatyuk 1983) derived the spin-dependent density from the general expression for the
statistical sum for the particles. In the small-momentum approximation (projection of
total momentum of nucleus M < (m)(p + h)) they obtained for the spin cut-off factor

2, o (D+h)? 2
0% = (m?) EE ~ () (p+ ) (68)
The case of Fermi particles (which is the real situation) is more complicated. Using
the saddle-point method (and again for the case of small momenta), the spin cut-off

parameter takes the form

o = %gwxl +e ), (69)

where 3 and v are determined by a set of coupled equations (see the original papers
for details). The cut-off 62 determined in this way is an increasing function of energy,
at least for small n. In some models (e.g. for the Fermi gas), it reaches its maximum
o2 = o2 close to n = 7 (Ignatyuk and Sokolov 1978) and decreases thereafter. For a
global understanding of pre-equilibrium phenomena, however, the differences between
different models are not so essential, so we concentrate our attention to the n < @ (or
even n < 7) regionf.

As an approximation to the method of Ignatyuk and Sokolov (1973), Fu (1986)
solved these equations. Introducing a critical temperature 7. (= 2A,/3.5, where A, is
the ground state pairing gap (see below)) and the corresponding most probable exciton
number at this temperature, n., and spin cut-off, 62 = gT.(m?), he obtained

T
02 =02ln4 (ﬁ) (—E—%) (70)

e

with = being a polynomial of the second order in \/n/n., and Ey, is the threshold
energy needed for realization of given state (see Fu 1984). In the case of no pairing and
equidistant levels, it coincides with the quantity o, (eq. (22)) in the Williams formula.
However, even these expressions are often considered to be inconvenient for practical
use and a dependence of the type (72) is preferred.
According to Feshbach et al (1980), a relation similar to (70) holds also in the case
of states with specified exciton number; the resulting exciton spin cut-off is proportional

to the exciton number,
9 n
0'.n=C't'%. (71)
If we neglect the linear term in the relation between the temperature and excitation
energy and take it simply in the form E = at?, the exciton-dependent spin cut-off can

be expressed as
02 =0.16nA4%3 | (72)

§ The formalism of Ignatyuk and Sokolov can be applied also straightforwardly to the two-fermion case
(e.g. Fu 1992).
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the other hand, if isospin is conserved, there is a chance to see the T\ -state decay. For
the T, states, the neutron emission is hindered because the residual states of the lowest
isospin are forbidden. This implies a significant relative enhancement of the proton
emission.

To calculate isospin effects in nuclear reactions it is therefore necessary to determine
how much the isospin is conserved or mixed, and what is the isospin symmetry energy.
The evaluation of the particle-hole densities taking account of isospin assumes that there
is one-to-one correspondence between states of the same isospin T in isobaric nuclei,

w(p,h, E,T,T, =T) = w(p,h, E + Eym(T,T -1),T,T - 1)
=w(p,h, E+ Eyn(T, T - 2),T,T — 2)=.., (86)
where Egy, is the symmetry energy, i.e. the excitation energy of the lowest state (of
any exciton number) of isospin 7 in the nucleus considered. The semi-empirical mass
formula yields here in a simple case of volume plus surface symmetry energy (see Kalbach
1995c¢)
Eoym(T,T:) = (11047 - 13347*3)(T? - T,%)  [MeV] . (87)

If we write the analogue of (24) with of isospin included (omitting now all other details,
like pairing and the influence of the irregularities in the level scheme due to the shell
structure etc.), the corresponding particle-hole density is

_ gn(E_Aph)n—l

w(pa h” E1 T) p’h'(n—- 1)| fT(p, h’T) ’ (88)
where the Pauli correction term is now (Kalbach 1995b)
AphT ~ Aph. + Esym (T’ Tz) (89)

The function fr in (88) is the correction factor for states with good isospin, which is
taken from Kalbach (1993). If isospin is asumed to be completely mixed, the symmetry
energy Egym is zero and the correction factor fr is unity.

3.4. Linear momentum

Médler et al (1978) suggested the use of linear momentum to describe the angular
distributions. The angular distributions arise from a multiplicative factor in the emission
rates, i.e. the basic expression for the emission is the same as before, but with an
additional angle-dependent factor (normalized to 1 after integration over angle). In
practice, they use an average value for the single particle linear momentum, which is
derived using very simple assumptions for a quantity dependent on the exciton number.

In their subsequent paper (Madler and Reif 1980), they switched to the total linear
momentum, calculated from the partition function (of statistical mechanics). A closed
formula is given only for the limiting case of zero initial velocity, though the recipe is
more general. Finally the linear momentum is decomposed into pyand p,.

The last paper in their series (Médler and Reif 1982) uses the same basic idea, but
with a more consistent statistical derivation. The momentum is kept as a single (vector)
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value for the single-particle states. The energy dependence of o2 is found to be (from
rather general considerations)

a}(€) = o3(Er)e/Er , (81)
which implies for particles

0,(e) = (m*)(p + E/Ex) (82)
and

oy(e) = (m®)(h — E/Eg) (83)
for holes.

The effect of the Pauli principle is to decrease the number of exciton degrees of
freedom, which becomes

n* =n(l- a,h/Ej , (84)
and therefore
on = n*(m?) = n(1 - apm/E)(m?) = n(1 — n?/nk,,)(m?) , (85)

where nyay is the maximum exciton number allowed at given energy due to the Pauli
principle. {

3.3. Isospin

In nuclear reactions, states with different values of isospin can be populated. The lowest
lying states have the lowest possible isospin (equal to its z-component). At some higher
excitation energy, a set of states with one additional unit of isospin, the T, states, will
begin. The densities of both sets of states, T« and T, increase exponentially with the
excitation energy, but since the T\ states begin at higher energy, they will always be
far less numerous than the T states.

The implications of this for pre-equilibrium decay have been studied by Kalbach
(Kalbach-Cline et al 1974, Kalbach 1993, Kalbach 1995b, 1995¢). In proton- and 3He-
induced reactions on targets with isospin Tp, a fraction of 1/(2Tp + 1) of the composite
nucleus formation cross section forms states with the isospin T = T, whereas the
remaining (usually major) fraction of the cross section, namely 27,/(2T, + 1) goes to
the more abundant T states. In neutron- and a-particle induced reactions, only states
of the ground state isospin are populated.

The influence of these considerations on the particle emission depends on the extent
of the isospin conservation in nuclear reactions. If the isospin is mixed completely, the
decay will be essentially that of the very much more abundant T states. This implies
that the proton and the neutron emission proceed essentially in the same manner. On

1 Anzaldo-Meneses (1997) gives a procedure for level density (based on the grand partition function)
for "arbitrary periodic spectrum”. It is suitable to obtain also the spin distributions (in the case of
harmonic oscillator or similar ”periodic” solution), but the particles are considered as bosons and
therefore no equivalent of the Pauli principle correction is introduced.
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Figure 7. Comparison of the linear-momentum distribution (multipled by 47 K2) for
exact and statistical Gaussian solutions of state densities with linear momentum, for
an excitation energy of 5 MeV in a Fermi-gas nucleus. The accuracy of the Gaussian
solution increrases rapidly with increasing n (Chadwick and Oblozinsky 1992).

significant only for the 1plh configuration, where the real distribution is practically
triangular. Everywhere else the Gaussian form of (96) can be successfully used (see
figure 7). This important conclusion gives a practical and very useful recipe to calculate
the angular distributions (for details, see Chadwick and Oblozinsky 1992). Recently, an
approach to the level desnities with linear momentum and the corresponding angular
distributions has been successfully reported for the Fermi gas case (Blann and Chadwick

1998).

4. Shell-structure effects within the equidistant scheme

The assumption of equidistant levels is a rather useful concept, but it is nevertheless
oversimplified when compared to the real situation. A significant improvement may be
achieved if we introduce at least some features of real nuclei. Probably the most profound
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of them is the influence of pairing and possibly also the existence of irregularities, like
the energy gaps as a manifestation of closed shells and subshells, in the single-particle
level schemes.

4.1. Pairing

The formulae for the level density in the compound nucleus case are sharply increasing
functions of the excitation energy. However, due to strong tendency of nucleons (of the
same kind) to couple in pairs, one has to add an additional energy to break such pairs
for nuclei with even number of nucleons of either type. Thus, this energy (in even-Z
and/or even-N nuclei) is effectively not available to increase the density of levels. Very
roughly, this pairing-energy correction is (see, e.g., Ignatyuk 1983)

E'=E—E%;, ' (97)

where Egai, is the conventional pairing energy correction, i.e. zero for odd-odd nuclei,
and a quantity close to 124~1/2 MeV for odd-A nuclei and twice taht value for the
even-even ones (Mashnik 1993).

Nowadays calculations commonly use the values of both pairing energy corrections
for the neutrons and the protons together with the single particle level density as a
parameter. The first extensive detailed study of that type by Gilbert and Cameron
(1965) is possibly still now the most extensive (with large tables of the values) and the
most frequently used one.

A slight modification of the above approach is the back-shifted Fermi-gas model.
Therein, the corrections may be both positive and negative, and they are (in general)
nonzero for all nuclei. Suitable sets of paremeters can be found in a paper of Dilg et al
(1973) or more recently Iljinov et al (1992).

The simplest way to include the pairing correction in the particle-hole density is
in exactly the same way as in the compound nucleus case, i.e. to take the pairing-
energy correction (together with individual values for the single-particle level density)
for each individual nucleus from the tables (Gilbert and Cameron 1965, Facchini and
Saetta-Menichella 1968, Dilg et al 1973, Rohr 1984, Capote et al 1987, Iljinov et al
1992, Mengoni and Nakajima 1994) as the same values for all exciton numbers.

In fact, the first pre-equilibrium calculations were so rough that they reproduced
only the main features of the emitted spectra and anything more detailed has been
omitted. Soon afterwards, however, indications emerged that one should take account
of the statistics of nuclei involved as well with details of the particle-hole level densities
(Lee and Griffin 1972, Ignatyuk and Sokolov 1972, Grimes et al 1973). Later, the use
of (at least) pairing became necessary also in these reactions.

As an improvement on the equidistant-spacing model in the vicinity of closed
shells, a schematic model of shell structure was proposed for the compound nucleus
case by Rosenzweig (1957). To simulate the bunching and degeneracy of nuclear states,
Rosenzweig divided the equidistant spacing sequence of states into groups separated by
gaps. As the final effect, the pairing energy is effectively modified by an amount which
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depends on the average degeneracy of the levels in the neighbourhood of the Fermi level
as well as on their average spacing therein. This idea has been later on applied to the
pre-equilibrium decay by Cline (1971) and in a more consistent way by Bétdk (1975); the
corresponding results showed the usefulness of such an approach. However, inclusion
of this effect requires not well-defined quantities like the average degeneracy and the
average level density near the Fermi level. In practice, the Rosenzweig effect is seldom
considered in pre-equilibrium calculations.

4.2. Ezciton-dependent pairing

A simple treatment of pairing corrections in the same way as in the compound-nucleus
theory is useful, but for finer study one needs a more detailed approach (Ignatyuk and
Sokolov 1973 and 1978). Let Ay be the ground state pairing gap and A(FE,n) the
excited-state pairing gap. The ground-state pairing gap A, is readily given, e.g. Dilg et
al (1973) use Ay = 2,/117.6/(gA) MeV; the excited state pairing gap A is calculated
from the pairing theory (see, e.g., Moretto 1975) using Ay and g. The exciton-number
dependent pairing correction (which reduces the ”available” excitation energy as in (97))
is (Ignatyuk and Sokolov 1973)

Epur(U,n) = £ [A3 - A%(E, n)] . (98)

The pairing correction E'gair for the total state density is equal to Epair evaluated along
the most probable exciton number 7 for £ > 3.15E°. and is (Ignatyuk and Sokolov

pair
1973 and 1978, Fu 1986, 1992)
1
Egajr = Epair(E,70) = ZQA?) . (99)

For the two-fermion case of (45), the pairing corrections are sums over the neutrons
and the protons, namely

Epair(E: Ny, nu) = Epa.ir(Em nr) + Epair(Ew nv) ) (100)

formally the same as in the one-fermion case. With exception of very low excitation
energies, the energy F, can be expressed as

E,=n.E/n, (101)

and similarly for E,. The neutron and proton parts of the spin cut-off take formally
Just the same expressions as in the one-component case, only with the total quantities
(exciton number, excitation energy) replaced by those related to the given type of
nucleons.

4.3. Active and passive holes

There is a long-standing problem about the proper treatment of the number of particles
and holes in excited nuclei in connection with their statistics. Obviously, an even-even
target nucleus is OpOh in its ground state. Impacting nucleon can be considered on one
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hand as a 1p excitation, but on the other hand we may equally require that all nuclei
have p = h throughout all their development. The problem is of very little importance
for nuclei in the vicinity of closed shells (closed shell nuclei must be of p = h at all stages,
i.e. OpOh in their ground state) and for the case of both projectile and ejectile being
nucleons. But if we are far off these conditions (especially for reactions with clusters
either on input or emitted), the whole problem emerges more profoundly.

It has been addressed already by Lee and Griffin (1972), and in much complete study
by Kalbach (1975), who introduced the shell-shifted equi-spacing model with active and
passive particles and/or holes. In pre-equilibrium calculations we are interested only in
particles (holes) which represent degrees of freedom; that is those which have permutable
excitation energy. ”Passive” particles (holes) which are fixed adjacent to the Fermi level
are not counted. However, they contribute to the Pauli energy. If the Fermi surface
is taken to be half-way between the last filled and first vacant single-particle states
in the nucleon ground-state configuration, then the ground state is always of the type
p = h = 0 if we count also the passive excitons, and correspondingly p = h for every
excited state (under the same condition). Usually, the passive particles (holes) are not
counted. For a composite system formed by nucleon bombardment, there is usually a
passive hole at the Fermi level, so that p > h. Thus, the usual starting configuration of
n = 1 can be classified as 1p + 1 passive hole and n = 3 (2plh) as 2p + 1h + 1 passive
hole.

The original idea has been further developed (Kalbach 1987, 1989, 1995a and
1995b). If we keep just the leading term, the correction is (Kalbach 1987)
¢ plp+1)+h(h+1)
Axan(p, h) P 17
where ¢ = max(p, h). Similar question has been raised by Zhang and Yang (1988), but
their results are correct only for p = h.

: (102)

4.4. Surface effects

The weakly bound nucleons from open shells near the Fermi level are the ones that
are easily excited. The finite-depth formula for the particle-hole density (41) makes
it possibile to study such behaviour. Already Gmuca and Ribansky (1980) used the
effective depth of the nucleon potential well as a parameter and they obtained harder
spectra of emitted nucleons and therefore better agreement to the data.

The more attention we devote to the surface region, the more we need accurate level
densities in that region. Kalbach (1985) introduced an additional correction near the
Fermi surface. She started from the energy dependence of the Fermi gas level densities,

gra(€) = krve = goy/e/Er , (103)

where kg is the Fermi momentum (see (107) below). Obviously, the energy ¢ is measured
from the bottom of the potential well, and not from the Fermi energy. If the average
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particle energy is £, (and similarly that for holes Zr), the average single-particle level
density (for particles) is

Er + &p
and the average single-hole level density

- __ Er — &7
§g=9(r) = 90\/ “% . (105)
F

In the case of an infinite potential well (or of excitation energy E less than the Fermi
energy Ep) we have

&= =E/n, (106)
and a more complicated estimate (due to corrections introduced in (37) or (40)) can be
obtained for other potentials (Kalbach 1985, Chadwick and Oblozinsky 1992, Avrigeanu
and Avrigeanu 1994, Blann and Chadwick 1998). These refinements improve the fit to
the data.

The role of surface effects has been revitalized by studies of the imaginary part of

the optical potential for pre-equilibrium processes (Sato and Yoshida 1994) and in a
recent study by Avrigeanu et al (1996).

9=9() =g (104)

5. Departures from the ESM

5.1. General features

All the considerations till now have been made within the equidistant spacing scheme,
though in some cases with additional terms describing some facets of the behaviour
of realistic nuclei. The equidistant spacing model works suprisingly well, but it is
nevertheless an oversimplification.

We get much closer to the real situation if we use some improved scheme of levels.
A starting point may be the Fermi gas or harmonic oscillator model; more sophisticated
approaches benefit from a realistic scheme of single-particle levels. In principle, the
general method of Dobes and Bétdk (1976) (see Chapter 2.2) allows for an arbitrary level
scheme, though only the ESM was considered originally. In some cases, the particle-hole
state densities and particle-hole densities of final accessible states can be obtained as
closed-form expressions. More often, however, it is not feasible to perform analytically
all the integrations sketched in Chapter 2.2 and this difficulty is more pronounced in
the case of the accessible final states than in simple calculations of particle-hole state
densities. In such a case, only numerical results of combinatorial methods are generally
available.

9.2. Soluble models (Fermi-gas and harmonic oscillator)

There are two popular and convenient models of the level schemes of the atomic nuclei,
namely the Fermi gas and the harmonic oscillator models.
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The Fermi-gas model assumes a square well potential, and in the ground state all
states with momenta less than the Fermi momentum . are filled. The Fermi momentum
can be calculated from the value of the Fermi energy,

3A
kp = —— 107
YE (107)
or established using the data on nucleon scattering. The single-particle level density is

no longer constant, but energy-dependent (see (103) and also figure 8).

Figure 8. Energy variation of the Fermi-gas single-particle and single-hole level
densities.

The harmonic oscillator is seldom used in its clear (infinite) form, but is usually
truncated as to reproduce either the Fermi energy or the nuclear radius. For the states
with energy less than the Fermi energy (or than the energy determining the nuclear
radius), the energy dependence of the single-particle states is (Gadioli et al 1973)

guo(€) = kuoe® (108)
with
3A

In either case, one can couple the conventional value of the single-particle level
density to the energy-dependent one in different ways. The usual one equates the
single-particle level density of the ESM to the energy-dependent one at the Fermi energy.
Alternatively, one can introduce some averaging constraint, such as, e.g., a requirement
that g of the ESM and the Fermi energy Ef are related so as to place just A nucleons
below the Fermi surface.

Gadioli et al (1973) derived the densities of states (or the transition rates) for the
two cases just mentioned. In the case of the Fermi gas model, the rates of transitions
induced by either a particle or a hole are easily evaluated and their leading term (when
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a similar expansion is used for product of the exciton velocity, nuclear matter density

and the mean cross section (see Kikuchi and Kawai 1968) is (Gadioli et al 1973)
Ap(€) = An(e) x (¢ — Ep)? . (110)

In the case of the (truncanted) harmonic oscillator, however, the results have been given
only in graphical form.
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Figure 9. Comparion of the energy dependences of the state density within the ESM
without and with the correction for the finitness of the potential well and the Fermi-gas
one for the 1plh state. The normalization of the single-particle level density in both
cases is done so that the potential well accommodates just A4 nucleons from the bottom
to the Fermi energy (Smith 1989).

The dependence (103) was a starting point for analytical studies of the Fermi gas
level densities by Smith (1989), who compared the original Williams formula (21), the
formula corrected for the finiteness of the nuclear potential well (40) and the results
from the Fermi gas calculations (figure 9). Similarly, he calculated the ratio of densities
directly entering the emission rates. For the two most important exciton configurations,
the results are shown in figure 10.

Ghosh et al (1983) calculated semiclassicaly 1p1h and 2p2h level densities within
the Thomas-Fermi approach. Generally, their results are numerical only, but in the
case of harmonic oscillator, the analytical formulae are also presented. The method is
applied in papers by Blin et al (1984 and 1986), who used the exact scheme of levels
of the three-dimensional harmonic oscillator in the Thomas-Fermi approach}. Their
n-particle density is zero at nEr (measured from the bottom of the well) and sharply
increases above. In their latter work (1986), they also present calculations in Woods-
Saxon potential for the simplest case of 1plh, and in the case of harmonic oscillator they
also add possible temperature dependence. The subsequent paper (Hasse 1985/86) adds
a possible angular momentum dependence, though evaluated only for a model, not for
a real nucleus. Interestingly, the 1plh density of non-zero angular momentum (Il =10h

f The results of Blin et al have been further developed in papers by Zhang and Wu (1992a and 1992b)
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Figure 10. Ratio of densities directly entering the emission rates, namely
Qp,h, E,e) = w(lp,0h,e)w(p — 1,h, E — €)/w(p, h, E) for E = 100 MeV and the
two most important exciton configurations, namely 2p1h and 3p2h (Smith 1989).

for a hypothetical system of 200 particles) is composed of three parts: zero up to 25
MeV, a linear increase between 25 and 70 MeV, and constant thereafter.

Shlomo (1992) calculated the energy dependence of g(e) using the semiclassical
Thomas-Fermi and local-density approximations and hence evaluated the particle-hole
level density for a finite potential well (Shlomo et al 1995, Bogila et al 1995a, 1996a and
1996b). Partially, they repeat the results of Bétdk and Dobes (1976), but by expanding
the energy dependence of g near the Fermi surface in the power series,

1
9(e) = gr + gp(e —€p) + 59}9(5—&)2 (111)
(the idea is very close to the approach of Kalbach (1985)) they obtain soluble non-ESM



Particle-hole state densities 38

cases. In practice, they use two potentials, namely the infinite square-well and the finite
trapezoidal (V =Vyforr < R—D,and V =0 for r > R+ D) potentials. In the former

case,
9°%(e) x \Je = Vg, (112)

(Vo is negative), and the trapezoidal density is corrected by subtracting the free-gas
level density for € > 0. The final form in the latter case is

g™ (e) o \/e — V x polynomial of 3rd degree in (e — V) . (113)

The ratio of the "new” density of p — h states with respect to the equidistant-spaciong
model increases with the excitation energy (up to a factor of 4 to 10 in the case of
selected exciton configurations (e.g. 4pOh in *°Ca for the infinite trapezoidal potential
at an excitation of 50 MeV). In the case of a square well, and also for a finite trapozoidal
potential, the deviations are much smaller, and even decrease at higher excitations.
Their latest paper in the series (Shlomo et al 1997) prepares the way to more general
cases, as it gives the single-particle level density for the deformed potential well and also
of the energy-dependent potential well, and the particle-hole level densities obtained by
this group may be expected in their next publication.

Sato and Yoshida (1994) calculated the densities within the Thomas-Fermi
approach; they are close to the results obtained within the ESM with the energy
constraints (44).

Avrigeanu et al (1997) in a similar way evaluated the particle-hole state densities
for several types of potentials (Woods-Saxon, Thomas Fermi with both infinite and finite
potentials) and made some comparions with formulae of type (44) and for the classical
Fermi gas.

5.8. Realistic densities

The attempt to combine a realistic level scheme of single-particle levels so as to obtain
densities of excited states can be traced to the paper by Hillman and Grover (1969), but
they did not specify the number of excited particles and holes. This has been achieved
only in the pair of papers of Blann et al (Albrecht and Blann 1973, Williams et al 1973)
and these particle-hole level densities became known as ”realistic” particle-hole level
densities. This term is not exact, however: the densities are really based on the realistic
single-particle level scheme, but they usually do not include any perturbation of this
level scheme due to nucleon interactions or any dependence of the single-particle level
scheme on the excitation energy.

The papers of Blann et al , as well as those of their followers, (Zhivopistsev et al
1973, 1982 and 1987, Burtebaev et al 1978 and 1982, Galkin et al 1979, 1980 and 1984,
Blekhman et al 1983) started with a level scheme of Woods-Saxon (Woods and Saxon
1954), Nilsson (1955), Seeger and Perisho (1967) or Seeger and Howard (1975), and
by folding unperturbed states, they obtained densities with specified particle and hole
numbers.
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Originally, this (very time-consuming) process has been applied to get just the
particle-hole state densities. Later on, special emphasis has been devoted to the role of
the important shells for given nucleus (Grimes et al 1973a and 1976, Scobel et al 1984,
Bétdk and Polhorsky 1988), including the degeneracy of the levels and also different
filling of (sub-)shells for various isotopes, and their influence on the spectra calculations
has been studied (Blann et al 1985 and 1992). Somewhat off this main stream of
interest, but using similar methods, have been the studies of the excitation energy
behaviour of the total density expressed via the so-called realistic single-particle level
densities (Mustafa et al 1992).
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Figure 11. Energy dependence of a given exciton configuration, as obtained for %6Fe
using the realistic single-particle level scheme (with interactions switched on) (Herman
and Reffo 1987b)

More recently, with the availability of better computers, it is possible to distiguish
between neutrons and the protons and to include other quantum numbers, such as
spin and parity (Orlik 1980, Herman and Reffo 1987a). The code ICAR of Herman
and Reffo is the first one (and to our knowledge the only one) which in addition to
pure combinatorics allows for a distortion of the single-particle level scheme due to the
interaction of the excited nucleons within the BCS theory. An example for the case of
*%Fe nucleus, showing several low-exciton configurations, is in figure 11. Its predictions
have been applied to nuclear reactions on both spherical and deformed nuclei (Herman
and Reffo 1987b, 1988 and 1992)§. The parity distribution has been also considered and
the value of the spin cut-off parameter (see section 3.2) obtained. At lower excitations,
prevailing parity of the valence nucleons dominates and thus obviously varies from one
nucleus to another, and with increasing excitation energy (above 30 or 40 MeV) the

§ Herman’s and Reffo’s code has been further updated by Capote et al (1994, 1997 and RIPL 1997/8).
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ratio of positive- and negative-parity states is close to 1:1].

A somewhat related is the paper of Giardina et al (1992), who analyzed an extensive
set of (real) single-particle levels (for more than 4000 isotopes), and fitted them (for each
isotope separately) to the form

g(E) =2aF +b (114)
above the Fermi level, and
§(E) = (¢ + 4dE)™1/? (115)

below it, with a, b, ¢ and d as fitting constants, and E the excitation energy. A similar
dependence, namely

g(e) =2ac + b (116)

has been adopted for the single-particle states (¢ is now the particle energy, and not that
of a nucleus). They also suggested some procedure to yield a two-fermion particle-hole
density within their approach. Their method, however, strongly depends on the fitting
constants and has not been followed up further.

A complementary approach to the realistic particle-hole densities has been initiated
by Jacquemin and Kataria (1986) and subsequently developed in a series of papers by
Sato, Yoshida et al (Nishioka et al 1988b, Sato et al 1987, 1988, 1989, 1991, 1992a and
1992b, Yoshida et al 1995). It has been applied only to double magic nuclei, as *°Ca and
208Pb, where the interaction plays a dominant role. They studied the second moments
for nuclear Hamiltonian matrix elements, and built the particle-hole density therefrom.
In the case of the weak coupling limit, their results coincide with those of the ESM
with both finite-well and bound-state constraints (44), whereas substantially different
behaviour is obtained in the case of strong coupling limit. A difference between so-called
true level densities (obtained straightforwardly) and the effective ones (which play their
role in the transition rates) is marked, and also the effects of particle emission on level
density has been studied (and found to be negligible). The first papers of the series give
just the particle-hole level densities, while the particle-hole level densities with specified
spin and parity are reported in the 1991 paper (Sato et al 1991). The influence of details
of the interaction has been studied. A somewhat similar approach is also contained in
a recent paper by Koning and Chadwick (1997), who distinguish between the ” pure”
density w and that containing the interactions &, always consistently in a two-fermion
case. The contribution of the 1plh configurations to the continuum is approximated by
a Gaussian or alternatively by the "realistic calculations”, and the resulting calculated
spectra in this way are presented.

|| The importance of parity distributions for pre-equilibrium particle decay has been pointed out by
Antalik (1982) and for the -y emission and in a more physically-grounded way by Oblozinsky (1990). A
feasible way to obtain reasonable parity dependence of the particle-hole states has been established by
Cerf (1993a). For more details of the method, see the next subsection.
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5.4. A fast approach to realistic densities

The combinatorial approach to the realistic level densities is extremely time consuming,
especially at higher exciton numbers, where the number of states grow very rapidly.
In fact, one does not need all the densities of the exciton states expressed as realistic
ones — the main influence comes from the relatively low exciton numbers. Even these
became too time-consuming to be calculated every time. A reasonable way out has been
developed in a series of papers by Cerf and Pichon (Cerf 1993a, 1993b, 1994a, 1994b, Cerf
et al 1994, Pichon 1994), who invented a reasonable sampling of states using the Monte
Carlo method, thus significantly reducing the computer time. Obviously, this introduces
some statistical errors, but they can be easily controlled and even if one keeps them
reasonably small, the computer time is reduced by several orders compared with the
classical (combinatorial) approach. This enables the introduction of realistic densities
into a whole set of standard calculations, though only in numerical form, so that the
general trends are not so obvious as they are using closed formulae. In fact, the densities
reported above are not those of particle-hole states, but rather the total densities. The
method is nevertheless very suitable to be used also for specified particle and hole
numbers (also including other quantum numbers, such as the distinction between the
neutrons and the protons, and spin and parity). The use of the method is shown in
figure 12, which shows the energy dependence of the average exciton number 7 on the
excitation energy calculated for the *Eu nucleus (Cerf 1994c).

The distribution of parities is one of topics which could not be included
straightforwardly within the ESM (usually, one supposes equal parities there), and
has to be solved using realistic level densities. It has been illustrated for several
configurations by Herman and Reffo (1992). At higher excitations (above 30 or 40
MeV), the parity distribution tends to half-to-half, but significant differences can be
found at lower energies. These dependences are characteristic of the particular nucleus,
and no general formula has been suggested. The statistical method of Darwin and
Fowler in conjunction with the realistic level scheme used by Cerf (1993a) gives a usable
procedure for the general case. It also includes a new quantity, the so-called threshold for
parity inversion, which is the minimum energy needed to change the parity with respect
to the ground state (i.e. all states with the excitation energy below this threshold keep
the parity of the ground state).

The methods of Cerf et al have been further developed by Goriely (1996a, 1996b
and 1997) and Hilaire (1997a and 1997b). The papers of Goriely deal only with the
total densities of states, but their generalization to the particle-hole state densities is
feasible. He uses the statistical model to improve the analytical approximations to
the spin-dependent level density by a new method of estimating the shell and pairing
effects. The influence of the shell structure on the excitation energy dependence (i.e.
on the temperature) and on the spin distribution is evaluated using a semi-classical
approximation to the single-particle state density, and the pairing effects are obtained
analytically using the BCS theory. The new analytical formula found in this way agrees
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Figure 12. Energy dependence of the mean exciton number as obtained from the fast
approach to realistic densities for 13Eu (Cerf 1994c).

well with the exact numerical shell-model calculations.

In a similar way, Hilaire (1997a and 1997b) used a combinatorial method to calculate
exact particle-hole and total level densities. This was first used to derive a generalization
of Oblozinsky’s formula (44) for particle-hole state densities within the context of the
ESM. The comparison comes out to be excellent, apart from some deviations extremely
close to £ = oy, (see figure 13). The method is then applied to the case of realistic single-
particle level densities calculated from the Hartree-Fock-Bogoliubov equations with
Gogny forces. The collective enhancement of the level denities due to the vibrational and
rotational states is included and a detailed comparison is made with the experimental
level densitiesq. The energy dependence of the level density parameter is found to be
well represented by the formula of Ignatyuk et al (1975) provided this is modified so
that the asymptotic level density parameter behaves as A/13 and not A/8 and to take
account of the slower vanishing of the shell effects with increasing energy.

{ There is already an earlier attempt to include collective states into the particle-hole level densities,
namely that of Deb and Zhivopistsev (1985). Though it improved the fit of the calculations to the
data, the method used therein was not well justified. In the case of compound nucleus, the influence
of collective states has been studied by Plyuiko et al (Ezhov and Plyuiko 1993, Plujko 1997)
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Figure 13. Comparison of the energy dependence of the exact state densities (within
the ESM) and those from (42) for the 32-exciton configuration (16p16h) in 2°°Pb. One
must bear in mind that the mean exciton number 7 corresponding to the maximal
energy considered is @ = 20 for energy of 350 (dimensionless units, which are used
throughout this figure) and @ = 13 for the energy of 150 (dimensionless units), which
is much in excess of the exciton configuration considered here (Hilaire 1997a).

6. Conclusions

Particle-hole state and level densities are extensively used in calculations of the cross-
sections of pre-equilibrium reactions (Gadioli and Hodgson, 1992). These calculations
require a knowledge of the contributiong reaction mechanisms, the optical potentials
that give the wavefunctions of the incoming and outgoing particles, and the effective
nucleon-nucleon interaction as well as the particle-hole densities. There is consequently
considerable flexibility in the calculations, and this has often made it possible to
obtain good fits to some rather limited data with very simplified assumptions and an
inadequate understanding of the reaction mechanisms. Many pre-equilibrium reactions
have contributions from the multistep compound and the multistep direct reaction
mechanisms, and the cross-setions may also have substantial collective and compound
nucleus components. Omission of one or more of these processes vitiated many early
analyses, but now the way to calculate them is quite well understood (Demetriou et al
1996, Marcinkowski et al 1997, Hodgson 1995, 1996a and 1996b).

For accurate calculations it is thus now necessary to refine the other parts of the
calculation. The optical potentials are usually taken from existing analyses of elastic
scattering at similar energies by the same or nearby nuclei. It is however desirable
to check their validity by analyzing data for several reactions over a range of incident
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energies. The effective nucleon-nucleon interaction is usually taken to have the simple
zero-range or Yukawa form, but now the inclusion of analyzing power data requires a
spin-dependent interaction. Work is in progress using phenomenological forms and also
effective interactions obtained from more fundamental G-matrix formalism (Lindsay
1995, Richter 1997).

In most analyses the particle-hole level densities have been taken to have the
Williams form (21) with refinements by Bétdk and Dobes (1976) and Oblozinsky (1986).
The recent work of Koning and Chadwick (1997) and that of Marcinkowski et al (1997)
show that it is necessary to use a two-fermion theory, distinguishing between neutrons
and protons. More sophisticated formulae will only be used if it is no longer possible
to fit the data with the simpler ones, or if it is possible to use the better formula
without too much difficulty. At present, the simpler formulae are adequate for most
cases. Though in some special cases, for example calculations of reactions to discrete
states, this is no longer the case (e.g. transitions leading to discrete states calculated
within the pre-equilibrium theory). The better formulae frequently require very large
computing times, but this difficulty may be overcome by using the techniques of Cerf
(1993a, 1993b, 1994a, 1994b and Cerf et al 1994), Goriely (19962, 1996b and 1997) and
Hilaire (1997a, 1997b). This will make it possible to study the usefulness of the more
sophisticated expressions for particle-hole state and level densities.

Recently, the International Atomic Energy Agency has prepared a document (RIPL
1997/8), which recommneds suitable set of parameters and approaches to be used for
nuclear reaction calculations, including also a short section on the particle-hole level
densities. It includes the tools for comparison of various expressions used for the particle-
hole level densities in pre-equilibrium calculations and also a possibility to calculate them
in a microscopic theory using a realistic scheme of single-particle levels.
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