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Particle imaging velocimetry experiments and lattice-Boltzmann
simulations on a single sphere settling under gravity

A. ten Cate,a) C. H. Nieuwstad, J. J. Derksen, and H. E. A. Van den Akker
Kramers Laboratorium voor Fysische Technologie, Delft University of Technology, Prins Bernhardlaan 6,
2628 BW Delft, The Netherlands

~Received 26 December 2001; accepted 19 August 2002; published 3 October 2002!

A comparison is made between experiments and simulations on a single sphere settling in silicon oil

in a box. Cross-correlation particle imaging velocimetry measurements were carried out at particle

Reynolds numbers ranging from 1.5 to 31.9. The particle Stokes number varied from 0.2 to 4 and

at bottom impact no rebound was observed. Detailed data of the flow field induced by the settling

sphere were obtained, along with time series of the sphere’s trajectory and velocity during

acceleration, steady fall and deceleration at bottom approach. Lattice–Boltzmann simulations prove

to capture the full transient behavior of both the sphere motion and the fluid motion. The

experimental data were used to assess the effect of spatial resolution in the simulations over a range

of 2–8 grid nodes per sphere radius. The quality of the flow field predictions depends on the

Reynolds number. When the sphere is very close to the bottom of the container, lubrication theory

has been applied to compensate for the lack of spatial resolution in the simulations. © 2002

American Institute of Physics. @DOI: 10.1063/1.1512918#

I. INTRODUCTION

Particle motion and particle collisions play an important

role in the performance of many industrial processes involv-

ing suspension flow. For instance, in industrial crystalliza-

tion, crystal–crystal collisions determine kinetic mechanisms

such as agglomeration and nucleation due to crystal fractur-

ing. Presently, we are developing a method to study suspen-

sions under turbulent conditions. For this method, it is at-

tempted to fully resolve the flow field around the particles

and to make a direct coupling between the particle and the

fluid motion. To validate the way the particles are repre-

sented in the simulation procedure, we compare experimen-

tal and numerical results on the motion of a single sphere

settling in a closed box. In the experiment, the transient mo-

tion of a single sphere and its associated flow field were

measured from the moment of release to a steady-state or

maximum settling velocity to deceleration and rest at the

bottom of the box. For this experiment, the Reynolds num-

ber, based on the steady-state settling velocity of a sphere in

an infinite medium (Re5r fu`dp /m f) was varied between

1.5 and 32. This range of Reynolds numbers was chosen

because it corresponds to the range of Reynolds numbers

encountered in our sample crystallization process for produc-

tion of ammonium sulfate crystals.1

A particle settling towards a wall has been studied pre-

viously by Brenner,2 who derived an analytical solution in

the creeping flow regime. However, at the Reynolds numbers

studied, the particle is well out of this regime. Recent experi-

mental work in this field has been presented by several

authors,3–6 who studied the wall approach and rebound, to

obtain restitution coefficients for submerged particles collid-

ing with a wall. The parameter that determines rebound is the

Stokes number (St51/9Rerp /r f). Gondret et al.3 demon-

strated that the critical Stokes number above which rebound

occurs is approximately 10. In our experiments, the Stokes

number was varied between 0.19 and 4.13 and no rebound

was observed.

We chose to perform the experiment in a closed con-

tainer for a number of reasons. First, the box width to par-

ticle diameter ratio was kept relatively small, to avoid as-

sumptions regarding the domain size and external boundary

conditions in the simulations. Thus, the influence of the con-

tainer walls on the particle motion is contained both in the

experiment and in the numerical simulation. Second, the ex-

periment is transient and has a limited time-span. This has

the advantage that the transient character of the simulations

can be assessed throughout the different stages of accelera-

tion, steady fall and deceleration at bottom approach. The

first objective of this paper is to present our experimental

data on a settling sphere in a confined geometry. The data set

consists of the velocity field of the fluid surrounding the

settling sphere and the trajectory ~i.e., position as a function

of time!. The velocity field has been measured using cross

correlation particle image velocimetry7 ~PIV!. The PIV ex-

periment is described in the next section. The second objec-

tive is to present our approach to the simulation of freely

moving particles based on the lattice-Boltzmann method.

This method was chosen because it provides a robust nu-

merical scheme that can efficiently treat the complex geom-

etry of freely moving particles. A further advantage of this

method is that it can be parallelized at high computational

efficiency. The use of the lattice-Boltzmann scheme for

simulation of suspensions has been proposed by Ladd,8,9

who also presented validation of his method. A number of
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other authors10–12 have used the lattice-Boltzmann method to

simulate suspended particles. Recent developments on direct

simulation of suspensions can also be found in Koch and

Hill.13

Our approach differs from the method of these authors in

two ways. First, we use a scheme for solving the lattice-

Boltzmann equation, based on the work of Eggels and

Somers.14 This scheme explicitly treats the higher order

terms in the lattice-Boltzmann equation which improves the

stability of the numerical scheme and allows for the use of a

low kinematic viscosity. Second, we use a fundamentally dif-

ferent method for implementation of the moving no-slip

boundary at the surface of the solid particle. In our approach,

we apply the adaptive force-field technique that has been

used in the work of Derksen and Van den Akker15 to imple-

ment both the rotating impeller and the steady vessel walls in

the numerical study of the turbulent flow in a stirred vessel.

To our knowledge this approach has not been applied previ-

ously for simulating freely moving particles. However, based

on the good results obtained in previous studies,15,16 we had

confidence that this approach could also be used to simulate

freely moving particles at a relatively low spatial resolution

per particle, bearing in mind that the method needs to be

applied to simulate many particles (O(103)) in a turbulent

flow.

Therefore, our final objective is to assess and bench-

mark our numerical method with the flow cases considered

in this paper. In Sec. III, a number of specific details of the

setup of our particle simulations are discussed. A comparison

between the experimental and numerical results is made

in Sec. IV.

II. EXPERIMENTAL SETUP

The objective of the experiment was to accurately mea-

sure both the trajectory ~i.e., the position as a function of

time! and the associated flow field of a settling sphere from

its moment of release until rest at the bottom of a vessel,

where the ratio of the vessel dimensions to sphere radius was

kept relatively small, such that the full flow field could be

simulated under identical conditions.

As the settling sphere, a precision Nylon bearing with a

diameter dp515 mm and density rp51120 kg/m3 was se-

lected. The container dimensions were chosen as depth

3width3height510031003160 mm ~see Fig. 1!. Upon

start of an experiment, the sphere was released while simul-

taneously triggering the camera system to start filming. The

sphere was hanging 120 mm from the bottom of the tank at

the capillary tip of a Pasteur pipette that was connected to a

vacuum system. The sphere was released by abruptly open-

ing an electronic valve, thus disconnecting the vacuum from

the pipette.

Various types of silicon oil were used as the working

fluid, because of their good optical accessibility and weak

temperature dependency of the viscosity. The Reynolds num-

ber of the settling sphere was based on the sedimentation

velocity u` of a sphere in an infinite medium. To determine

u` , a relation for the drag coefficient due to Abraham17 was

used:

Cd5

24

~9.06!2 S 9.06

ARe
11 D

2

. ~1!

The four experimental cases are defined in Table I.

The flow field was visualized with seeding particles illu-

minated with a ~laser! light sheet. As the light source, a

Spectra-Physics 4W Argon-ion laser ~2016-05! operating in

all lines mode was used. A cylindrical and a spherical lens

converted the laser beam into a sheet of 190 mm thickness.

The laser sheet entered the vessel via the bottom. Neutrally

buoyant hollow glass spheres approximately 10 mm in size

were used as seeding particles. A continuous camera with a

FIG. 1. Experimental setup for the PIV measurement of

a single settling particle in a confined geometry.

TABLE I. Setup of the sedimentation experiments.

Case number

r f

@kg/m3#

m f

@Ns/m2#

u`

@m/s#

Re

@-#

St

@-#

Camera frequency

@s21#

Resolution

@-#

Case E 1 970 373 0.038 1.5 0.19 60 low

Case E 2 965 212 0.060 4.1 0.53 100 low

Case E 3 962 113 0.091 11.6 1.50 170 high

Case E 4 960 58 0.128 31.9 4.13 248 high
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frame rate up to 250 Hz and an array size of 512

3512 pixels was used to record the experiment. The flow

field was measured on a grid of interrogation areas ~IA’s!. An

IA typically contained 32332 pixels. The fluid velocity was

determined in each interrogation area by estimating the dis-

placement of the seeding particles between two consecutive

frames through cross correlation.18

The desired spatial resolution and the maximum camera

frame rate set a restriction to the maximum fluid velocity that

can be accurately measured, as between two frames the

tracer particles are not allowed to shift more than 1/4 part of

the linear size of an interrogation area.7 This limits the maxi-

mum sedimentation velocity of the sphere, which can be

taken as a measure for the maximum fluid velocity during an

experiment. The required resolution depends on the Rey-

nolds number of the flow, because at higher Reynolds num-

bers, the structures in the flow become smaller. The flow was

measured at either of the two resolutions given in Fig. 2. At

the low resolution @Fig. 2~b!#, when the array size is chosen

to map three sphere diameters, the maximum allowed sphere

velocity is 0.18 m/s, which is larger than any of the settling

velocities of the Nylon sphere as given in Table I. At the high

resolution @Fig. 2~a!#, the maximum allowed velocity is 0.13

m/s, which is close to the sedimentation velocity of case E4.

However, the sphere is expected to move at a velocity that is

lower than u` due to hindrance from the container walls.

Based on the 1/4 part displacement rule, the camera frame

rate was adjusted for each experiment.

To capture the full trajectory of the particle, three over-

lapping fields of view ~FOV! were used at low resolution

~cases E1 and E2) while the measurements at high resolu-

tion ~cases E3 and E4) were done in four FOV’s ~see Fig.

2!. A raw image is given in Fig. 3~a!. As can be seen, the

leading side of the sphere was made dark to prevent overra-

diation due to reflections at the sphere surface. In each frame,

the sphere position had to be determined accurately for a

good interpretation of the flow field. Because the laser sheet

enters from the bottom and is blocked by the sedimenting

sphere, no fluid velocities could be measured behind the

sphere @Fig. 4~a!#. The sphere’s position was determined

from the colored top of the sphere. The motion blur was

removed from the sphere by using an edge-preserving Ku-

wahara filter19 @Fig. 3~b!# and after having applied a thresh-

old @Fig. 3~c!#, the y position of the sphere was determined at

pixel accuracy @Fig. 3~d!#. The resulting sphere trajectories

and velocities are given in Fig. 5.

A raw vector image of the flow at a particle Reynolds

number of 1.5 is given in Fig. 4~a!. Interrogation was done

with IA’s of 32332 pixels with a 50% overlap, resulting in a

total of 961 vectors per image. After determination of the

sphere position, the vectors inside and behind the sphere

were removed from the image and ~for reference! a sphere

was placed in the figure, as can be seen in Fig. 4~b!. In this

figure, the maximum velocities are found closely underneath

the sphere where tracer particle displacements of approxi-

mately 7 pixels were found. Velocities far away from the

sphere become very low, which gives particle displacements

smaller than 0.5 pixel. Sub-pixel displacements were esti-

mated using a Gaussian peak fit estimator.18 The accuracy is

approximately 0.1 pixel for displacements larger than 0.5

pixel, leading to a relative error of 2% for the highest veloci-

ties, whereas the relative error is approximately 17% for par-

ticle displacements less than 0.5 pixel. After removal of the

vectors inside and behind the sphere, approximately 10 spu-

rious vectors remain per frame. This is about 1% of the total

amount of vectors which is low compared to a typical value

of 5% encountered in turbulent flow fields.20 This is due to

the flow being laminar and virtually two-dimensional in the

center plane of the sphere, which results in practically no out

of plane motion. To test the reproducibility of the experi-

ment, all measurements were done twice. In Figs. 5~c! and

5~d!, the trajectories and sedimentation velocities have been

plotted for case E1. The two trajectories practically coincide.

The measurements at higher Reynolds numbers give compa-

rable results. The flow fields around the sphere of case E1

are presented in Fig. 4 to demonstrate that the PIV measure-

ments yields an accurately reproducible result here as well.

FIG. 2. Measurement positions at high ~a! and low ~b! resolution.

FIG. 3. Processing steps in detection of sphere position.

~a! Raw PIV-recording with sphere. ~b! Part of record-

ing after a Kuwahara-filter has been applied. ~c! Result

of thresholding image ~b!. ~d! Magnification of the rear

side of the sphere.
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III. SIMULATION

For computational simulation of the sedimentation ex-

periment, a lattice-Boltzmann scheme21 was used. This

scheme exploits a microscopic model for fluid motion on a

uniform cubic lattice. Fluid masses propagate on the lattice.

Collision rules that conserve mass and momentum guarantee

that, in the limit of low Mach numbers, both the continuity

equation and the Navier–Stokes equations for incompress-

ible fluid flow are satisfied.

In this section, a number of issues will be addressed that

had to be solved to make our simulation method applicable

to freely moving particles. First, we explain the implementa-

tion of the no-slip boundary condition at the particle surface

and then we discuss the issues of ~i! treatment of the inertia

of the internal fluid that may affect the particle motion in a

nonphysical manner and ~ii! the nonphysical dependency of

the drag-force on the viscosity. As a consequence of this

dependency, if one wants to perform accurate dynamic simu-

lations of particles with a radius of a limited number of grid

nodes, ~iii! a separate calibration procedure for the particle

radius is required. This calibration and scaling procedure of

the simulations is discussed and finally ~iv! the application of

an additional lubrication force is presented, which is required

when the distance between the particle and the wall has re-

duced to less than one grid spacing.

A. Boundary conditions

The implementation of ~moving! boundary conditions in

the lattice-Boltzmann framework has received considerable

attention in recent years and constitutes a field of ongoing

research.22–25 Most of the methods presented in these refer-

ences are adaptations of the bounce back rule for boundary

FIG. 4. Measurement of the flow field at Re51.5 (E1)

at a dimensionless gap height of h/dp50.5. Raw flow

field ~a! and flow field after removal of the vectors at

and behind the sphere ~b! with a second measurement at

the same Reynolds number and sphere position ~c!.

FIG. 5. Experimental data on sphere trajectory ~a! and

sedimentation velocity ~b! at the four measured Rey-

nolds numbers and comparison of measurement dupli-

cation of trajectory ~c! and sedimentation velocity ~d! at

Re51.5.
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conditions, as explained by Ladd.8 In the standard applica-

tion of the bounce back rule a link between two grid nodes

that crosses a no-slip boundary is cut and mass that propa-

gates from the flow domain towards the solid boundary is

reflected along the link of its origin. One drawback of this

approach is that in the straightforward implementation ac-

cording to Ladd8 curved solid objects are approximated by

staircase shaped objects.

In the current application the boundary of the solid

sphere is implemented via the so-called adaptive force-field

technique, similar to Derksen and Van den Akker.15 The

scheme is based on a method for implementation of no-slip

boundary conditions in spectral simulations.26 The method

locally forces the fluid velocity near the boundary and inter-

feres with the flow field not at the mesoscopic level of the

propagating fluid mass but at the macroscopic level of the

fluid velocities. An advantage of the method is that imple-

mentation of curved boundary conditions is done via an

interpolation–extrapolation scheme which produces a

smooth surface in stead of a sharply cut staircase shaped

surface. Specifically for moving surfaces this is an advanta-

geous feature since it reduces unphysical shape changes of

the surface due to its motion with respect to the grid.

The sphere surface is represented by a set of M control

points, placed at the sphere’s surface, evenly spaced at a

resolution slightly higher than the grid spacing. At each con-

trol point, the local fluid velocity is forced to the surface

velocity of the sphere. The steps in the procedure are as

follows: First, the fluid velocity at a control point is deter-

mined via first-order Lagrange interpolation from the veloc-

ity at the surrounding grid nodes. Then, the deviation be-

tween the desired surface velocity ui at control point i and

the interpolated fluid velocity u is used to determine the

force that needs to be applied to the fluid to better approach

the local surface velocity. The surface velocity is given by

the translational and rotational velocity components

ui5up1Vp3ri , ~2!

where ri is the position of the control point relative to the

center-of-mass of the sphere (ri5xi2xc). The deviation of

the fluid velocity at a control point i is calculated by

di5ui2(
j

I~ri j!uj , ~3!

where uj is the fluid velocity at grid node j and I(ri j) is the

set of interpolation coefficients, which is a function of the

relative distances ri j between the surrounding lattice nodes j

and the control point i. The coefficients that were used for

interpolation were also used for projection of the force from

the control point onto the surrounding grid nodes, where the

forces (Fj) are updated with a relaxation scheme

Fj~x,t !5aFj~x,t21 !1bI~ri j!rd~ t !, ~4!

where t indicates the time step. We move to the next control

point and the procedure is repeated until all M control points

have been updated. If desired, this procedure can be iterated.

The scheme of Eq. ~4! that imposes locally the desired

boundary condition is a control scheme that is characterized

by the relaxation parameters a and b. The scheme adjusts the

imposed body force Fj(x,t) proportional to the deviation of

the local velocity. The dynamic action, accuracy, and stabil-

ity of the control scheme is determined by the relaxation

parameters and the topology of the control points xi . The

parameters a and b were obtained by trial and error as 0.95

and 1.8, respectively.

After having updated the forces at the grid nodes, we

calculate the hydrodynamic force and torque on the sphere

according to

Fp5(
j

Fj~x,t !, ~5!

Tp5(
j

rj3Fj~x,t !, ~6!

where r j is the relative distance between the grid node j and

the center of mass of the particle. The summation is over all

boundary nodes in both the external and internal regions at

the sphere’s surface. The force and torque are used to inte-

grate the equations of motion of the sphere. This is done by

using an Euler forward integration scheme where the forces

are averaged over two time steps to suppress unphysical fluc-

tuations.

B. Internal mass

The boundary condition scheme requires the objects to

have internal fluid. An advantage of this is that when a node

shifts from the inside of an object into the exterior, it already

contains fluid mass and the state of this node does not need

to be changed. For the same reason, Ladd9 also has internal

mass in his particles. A drawback of keeping internal mass is

that its inertia affects the motion of the sphere via a contri-

bution to Fp @see Eq. ~5!#. Different approaches have been

proposed to solve this problem. Ladd9 suggests to integrate

the equation of motion with a corrected particle mass. Al-

though this is a fair approximation for systems with large

solid–fluid density ratios, for solid particles in liquid with a

density ratio typically between 1 and 2, numerical instabili-

ties can occur when integrating the equation of motion.

Other authors12,27,28 have proposed methods to remove the

internal mass, but this cannot be done for the adaptive force-

field technique. Qi11 proposes to compensate the hydrody-

namic force Fp for contribution from nodes entering or leav-

ing the interior of a particle, which is comparable to our

approach.

The force applied to the fluid nodes influences the fluid

on both the inside and the outside of the sphere. Hence, the

total force that acts on the sphere, as calculated with Eq. ~5!,
is the sum of the internal and external components of the

force

Fp , tot5Fp , int1Fp ,ext . ~7!

When integrating the equation of motion, the only physical

contribution to the sphere’s motion comes from the external

flow field. To determine the external contribution Fp ,ext , we

calculate the change of momentum of the internal fluid be-

tween two successive time steps

4016 Phys. Fluids, Vol. 14, No. 11, November 2002 ten Cate et al.
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F~ t !p , int5E E E
Vsphere

ruint~x ,t !2ruint~x ,t21 !dV , ~8!

and subtract this from the total force Fp , tot . When using this

approach the correct physical behavior is obtained, which

allows us to simulate particle motion at a density ratio as low

as 1.15, as is demonstrated in Sec. IV. A similar correction

procedure is applied for the torque.

C. Low Reynolds number calibration

Results presented by Ladd9 indicated that boundary con-

ditions in lattice-Boltzmann schemes based on the bounce

back rule suffer from a nonphysical dependency of the re-

sulting drag force on the kinematic viscosity. A study by

Rohde et al.25 indicated that also more advanced boundary

condition methods that are based on the bounce back rule

still exhibit this behavior. A detailed analysis of this behavior

is given by He et al.,29 who demonstrate that in lattice-

Boltzmann methods, the exact position at which the no-slip

condition is obtained is a function of the kinematic viscosity.

Although there is a fundamental difference between the

bounce back boundary condition and our approach, this non-

physical dependency is also observed in our current ap-

proach.

An explanation for the fact that this behavior is also

observed in our simulations may be that due to the interpo-

lation and extrapolation procedure, the sphere’s surface is

smeared out and the fluid experiences a sphere that is slightly

bigger than the sphere on which the M control points lie. The

result of this effect is that the drag force obtained from the

simulation is larger than the force that would correspond to

the sphere’s given input radius.

To compensate for this effect, Ladd9 proposed a proce-

dure for estimating the effective sphere radius ~hereafter

called hydrodynamic radius!. Ladd demonstrated that the hy-

drodynamic radius varied with viscosity as approximately

one grid node. The calibration procedure is based on an ana-

lytic expression of Hasimoto30 for the drag force on a fixed

sphere in a periodic array of spheres in the creeping flow

regime

6pmrpU
v

Fp

51.021.7601Ct
1/3

1Ct21.5593Ct
2,

Ct5

4prp
3

3L3 , ~9!

where rp is the sphere radius, L indicates the size of the unit

cell, and U
v

is the volumetrically averaged fluid velocity

across the periodic cell. For a given fluid velocity and drag

force, Eq. ~9! is solved to calculate the hydrodynamic radius.

In our simulations we use a similar calibration procedure

as proposed by Ladd. We want to stress here that this cali-

bration procedure is performed independent of the experi-

mental conditions or results. The sole purpose of this proce-

dure is to determined the equivalent particle diameter, given

a certain viscosity. A sphere is placed in the center of a fully

periodic cell and the fluid is set into motion via a pressure

gradient, such that the Reynolds number remains small. The

hydrodynamic radius is determined as the average of the ra-

dius at 20 sphere positions, which were taken parallel to the

flow because the settling sphere also moves along a single

axis. One can ask if this low Reynolds number calibration

procedure is allowed when it is our objective to simulate the

transient motion of a sphere moving at nonzero Reynolds

numbers. Therefore, in Sec. IV D the sensitivity of the simu-

lations to the hydrodynamic radius is investigated.

D. Scaling

When setting up a simulation of the sedimentation ex-

periment, the scaling of mass, length, and time needs to be

determined. With respect to mass, only the ratio of fluid and

solid density enters the equations of motion of the system. At

a constant ratio, the actual values can be chosen arbitrarily

without influencing the simulation result. Their numerical

values were set identical to the experimental values. Length

and time are scaled by using the low Reynolds number cali-

bration procedure. A first estimate for the length scale is

based on the input radius of the sphere. A first estimate for

the time scale is then determined by setting u` to 0.01lu/ts

@in lattice-Boltzmann simulations, umax!cs ~the speed of

sound, cs5
1
2&) is required to assure incompressible flow

conditions#. With these first estimates, all parameters are

scaled from the physical experiment into lattice units. Based

on this first scaling, a calibration simulation is carried out to

determine the hydrodynamic radius. Finally, in the sedimen-

tation simulations, length is scaled on the basis of the hydro-

dynamic radius and time is scaled via the kinematic viscos-

ity. In Sec. IV, calibration results of input radii between 2 and

8 lattice units will be presented, and the sensitivity of the

simulations to the hydrodynamic radius will be discussed.

E. Sub-grid lubrication force

When simulating a sphere approaching a fixed wall, at

some moment in time the grid lacks resolution to resolve the

flow in the gap between the sphere and the wall. The repul-

sive forces that occur due to the squeezing motion of the

fluid in the gap can no longer be computed accurately. This

problem was noticed by Ladd,31 who proposed to include an

explicit expression for the leading order lubrication forces,

calculated with lubrication theory.32,33 In our simulations,

when the gap has become smaller than D0 ~set to 1 grid

spacing!, the force acting on the sphere due to the lubrication

in the unresolved gap is calculated explicitly. The additional

lubrication force at gap distance h is calculated with

Fw526pmrpu'S rp

h
2

rp

D0
D , ~10!

where h is the gap between the wall and the sphere and u' is

the velocity component of the sphere perpendicular to the

wall. In the following section, the validity of this approach

will be tested by comparing simulation results with experi-

mental data.
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IV. RESULTS AND DISCUSSION

A. Overview of simulations

In Table II, an overview of the simulations is given.

Cases S1 – S4 were chosen as base settings for the simula-

tions. In the following two sections, these simulations will be

used to discuss various aspects of the flow field and sedimen-

tation trajectory and will be compared to experimental re-

sults. In cases S5 – S8, the input radius was varied between 2

and 8 grid nodes to study the influence of resolution on the

accuracy and performance of the simulation. Simulations

S9 – S15 were done to study the sensitivity of the simulations

to the hydrodynamic radius. Finally, in simulations S18 and

S19, the lubrication force was applied to explore its useful-

ness for representing the bottom approach of the sphere. All

simulations were executed for a physical time of approxi-

mately 4 seconds.

B. Sedimentation trajectory

In this paragraph, a physical interpretation of the sedi-

menting sphere is given based on the results of simulations

S1 and S4, to demonstrate the characteristic differences in

behavior of the particle sedimentation between both cases

and to provide physical insight in the different flow cases. In

Fig. 6 the flow field is plotted at four different stages during

settling. In Fig. 7, the development of the kinetic energy of

the sphere and the fluid is given. The intermediate results at

Reynolds numbers of 4.1 and 11.6 have been left out.

The velocity field of the particle settling at Re51.5 is

not symmetric in the direction of motion @Fig. 6~a2!#, dem-

onstrating that the flow field is not in the Stokes regime. In

Fig. 6~a1!, the sphere has moved one diameter below the

point of release. At this moment, the sphere has almost

reached its steady-state velocity. The rate at which the flow

field develops is demonstrated in Fig. 7~a!, by the evolution

of the kinetic energy of the fluid, which keeps pace with the

kinetic energy of the sphere. As the sphere approaches the

bottom, the kinetic energy of the wake again reduces in pace

with the decay of kinetic energy of the particle, which decel-

erates because of the squeezing of the liquid between the

sphere and the bottom wall @Fig. 6~a3!#. This causes the flow

field in front of the sphere to deform and generates outward

fluid motion across the bottom. Very quickly after the sphere

has come to a halt, the fluid also comes to rest.

The particle settling at a Reynolds number of 31.9 shows

distinctively different behavior. Compared to the case of

Re51.5 a much larger, elongated wake develops. In Fig.

6~b3!, the deflected front of the flow field at bottom approach

is again clearly visible. Another distinctive feature is that

while both the kinetic energy of the particle and the fluid

increase at the same pace initially, the particle reaches a pla-

teau while the wake keeps on picking up kinetic energy until

the particle reaches the tank bottom. At this stage, the kinetic

energy of the fluid has not reached a steady state. Notice that

the level of kinetic energy of both the fluid and the particle at

the high Reynolds number are about one order of magnitude

larger than that of the Re51.5 case. Figure 7~b! further dem-

onstrates that the sphere abruptly comes to a halt when the

sphere hits the bottom wall, which is in contrast with the

more gentle deceleration of the sphere at Re51.5. After the

TABLE II. Overview of sedimentation simulations. The table contains the input radius and calibrated radius of

the sphere, with corresponding length ~L.S.! and time ~T.S.! scaling factors. L.F. indicates the use of lubrication

theory at bottom approach. umax /u` is the ratio of the maximum sedimentation velocity and the theoretical

steady-state velocity of a freely moving sphere in an infinite medium. At the bottom of the table, the experi-

mentally obtained velocity ratio is included for comparison.

Case

r0

@lu#

rh

@lu#

Re

@-#

L.S.

1023 m/lu

T.S.

1024 s/ts

L.F.

@-#
umax /u`

@-#

S 1 4 4.487 1.5 1.671 3.891 ¯ 0.894

S 2 4 4.562 4.1 1.645 2.410 ¯ 0.950

S 3 4 4.657 11.6 1.610 1.526 ¯ 0.955

S 4 4 4.810 31.9 1.559 1.010 ¯ 0.947

S 5 8 8.084 1.5 0.928 2.398 ¯ 0.857

S 6 8 8.689 31.9 0.863 0.619 ¯ 0.947

S 7 2 2.698 1.5 2.780 5.381 ¯ 0.889

S 8 2 3.003 31.9 2.497 1.295 ¯ 0.921

S 9 4 4.000 1.5 1.875 4.897 ¯ 0.768

S 10 4 4.400 1.5 1.705 4.047 ¯ 0.871

S 11 4 4.600 1.5 1.630 3.703 ¯ 0.924

S 12 4 5.000 1.5 1.500 3.134 ¯ 1.009

S 13 4 4.000 31.9 1.875 1.460 ¯ 0.757

S 14 4 4.600 31.9 1.630 1.104 ¯ 0.891

S 15 4 5.000 31.9 1.500 0.935 ¯ 0.969

S 16 3 3.559 1.5 2.107 4.639 ¯ 0.897

S 17 3 3.650 4.1 2.055 2.818 ¯ 0.948

S 18 3 3.559 1.5 2.107 4.639 A 0.897

S 19 3 3.650 4.1 2.055 2.818 A 0.948

E 1 ¯ ¯ 1.5 ¯ ¯ ¯ 0.947

E 2 ¯ ¯ 4.1 ¯ ¯ ¯ 0.953

E 3 ¯ ¯ 11.6 ¯ ¯ ¯ 0.959

E 4 ¯ ¯ 31.9 ¯ ¯ ¯ 0.955
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sphere has come to a halt, the wake still contains a consid-

erable amount of kinetic energy that slowly decays. An em-

pirical time constant related to this process can be estimated

by assuming an exponential function

K f~ t !5K f ,max expS 2t

td
D , ~11!

which is plotted in Fig. 7~b! with td50.3@s# .

A remark can be made on the distribution of the kinetic

energy over the particle and the fluid. During settling the

potential energy of the particle is transferred to the fluid and

dissipated. At maximum settling velocity, the kinetic energy

of the fluid is much larger than that of the particle. The

volume of the moving fluid is much larger than the volume

of the particle ~see also Fig. 6! and since the solid–liquid

density ratio is small, the fluid can easily contain much more

kinetic energy than the particle.

Three physical time scales can be used to interpret the

flow field and transient behavior of the sedimenting sphere.

The first time scale is the particle advection time (tp ,a

.dp /u`), which is a measure for the time it takes the par-

ticle to travel one sphere diameter. The second time scale is

the particle relaxation time, (tp ,r.rpdp
2/18r fn) which is a

measure for the time it takes for a particle to respond to an

acceleration. The third time scale is the momentum diffusion

time (tn.dp
2/n), which is a measure for diffusion of mo-

mentum into the fluid over a distance of one particle diam-

eter. These three groups determine two independent dimen-

sionless numbers, the Reynolds and Stokes number.

The different shapes of the flow field in the high and low

Reynolds number cases can be interpreted by regarding the

Reynolds numbers as the ratio of tn and tp ,a . At Re51.5,

tn is 0.59 s and tp ,a is 0.39 s. The time it takes for the

particle to travel one diameter is almost the same as the time

FIG. 6. Comparison of the flow field

of the sedimenting sphere at ~a!, Re

51.5 ~top, case S1) and ~b!, Re

531.9 ~bottom, case S4). The con-

tours indicate the normalized velocity

magnitude. h/dp indicates the dimen-

sionless gap between the bottom apex

of the sphere and the tank bottom wall,

t indicates time.

FIG. 7. Simulated result of the kinetic energy of sphere

and fluid vs time at Re51.5, case S1, ~a! and Re

531.9, case S4, ~b!. The dashed line in ~b! is an expo-

nential fit to the decay of the fluid kinetic energy.
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it takes for momentum to diffuse one diameter into the fluid.

This explains the penetration of the flow field into the fluid in

front of the sphere and sideways to the sphere over a length

comparable to the size of the wake. In contrast to this, the

shape of the wake at Re531.9 is completely different. The

characteristic time scales are tn53.72 s and tp ,a50.12 s.

Thus, momentum diffusion goes at a much slower rate than

particle advection, resulting in an elongated wake and a very

limited extension of the flow field in front of the sphere.

The time scale for momentum diffusion can also be used

to interpret Fig. 7. At Re51.5, the diffusion time scale is

much shorter than the time it takes for the particle to reach

the bottom, thus allowing the wake to develop into a steady

state. At Re531.9, the particle reaches the bottom after ap-

proximately 1.3 seconds while tn is 3.72 seconds, which

explains why the wake was not fully developed before the

bottom was reached. It is interesting to note that the time

constant for decay of the kinetic energy is much shorter than

the time constant for momentum diffusion. The decay of ki-

netic energy is associated with the dissipation due to viscous

effects that originate from gradients in the fluid. This process

is apparently much faster than the momentum diffusion.

The second dimensionless number is the Stokes number

@St5( 1
9)rpdpu` /r fn5( 1

9)Rerp /r f;tp ,r /tp ,a# , which is a

measure for the ratio of particle inertia to viscous forces.

With a practically constant density ratio throughout the ex-

periment, the Stokes number is proportional to the Reynolds

number and was not varied independently. The Stokes num-

ber characterizes the transient behavior of the particle at ac-

celeration and bottom approach. At the low Reynolds num-

ber, the particle starts to decelerate at some distance from the

bottom while at high Reynolds number, the particle hardly

decelerates prior to contact.

C. Comparison of numerical and experimental results

A first comparison is made in terms of the maximum

velocity of the particle during sedimentation. In Table II, the

ratios umax /u` from the experiments and simulations are

given. The experimental results demonstrate that the particle

reaches a maximum velocity of approximately 95% of the

steady-state value in an infinite medium. The experimental

data indicate a maximum of the velocity ratio value for case

E3. An explanation for this observation is that the sphere

FIG. 8. Comparison between measured ~M! and simu-

lated ~S! sphere trajectory ~a!, represented by the di-

mensionless gap height h/dp , and sedimentation veloc-

ity ~b! at two Reynolds numbers ~simulation data from

S1 and S4).

FIG. 9. Comparison of the simulated ~top, cases S1 – S4) and measured ~bottom, E1 – E4) flow field of the sphere at a dimensionless gap height of h/dp

50.5. Contours indicate the normalized velocity magnitude, the vectors indicate the direction of the fluid flow only.
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moving at the lowest Reynolds number experiences the larg-

est resistance due to the container wall. At increasing Rey-

nolds number, the lateral extension of the sphere induced

flow reduces, thus reducing the wall hindrance effect on the

sphere. The lower umax /u` ratio at the highest Reynolds

number ~i.e., case E4) is likely caused by the fact that the

sphere was still accelerating when it arrived at the bottom.

This trend is also observed in the simulated results, although

more pronounced. The maximum sedimentation velocity pre-

dicted by the simulations is generally within 1% of the ex-

perimental result, except at the lowest Reynolds number,

where the difference is approximately 5%. Increased resolu-

tion does not result in an improvement. The calibration pro-

cedure has a strong impact on the terminal velocity. Its sen-

sitivity will be further discussed in Sec. IV D.

For comparison of numerical and experimental findings

as to the dynamic behavior of the sphere, the trajectory and

velocity of the sphere versus time have been plotted in Figs.

8~a! and 8~b!. At the lowest Reynolds number, the sphere

decelerates at a larger distance from the bottom than at the

higher Reynolds number. Along with the results at Re54.1

and Re511.6 ~not shown!, these results demonstrate that the

complete trajectory of the sphere is captured accurately by

the simulation procedure.

The simulated fluid motion has been compared in detail

with the flow fields from the PIV experiment. With the use of

a continuous camera, not only the spatial structure of the

flow field is obtained but also the temporal behavior. Figure

9 shows the flow field of the sphere at position h/dp50.5 at

the four Reynolds numbers considered. @Notice that Figs.

9~c! and 9~d! are at a higher resolution than Figs. 9~a! and

9~b!.# At the sphere position in question, the flow in front of

the sphere interferes with the bottom surface, while the wake

is still seemingly undisturbed. The correspondence in posi-

tion of the velocity magnitude contours is indicative of a

good agreement between the numerical and experimental

flow field. At the side of the sphere a clear vortex is found

that changes shape and position with an increase in Reynolds

number. The center of this vortex is found at the same posi-

tion for the numerical and experimental result.

Another ~quantitative! assessment is obtained by com-

paring the time series of the fluid velocity in a particular

point in the flow domain. As monitor point we chose a point

fixed in place, positioned one diameter from the bottom of

the tank and one diameter out of the center of the sphere ~see

Fig. 10!.

Time series of the fluid velocity in this point are given

for Re51.5 ~Fig. 11! and Re531.9 ~Fig. 12!. At the low

Reynolds number, the fluid flow in the x direction is mainly

effected by the squeezing action of the sphere. A distinctive

positive peak is observed, due to the outward motion of the

fluid. The fluid velocity drops almost back to zero at the

moment the sphere touches the bottom of the container. At

Re531.9, the sphere settling velocity is much higher; as a

result, the x velocity starts rising much earlier in time. After

the vortex has passed the monitor point, the velocity de-

creases again. As the sphere comes to rest, the fluid motion

in the wake still contains a considerable amount of inertia

and passes over the sphere, giving rise to the slight increase

in x velocity, followed by the decay to zero.

At Re51.5, the flow in the y direction is directed down-

wards, indicated by the negative value of the velocity com-

ponent. The experimental data shows a steep decay to a

minimum y velocity, after which the velocity rises again.

FIG. 10. Measurement position of the time series of fluid flow.

FIG. 11. Time series of the fluid velocity in a point at Re51.5. The lines indicate the normalized velocity in x and y direction and velocity magnitude of

simulations S1 ~top! and S5 ~bottom!. The dots indicate the experimental result of E1. The arrow indicates the moment the sphere comes to rest at the bottom.
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With careful observation, a second, smaller decay can be

observed in the data before returning to zero, although this

decay is barely visible since the magnitude of the decay is

comparable to the noise in the data. This behavior is related

to both the position of the vortex center relative to the moni-

tor point and the decreasing velocity of the sphere. At this

Reynolds number the flow field extends the furthest side-

ways into the fluid and the monitor point is positioned be-

tween the sphere and the vortex center. As a result, the y

velocity does not change sign. Since the y velocity is smaller

near the core of the vortex, an increase in velocity may be

found as the center passes the monitor point, after which a

velocity decrease is anticipated. However, since the particle

decelerates, the magnitude of this decrease is smaller than

the main negative peak.

At Re531.9 the monitor point is positioned on the right

side of the vortex. Thus, the y velocity initially gets negative,

but as the vortex passes the monitor point, the y velocity

changes sign because the flow on the right side of the vortex

center is directed upward. Eventually the vortex has passed

and what follows is the wake of the sphere, resulting in a

downward velocity that again slowly decays after the sphere

has come to rest.

At Re51.5, the y velocity shows the largest difference

between simulation and experimental result. At low resolu-

tion of the simulation, a clear mismatch is observed between

the numerical and experimental curve. Apparently, at lower

Reynolds number, the position of the vortex is very sensitive

to the resolution. The fluid velocity becomes positive, which

is indicative of the monitor point being at the outer side of

the vortex. As the resolution is increased, the position of the

vortex is predicted more accurately and the simulated time

series of the y velocity is in much better agreement with the

experimental result. The simulations at the high Reynolds

number are in good agreement with the experimental data,

although at this Reynolds number too, an increase in resolu-

tion improves the predictions. The curves that represent the

velocity magnitude vs time demonstrate that at the low Rey-

nolds number, the fluid velocity is underpredicted by a few

percent only, which is in agreement with the contour plots of

Fig. 9.

D. Hydrodynamic radius dependency

In simulations S9 – S15, the hydrodynamic radius was

varied deliberately ~i.e., without applying the calibration pro-

cedure! to study its impact on umax /u` . Without calibration

the velocity ratio is underpredicted some 20%. The simula-

tions further show that the velocity ratio umax /u` is strongly

dependent on the hydrodynamic radius. When varying the

hydrodynamic radius on purpose, both umax and u` change,

as can be seen in Table III.

First, increasing the hydrodynamic radius may increase

umax . The force Fd , input drives the sphere during sedimenta-

tion and is determined from the balance between drag force,

gravity and buoyancy

Fd , input5
4
3prh

3~r f2rp!g . ~12!

When the sphere moves at umax , this force is balanced by the

hydrodynamic forces that act on the sphere and which are

obtained from the simulation. Fd , input is independent of the

FIG. 12. Same as Fig. 11, now for Re531.9.

TABLE III. Influence of the hydrodynamic radius on the maximum sedi-

mentation velocity.

Case

r0

@lu#

rh

@lu#

Re

@-#

umax

@1023 lu/ts#

u`

@1023 lu/ts#

S 9 4 4.000 1.5 7.678 10.000

S 10 4 4.400 1.5 7.920 9.091

S 1 4 4.487 1.5 7.968 8.914

S 11 4 4.600 1.5 8.034 8.696

S 12 4 5.000 1.5 8.074 8.000

S 13 4 4.000 31.9 7.573 10.000

S 14 4 4.600 31.9 7.749 8.696

S 4 4 4.810 31.9 7.877 8.315

S 15 4 5.000 31.9 7.754 8.000
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hydrodynamic radius. With a changing hydrodynamic radius,

length scales proportional to L, while time scales with the

length squared, L2, because time is scaled via the kinematic

viscosity. Thus, when scaling Eq. ~12! from physical quanti-

ties to simulation quantities, the equation is independent of

the scaling factors, because r is kept constant, rh
3 scales as L3

while g scales as 1/L3. At the same time, the input radius of

the sphere and the viscosity are kept constant. Therefore,

umax can only vary because a change in the container geom-

etry occurs. By increasing the hydrodynamic radius, the scal-

ing factor for length decreases and the container geometry is

represented by a larger number of grid nodes. Consequently,

because of the larger domain, the sphere experiences a

smaller resistance due to the parallel walls and umax in-

creases. The sensitivity of this effect depends on the Rey-

nolds number at which sphere settles, as can be observed in

Table III. At Re51.5, umax increases by 5.2% when varying

the hydrodynamic radius from 4 to 5 grid units while at Re

531.9, umax increases by 2.4% only.

Second, when increasing the hydrodynamic radius, u`

decreases as 1/L , which can be observed in Table III where

u` is recalculated to lattice units. Thus, u` decreases by 20%

for both the low and the high Reynolds number when in-

creasing the hydrodynamic radius from 4 to 5 lattice units.

For the cases studied, these dependencies show that a

variation in radius of the order of one lattice unit mainly

affects the reference state u` . In our base cases ~with r0

54lu), increasing the hydrodynamic radius with 1 lattice

unit resulted in a variation of the ratio umax /u` of approxi-

mately 30%. Increasing the resolution may decrease this sen-

sitivity. A variation of one lattice unit on an input radius of,

e.g., 8 lattice nodes causes u` to vary by 11% while the

relative increase in umax is expected to be smaller.

The calibration procedure proposed in Sec. III is used to

determine the hydrodynamic radius a priori. Table II dem-

onstrates that using this calibration method results in a 1%

accurate match between the numerical and experimental val-

ues of the velocity ratio is found for the simulations at Re

>4.1. At the lowest Reynolds number, a systematic under-

prediction of the velocity ratio of approximately 5% is

found. This difference corresponds to the deviations ob-

served in Fig. 8. These deviations are considered acceptable,

since without calibration an underprediction of more than

20% is obtained. However, the systematic deviation at the

lowest Reynolds number is striking for two reasons. One, the

deviation is independent of the resolution ~see Table II!. If

the deviation decreases with an increase in resolution, one

would anticipate the simulations to eventually match the ex-

perimental data at high resolution, which is not the case.

Two, one would expect that the calibration procedure would

work best at the lowest Reynolds number, since it is based on

creeping flow conditions. The simulation at Re51.5 comes

closest to this situation.

E. Lubrication force

When the sphere approaches the bottom wall, the gap

between the sphere and the bottom may become too narrow

for a proper resolution of the flow on the original grid. As a

result, the hydrodynamic force on the sphere will be under-

predicted. In Fig. 13, the sedimentation velocities of the

sphere at Reynolds numbers of 1.5 and 4.1, respectively, are

given at the final stage of bottom approach. In the simula-

tions, the particle velocity is set to zero at the moment of

bottom contact. This moment is clearly visible in both fig-

ures, where the dotted line indicates the sedimentation veloc-

ity of the sphere in simulations S16 and S17. This abrupt

stop indicates that the sphere velocity was not reduced to

zero at the moment contact was established between the

sphere and the bottom wall. The dotted line further shows

unphysical fluctuations in the velocity of the sphere when the

bottom of the sphere passes the first nodes above the bottom

wall. Simulations at higher resolution showed that an in-

crease in resolution reduces the fluctuations but the abrupt

stop remains.

When applying the sub-grid scale lubrication force ac-

cording to Eq. ~10!, the velocity of the sphere reduces more

gradually although some fluctuations are still observed. The

use of the lubrication force improves the velocity decay ini-

tially, which is demonstrated by an improved correspondence

between the experimental and numerical data. Due to the

dissipative action of the lubrication force, however, at a

small separation from the bottom the settling velocity has

almost reached zero ~of the order of the numerical accuracy!

and the sedimentation time series extends further for an un-

realistically long time ~not in the figure!. Application of a

force based on lubrication theory is valid for separations that

exceed either the molecular mean free path length of the

FIG. 13. The use of a lubrication force (F lub) on the

particle sedimentation velocity at near wall approach at

~a! Re51.5, cases S16 and S18, and ~b! Re54.1, cases

S17 and S19.
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molecules of the fluid34 ~although this effect is negligible for

solid–liquid suspensions! or that exceed the surface

roughness6 of the particle and the tank wall. For detailed

simulations or experiments either of the two limits can be

used as a cut-off measure for the final separation at which an

apparent contact is established. In the current study, both

effects are of the order of 0.1–1 mm or smaller, which is of

a much greater detail than provided by either our experimen-

tal observations or numerical simulations. The application of

a lubrication force improves the simulation result in that it

provides a measure for a lacking sub-grid scale repulsive

force at bottom approach. At the same time it raises a diffi-

culty in establishing the exact moment of contact between

the particle and the container wall.

V. CONCLUSION

We investigated the motion of a single sphere settling in

a box filled with silicon oil. By keeping the ratio of the

sphere radius to the box dimensions relatively small, we

were able to perform simulations of the full flow field with-

out having to make specific assumptions on the external

boundary conditions. We were able to validate the transient

behavior of the sphere over the whole time span of the sedi-

mentation from release via steady fall to deceleration at bot-

tom approach. Time series of the particle trajectory and par-

ticle settling velocity were measured and detailed snapshots

of the flow field were produced by using PIV. The data could

also be represented as time series of the fluid velocity in

monitor points. Lattice-Boltzmann simulations of cases iden-

tical to the experiments were performed. The boundary con-

ditions for the solid sphere were imposed using the adaptive

force field technique. This technique requires the sphere to

have internal fluid that contributes to the sphere’s inertia. A

correction method has been proposed to compensate for this

inertial effect. The simulations also require a correction for

the hydrodynamic radius. The data demonstrated that the

simulations are in agreement with measurements over a

range of resolutions between 2 and 8 grid nodes per sphere

radius. The transient behavior of both the sphere and fluid

motion is captured accurately, as demonstrated by a compari-

son between experimental and numerical results in terms of

particle trajectory and velocity as well as of fluid velocity.

The hydrodynamic radius was found to affect the sedimen-

tation velocity in two ways. First, a change in hydrodynamic

radius causes a change in domain size, which varies the sedi-

mentation velocity by 2%–5%, depending on the Reynolds

number. Second, a change in radius causes a change in time

scaling, resulting in a variation of the velocity up to 20% for

a sphere with an input radius of 4 lattice units. A calibration

procedure was used for a priori determining the hydrody-

namic radius of the sphere. For the cases of Re54.1 to Re

531.9, this calibration procedure predicts the maximum

sedimentation velocity within 1% accuracy. At Re51.5, the

sedimentation velocity was underpredicted by approximately

5% ~independent of resolution!. At approach of the bottom

wall, resolution lacks to resolve the flow in the gap. Lubri-

cation theory was used to provide the lacking hydrodynamic

interactive force at bottom approach, but this apparently

overpredicts the time to contact with the bottom.
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