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ABSTRACT

This paper investigates an approximation scheme of the optimal nonlinear Bayesian filter based on the

Gaussianmixture representation of the state probability distribution function. The resulting filter is similar to

the particle filter, but is different from it in that the standard weight-type correction in the particle filter is

complemented by the Kalman-type correction with the associated covariance matrices in the Gaussian

mixture. The authors show that this filter is an algorithm in between the Kalman filter and the particle filter,

and therefore is referred to as the particle Kalman filter (PKF).

In the PKF, the solution of a nonlinear filtering problem is expressed as the weighted average of an ‘‘ensemble

of Kalman filters’’ operating in parallel. Running an ensemble of Kalman filters is, however, computationally

prohibitive for realistic atmospheric and oceanic data assimilation problems. For this reason, the authors

consider the construction of the PKF through an ‘‘ensemble’’ of ensemble Kalman filters (EnKFs) instead, and

call the implementation the particle EnKF (PEnKF). It is shown that different types of the EnKFs can be

considered as special cases of the PEnKF. Similar to the situation in the particle filter, the authors also introduce

a resampling step to the PEnKF in order to reduce the risk of weights collapse and improve the performance of

the filter. Numerical experiments with the strongly nonlinear Lorenz-96 model are presented and discussed.

1. Introduction

Estimating the state of the atmosphere and the ocean

has long been one of the main goals of modern science.

Data assimilation, which consists of combining data and

dynamical models to determine the best possible esti-

mate of the state of a system, is now recognized as the

best approach to tackle this problem (Ghil andMalanotte-

Rizzoli 1991). The strongly nonlinear character of the

atmospheric and oceanic models, combined with their

important computational burden, makes data assimi-

lation in these systems quite challenging.

Based on the Bayesian estimation theory, the optimal

solution of the nonlinear data assimilation problem can

be obtained from the optimal nonlinear filter (ONF;

Doucet et al. 2001). This involves the estimation of the

conditional probability distribution function (pdf; not

necessarily Gaussian) of the system state given all avail-

ablemeasurements up to the estimation time.Knowledge

of the state pdf allows determining different estimates of

the state, such as the minimum variance estimate or the

maximum a posteriori estimate (Todling 1999). TheONF

recursively operates as a succession of a correction (or

analysis) step at measurement times to correct the state

(predictive) pdf using the Bayes’ rule, and a prediction

step to propagate the state (analysis) pdf to the time of

the next available observation. Although conceptually

simple, the numerical implementation of the optimal

nonlinear filter can be computationally prohibitive, even

for systems with few dimensions (Doucet et al. 2001). Its

use with atmospheric and oceanic data assimilation prob-

lems is therefore not possible because of the huge dimen-

sion of these systems.
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In recent years, two approximation schemes of the

ONF have attracted the attention of researchers for their

potentials to tackle nonlinear and non-Gaussian data

assimilation problems. One is based on the point-mass

representation (mixture of Dirac functions) of the state

pdf, and leads to the celebrated particle filter (PF; Doucet

et al. 2001; Pham 2001; Nakano et al. 2007; Van Leeuwen

2003, 2009). The other is based on the Gaussian mixture

representation of the state pdf, and results in a filter

that is in between the Kalman filter and the particle

filter (Anderson and Anderson 1999; Bengtsson et al.

2003; Chen and Liu 2000; Hoteit et al. 2008; Luo et al.

2010; Sorenson andAlspach 1971), as to be shown later.

For this reason, we refer to this filter as the particle

Kalman filter (PKF).

In terms of computational efficiency, the particle filter

needs to generate large samples for a good approxima-

tion of the state pdf. In certain circumstances, in order to

avoid weights collapse, the number of samples needs to

scale exponentially with the dimension of the system in

assimilation (Bengtsson et al. 2008), which may be in-

feasible for high-dimensional systems (Snyder et al.

2008). On the other hand, in some comparison studies

(Han and Li 2008; Nakano et al. 2007), it has been re-

ported that the ensemble Kalman filter (EnKF) and its

variants (Anderson 2001; Bishop et al. 2001; Burgers et al.

1998; Evensen 1994; Evensen and van Leeuwen 1996;

Houtekamer and Mitchell 1998; Whitaker and Hamill

2002) can achieve lower estimation errors than the par-

ticle filter given a small ensemble size. In this paper we

confine ourselves to the PKF and make performance

comparison only between the PKF and the EnKF.

Using a Gaussian mixture representation of the state

pdf, the resulting PKF consists of an ensemble of parallel

nonlinear Kalman filters (Hoteit et al. 2008; Luo et al.

2010). Different variants of the Kalman filter (KF), in-

cluding the extended Kalman filter (Chen and Liu 2000;

Sorenson and Alspach 1971), the reduced-rank Kalman

filter (Hoteit et al. 2008; Luo et al. 2010), the EnKF

(Anderson and Anderson 1999; Bengtsson et al. 2003),

can be used to construct the PKF. The focus of this paper

is to investigate thePKF that is constructed by an ensemble

of parallel EnKFs. Common to all the implementations of

the PKF, the mixture of normal distributions (MON)—a

more general pdf representation than the single Gaussian

pdf approximation in the EnKF—can be used to tackle

nonlinearity and non-Gaussianity in data assimilation.

On the other hand, choosing the EnKF to construct the

PKF is based on the consideration of computational ef-

ficiency, since the EnKF itself is a very efficient algorithm

for data assimilation in high-dimensional systems. In this

regard, this work is very similar to the earlier works of

Anderson and Anderson (1999) and Bengtsson et al.

(2003), but is different from them mainly in the fol-

lowing aspect.

In Anderson and Anderson (1999) and Bengtsson

et al. (2003), the PKF was constructed without a resam-

pling step. As a result, the PKF may suffer from weights

collapse as in the particle filter. To overcome this

problem, Bengtsson et al. (2003) considered a hybrid of

the EnKF and the PKF, which, however, involves the

computation of the inverses of sample covariance ma-

trices in the ‘‘global to local’’ adjustments. In doing so, it

is not only computationally intensive, but also encoun-

ters singularities in computing the inverses when the

ensemble size is smaller than the system dimension, such

that the sample covariances themselves are rank de-

ficient. Therefore, it is not clear how the hybrid scheme

in Bengtsson et al. (2003) can be applied to the scenario

with the ensemble size smaller than the system di-

mension. For the implementation of the PKF scheme in

this work, we introduce a resampling step similar to those

in Musso et al. (2001) and Stavropoulos and Titterington

(2001) to tackle the collapse of the weights. Our ex-

perience shows that, with this resampling step, the PKF

becomes much more stable and can conduct data assim-

ilation in the small ensemble scenario, as to be demon-

strated through the numerical experiments presented in

this work.

As may be of particular interest for the ensemble fil-

tering community, we will show that different EnKFs

can be considered as special cases of the PEnKF fol-

lowing our implementation. This point of view allows for

a better understanding of the EnKFs’ behaviors and/or

their differences.

The paper is organized as follows. The optimal non-

linear filter is first described in section 2. The PKF and its

ensemble implementation are discussed in section 3.

Results of numerical experiments with the Lorenz-96

model are presented in section 4. A summary of the

main results and a general discussion on the potential of

the PEnKF for tackling realistic atmospheric and oce-

anic data assimilation problems concludes the paper in

section 5.

2. The optimal nonlinear filter

Starting from a random initial condition with a known

probability density function, the optimal nonlinear filter

provides the conditional density function of the system

state given all available measurements up to the esti-

mation time. To describe the algorithm of the optimal

nonlinear filter, consider the nonlinear stochastic discrete-

time dynamical system:

xk 5 Mk(xk21) 1 hk, (1)
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yk 5 Hk(xk) 1 ek, (2)

where xk is the state vector (to be estimated) of di-

mension n; yk is the observation vector of dimension p;

Mk and HK are two continuously differentiable maps

from R
n to Rn and from R

n to Rp, respectively, repre-

senting the transition and the observational operators;

and hk and ek denote the dynamical and the observa-

tional noise, respectively. We assume that hk and ek are

Gaussian with zero mean and nonsingular covariance

matrices Q
k
and R

k
, respectively, and are independent

of the system state at any time instant. Under this set-

ting, the dynamical system in Eq. (1) is Markovian.

The optimal nonlinear filter recursively operates with

a succession of prediction and correction steps as sum-

marized below. The reader is referred to Doucet et al.

(2001) for an extensive description of the filter. To

simplify the notation, y1:k is defined as a shorthand for

the set of all observations y1, . . . , yk up to and including

time tk. Let p
f
k(� jy1:k21

) be the conditional (predictive)

pdf of xk given y1:k21 and pak(� jy1:k) be the conditional

(analysis) pdf of xk given y1:k, both determined at time tk.

The filter steps are described as follows.

d Prediction step: Given the analysis pdf pak21(� jy1:k21)

at time tk21, the predictive pdf p
f
k(� jy1:k21) is obtained

by integrating pak21(� jy1:k21) with the model in Eq. (1)

to the time of the next available observation tk. Under

the assumptions made on the model noise hk, the

likelihood function for the state vector xk21 to transit

to xk at the next time instant is described by the

Gaussian pdf N[x
k
: M

k
(x

k21
),Q

k
], where N(x: m, S)

denotes the Gaussian pdf with mean m and covari-

ance S. Thus,

p
f
k(xkjy1:k21) 5

ð

R
n
N[xk : Mk(xk21),Qk]p

a
k21(xk21jy1:k21) dxk21. (3)

d Correction step: After a new observation yk has been

made, the analysis pdf pak(� jy1:k) at time tk is updated

from p
f
k(� jy1:k21

) using Bayes’ rule:

pak(xk jy1:k) 5
1

bk
p
f
k (xk jy1:k21)N[y

k
: H

k
(x

k
),R

k
].

(4)

The analysis pdf is therefore obtained by multiplying

the predictive pdf by the observation likelihood func-

tion N[y
k
: H

k
(x

k
),R

k
], and then being normalized by

b
k
5

Ð

R
n p

f
k(xk jy1:k21)N[y

k
: H

k
(x

k
),R

k
] dx

k
.

While the expressions of the state pdfs can be obtained

conceptually, determining the exact values of them at

each point of the state space is practically infeasible in

high-dimensional systems (Doucet et al. 2001). For in-

stance, the determination of the predictive pdf requires

the evaluation of the model Mk(x) for a prohibitively

large number of x, given that one single evaluation might

already be computationally very expensive in realistic

atmospheric and oceanic applications.

3. The particle ensemble Kalman filter

a. Particle Kalman filtering and its ensemble

implementation

Given N independent samples x1, . . . , xN from a (mul-

tivariate) density p, an estimator p̂ of p can be obtained by

the kernel density estimation method (Silverman 1986), in

the form of a mixture of N Gaussian pdfs:

p̂(x) 5
1

N
�
N

i51
N(x : xi, P), (5)

where P is a positive definite matrix. Inspired from this

estimator, the PKF approximates the conditional state

pdfs in the optimal nonlinear filter by mixtures of N

Gaussian densities of the following form:

psk(xk jy1:k) 5�
N

i51
wi
kN(xk : xs,ik , Ps,i

k ). (6)

The subscript s replaces a at the analysis time and f at the

prediction time. The parameters of the mixture are

the weights wi
k, the centers of the distributions xs,ik , and

the covariance matrices P
s,i
k . In particular, if N 5 1,

psk(xk jy1:k) reduces to a single Gaussian pdf, so that the

PKF reduces to the KF or its variants trivially (a nontrivial

simplification will also be discussed below). Conse-

quently, the KF and its variants can be considered spe-

cial cases of the PKF.

Two special cases of Eq. (6) may be of particular in-

terest. In the first case, Ps,i
k / 0, such that the Gaussian

pdfs N(x
k
: xs,ik , Ps,i

k ) tend to a set of Dirac functions

d(xs,ik ), with themass points at xs,ik . In this case, theGaussian

mixture Eq. (6) reduces to the Monte Carlo approxi-

mation used in the particle filter (Doucet et al. 2001). In
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the second case, all Gaussian pdfs N(x
k
: xs,ik , Ps,i

k ) have

(almost) identical centers and covariances, such that the

Gaussian mixture Eq. (6) tends to a (single) Gaussian

approximation, an assumption often used in various non-

linear Kalman filters (including the EnKF). In this sense,

the PKF can be considered as a filter in between the

Kalman filter and the particle filter (Hoteit et al. 2008; Luo

et al. 2010).

The main procedures of the PKF are summarized as

follows. Without loss of generality, suppose that at time

instant k 2 1, the analysis pdf, after a resampling step, is

given by ~p
k21(xk21jy1:k21)5�

i51

N ~wi
k21N(x

k21 : u
i
k21,F

i
k21).

Then by applying Eq. (3) at the prediction step, one ob-

tains the background pdf, in terms of a new MON:

p
f
k(xk jy1:k21)’�

N

i51
~wi
k21N(xk : x̂

f ,i
k , P̂

f ,i

k ), (7)

where x̂
f ,i
k and P̂

f ,i

k are the propagations of the mean uik21

and the covariance F
i
k21 of the Gaussian component

N(x
k21 : u

i
k21,F

i
k21) through the system model Eq. (1),

respectively.

Given an incoming observation yk, one applies Eq. (4)

to update p
f
k(x jy1:k21) to the analysis pdf, also in the

form of an MON:

pak(xk jy1:k)5�
N

i51
w i
kN(x

k
: x̂a,ik , P̂

a,i

k ), (8)

where x̂a,ik and P̂
a,i

k are updated from x̂
f ,i
k and P̂

f ,i

k through

the Kalman filter or its variants, and the new weights:

wi
k 5

~wi
k21N[y

k
: H

k
(x̂

f ,i
k ),Si

k]

�
N

j51
~wi
k21N[yk : Hk(x̂

f ,i
k ),Si

k]

, (9)

where S
i
k is the innovation matrix. If evaluated through

the extended Kalman filter, S
i
k 5H

i
kP̂

f ,i

k (Hi
k)

T
1R

k
,

with H
i
k being the gradient of Hk evaluated at x̂

f ,i
k . Al-

ternatively, if evaluated in the context of the EnKF, Si
k

can be expressed as the covariance of the projected

background ensemble onto the observation space plus

the observation covariance R
k
(Evensen 1994; Whitaker

and Hamill 2002). Finally, a resampling step can be in-

troduced to improve the performance of the PKF (Hoteit

et al. 2008; Luo et al. 2010), so that the analysis pdf becomes
~p
k
(x

k
jy1:k)5�

N

i51 ~w
i
kN(x

k
: ui

k,F
i
k). Such a resampling

algorithm is presented in the next section.

The PKF correction step can be interpreted as com-

posed of two types of corrections: a Kalman-type correc-

tion used to update x̂
f ,i
k and P̂

f ,i

k to x̂a,ik and P̂
a,i

k , and a

particle-type correction used to update the weights ~wi
k21

towi
k. In the PKF, the Kalman correction reduces the risk

of the weights’ collapse by allocating the estimates x̂
f ,i
k

(whose projections onto the observation space far away

from the observation yk) relatively more weights than in

the particle filter (Hoteit et al. 2008; Van Leeuwen 2009).

Indeed, Eq. (9) has the same form as in the PF (Doucet

et al. 2001), but uses the innovation matrices Si
k to nor-

malize the model-data misfit, rather than R
k
. As Si

k are

always greater than R
k
, the estimates that are close to the

observation will receive relatively less weights than in the

PF, while those far from the observation will receive rel-

atively more weights. This means that the support of the

local predictive pdf and the observation likelihood func-

tionwill bemore coherent than in the PF. Resamplingwill

therefore be needed less often, so that Monte Carlo fluc-

tuations are reduced.

The main issue with the PKF is the prohibitive com-

putational burden associated with running an ensemble

of KFs, knowing that running a KF or an extended KF in

high-dimensional systems is already a challenge. To re-

duce computational cost, we use an ensemble of EnKFs,

rather than the KF or the extended KF, to construct the

PKF. We refer to this approach as the particle ensemble

Kalman filter (PEnKF). In the PEnKF, the (analysis)

ensembles representing the Gaussian components are

propagated forward in time to obtain a set of background

ensembles at the next assimilation cycle. Then for each

background ensemble, a stochastic or deterministic EnKF

is used to update the background ensemble to its analysis

counterpart. This amounts to simultaneously running a

weighted ensemble of EnKFs, and the final state estimate

is the weighted average of all the EnKFs solutions.

b. A resampling algorithm

We adopt a resampling algorithm that combines those

inHoteit et al. (2008), Luo et al. (2010), and Pham (2001).

Themain idea is as follows: given aMON, we first employ

an information-theoretic criterion used in Hoteit et al.

(2008) and Pham (2001) to check if it needs to conduct

resampling. If there is such a need, we then reapproximate

the MON by a newMON, based on the criterion that the

mean and covariance of the newMONmatch those of the

original MON as far as possible (Luo et al. 2010).

More concretely, let p(x) be the pdf of then-dimensional

random vector x, expressed in terms of an MON with N

Gaussian pdfs so that

p(x) 5 �
N

i51
wiN(x : mi,Si), (10)

wherewi are the set of normalizedweights of theGaussian

pdfs N(x : mi, Si) with mean mi and covariance Si, satis-

fying wi $ 0 for i 5 1, . . . , N and �
N

i51wi
5 1. To decide
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whether to conduct resampling or not, the entropy Ew of

the weightswi is computed, which reads as follows (Hoteit

et al. 2008; Pham 2001):

Ew 5 2�
N

i51
wi logwi. (11)

Ideally, when the distribution of theweightswi is uniform,

which yields the maximum weight entropy Eu
w 5 logN,

there is no need to conduct resampling. Thus, as a crite-

rion, if Ew is within a certain distance d to Eu
w,

Eu
w 2 E

w
5 logN 1�

N

i51
w
i
logw

i
# d, (12)

where d is a user-defined threshold, then we choose not

to conduct resampling. In this work we set the threshold

d 5 0.25 following Hoteit et al. (2008).

In case that there is a need to conduct resampling, we

follow the procedure similar to that in Luo et al. (2010).

Here the idea is to treat resampling as a pdf approxi-

mation problem, in which we seek a new MON:

~p(x) 5
1

q
�
q

i51
N(x : ui,Fi), (13)

with q equally weighted Gaussian pdfs, to approximate

the original p(x) in Eq. (10). In approximation, we re-

quire that the mean and covariance of ~p(x) be as close as

possible to those of p(x). To this end, we need to choose

proper values of ui and Fi in order to achieve this ob-

jective.

The means and covariances of p(x) and ~p(x), denoted

by x and P, and ~x and ~P, respectively, are given by

x 5�
N

i51
w
i
m
i
, and P 5�

N

s51
w
i
[S

i
1 (m

i
2 x)(m

i
2 x)T],

(14a)

~x 5
1

q
�
q

i51
ui, and ~P 5

1

q
�
q

i51
[Fi 1 (ui 2 ~x)(ui 2 ~x)T].

(14b)

Thus, our objective is equivalent to balancing the above

equation such that

~x 5 x, and ~P’P. (15)

In the trivial case with q 5 N 5 1, Eq. (15) can be sat-

isfied by letting u1 5 m1 and F1 5 S1, and the PEnKF

reduces to an EnKF. In nontrivial cases, for simplicity in

solving Eq. (15) and reducing computational cost (as to

be shown later), one may choose the covariances Fi to

be identical, say Fi 5 F, for i 5 1, . . . , q, so that

1

q
�
q

i51
ui 5 x, and F1

1

q
�
q

i51
(ui 2 x)(ui 2 x)T ’ P.

(16)

When an EnKF is used to construct the PKF, one

needs to represent the solution of Eq. (16) in terms of

some ensembles fXi
en, i5 1, . . . , qg, where X

i
en is a ma-

trix containing the (analysis) ensemble of the ith Gauss-

ian component in Eq. (13), with mean ui and covariance

F. For simplicity, we assume that X
i
en are all of di-

mension n 3 m, with the ensemble size m for each i.

Similar results can be easily obtained in the case with

nonuniform ensemble sizes.

We then define a constant c, hereafter called the fraction

coefficient, which satisfies 0 # c # 1. We let F’ c2P, so

that Eq. (16) is reduced to

1

q
�
q

i51

ui 5 x, and
1

q
�
q

i51
(ui 2 x)(ui 2 x)T ’ (1 2 c2)P.

(17)

In other words, the centers fui, i 5 1, . . . , qg can be gen-

erated as a set of state vectors whose sample mean and co-

variance are x and (12 c2)P, respectively. After obtaining

ui, one can generate the corresponding ensemblesXi
en, with

the sample means and covariances being ui and F’ c2P,

respectively. (How ui, and X
i
en can be generated is dis-

cussed in more detail in the supplemental material.)

From the above discussion, we see that c is a co-

efficient that sets how to divide P among F and

1/q�
q

i51(ui 2 x)(u
i
2 x)T, so that the constraints inEq. (16)

are satisfied. When c/ 0, we haveF/ 0 so that ~p(x) in

Eq. (13) approaches theMonte Carlo approximation in the

particle filter, with themass points equal to ui. On the other

hand, when c/ 1, we have 1/q�
q

i51(ui 2 x)(u
i
2 x)T/ 0,

so that all ui approach x and F approaches P. As a result,

~p(x) in Eq. (13) approaches the Gaussian pdf N(x : x,P),

which is essentially the assumption used in the EnKF. In

this sense, when equipped with the resampling algorithm,

the PEnKF is a filter in between the particle filter and the

EnKF, with an adjustable parameter c that influences its

behavior.

We note that, when c/ 0 and under the constraint of

matching the first two moments, our resampling scheme

is quite similar to the posterior Gaussian resampling

strategy used in the Gaussian particle filter (Kotecha and

Djurić 2003; Xiong et al. 2006), in which one generates

particles from a Gaussian distribution with mean and co-

variance equal to those of the posterior pdf of the system

states. As a result, there is no guarantee that higher-order

moments of the new MON match those of the original

MON in our resampling scheme. If matching higher-order

moments is a concern, one may adopt alternative criteria,
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for instance, the one that aims to minimize the distance (in

certainmetric) between the newMONand theoriginal one.

The resampling procedure is then recast as an optimization

problem, in which one looks for the parameters (i.e., means

and covariances) of the new MON that satisfy the chosen

criterion as close as possible. In principle, this type of pa-

rameter estimation problem may be solved by the expec-

tation-maximization (EM) algorithm (Redner and Walker

1984; Smith 2007), but in practice, it is often computation-

ally very intensive to implement, due to the slow conver-

gence rate of theEMalgorithmand the high dimensionality

of the parameter space in constructing the newMON.We,

therefore, do not consider this type of sophisticated re-

sampling strategy in the present study.

For the purpose of pdf reapproximation, it is clear that

the MON is not the only choice. Several other alterna-

tives are available in the context of kernel density esti-

mation (KDE; Silverman 1986), and in principle all of

these can be used for pdf reapproximation. For instance,

KDE is adopted at the resampling step in the regularized

particle filter (RPF; Musso et al. 2001; Stavropoulos and

Titterington 2001) to construct a continuous pdf from the

particles before resampling. The new particles are then

sampled from the continuous pdf. In this respect, the

PEnKF is somehow similar to the RPF, especially if the

Gaussian kernel is adopted in the RPF for density esti-

mation. However, there also exist several differences,

which we summarize as follows:

d The RPF first constructs a continuous pdf, and then

draws a set of new particles with equal weights from the

resulting pdf. In contrast, the PEnKF aims to directly

approximate aMONby a newMONwith equal weights.
d In the RPF, various kernels can be adopted for the pur-

pose of constructing the continuous pdf. In the PEnKF,

we are confined to use the MON, since we seek to build

the PEnKF consisting of a set of parallel EnKFs.
d In the present work, the pdf reapproximation criterion

used in the PEnKF only captures the first twomoments

of the underlying pdf. In contrast, the KDE used in the

RPF could in principle yield a more comprehensive pdf

estimate, provided that there are sufficient particles. In

certain situations, however, the number of required

particles may also suffer from the ‘‘curse of dimension-

ality’’ (Silverman 1986, see chapter 4).

c. Outline of the PEnKF algorithm

To facilitate the comprehension of the PEnKF, here

we provide an outline of the main steps of its algorithm.

To avoid distraction, we will discuss the initialization of

the PEnKF in the next section. Throughout this paper,

we assume that the number q ofGaussian components at

the resampling step and the number N of Gaussian

components at the prediction and correction steps are

time invariant. This implies the choice q 5 N.

Without loss of generality, we also assume that at time

instant k 2 1, the posterior pdf pa
k21(xk21jy1:k21) is re-

approximated, through the resampling step, by a mixture

model:

~pk21(xk21jy1:k21) 5 �
q

i51
~wi
k21N(xk21 : uk21,i,Fk21).

Moreover, the reapproximated analysis ensembles

fXk21,i
approx, i5 1, . . . , qg representing the Gaussian com-

ponents N(xk21 : uk21,i, Fk21) are also generated. The

procedures at the next assimilation cycle are outlined as

follows.

d Prediction step: For i 5 1, . . . , q, propagate the en-

sembles X
k21,i
approx forward through Eq. (1) to obtain

the corresponding background ensembles X
k,i
bg at in-

stant k. Accordingly, the background pdf becomes

pbk(xkjy1:k21) 5 �
q

i51
~wi
k21N(x

k
: x̂bk,i, P̂

b
k,i),

with x̂bk,i and P̂
b
k,i being the sample mean and co-

variance of the ensemble X
k,i
bg , respectively.

d Correction step: With an incoming observation yk,

for each background ensembleXk,i
bg, i5 1, . . . , q, apply

an EnKF to obtain the analysis mean x̂ak,i and the

analysis ensemble X
k,i
ana. During the correction, co-

variance inflation and localization [cf. section 4b(2)]

can be conducted on the EnKF. In addition, update the

associated weights ~wi
k21 to wi

k according to Eq. (9).

After the corrections, the analysis pdf becomes

pak(xk jy1:k) 5 �
q

i51
wi
kN(xk : x̂

a
k,i, P̂

a

k,i),

where wi
k are computed according to Eq. (9) in the

context of the EnKF, and P̂
a

k,i are the sample co-

variances of Xk,i
ana.

d Resampling step: Use the criterion in Eq. (12) to

determine whether to conduct resampling or not.

1) If there is no need for resampling, then assign

~p
k
(x

k
jy

1:k
)5 pa

k(xkjy1:k), and X
k,i
approx 5X

k,i
ana for i 5

1, . . . , q;

2) Otherwise, ~p
k
(x

k
jy1:k) 5 (1/q)�

q

i51N(x
k
: u

k,i, Fk
),

where parameters uk,i and Fk are computed fol-

lowing the method in section 3b, and the associ-

ated weights become 1/q. The ensembles X
k,i
approx

are produced accordingly.

4. Numerical experiments

a. Experiments’ design

In the present work, we focus on two different im-

plementations of the PEnKF: the first is based on the
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stochastic EnKF (SEnKF) of Evensen (1994) and the

second is based on the ensemble transformKalman filter

(ETKF) of Bishop et al. (2001). These two implemen-

tations are referred to as the PSEnKF and the PETKF,

respectively.

The strongly nonlinear 40-dimensional system model

created by Lorenz and Emanuel (1998) (hereafter the

LE98 model) was chosen as the test bed to evaluate and

study the performance of these two filters. This model

mimics the time evolution of a scalar atmospheric quan-

tity. It is governed by the following set of equations:

dxi
dt

5 (x
i11 2 x

i22)xi212 x
i
1 8, i5 1, . . . , 40, (18)

where the nonlinear quadratic terms simulate advection

and the linear term represents dissipation. Boundary

conditions are cyclic (i.e., we define x21 5 x39, x0 5 x40,

and x41 5 x1). The model was numerically integrated

using the Runge–Kutta fourth-order scheme from time

t5 0 to t5 35 with a constant time step Dt5 0.05 (which

corresponds to 6 h in real time). To eliminate the impact

of transition states, the model trajectory between times

t 5 0 and t 5 25 was discarded. The assimilation ex-

periments were carried out during the period t5 25.05 to

t 5 35 where the model trajectory was considered to be

the ‘‘truth.’’ Reference states were then sampled from the

true trajectory and a filter performance is evaluated by

how well it is able to estimate the reference states using

a perturbed model and assimilating a set of (perturbed)

observations that was extracted from the reference states.

In this work we consider two scenarios: one with a lin-

ear observation operator and the other with a nonlinear

operator. The concrete forms of these two observational

operators will be given in the relevant sections below.

The time-averaged root-mean-square error (rmse) is

used to evaluate the performance of a filter. Given a set

of n-dimensional state vectors fxk: xk 5 (xk,1, . . . , xk,n)
T,

k 5 0, . . . , kmaxg, with kmax being the maximum time

index (kmax5 199 in our experiments), then the rmse ê is

defined as

ê 5
1

kmax 1 1
�
k
max

k50

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n
�
n

i51
(x̂a

k,i 2 x
k,i
)2

v

u

u

t

, (19)

where x̂ak 5 (x̂ak,1, . . . , x̂
a
k,n)

T is the analysis state of xk.

A possible problem in directly using ê as the perfor-

mance measure is that ê itself may depend on some in-

trinsic parameters of the filters (e.g., the covariance

inflation factor and localization length scale, which will

be discussed later). This may lead to inconsistent conclu-

sions at different parameter values. To avoid this problem,

we adopted the following strategy: we relate a filter’s best

possible performance to the minimum rmse ê
min

, which is

the minimum value of ê that the filter can achieve within

the chosen ranges of the filter’s intrinsic parameters. In

performance comparison, if the minimum rmse êAmin of

filterA is less than theminimumrmse êBmin of filterB, filter

A is said to perform better than filter B.

b. Implementation details

1) FILTER INITIALIZATION

To initialize the PEnKF, we first estimate the mean

and covariance of the LE98 model over some time in-

terval following Hoteit et al. (2008). These statistics are

then used to produce the pdf p
f
0 (x0) of the background at

the first assimilation cycle as a MON.

Concretely, the LE98 model was first integrated for

a long period (between t5 0 and t5 1000) starting from

an initial state that has been drawn at random. The

trajectory that falls between t 5 50.05 and t 5 1000 was

used to estimate the mean x̂
ds
and covariance P̂

ds
of the

dynamical system. To initialize p
f
0 (x0) as a mixture of N

Gaussian distributions,

p
f
0 (x0) 5

1

N
�
N

i51
N(x0 : x

f ,i
0 ,Pcom), (20)

where x
f ,i
0 are the means, and P

com
is the common

covariance matrix of the Gaussian distributions in the

mixture, we draw N samples x
f ,i
0 from the Gaussian

distribution N(x
b
: x̂ds, P̂ds), and set Pcom 5 P̂ds. If x̂

f
0 5

1/N�
N

i51x
f ,i
0 denotes the sample mean of x

f ,i
0 , then the

covariance P
f
0 of p

f
0 (x0) is given by

P
f
0 5 P̂ds 1

1

N
�
N

i51
(x

f ,i
0 2 x̂

f
0 )(x

f ,i
0 2 x̂

f
0 )

T, (21)

which is always larger than P̂ds. The rationale behind this

choice is not far from the covariance inflation technique

(Anderson and Anderson 1999; Whitaker and Hamill

2002). In practice, a data assimilation system is often

subject to various errors, such as poorly known model

and observational errors, sampling errors, etc. In such

circumstances, an inflated background covariance would

allocate more weights to the incoming observation when

updating the background to the analysis, making the

filter more robust (Jazwinski 1970; Simon 2006).

2) COVARIANCE INFLATION AND LOCALIZATION

Covariance inflation (Anderson and Anderson 1999;

Whitaker and Hamill 2002) and localization (Hamill

et al. 2001) are two popular techniques that are used to

improve the stability and performance of the EnKF
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(Hamill et al. 2009; Van Leeuwen 2009), especially in

the small ensemble scenario. In our experiments, these

two techniques are implemented for each EnKF in the

PEnKF.

More concretely, to introduce covariance inflation

to the ith EnKF at instant k, we multiply the analysis

covariance P̂
a

k,i (before the resampling step) by a factor

(1 1 d)2, where the scalar d $ 0, called covariance in-

flation factor, is introduced as an intrinsic parameter of

the EnKF. On the other hand, we follow the method in

Hamill et al. (2001) to conduct covariance localization

on the background covariance and its projection onto

the observation space, with the tapering function (for

smoothing out spuriously large values in covariance

matrices) being the fifth-order function defined in

Eq. (4.10) of Gaspari and Cohn (1999). In doing so,

another intrinsic scalar parameter lc . 0, called the

length scale (Hamill et al. 2001), is introduced to the

EnKF. Roughly speaking, lc is a parameter that de-

termines the critical distance beyond which the tapering

function becomes zero.

c. Experiments results with a linear observation

operator

In the first scenario, we let the (synthetic) observations

be generated every day (four model time steps) from the

reference states using the following linear observation

system:

yk 5 (xk,1, xk,3, . . . , xk,39)
T
1 vk, (22)

where only the odd state variables xk,i (i 5 1, 3, . . . , 39)

of the system state xk [ (xk,1, . . . , xk,40)
T at time index

k are observed. The observation noise vk follows the

20-dimensionalGaussian distributionN(v
k
: 0, I

20
) with I

20

being the 20 3 20 identity matrix.

1) EFFECT OF THE NUMBER OF GAUSSIAN

DISTRIBUTIONS

In the first experiment we examine the effect of the

number of Gaussian distributions on the performance of

the PSEnKF and the PETKF. The experiment settings

are as follows.

We initialize the pdf p
f
0(x0) with N Gaussian pdfs. In

our experiments we let N take values between 1 and 60.

Since it is costly to carry out the computation for each

integer in this interval, we choose to letN increase from

1 to 10, with an even increment of 1 each time, and then

increase it from 15 to 60, with a larger increment of 5

each time, as N becomes larger. For convenience, we

denote this choice by N 2 f1: 1: 10, 15: 5: 60g, where

the notation ymin: yinc: ymax represents a set of values

increasing from ymin to ymax, with an even increment of

yinc each time. If there is a need to conduct resampling,

we reapproximate the analysis MON by a new MON

with equal weights and with the same number of normal

distributions. In doing so, we introduce a new parameter

(i.e., the fraction coefficient c defined in section 3b) to

the PSEnKF/PETKF. To examine its effect on the per-

formance of the filter, we let c 2 f0.05: 0.1: 0.95g. The

ensemble size is set to m 5 20 in each SEnKF/ETKF,

which is relatively small compared to the system di-

mension 40. In this case, it is customary to conduct

covariance inflation (Anderson and Anderson 1999;

Whitaker and Hamill 2002) and localization (Hamill

et al. 2001) to improve the robustness and performance

of the filters (Hamill et al. 2009; Van Leeuwen 2009).

The impacts of covariance inflation and localization on

the performance of the EnKF have been examined in

many works (e.g., see Whitaker and Hamill 2002). In

our experiments we let the covariance inflation factor d5

0.02. We follow the settings in Luo et al. (2010, their

section 7.2.3) to conduct covariance localization and

choose the length scale lc 5 50. To reduce statistical

fluctuations, we repeat the experiments 20 times, each

timewith a randomly drawn initial background ensemble,

but with the same true trajectory and the corresponding

observations. The same repetition setting is adopted in all

the other experiments.

Figure 1 plots the rms errors of both the PSEnKF and

PETKF as functions of the fraction coefficient c and the

number N of Gaussian pdfs. First, we examine how the

rmse of the PSEnKF changes with c when N is fixed. In

Fig. 1a, if N is relatively small (say N , 40), the rmse

tends to decrease as c increases. For larger N (say N 5

55), the rmse of the filter exhibits the bell-shaped be-

havior: at the beginning it increases when c grows from

0; after c becomes relatively large (i.e., c 5 0.4), further

increasing c reduces the rmse instead. Next, we examine

the behavior of the rmse of the PSEnKF with respect to

Nwhen c is fixed.When c is relatively small (i.e., c5 0.1),

the rmse exhibits the U-turn behavior: at the beginning

it intends to decrease as N grows; after N becomes rel-

atively large (i.e.,N5 45), further increasingN increases

the rmse instead. When c is larger, say, c5 0.6, the rmse

appears less sensitive to the change of N. However, for

even larger values of c, say, c5 0.9, the rmse appears to

monotonically decrease with N.

The behavior of the PETKF (cf. Fig. 1b) with re-

spect to the changes of N and c is similar to that of the

PSEnKF. Therefore we do not repeat its description

here.

To examine the minimum rms errors ê
min

of the

PSEnKFand the PETKFwithin the tested values of c and

N, we plot êmin of both filters as functions of N in Fig. 2.
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The êmin of both filters tends to decrease as the numberN

of Gaussian distributions increases, though there also

exhibit certain local minima. The PSEnKF achieves its

lowest êmin atN5 60, while the PETKF atN5 50. As N

grows, both the PSEnKF and the PETKF tend to have

lower ê
min

than their corresponding base filters, the

SEnKF and the ETKF (corresponding to the PSEnKF

and the PETKF with N 5 1, as discussed in section 3b),

respectively. This confirms the benefit of accuracy im-

provement by using the PEnKF instead of an EnKF. A

comparison between the PSEnKF and the PETKF shows

that the PETKF performs better than the PSEnKF when

the numberN ofGaussian distributions is relatively small

(i.e.,N# 7). However, asN becomes larger, the PSEnKF

outperforms its ETKF-based counterpart. Similar phe-

nomena can also be observed in other experiments, as

will be seen later.

2) EFFECT OF THE ENSEMBLE SIZE

In the second experiment we examine the effect of the

ensemble size of each SEnKF/ETKF in the PEnKF, on

the performance of the PSEnKF/PETKF. For reference,

we also examine the performance of the SEnKF and the

ETKF under various ensemble sizes. The experiment

settings are as follows. For the PSEnKF and the PETKF,

we let the ensemble size m of each EnKF take values

from the set f20, 40, 80, 100, 200, 400, 800, 1000g. For

a single SEnKF/ETKF, we let m 2 f20, 40, 80, 100, 200,

400, 600, 800, 1000g, with two more values at 60 and 600.

In the PSEnKF and the PETKF, we also vary the

fraction coefficient c such that c 2 f0.05: 0.1: 0.95g. We

fix the number N of Gaussian pdfs (i.e., the number of

ensemble filters) to be 3. To conduct covariance in-

flation, we let the inflation factor d5 0.02. We choose to

conduct covariance localization, and set the length scale

lc 5 50, only if the ensemble sizem is not larger than the

dimension 40 of the LE98 model. No covariance local-

ization was conducted if m . 40. Our experience shows

that form. 40, the benefit of conducting localization is

not significant even if the length scale lc is properly chosen,

while an improper value of lc is more likely to deteriorate

the filter performance. To reduce statistical fluctuations,

the experiments are again repeated 20 times.

In Fig. 3 we show the rms errors of the SEnKF and the

ETKF as functions of the ensemble size m. The rmse of

the ETKF exhibits a U-turn behavior. The rmse of the

ETKF monotonically decreases as long as m , 100.

Beyond that, the rmse monotonically increases instead

as m increases. On the other hand, the SEnKF exhibits

a different behavior. Its rmse decreases form# 200, and

FIG. 1. RMS errors (over 20 experiments) of the (a) stochastic

EnKF- and (b) ETKF-based PEnKFs (with a fixed ensemble size of

20 in each ensemble filter) as functions of the fraction coefficient

and the number of Gaussian pdfs in the MON.

FIG. 2. Minimum rms errors êmin (over 20 experiments) of the

stochastic EnKF- andETKF-based PEnKFs (with a fixed ensemble

size of 20 in each ensemble filter) as a function of the number of

Gaussian pdfs in the MON.
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then reaches a plateau where the rmse remains almost

unchanged as m further increases.

Figure 4 plots the rms errors of the PSEnKF and the

PETKF as functions of the fraction coefficient c, and the

ensemble size m in the SEnKF and the ETKF used to

construct the corresponding PEnKFs. The rmse errors,

as functions of the ensemble size m (with fixed c), are

consistent with our observations in Fig. 3. On the other

hand, for both PEnKFs, their rms errors tend to decrease

as the fraction coefficient c increases.

Per analogy to the first experiment, Fig. 5 plots the

minimum rms errors êmin of the PSEnKF and the PETKF

within the tested fraction coefficient c and the ensemble

size m. A comparison between Figs. 5 and 3 shows that,

the minimum rms errors êmin of the PEnKFs behave very

similarly to the rms errors of their corresponding EnKFs

in Fig. 3. Moreover, the values of ê
min

in Fig. 5 tends to be

lower than the corresponding rms errors in Fig. 3, in-

dicating the benefit of accuracy improvement in using the

PEnKFs. Again, a comparison between the PSEnKF and

the PETKF shows that the PETKF performs better than

the PSEnKF when the ensemble sizem is relatively small

(i.e., m # 40). However, as m becomes larger, the

PSEnKF outperforms the PETKF.

d. Experiments results with a nonlinear

observation operator

In the second scenario, we introduce nonlinearity to

the observation system. To this end, we let the obser-

vations be generated by the following nonlinear process:

y
k
5 0:05(x2k,1, . . . , x

2
k,39)

T
1 v

k
(23)

for every four model time steps. In Eq. (23), again only

the odd state variables x
k,i (i5 1, 3, . . . , 39) of the system

state xk [ (xk,1, . . . , xk,40)
T at time index k are ob-

served. The observation noise vk also follows the

20-dimensional Gaussian distribution N(v
k
: 0, I20). We

conduct the same experiments as those in the case of

linear observation operator.

1) EFFECT OF THE NUMBER OF GAUSSIAN

DISTRIBUTIONS

We first examine the effect of the number of Gaussian

distributions. The experiment settings are the same as

those in section 4c(1). Concretely, For either the PSEnKF

or the PETKF, the number of Gaussian distributions

N 2 f1: 1: 10, 15: 5: 60g and the fraction coefficient

c 2 f0.05: 0.1: 0.95g. For each individual SEnKF/ETKF

in the PEnKF, the ensemble sizem 5 20, the covariance

inflation factor d 5 0.02, and the length scale lc 5 50 for

covariance localization. As before, the experiments are

repeated 20 times to reduce statistical fluctuations.

FIG. 3. RMS errors (over 20 experiments) of the stochastic EnKF

and the ETKF as functions of the ensemble size.

FIG. 4. RMS errors (over 20 experiments) of the (a) stochastic

EnKF- and (b) ETKF-based PEnKFs (with a fixed number of

Gaussian pdfs of 3 in each PKF) as functions of the fraction co-

efficient and the ensemble size of the ensemble filter.
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Figure 6 plots the rms errors of both the PSEnKF and

the PETKF as functions of the fraction coefficient c and

the number N of Gaussian pdfs. When c and N changes,

both the PSEnKF and the PETKF behave very similar

to their counterparts in the linear case. The rms errors of

the filters tend to decrease as N increases, meaning that

the PSEnKF/PETKF with N . 1 in general performs

better than the stochastic EnKF/ETKF (corresponding

to the case N 5 1 in the PEnKF), consistent with the

results obtained in the linear observer case.

We also examine the minimum rms errors ê
min

of the

PSEnKFand the PETKFwithin the tested values of c and

N. Figure 7 plots ê
min

as functions ofN. For the PSEnKF,

the lowest êmin is achieved at N 5 50. And for the

PETKF, its êmin tends to decrease within the tested range

of N, and achieves its minimum at N 5 60. The PEnKF

with more than one Gaussian distributions (N . 1) per-

forms better than the corresponding EnKF (N 5 1).

In addition, a comparison between the PSEnKF and the

PETKF again shows that the PETKF performs better

than the PSEnKF when the number N of Gaussian dis-

tributions is relatively small, but tends to become worse

as N increases.

A comparison between Figs. 2 and 7 suggests that the

rmse of a filter (e.g., the PSEnKF at N 5 2) with a non-

linear observer may sometimes be lower than that of the

same filter with a linear observer.1 (This can be also

noticed in the results of Figs. 3 and 5 compared with

those from Figs. 8 and 10, respectively, with different

ensemble sizes.) This seemingly counterintuitive result

may happen because in such situations, the effect of

sampling error due to the relatively small ensemble size

dominates the effect of nonlinearity in the observation

system. However, as the number N of Gaussian distri-

butions increases, the effect of nonlinearity becomes

more prominent so that the filters with linear observation

system performs better than those with the nonlinear

observation system.

2) EFFECT OF THE ENSEMBLE SIZE

In the second experiment we examine the effect of the

ensemble size in each ensemble filter on the performance

of the corresponding PEnKF. For reference, we also ex-

amine the performance of the SEnKF and the ETKF

FIG. 5. Minimum rms errors êmin (over 20 experiments) of the

stochastic EnKF- and ETKF-based PEnKFs (with a fixed number

of Gaussian pdfs of 3 in each PKF) as a function of the ensemble

size in each ensemble filter.

FIG. 6. RMS errors (over 20 experiments) of the (a) stochastic

EnKF- and (b) ETKF-based PEnKFs (with a fixed ensemble size of

20 in each ensemble filter) as functions of the fraction coefficient

and the number of Gaussian pdfs in the MON.

1 The result of comparison should also depend on the filter in

use, its configuration, the system in assimilation, and so on, and

therefore may change from case to case.
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under various ensemble sizes. The experiment settings

are the same as those in section 4c(2). In the PSEnKF and

PETKF, we choose the fraction coefficient c 2 f0.05: 0.1:

0.95g. We also choose the number of ensemble filters in

each PEnKF to be 3. For each individual EnKF in the

corresponding PEnKF, we let the ensemble size m take

values from the set f20, 40, 80, 100, 200, 400, 800, 1000g,

and for the experiments on the single EnKF, we let m 2

f20, 40, 60, 80, 100, 200, 400, 600, 800, 1000g. To conduct

covariance inflation and localization in each individual

EnKF, we choose the inflation factor d 5 0.02, and the

length scale lc 5 50. As in section 4c(2), the covariance

localization is conducted only if the ensemble sizem is no

larger than the dimension 40.

Figure 8 shows the rms errors of the SEnKF and the

ETKF as functions of the ensemble size m. For both

filters, their rms errors decreases as the ensemble sizem

increases. The ETKF performs better than the SEnKF

in the small sample scenario with m 5 20. But as m in-

creases, the SEnKF outperforms the ETKF. In partic-

ular, divergence in the ETKF occurs if m . 400, which

did not happen in the linear observer case (cf. Fig. 3).

On the other hand, the rmse of the SEnKF appears to

reach a plateau for m . 400, similar to the linear ob-

server case. Comparing Fig. 8 with Fig. 3, it is easy to see

that, except for the stochastic EnKF at m 5 20, the

presence of nonlinearity in the observer deteriorates the

performance of the ensemble filters.

Figure 9 plots the rms errors of the PSEnKF and the

PETKF as functions of the fraction coefficient c, and

the ensemble size m in the corresponding SEnKF and

the ETKF, respectively. In the PSEnKF (cf. Fig. 9a),

the rmse tends to decrease as both c and m increases

when the ensemble size m # 800. However, when m .

800, the impact of m on the filter performance is not

significant, which is consistent with the results in Fig. 8.

On the other hand, in the PETKF (cf. Fig. 9b), filter

divergence occurs for m . 200, which is why we only re-

port its rmse with m # 200 in Fig. 9b, where the rmse of

the PETKF appears to be a monotonically decreasing

function of m and c.

In analogy to the first experiment, Fig. 10 plots the

minimum rms errors êmin of the PSEnKF and the PETKF

within the tested fraction coefficient c and ensemble size

m. One may observe that, similar to the SEnKF and the

ETKF themselves, the êmin of both the PSEnKF and

the PETKF decrease as m increases. However, for the

PETKF, divergence occurs ifm. 200, rather thanm.

400 as in Fig. 8, but overall its rmse is closer to that

obtained in the PSEnKF. Meanwhile, a comparison

between Figs. 8 and 10 shows that the PEnKFs perform

better than the corresponding EnKFs. Also, a compari-

son between Figs. 5 and 10 shows that, except for the

PSEnKF atm5 20, the nonlinearity in the observer again

deteriorates the performance of the ensemble filters.

5. Discussion

This paper presented a discrete solution of the optimal

nonlinear filter, called the particle Kalman filter (PKF),

based on the Gaussian mixture representation of the

state pdf given the observations. The PKF solves the

nonlinear Bayesian correction step by complementing

the Kalman filter–like correction step of the particles

with a particle filter–like correction step of the weights.

The PKF simultaneously runs a weighted ensemble of

FIG. 7. Minimum rms errors êmin (over 20 experiments) of the

stochastic EnKF- and ETKF-based PEnKFs (with a fixed ensemble

size of 20 in each ensemble filter) as a function of the number of

Gaussian pdfs in the MON.

FIG. 8. RMS errors (over 20 experiments) of the stochastic EnKF

and the ETKF as a function of the ensemble size.
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the Kalman filters in parallel. This is far beyond our

computing capabilities when dealing with computation-

ally demanding systems, as the atmospheric and oceanic

models. Therefore, to reduce computational cost, one

may instead consider a low-rank parameterization of the

Gaussian mixture covariance matrices of the state pdfs.

An efficient way to do that is to resort to the ensemble

Kalman filter (EnKF) and use an EnKF-like method to

update each component of the Gaussian mixture pdfs.

This amounts to running a weighted ensemble of the

EnKFs. In this work, the PKFwas implemented using the

stochastic EnKF and a deterministic EnKF, the ensemble

transform Kalman filter (ETKF). We call this type of

implementation the particle ensemble Kalman filter

(PEnKF).

The PEnKF sets a nonlinear Bayesian filtering frame-

work that encompasses the EnKF methods as a special

case. As in the EnKF, the Kalman correction in the

PEnKF attenuates the degeneracy of the ensemble by

allocating the ensemble members far away from the in-

coming observation relatively more weights than in the

particle filter, so that the filter can operate with reason-

able size ensembles. To further improve the performance

of the PEnKF, we also introduced to the PEnKF a

resampling step similar to that used in the regularized

particle filter (Musso et al. 2001; Stavropoulos and

Titterington 2001).

The stochastic EnKF and ETKF-based PEnKFs,

called the PSEnKF and the PETKF, respectively, were

implemented and their performance was investigated

with the strongly nonlinear Lorenz-96 model. These

filters were tested with both linear and nonlinear ob-

servation operators. Experiments results suggest that

the PSEnKF and the PETKF outperform their corre-

sponding EnKFs. It was also found that the ETKF out-

performs the stochastic EnKF for small-size ensembles

while the stochastic EnKF exhibits better performance

for large-size ensembles. We argued that this happens

because the EnKF endures less observational sampling

errors when the ensemble size is large. Another reason

would be the better approximation of the PEnKF dis-

tributions provided by the stochastic EnKF compared

to the ETKF. This was also true for their PEnKF coun-

terparts. Overall, the conclusions from the numerical

results obtained with the linear and nonlinear observa-

tion operators were not fundamentally different, except

that in general better estimation accuracy was achieved

FIG. 9. RMS errors (over 20 experiments) of the (a) stochastic

EnKF- and (b) ETKF-based PEnKFs (with a fixed number of

Gaussian pdfs of 3 in each PKF) as functions of the fraction co-

efficient and the ensemble size of the ensemble filter. In (b) the

ensemble size in each ensemble filter is only up to 200. Divergence

occurs in the ETKF-based PKF with ensemble sizes in each en-

semble filter larger than 200.

FIG. 10. Minimum rms errors êmin (over 20 experiments) of the

stochastic EnKF- and ETKF-based PEnKFs (with a fixed number

of Gaussian pdfs of 3 in each PKF) as a function of the ensemble

size in each ensemble filter.
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with the linear observer when the sampling error is

not the dominant factor. The results also suggest that

the PEnKFs could more benefit from the use of more

components in the mixture of normals (MON) and

larger ensembles in the EnKFs in the nonlinear ob-

servations case.

Future work will focus on developing and testing

new variants of the PEnKF that applies more efficient

approximations, in term of computational cost, to up-

date the mixture covariance matrices (Hoteit et al. 2002).

Another direction for improvementwould also be towork

on localizing the correction step of the particle weights

(Van Leeuwen 2009). Our final goal is to develop a set

of computationally feasible suboptimal PEnKFs that

can outperform the EnKF methods at reasonable com-

putational cost. As stated by Anderson (2003), devel-

oping filters in the context of the optimal nonlinear

filtering problem, rather than starting from the Kalman

filter, should lead to amore straightforward understanding

of their capabilities.

The paper further discussed how the PEnKF can

also be used as a general framework to simultaneously

run several assimilation systems. We believe that this

approach provides a framework to merge the solu-

tions of different EnKFs, or to develop hybrid EnKF–

variational methods. Work in this direction is under

investigation.
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