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Abstract

It is well-known that parameter estimates and forecasts are sensitive to assump-
tions about the tail behavior of the error distribution. In this paper we develop
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of the accompanying error distribution. Our simulation-based approach models
errors with a tν-distribution and, as new data arrives, we sequentially compute
the marginal posterior distribution of the tail thickness. Our method naturally
incorporates fat-tailed error distributions and can be extended to other data
features such as stochastic volatility. We show that the sequential Bayes factor
provides an optimal test of fat-tails versus normality. We provide an empir-
ical and theoretical analysis of the rate of learning of tail thickness under a
default Jeffreys prior. We illustrate our sequential methodology on the British
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credit crisis using daily S&P500 returns. Our method naturally extends to
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1 Introduction

Fat-tails are an important statistical property of time series prevalent in many fields,

particularly economics and finance. Fat-tailed error distributions were initially in-

troduced by Edgeworth (1888) and explored further by Jeffreys (1961) who once re-

marked that “. . . all data are t4”. They can be incorporated into dynamic models as

latent variable scale mixtures of normals (Carlin, Polson and Stoffer, 1992, Frühwirth-

Schnatter, 2006). In this paper, we develop a simulation-based sequential inference

procedure for estimating the tail behavior of a time series using the tν-distribution.

This family is attractive for this purpose due to its flexibility with normality (ν = ∞)

and Cauchy (ν = 1) errors as special cases. Our method complements the existing

literature by estimating the set of sequential posterior distributions p(ν|yt) for data

yt = (y1, . . . , yt) and t = 1, . . . , T , as opposed to MCMC which estimates ν given the

full data history p(ν|yT ) (see Geweke, 1993, Eraker, Jacquier and Polson (JPR), 1998,

Jaquier, Polson and Rossi, 2004 and Fonseca, Ferreira and Migon, 2008). In other

words, our methodology allows the researcher to estimate and update not only model

parameters but also the tail-thickness of the error distribution as new data arrives.

The novel feature of our approach are the on-line estimates of the tail thick-

ness of the error distribution using the marginal posterior distribution of the degrees

of freedom parameter ν. Our method is based on particle learning (PL, see Car-

valho et al., 2010, and Lopes et al., 2010). We analyze two cases in detail: in the

first observations yt follow the independent and identically distributed standard tν-

distribution, i.e. yt ∼ tν(0, 1) (iid-t case), and in the second observations follow a

non-identically distributed stochastic volatility model with fat-tails (SV-t case), i.e.

yt|ht ∼ tν(0, exp{ht}) are conditionally independent given the T -dimensional latent
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vector of log-volatilities hT = (h1, . . . , hT ), see JPR (2004) and Chib, Nardari and

Shephard (2002).

Our posterior distribution p(ν|yt) on the tail thickness is sensitive to the choice

of prior distribution, p(ν). We model the prior on the degrees of freedom ν using

a default Jeffreys prior (Fonseca et al., 2008) . In this setting, we show that the

Jeffreys prior has desirable properties. Primarily, it reduces bias for estimating the

tail thickness in small sized data sets. Moreover, it is well known that more data

helps to discriminate similar error distributions. Hence a priori we know that we will

need a larger dataset to discriminate a t20-distribution from a normal distribution

than a t4-distribution from a normal. We develop a metric based on the asymptotic

Kullback-Liebler rate of learning of tail thickness that can guide the amount of data

required to discriminate two error distributions. Given the observed data, we then

develop an empirical and theoretical analysis of the sequential Bayes factor provides

which provides the optimal test of normality versus fat-tails in our sequential context.

Recent estimation approaches for fat-tails use approximate latent Gaussian mod-

els (McCausland, 2008). We use the traditional data augmentation with a vector of

latent scale variables λt to avoid evaluating the likelihood (a T -dimensional integral).

We develop a particle learning algorithm for sampling from the sequential set of joint

posterior distributions p(λt, ν|yt), for the iid-t case, and from p(λt, ht, ν|yt), for the

SV-t case, for t = 1, . . . , T . The marginal posterior distribution p(ν|yt) provides esti-

mates of the tail-thickness of the error distribution. The purpose for developing new

estimation methods is apparent from a remark of Smith (2000) who warns that the

likelihood for non-Gaussian models can have several local maxima, be very skewed, or

have modes on the boundary of the parameter space, making estimating tail behavior

a complex statistical problem.
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The rest of the paper is outlined as follows. Section 2 describes how to sequentially

learn the tail of the tν-distribution under iid-t and SV-t models. Section 3 discusses

our particle learning implementation. We focus on using a default Jeffreys prior,

showing that this has a number of desirable properties when learning the fat-tailed

error distribution with finite samples. Section 4 provides an analysis of the sequential

Bayes factor for testing normality versus fat-tails. Section 5 provides our empirical

analysis and comparisons including an analysis of the British pound and US dollar

daily exchange rate and daily S&P500 returns from the credit crisis. Jacquier et al.

(2004) apply MCMC methods to the SV-t model to daily exchange rate on the British

pound versus the US dollar and we provide a sequential analysis for comparative

purposes. Finally, Section 6 concludes.

2 tν-distributed errors

Consider data yt = (y1, . . . , yt) arising from a fat-tailed tν-distribution. The data

are observed on-line and we wish our estimation procedure to take this into account.

Given a prior distribution p(ν), the aim is to compute a set of sequential marginal

posterior distributions p(ν|yt) which are given by Bayes rule

p(ν|yt) =
p(yt|ν)p(ν)

∫
p(yt|ν)p(ν)dν .

The marginal likelihood is given by p(yt|ν). In an iid setting, this likelihood is sim-

ply p(yt|ν) =
∏t

i=1 p(yi|ν), a product of marginals. In the SV-t setting, it is more

complicated and requires integrating out the unobserved t-dimensional vector of log-
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volatilities ht = (h1, . . . , ht), namely

p(yt|ν) =

∫ t∏

i=1

p(yi|hi, ν)p(h
t)dht

where p(yi|hi, ν) ∼ tν(0, exp{hi}). On advantage of particle methods is that this com-

putation will naturally occur within the procedure. Our task is to provide sequential

inference for the degrees of freedom or tail thickness parameter, ν, via the set of

marginal posterior distributions p(ν|yt), for t = 1, . . . , T . To do this, we will first use

a standard data augmentation and then provide a sequential Monte Carlo algorithm

to sample from p(λt, ν|yt) which we now describe for the iid-t and SV-t models.

2.1 The iid-t model

Consider iid observations yt, for t = 1, . . . , T , from a fat-tailed location-scale model

yt = µ+ σηt where ηt
iid∼ tν(0, 1).

Data augmentation uses a scale mixture of normals representation by writing ηt in

two steps: i) ηt =
√
λtǫt and ii) λt

iid∼ IG(ν/2, ν/2), where IG denotes the inverse

gamma distribution. The marginal data distribution, integrating out λt, is then the

fat-tailed tν-distribution p(yt|ν, µ, σ2) ∼ tν(µ, σ
2), where σ2 can be interpreted as a

scale parameter. This leads to a model

yt = µ+ σ
√

λtǫt where (λt|ν) iid∼ IG(ν/2, ν/2) and ǫt
iid∼ N(0, 1).

By doing so, we have created a conditionally dynamic Gaussian model (Frühwirth-

Schnatter, 2006). For a given ν, estimation of the other parameters results in a
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mixture Kalman filter algorithm (Chen and Liu, 2000, Carvalho et al., 2010). We

will focus on extending this to incorporate learning about ν. These specifications lead

to a likelihood function p(y|µ, σ2, ν) of the form

p(y|µ, σ2, ν) =
T∏

t=1

Γ
(

ν+1
2

)

√
νΓ
(

ν
2

)

[

1 +
1

ν

(
yt − µ

σ

)2
]
−

ν+1
2

with marginal distribution p(yt|ν) =
∫
p(yt|ν, µ, σ2)p(µ, σ2)dµdσ2. Fonseca et al.

(2008) make the important observation that the marginal likelihood for ν becomes

unbounded as ν → ∞ and the maximum likelihood estimator is not well-defined.

This leads us to further develop an approach based on prior regularization, namely

that the degrees of freedom parameter ν is random with a prior distribution p(ν)

which we further discuss in Section 2.3.

Inference on the parameters (µ, σ2) is not the focus of our study and for sim-

plicity we assume that either they are known quantities or taken from a standard

diffuse prior, p(µ) ∝ 1 and inverse-gamma prior σ2 ∼ IG(n0/2, n0σ
2
0/2) given hyper-

parameters n0 and σ2
0. These parameters control, respectively, the shape and the

location of the distribution.

2.2 The SV-t model

A common model of time-varying volatility is the stochastic volatility model with

fat-tails (SV-t) for returns and volatility (see Lopes and Polson, 2010a, for a recent

review). The basic SV model is specified by evolution dynamic

yt = exp{ht/2}ǫt ǫt
iid∼ N(0, 1)

ht = α+ βht−1 + τut ut
iid∼ N(0, 1).
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The fat-tailed SV-t is obtained by adding an extra random scale parameter λt and, as

described in the conditionally iid setting, is equivalent to assuming that ǫt ∼ tν(0, 1)

(see, for example, JPR, 2004). The model can then be expressed as

yt = exp{ht/2}
√

λtǫt ǫt
iid∼ N(0, 1)

ht = α+ βht−1 + τut ut
iid∼ N(0, 1)

λt
iid∼ IG(ν/2, ν/2).

The parameter β is the persistence of the volatility process and τ 2 the volatility of the

log-volatility. Estimation of these parameters will be greatly affected by the fat-tail

error assumptions which in turn will affect predicting price and volatility (see, for

example, Jacquier and Polson, 2000).

To complete the model specification, we need a prior distribution for the param-

eters (α, β, τ 2) given ν. For simplicity, we take a conditionally conjugate normal-

inverse-gamma-type prior. Specifically, (α, β)|τ 2 ∼ N(b0, τ
2B0) and τ 2 ∼ IG(c0, d0),

for known hyper-parameters b0, B0, c0 and d0. This conditionally conjugate structure

will aid in the development of our particle learning algorithm as it leads to condi-

tional sufficient statistics. Non-conjugate prior specifications can also be handled in

our framework, see Lopes et al. (2010) for further discussion.

2.3 Priors on ν

In the models considered so far, an important modeling assumption is the regulariza-

tion penalty p(ν) on the tail thickness. A default Jeffreys-style prior was developed

by Fonseca et al. (2008) and, we will see, with a number of desirable properties –

particularly when learning a fat-tail (e.g., a t4-distribution) from a finite dataset. The
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default Jeffreys prior for ν takes the form

p(ν) =
1

σ

(
ν

ν + 3

)1/2{

ψ′

(ν

2

)

− ψ′

(
ν + 1

2

)

− 2(ν + 3)

ν(ν + 1)2

}1/2

(1)

where ψ′(a) = d{ψ(a)}/da and ψ(a) = d{log Γ(a)}/da are the trigamma and digamma

functions, respectively. The interesting feature of this prior is its behavior as ν goes

to infinity and it has polynomial tails of the form p(ν) ∼ ν−4. This is in contrast to

commonly used priors such as Fernandez and Steel (1999) and Geweke (1993) who

essentially specify priors with exponential tails of the form ν exp{−λν}, for a subjec-

tively chosen hyper-parameter, λ. In this case, the tail of the prior decays rather fast

for large values of ν and assessing the degree of tail thickness can require prohibitively

large samples.

In our empirical analysis we will show how this prior reduces bias in the posterior

mean E(ν|yt) and also how it helps discriminate a fat-tailed t4-distribution from

normality. On the other hand, the flat uniform prior suffers from placing too much

mass on high values of ν – which are close to normality – making the inference problem

harder for finite samples.

3 Particle learning for fat-tails

We now provide a discussion of particle learning with particular reference to esti-

mating fat-tails. Sequential Bayesian computation requires calculation of a set of

posterior distributions p(ν|yt), for t = 1, . . . , T , where yt = (y1, . . . , yt). Carvalho et

al. (2010) and Lopes et al. (2010) present a sequential simulation strategy to both

p(ν|yt) and p(yt) based on a resample-sampling framework called particle learning

(PL).
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Central to PL is the creation of a essential state vector Zt to be tracked sequen-

tially. We assume that this vector is conditionally sufficient for the parameter of

interest; so that p(ν|Zt) is either available in closed-form or can easily be sampled

from. More precisely, given samples {Z(i)
t }N

i=1 ∼ p(Zt|yt) and a Rao-Blackwellised

identity, then a simple mixture approximation to the set of posteriors is given by

pN(ν|yt) =
1

N

N∑

i=1

p(ν|Z(i)
t ).

Here the conditional posterior p(ν|Z(i)
t ) will include the dependence on σ2 for the

iid-t case and (α, β, τ 2) and the latent volatilities ht = (h1, . . . , ht) for the SV-t case

through the essential state vector.

The task of sequential Bayesian computation is then equivalent to a filtering prob-

lem for the essential state vector, drawing {Z(i)
t }N

i=1 ∼ p(Zt|yt) sequentially from the

set of posteriors. To this end, PL exploits the following sequential decomposition of

Bayes’ rule

p(Zt+1|yt+1) =

∫

p(Zt+1|Zt, yt+1) dP(Zt|yt+1)

∝
∫

p(Zt+1|Zt, yt+1)
︸ ︷︷ ︸

propagate

p(yt+1|Zt)
︸ ︷︷ ︸

resample

dP(Zt|yt).

The distribution dP(Zt|yt+1) ∝ p(yt+1|Zt)dP(Zt|yt) is a 1-step smoothing distribution.

Here P(Zt|yt) denotes the current distribution of the current state vector and in

particle form corresponds to 1
N

∑N
i=1 δZ(i)

t

, with δ a Dirac measure.

Bayes rule above then gives us a prescription for constructing a sequential simulation-

based algorithm: given P(Zt|yt), find the smoothed distribution P(Zt|yt+1) via resam-

pling and then propagate forward using p(Zt+1|Zt, yt+1). This simply finds draws from
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the next filtering distribution P(Zt+1|yt+1). Parameter inference is then achieved of-

fline using p(θ|Zt+1).

From a sampling perspective, this leads to a very simple algorithm for updating

particles {Zt}N
i=1 to {Zt+1}N

i=1 in 3 steps:

1. Resample: with replacement from a multinomial with weights proportional to

the predictive distribution p(yt+1|Z(i)
t ) to obtain {Zζ(i)

t }N
i=1;

2. Propagate: with Z
(i)
t+1 ∼ p(Zt+1|Zζ(i)

t , yt+1) to obtain {Z(i)
t+1}N

i=1;

3. Learning: ν from p(ν|Zt+1).

The ingredients of particle learning are the essential state vector Zt, a predictive prob-

ability rule p(yt+1|Z(i)
t ) for resampling ζ(i) and a propagation rule to update particles:

Z
ζ(i)
t → Z

(i)
t+1. The essential state vector will include the necessary conditional suffi-

cient statistics for parameter learning given a model specification.

3.1 PL for the iid-t case

First, we consider the normal location-scale model of Section 2.1 with µ = 0 for

simplicity. The model corresponds to a data augmentation scheme (yt|σ2, λt) ∼

N(0, σ2λt) with (λt|ν) ∼ IG(ν/2, ν/2). To complete the model we assume priors

of the form σ2 ∼ IG(n0/2, n0σ
2
0/2) and Jeffreys prior p(ν) for ν (equation 1).

Now, the key to our approach is the use of an essential state vector Zt. The algo-

rithm requires the following distributions: p(yt+1|Zt), p(ν, σ
2|Zt) and p(λt|σ2, ν, yt).

Bayes rule yields

p
(
ν|λt

)
≡ p(ν|S1,t, S2,t) ∝ p(ν)

(

(ν
2
)

ν

2

Γ(ν
2
)

)t

S
−(ν/2+1)
1,t exp{−νS2,t/2} (2)
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and

p(σ2|yt, λt) ≡ p(σ2|S3,t, S4,t) ∼ IG(S3,t/2, S4,t/2) (3)

with recursive updates for the parameter sufficient statistics

St1 = St−1,1λt and St2 = St−1,2 + 1/λt

St3 = St−1,3 + 1 and St4 = St−1,4 + y2
t /λt

with initial values S01 = 1, S02 = 0, S03 = n0 and S04 = n0σ
2
0.

Additionally, the predictive distribution for resampling and the latent state con-

ditional posterior for propagation are directly available as

p(yt+1|λt+1, St) ∼ tSt3+2

(

0,
St4

St3 + 2
λt+1

)

(4)

p(λt|µ, σ2, ν, yt) ∼ IG

(
ν + 1

2
,
ν + y2

t /σ
2

2

)

. (5)

Therefore we use an essential state vector given by Zt = (λt+1, St). We are now ready

to outline the steps of the PL scheme (see Panel A).

Although direct comparison with MCMC (Verdinelli and Wasserman, 1991) is not

the focus of this paper, we observe that MCMC is inherently a non-sequential proce-

dure. MCMC provides the full joint distribution p(hT , θ, ν|yT ) including smoothing

of the initial volatility states particle learning only computes p(hT , θ|yT ) – the distri-

bution of the final state hT and parameters θ. Another difference is in the assessment

of MC errors. MCMC generates a dependent sequence of draws, PL has standard
√
N MC bounds, but can suffer from accumulation of MC error for larger T . MCMC

for learning fat-tails ν can exhibit low conductance (Eraker, Jacquier and Polson,

1998), having difficulty escaping lower values of ν in the chain, and can lead to poor
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convergence.

3.2 PL for the SV-t case

Particle learning for the SV-t model is similar to the iid-t model despite being some-

what more elaborated with the latent state now being the scale mixture λt as well as

the log-volatilities ht. In addition, there are three parameters (α, β, τ 2) driving the

log-volatility dynamic behavior, as opposed to σ2 in the iid-t model.

Static parameters. Let us first deal with θ = (α, β, τ 2) the vector of fixed pa-

rameters driving the log-volatility equation (see Section 2.2). Conditional on the

latent volatilities ht = (h1, . . . , ht), sampling θ is rather straightforward since it

is based on the conjugate Bayesian analysis of the normal linear regression with

x′t = (1, ht−1) (Gamerman and Lopes, 2006, Chapter 2), i.e. (α, β|τ 2) ∼ N(bt, τ
2Bt)

and τ 2 ∼ IG(ct, dt). The parameter sufficient statistics are Sθ
t = (bt, Bt, ct, dt) and

they can determined recursively as

B−1
t bt = B−1

t−1bt−1 + htxt

B−1
t = B−1

t−1 + xtx
′

t (6)

ct = ct−1 + 1/2

dt = dt−1 + (ht − b′txt)ht/2 + (bt−1 − bt)
′B−1

t−1bt−1/2.

Resampling step. To sequentially resample the log-volatility ht and propagate

a new volatility state ht+1, we use the Kim, Shephard and Chib (1998) strategy of

approximating the distribution of log ỹ2
t , where ỹ2

t = y2
t /λt, by a carefully tuned seven-
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component mixture of normals2. Then, a standard data augmentation argument

allows the mixture of normals to be conditionally transformed in individual normals,

i.e. (εt|kt) ∼ N(µkt
, v2

kt
), such that kt ∼ Mult(π). Conditionally on kt, the SV-tmodel

for zkt
= log y2

t − log λt−µkt
can be rewritten as a standard first order dynamic linear

model, i.e.

(zkt
|ht, λt, kt) ∼ N(ht, v

2
kt

)

(ht|ht−1, θ) ∼ N(α+ βht−1, τ
2),

with conditional state sufficient statistics Sh
t = (mt, Ct) given by the standard Kalman

recursions (West and Harrison 1997). More explicitly, the conditional posterior

(ht|Sh
t , θ) ∼ N(mt, Ct) with moments given by

mt = (1 − At)at + Atzkt
and Ct = (1 − At)Rt (7)

where at = (α+ βmt−1), At = Rt/Qt, Rt = β2Ct−1 + τ 2 and Qt = Rt + v2
kt

.

Essential state vector. We will take advantage of the above Kalman recursions

in the resampling step. We use an essential state vector of the form

Zt = (λt+1, S
θ
t , S

ν
t , S

h
t ).

The subset (Sθ
t , S

ν
t ) of Zt is essentially the set (St1, . . . , St4) derived from the iid-t

model.

2More precisely, log ỹ2

t = ht + εt, where εt = log ǫ2t follows a log χ2

1
distribution, a parameter-free

left skewed distribution with mean −1.27 and variance 4.94. They show that the log χ2

1
can be well

approximated by
∑

7

j=1
πjN(µj , v

2

j ), where π = (0.0073, 0.1056, 0.00002, 0.044, 0.34, 0.2457, 0.2575),

µ = (−11.4,−5.24,−9.84, 1.51,−0.65, 0.53,−2.36) and v2 = (5.8, 2.61, 5.18, 0.17, 0.64, 0.34, 1.26).
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There are many efficiencies to be gained with this approach over traditional SMC

approaches. For example, we only need to sample ht−1 and ht (step 2) in order to

propagate Sθ
t and sample θ (step 4). In other words, PL does not necessarily need

to keep track of the log-volatilities. For instance, point-wise evaluations of p(ht|yt)

can be approximated by the Monte Carlo average of the Kalman filter densities, i.e.

pN(ht|yt) = 1
N

∑N
i=1 p(ht;m

(i)
t , C

(i)
t ).

For estimation of the fat-tails, we can use a Rao-Blackwellised density estimate.

For example in the SV-t case, in order to reduce Monte Carlo error, we use an estimate

of the form

p(ν|yt) = E
{
p(ν|λt, ht, y

t)
}
≈ 1

N

N∑

i=1

p(ν|(λt, ht)(i), yt),

where {(λt, ht)(i)}N
i=1 are draws from p(λt, ht|yt). This leads to efficiency gains as

the conditional p(ν|λt, ht, yt) and conditional mean E(ν|λt, ht, yt) are known in closed

form. We are now ready to outline the steps of the PL scheme for the SV-t model

(see Panel B).

4 Model assessment with a sequential Bayes factor

Sequential model determination is performed using a Bayes factor BFT (Jeffreys,

1961, West, 1984). This naturally extends to a sequential version for an infinite

sequence of (dependent) data we will still identify the “true” model. A probabilistic

approach for determining how quickly you can learn the tail of the error distribution
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is to use the recursion

BFT+1 =
p(yT+1|y1, . . . , yT )

q(yT+1|y1, . . . , yT )
BFT .

Blackwell and Dubins (1962) provide a general discussion of the merging of opin-

ions under Bayesian learning. They show that for any two models p(y1, . . . , yT ) and

q(y1, . . . , yT ) that are absolutely continuous with respect to each other, opinions that

merge in the following sense. First, BFT is a martingale, FT -measurable and under

Q,

EQ

(
p(yT+1|y1, . . . , yT )

q(yT+1|y1, . . . , yT )
FT

)

= 1 so that E (BFT+1|FT ) = BFT .

By the martingale convergence theorem, BF∞ = limT→∞ BFT exists almost surely

under Q and in fact BF∞ = 0 a.s. Q. Put simply, the sequential Bayes factor will

correctly identify the ‘true’ model Q under quite general data sequences include the

SV-t model we consider here in detail. Furthermore, by the Shannon-McMillan-

Breiman theorem (see, for example, Cover and Thomas, 2006) we can analyse the

rate of learning via the quantity

lim
T→∞

1

T
ln q(y1, . . . , yT ) → H a.s. Q,

where H is the entropy rate defined by H = limT→∞ EQ (− ln p(yT+1|y1, . . . , yT )) < 0.

Hence as H ∈ [−∞, 0) we have that BF∞ = 0. A similar result for the marginal

likelihood ratio

lim
T→∞

1

T
ln
p(y1, . . . , yT )

q(y1, . . . , yT )
→ lim

k→∞

EQ

(

ln
p(yk+1|yk, . . . , y1)

q(yk+1|yk, . . . , y1)

)

< 0 a.s. Q.
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We will use this in the next subsection.

Bayes factors have a number of attractive features as they can be converted

into posterior model probabilities when the model set is exhaustive. Lopes and

Tobias (2010) provide a recent survey including computational strategies based on

the Savage-Dickey density ratio. These results are only asymptotic and with a fi-

nite amount of data it helps to analyze the rate of learning using a Kullback-Leibler

metric.

4.1 Discriminating a t4 from a Gaussian

We can use these theoretical insights (see also Edwards, Lindman and Savage, 1963,

Lindley, 1956) to address the question a priori of “how long a time series one would

have to observe to have strong evidence of a t4 versus a Gaussian”? Jeffreys observed

that you need data sequences of length T = 500 to be able to discriminate the tails

of an underlying probability distribution. We now formalize this argument using our

sequential Bayes factor. One is motivated to define a priori the “expected” log-Bayes

factor for a given data length, BFT , under the Gaussian model

1

T
lnBFT = Et∞ ln

tν
t∞

= KL(tν , t∞)

under the Gaussian t∞-model where KL denotes Kullback-Leibler divergence. Then,

a priori, if we are given a level of Bayes factor discrimination BFT we then have to

observe on average T ⋆ observation to be able to discriminate the two models where

T ⋆ =
1

KL(tν , t∞)
lnBFT .
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This measure is asymmetric, as if the data is generated by a tν distribution, the

constant changes to KL(t∞, tν).

To illustrate the magnitudes of these effects, if we take ν = 3 and BF = 10

(strong evidence), for example, this argument would suggest that on average T = 150

observations from a standard normal are needed to strongly reject the t3 model, and

on average T = 20 observations from the t3 to strongly reject the standard normal

distribution. This is borne out in our empirical study. Figure 1 plots the first factor

in the above expression namely the Kullback-Leibler divergence between the tν-family

and the Gaussian.

This also confirms the analysis in Gramacy and Pantaleo (2010). In a multivariate

regression setting, they perform a Monte Carlo experiment where T and ν varied

with T ∈ {30, 75, 100, 200, 500, 1000} and ν ∈ {3, 5, 7, 10,∞}. They observed the

frequency of time the BF indicated strong preference (BF > 10) for a model. Under

normal errors, ν = 3 could be determined with high accuracy for T ≤ 200, ν = 5 took

T ≤ 1000 and for 10 ≤ ν < ∞ very large samples would be required to discriminate

the tails with any degree of posterior accuracy. Of course, for a given dataset, the

Bayes factor might provide strong evidence even for small samples. The Jeffreys prior

then has the nice property (by definition of the inverse of the Fisher information

matrix) of down-weighting these regions of the parameter space where it is hard to

learn the parameters.

It is also interesting to address the asymptotic behavior of the fat-tailed posterior

distribution when the true model is not in the set of models under consideration. Berk

(1966, 1970) assumes that the data generating process comes from yt ∼ q(y) – a model

outside our current consideration. Given our fat-tailed model p(y|θ, ν), Berk shows

that under mild regularity conditions that the posterior distribution p(θ, ν|y) will
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asymptotically concentrate with probability one on the subset of parameter values

where the Kullback-Leibler divergence between p(y|θ, ν) and q(y) is minimized or

equivalently
∫

log p(y|θ, ν)q(y)dy is maximized.

5 Empirical results

We now illustrate our methodology for iid SV-Student’s t error distributions (see

Sections 2.1 and 2.2 for the specifications). The iid-t model illustration will serve the

additional and important purpose of showing that the uniform prior is not necessarily

always a harmless prior. The SV-t model will be estimated sequentially on the British

pound/US dollar daily exchange rate series and daily returns on the S&P500 from

a period in 2007-2010 that includes the credit crisis. Resulting inferences will be

compared with MCMC at the end of the sample.

5.1 The iid-t model

To illustrate the efficiency of our approach, we simulate a sample of size T = 200 from

a Student’s t4 distribution, centered at zero and unit scale, i.e. σ2 = 1. Figures 2

and 3 show the joint posterior distributions of p(σ2, ν|yt) for t = 50, 100, 150 and 200

under, respectively, the uniform prior and the Jeffreys prior of Fonseca et al. (2008).

As the model implies that V ar(yt) = σ2ν/(ν − 2) one should not be too surprised

that there is a posterior correlation between σ2 and ν for small values of ν.

It is clear that the posterior provides fairly accurate sequential estimates for the

joint as well as the marginal distributions (the exact posterior probabilities are com-

puted on a fine bivariate grid). On the one hand, the Jeffreys prior, as anticipated,

penalizes larger values of ν with the penalization slightly decreasing as the sample
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size increases. On the other hand, the uniform prior is impartial with respect to the

number of degrees of freedom, so any information regarding ν comes exclusively from

the likelihood which, in turn, is fairly uninformative about ν for t = 50, 100 and 150.

Even when t = 200, there is still no negligible mass for values ν > 10. Figure 4

shows that PL estimates are still accurate when n = 1000. It also shows that the

marginal posterior of ν is highly concentrated around the true value for t > 500, as

theoretically predictive in Section 4.1 and Figure 1.

The undesirable bias of the not-so-harmless uniform prior is highlighted in the

Monte Carlo exercise summarized by Figures 5 and 6. The posterior means, medians

and modes of ν based on p(ν|yt), t = 30, 50, 100, 300, 400 and 500 are compared across

R = 50 samples. As it can be seen, the bias of the uniform prior is striking for samples

of size up to T = 100, when compared to those of the Jeffreys prior. For samples

of size T = 400 and T = 500 the bias is much smaller, but a closer look reveals its

presence. For example, the 25th percentiles of the mean, median and mode box-plots

when T = 500 are all above the true value ν = 4 for the uniform prior.

5.2 The SV-t model

We now revisit the well-known British Pound versus US Dollar exchange rate data of

Jacquier et al. (2004). The data consists of T = 937 daily rates form October 1st, 1981

to June, 28th 1985. For illustration purposes, we simulated data with exactly the same

length from a SV-t4 model with parameters (ν, α, β, τ 2) = (4,−0.202, 0.980, 0.018)

and initial value h0 = −8.053. Both simulated and real data sets are presented in

Figure 7.

The prior distribution of ν is given by the discretized version of Fonseca et al.’s

(2008) Jeffreys prior, similar to the approach taken in Section 5.1 (see equation 1).

19



The vector log-volatility parameters (α, β, τ 2) are independent, a priori, of ν and

its prior distribution is given by (α, β)|τ 2 ∼ N(b0, τ
2B0) and τ 2 ∼ IG(η0/2, η0τ

2
0 /2),

while the posterior for the log-volatility at time t = 0 is given by h0 ∼ N(m0, C0). The

hyper-parameters are set at the values m0 = log y2
1, C0 = 1.0, b0 = (−0.002, 0.97),

B0 = diag(1.0, 0.01), c0 = 5.0 and d0 = 0.1125.

Posterior inference is based on PL with N = 10, 000 particles. Figures 8 presents

2.5th, 50th and 97.5th percentiles of the sequential marginal distributions of α, β,

τ 2 and ν for both simulated and real data sets. For the simulated data, the pos-

terior distribution of ν concentrates around the true value ν = 4 after about 350

observations. For the real data, ν is highly concentrated with around ten degrees of

freedom at the end of the sample; however the right tail of the distribution, i.e. large

degrees of freedom, is fairly long for most of the sample. Another interesting fact is

that both normal and Student’s t model learn about α and β in a similar manner,

while the same cannot be said for the volatility of the log-volatility parameter, τ 2.

This is perhaps not surprising as the normal model overestimates the volatility of

log-volatility to accommodate the fact that daily rates violate the plain normality

assumption. The same behavior is present in our simulated data exercise. In fact, the

posterior distribution for the log-volatilities, p(ht|yt), for the simulated data based

on the normal model has larger uncertainty than for the tν model (Figure not shown

here). Finally, at the end of the sample we can calculate the marginal posterior on

the tail-thickness p(ν|yT ), our sequential particle approach agrees with the MCMC

analysis of Jacquier et al. (2004). This suggests that the MC accumulation error

inherent in our particle algorithm is small for these types of data length and models.
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5.2.1 S&P500: Credit Crisis 2008-2009

To study the effect of the credit crisis on stock returns we revisit daily S&P500 returns

previously studied, amongst many others, by Abanto-Valle et al. (2010) and Lopes

and Polson (2010b). The former paper estimates SV models with errors in the class

of symmetric scale mixtures of normal distributions and also base their illustration

on the S&P500 index from January 1999 to September 2008, therefore missing most

of the credit crunch crisis and its aftermath. We concentrate our analysis on the

period starting on January 3rd 2007 and ending on October 14th 2010 (T = 954

observations). We sequentially fit the normal model to this data set as well as the tν

model for ν ∈ {5, 10, 50}. Figure 9 summarizes our findings. The three Student’s t

models have higher predictive power than the normal model when measured in terms

of log-Bayes factors. This distinction is particularly strong when comparing the t5

(or t10) model with the normal model. Interestingly, the t5 model becomes gradually

closer to the normal model from July 2008 to July 2010, when again distances itself

from normality.

Before the onset of the credit crisis in July 2008, the model with the largest Bayes

factor (relative to a normal) and hence the largest posterior model probability (under a

uniform prior on ν) is the t5-distribution. This is maybe not surprising as the previous

time period consisted of little stochastic volatility and the occasional outlying return

– which is nicely accomodated by a t5 error distribution, in the spirit of Jeffreys

initial observation about “real” data. The interesing aspects of Bayesian learning

occur in the period of the crisis from July 2008 to March 2009. One immediately

sees a dramatic increase the stochastic volatility component of the model and the

clustering of a high period of volatility. In and of itself this is sufficient to “explain”

the extreme moves in the market. Corresponding, in terms of online estimation of
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the fat-tails the Bayes factor quickly moves to favor the model with light tails, here

the t10-distribution. Finally, as the crisis subsides, the volatility mean reverts and

the returns again look like they exhibit some outlying behavior (relative to the level

of volatility) and the sequential Bayes again starts to move to favor the fatter-tailed

t5-distribution.

6 Discussion

Estimating tail-thickness of the error distribution of an economic or financial time

series is an important problem as estimates and forecasts are very sensitive to the

tail behavior. Moreover, we would like an on-line estimation methodology that can

adaptively learn the tail-thickness and provide parameter estimates that update as

new data arrives. We model the error distribution as a tν-distribution where ν ∼ p(ν)

and we adopt a default Jeffreys prior on the tail-thickness parameter ν. We show that

this has a number of desirable properties when performing inference with a finite

amount of data. We use the sequential Bayes factor to provide an on-line test of

normality versus fat-tails and we derive its optimality properties asymptotically and

in finite sample using a Kullback-Leibler metric. We illustrate these effects in the

credit crisis of 2008-2009 with daily S&P500 stock return data. Our analysis shows

how quickly an agent can dynamically learn the tail of the error distribution whilst

still accounting for parameter uncertainty and time-varying stochastic volatility.

Whilst MCMC is computationally slow for solving the online problem it does also

provides the full smoothing distribution at the end of the sampler. This would require

O(N2) particles in our approach (see Carvalho et al., 2010, for further discussion) and

therefore if smoothed states are required we recommend filtering forward with parti-
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cles and smoothing with MCMC. Other estimation methods such as nested Laplace

approximation (Smith, 2000) seem unable to identify the true error structure due to

the multi-modalities present in the posterior and particle methods provide a natural

alternative. Clearly there are a number of extensions of our approach for example to

multivariate and dynamic panel data.
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Panel A: Particle learning for the iid-t model

Start at time t = 0 with particle set {(ν, σ2, S0)
(i)}N

i=1.

Step 1. For i = 1, . . . , N ,

• Sample λ
(i)
t+1 ∼ IG(ν(i)/2, ν(i)/2),

• Set Z
(i)
t = (λ

(i)
t+1, S

(i)
t ).

Step 2. Resample particles {(ν̃, σ̃2, Z̃t)
(i)}N

i=1 with weights proportional to

p(yt+1|Z(i)
t ) (equation 4),

Step 3. For i = 1, . . . , N ,

• Sample λ
(i)
t+1 ∼ p(λt+1|σ̃2(i), ν̃(i), yt+1) (equation 5),

• Update S
(i)
t+1 = S(S̃

(i)
t , yt+1, λ

(i)
t+1) (equation 4),

• Sample ν(i) ∼ p(ν|S(i)
t+1) (equation 2),

• Sample σ2(i) ∼ p(σ2|S(i)
t+1) (equation 3).

Set t = t+ 1 and return to step 1.
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Panel B: Particle learning for the SV-t model

Step 0. Sample λ
(i)
t ∼ IG(ν(i)/2, ν(i)/2),

Step 1. Resample particles {(S̃θ
t−1, S̃

h
t−1, λ̃t, θ̃)}N

i=1 with weights

w
(i)
t ∝

7∑

kt=1

πipN(z
(i)
kt

; a
(i)
t , Q

(i)
t ),

Step 2. Sample (ht−1, ht) from p(ht−1, ht|Sh
t−1, λt, θ, y

t):

Step 2.1. Sample ht−1 from
∑7

j=1 πjfN(ht−1; ĥt−1,j, Vt−1,j), where

ĥt−1,j = Vt−1,i(mt−1/Ct−1 + ztiβ/(v
2
i + τ 2))

Vt−1,j = 1/(1/Ct−1 + β2/(v2
j + τ 2))

for zti = log y2
t − log λt − µi − α,

Step 2.2. Sample ht from =
∑7

j=1 πjfN(ht; h̃tj,Wtj), where

h̃ti = Wti(z̃ti/v
2
i + (α+ βht−1)/τ

2)

Wti = 1/(1/v2
i + 1/τ 2)

for z̃ti = log y2
t − log λt − µi,

Step 3. Update S
ν(i)
t+1 (equation 4); sample ν(i) ∼ p(ν|Sν(i)

t+1 ) (equation 2),

Step 4. Update S
θ(i)
t (equation 6); sample θ ∼ p(θ|Sθ(i)

t ),

Step 5. Propagate S
h(i)
t (equation 7).
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Figure 1: i.i.d. model. Discriminating a tν from a Gaussian. KL(tν , t∞) (black) and
KL(t∞, tν) (grey). For ν = 4, 10, 20, theoretical sample sizes are T ∗ = 108, 446, 1473
for strong evidence against normality and T ∗ = 22, 220, 1009 for strong evidence
against tν .
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Figure 2: i.i.d. model. Sequential posterior inference for (σ2, ν) based on PL for
T = 200 iid observations drawn from t4 with uniform prior for ν. PL is based on
N = 10, 000 particles.
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Figure 3: i.i.d. model. Sequential posterior inference for (σ2, ν) based on PL for
T = 200 iid observations drawn from t4 with Jeffreys prior for ν. PL is based on
N = 10, 000 particles.
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Figure 4: i.i.d. model. Sequential posterior inference for ν based on PL for T = 1000
iid observations drawn from t4 with Jeffreys prior for ν. PL is based on N = 10, 000
particles.
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Figure 5: i.i.d. model. Posterior mean, median and mode for the number of degrees
of freedom ν under the uniform prior, for different sample sizes and based on a Gibbs
sampler of length M = 1000 after a burn-in period of M0 draws. Boxplots are based
on R = 50 datasets.
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Figure 6: i.i.d. model. Posterior mean, median and mode for the number of degrees
of freedom ν under the Jeffreys prior, for different sample sizes and based on a Gibbs
sampler of length M = 1000 after a burn-in period of M0 draws.Boxplots are based
on R = 50 datasets.
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Figure 7: SV-t model. The top row corresponds to simulated data (T = 937) from
the SV-tν model with parameters ν = 4, α = −0.202, β = 0.980, τ 2 = 0.018 and x0 =
−8.053. The bottom row corresponds to JPR’s (1994) British Pound vs US Dollar
exchange (T = 937) daily rates from go from October 1st,1981 to June 28th,1985.
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Figure 8: SV-t model. (2.5, 50, 97.5)-th percentiles of the sequential marginal posterior
distributions of α, β, τ 2 and ν for the normal (red lines) and Student’s t (black lines)
models.
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Figure 9: SV-t model for S&P500 returns. Top frame: S&P500 daily closing price
(divided by 100: solid thick line) along with PL approximations to the (2.5, 50, 97.5)-
th percentiles of the posterior distributions of the time-varying standard deviations
p(exp{xt/2}|yt), for t = 1, . . . , T , under the SV-t10 model. Middle frame: Log re-
turns. Bottom frame: Logarithm of the Bayes factors of tν against normality for
ν ∈ {5, 10, 50}.
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