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Abstract

Background: Titanium dioxide (TiO2) nanomaterials have considerable beneficial uses as
photocatalysts and solar cells. It has been established for many years that pigment-grade
TiO2 (200 nm sphere) is relatively inert when internalized into a biological model system
(in vivo or in vitro). For this reason, TiO2 nanomaterials are considered an attractive
alternative in applications where biological exposures will occur. Unfortunately, metal
oxides on the nanoscale (one dimension < 100 nm) may or may not exhibit the same toxic
potential as the original material. A further complicating issue is the effect of modifying or
engineering of the nanomaterial to be structurally and geometrically different from the
original material.

Results: TiO2 nanospheres, short (< 5 μm) and long (> 15 μm) nanobelts were synthesized,

characterized and tested for biological activity using primary murine alveolar macrophages and in

vivo in mice. This study demonstrates that alteration of anatase TiO2 nanomaterial into a fibre
structure of greater than 15 μm creates a highly toxic particle and initiates an inflammatory

response by alveolar macrophages. These fibre-shaped nanomaterials induced inflammasome

activation and release of inflammatory cytokines through a cathepsin B-mediated mechanism.

Consequently, long TiO2 nanobelts interact with lung macrophages in a manner very similar
to asbestos or silica.

Conclusions: These observations suggest that any modification of a nanomaterial, resulting
in a wire, fibre, belt or tube, be tested for pathogenic potential. As this study demonstrates,
toxicity and pathogenic potential change dramatically as the shape of the material is altered
into one that a phagocytic cell has difficulty processing, resulting in lysosomal disruption.

Background
There is an abundance of potential uses for TiO2, which
increase as the TiO2 is converted to a nanomaterial [1].

Pigment grade titanium dioxide is widely used as a pig-
ment due to its brightness and high refractive index. It can
be found in paints, plastics, paper, inks, foods, medicines
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(pills), and toothpaste. A very common application of
TiO2 is as an additive in sunscreen cosmetics because it
acts as a sink for UV exposure, converting the UV light to
heat [2]. Other uses include being a functional part in
some oxygen sensors, bone/medical implant integration,
cleaving proteins at proline sites [3], odor controller in cat
litter, and as a semiconductor [2]. In recent years, with the
development of nanotechnology, TiO2 nanobelts are
finding increasing applications as photocatalysts [4], and
TiO2 nanowires have uses in solar cells [5].

For many years TiO2 has been considered to be biologi-
cally inert, suggesting that environmental or occupational
exposure of the material, regardless of exposure route, was
relatively harmless and easily and effectively processed
out of the body. With the advent of nanotechnology some
of these assumptions of safety would be challenged [6,7].
In particular, the TiO2 material could be engineered in
terms of shapes and sizes. The reduction of the particle
size leads to higher specific surface area. Tailoring sphere-
shaped nanoparticles to fibre-shaped nanoparticles such
as nanowires, nanobelts and nanotubes is very attractive
[8,9], because fibre-shaped nanomaterials have advan-
tages in the application of photocatalysis, charge transfer
and sensing due to its unique structure. Preliminary toxi-
cological studies have produced conflicting results with
regard to the toxic potential of these engineered materials
depending on the biological model and material used.

In vivo studies showed that rats instilled with anatase
nanorods and nanodots did not produce lung inflamma-
tion or pathological changes differing from pigment-
grade TiO2 indicating that the increased surface area of
the nano-sized TiO2 had no effect on toxicity [10]. This
observation was confirmed using nanoquartz and quartz
in a similar study [11]. In another study, the same group
attributed observed differences in the toxicity of ultrafine
TiO2 particles to differences in rutile/anatase surface
properties [12]. Another in vivo study exposing mice to
TiO2 nanoparticles (2 to 5 nm) was essentially negative
showing a reversible inflammation characterized by an
increase in alveolar macrophages (AM) in lungs [13]. A
recent study using mice injected repeatedly with TiO2 (5
nm) nanoparticles in the abdominal cavity suggested that
inflammatory damage was limited to the organs where the
TiO2 nanoparticles accumulated over time, namely the
liver, kidney and myocardium of the exposed mice [14]. A
similar study in mice using variable TiO2 dosages came to
the same conclusion with the exception of the spleen and
lung being added to the list of organs where the nanopar-
ticles accumulate [15].

In contrast, another study using fibrous TiO2 compared to
pigment-grade TiO2 exposed to rat macrophages showed
that the fibrous form of the TiO2 was much more cyto-
toxic, leading this group to conclude that TiO2 toxicity

was dependent on the shape of the particle being proc-
essed by the macrophage [16]. Other claims of damage
seen in TiO2 ultrafine particle exposures in vitro include
hydrogen peroxide release and oxidative DNA damage in
a human bronchial epithelial cell line [17], and TiO2 nan-
oparticles generated genotoxicity and cytotoxicty in a cul-
tured human cell line (WIL2-NS) [18]. The only study
modeling exposure risk in humans (manufacturing work-
ers) exposed to TiO2 nanoparticles concluded there
would be physiological effects of TiO2 inhalation
(increased neutrophils in the lung), but that it would not
pose a significant cancer risk [19]. Therefore, based on the
immporance of these nanomaterials and the suggestion
that long materials could be more toxic we tested the
hypothesis that length may be an important determinant
of nanomaterial biocompatibility,

Results
Characterization of Anatase Titanium Dioxide 

Nanomaterials

The particles in this study were synthesized as described in
Methods and characterized as follows. The particle mor-
phology was observed with a Hitachi S4700 field-emis-
sion scanning electron microscopy (SEM). The crystal
structure of the TiO2 particles was characterized by X-ray
diffraction with Cu Kα radiation (XRD, X'Pert Pro
PW3040-Pro, Panalytical Inc.) and high resolution trans-
mission electron microscopy (HRTEM), a 200 kV FEI/
Philips CM20 apparatus). For TEM sample preparation,
the TiO2 powders were suspended in ethanol. The sus-
pension was then dropped onto a holey carbon film sup-
ported by a copper grid, subsequently dried in air prior to
TEM observation.

Figure 1(a - c) shows the SEM images taken from the three
types of TiO2 nanoparticles. The nanospheres (NS) are in
a diameter of 60 ~ 200 nm. The width of both the long
and the short nanobelts are in the range of 60 ~ 300 nm.
Most of the long nanobelts (NB-2) are about 15 ~ 30 μm
long and the short nanobelts (NB-1) are about 0.8 ~ 4 μm
long. All three types of TiO2 nanoparticles exhibit a mon-
olithic anatase phase as demonstrated by the XRD pat-
terns in Figure 1d. The HRTEM analysis confirmed that the
nanobelts are single crystalline anatase TiO2 with the
growth direction along [010]. Figure 1c (inset) shows the
lattice fringes perpendicular to the growth direction with
a space of 0.38 nm, which represents the lattice parameter
of 0.38 nm in the [010] direction. Zeta potentials of the
TiO2 nanoparticles in the media used for in vitro experi-
ments were as follows: NS (-11.7 mV), NB-1 (-12.06 mV),
and NB-2 (-11.33 mV).

Characterization of Cell/Particle interaction

Examination of cell/particle interaction using SEM and
TEM provided the first clue of how the long nanobelts are
processed or maybe better described as misprocessed. Fig-
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ure 2(a - d) shows the outside of an AM after being
exposed to TiO2 nanoparticle for 1 hour in a suspension
culture. The AM exposed to NS and NB-1 appeared nor-
mal with no evidence of particles on the outside of the
cell. In contrast, the AM exposed to NB-2 showed many
belts external to the body of the cell with some nanobelts
superficially attached to the cell surface, and several belts
going through the body of the cell.

The TEM images in Figure 2(e - h), show that the NS were
taken up in the cytoplasm in discrete lysosomes (Figure 2f
inset). Similarly, the NB-1 were also taken up in to dis-
crete lysosomes that were formed by the plasma mem-
brane engulfing several nanobelts and then sequestering
the material into a future lysosome (Figure 2g inset). In

contrast, the AM exposed to NB-2 failed to produce func-
tional lysosomal domains. The long belts were internal-
ized to a degree, but are visible "free-floating" in the
cytoplasm of the cell (Figure 2h inset). We propose that
the AM attempts to form discrete lysosomes around these
long belts, but because of the length of the belt, the lyso-
somes become unstable and as a result destructive
enzymes such as cathepsin B are released into the cyto-
plasm and eventually into the media.

Titanium Dioxide NB uptake is Not Mediated By MARCO 

Receptor

Experiments using AM from MARCO null mice indicate
that the receptor is involved in the binding and uptake of
the NS only, but not the NB-1 or NB-2. Figure 3a demon-

SEM and XRD analyses confirm morphology and crystal structure of three TiO2 nanoparticles differing in geometric dimensionFigure 1
SEM and XRD analyses confirm morphology and crystal structure of three TiO2 nanoparticles differing in geo-
metric dimension. A, Image of titanium dioxide nanospheres (NS) 60-200 nm in diameter. B, Image of titanium dioxide 
short nanobelts (NB-1) 60-300 nm in diameter and 0.8-4 μm in length. C, Image of titanium dioxide long nanobelts (NB-2) 60-
300 nm in diameter and 15-30 μm in length. D, XRD patterns of all three titanium dioxide nanoparticles stacked. The data was 
consistent with all three nanoparticles exhibiting anatase structure.
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strates the difference in NS uptake between C57BL/6 wild-
type AM and AM's from MARCO null mice. In contrast,
there is no obvious difference between the amount of
nanoparticle taken up by the wild-type or MARCO null
AM as determined by side scatter associated with the cell/
particle being processed by flow cytometry (Figures 3b
and 3c). Additionally, the toxicity of NB-2 was not dimin-
ished in the absence of the MARCO receptor further indi-
cating that this receptor was not involved in the uptake of
the longer TiO2 material (Figure 3d).

Alveolar Macrophage Toxicity by the Long Titanium Dioxide 

NB-2

The relative cytotoxicity of the three forms of TiO2 can be
found in Figure 4a with measurement of cell viability and
apoptosis in a 4-hour suspension culture. Only the NB-2
exposure was significantly cytotoxic at the 100 and 200
μg/ml concentrations. NS and NB-1 were not significantly
cytotoxic. The mechanism of cytotoxicity briefly discussed
earlier involves the loss of lysosomal integrity and the
subsequent release of cathepsin B. Figure 4b illustrates the

In vitro cell/particle interaction captured by SEM (to image the outside of cell), and TEM (to image the inside of the cell) follow-ing a 1 hour particle exposureFigure 2
In vitro cell/particle interaction captured by SEM (to image the outside of cell), and TEM (to image the inside of 
the cell) following a 1 hour particle exposure. A, SEM and (E) TEM of unexposed control C57BL/6 alveolar macrophage 
(AM). B, The SEM and (F) TEM of TiO2 NS-exposed AM revealed a high concentration of particle collection in the cytoplasm 
of the AM, compartmentalized in lysosomal structures (inset). The SEM revealed no external NS concentration. C, The SEM 
and (G) TEM of NB-1-exposed AM revealed a similar high concentration of particle collection in the cytoplasm of the AM again 
compartmentalized in lysosomal structures (inset). The SEM revealed very few NB-1 on the cell surface. D, The SEM of the 
TiO2 long nanobelt-exposed AM (NB-2) showed many belts on the outside of the cell, as the (H) TEM image illustrated that 
these belts are also internalized to some degree. The TEM images also suggest there are fewer lysosomal structures associated 
with the NB-2 exposure in addition to an increased number of belts segments directly exposed to the cell's cytoplasm (inset).
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cathepsin activity in the media following a 4-hour suspen-
sion culture or a 24-hour adherent culture. Regardless of
the way the AM are cultured the NB-2 exposure causes a
significant release of cathepsin into the media compared
to baseline release. Figure 4c shows a significant increase
of cathepsins in the lavage fluid of mice exposed to 30 μg
of NB-2 for 24 hours compared to DM vehicle.

Fluorescent imaging of the lysosomes in AM exposed to
TiO2 nanoparticles using acridine orange illustrates the
process (Figure 4d). Internalization of the NS causes a
concentration of the lysosomes to appear in the AM. In
contrast, the NB-2 exposure causes a brief reorganization

(1 hr) followed by a degredation/depletion of the lyso-
somes in some, but not all AM (4 hr). A similar process
occurs with the cathepsin B imaged by a fluorescent sub-
strate (Figure 4e). The cathepsin B substrate becomes visi-
bly diffuse in AM exposed to NB-2 regardless of the
culture timing, whereas cathepsin B substrate in AM
exposed to NS is more concentrated and isolated in the
lysosomes.

All forms of Titanium Dioxide Nanomaterials Caused 

Reactive Oxygen Species in the Alveolar Macrophage

An alternative explanation for AM death, caused by the
TiO2 NB-2 was also investigated. Reactive oxygen species

The macrophage MARCO receptor is uniquely employed to bind and take up the TiO2 nanospheres (NS), but has no recogni-tion for the short (NB-1) or long (NB-2) TiO2 nanobeltsFigure 3
The macrophage MARCO receptor is uniquely employed to bind and take up the TiO2 nanospheres (NS), but 
has no recognition for the short (NB-1) or long (NB-2) TiO2 nanobelts. A, Bright-field microscopy showing uptake of 
NS in C57BL/6 wildtype AM. Binding and uptake of the NS was significantly hindered in the AM from MARCO null mice. In 
contrast, B and C panels illustrate no binding or uptake problems in MARCO-deficient AM exposed to either short (NB-1) or 
long (NB-2) TiO2 nanobelts. MSS values indicate 'median side scatter' which was used as a metric for particle binding. Panel D 
illustrates the point further, as it shows that the loss of viability and increased apoptosis associated with NB-2 exposure is not 
affected by MARCO expression on AM. Data expressed as mean ± SEM. Asterisk (*) indicates P < 0.05 compared to control.
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(ROS) are often cited as the cause of many particle-
induced cytotoxicities [20,21]. This possibility was exam-
ined two different ways. First, the peroxidation effect of
TiO2 exposure on the membrane lipids was investigated
using C11-BODIPY(581-591) loaded AM exposed to
TiO2 nanoparticles. The resulting images are shown in
Figure 5(a - d). All of the TiO2 nanoparticles tested caused
some degree of lipid peroxidation indicated by green flu-
orescence (red fluorescence is the non-oxidized state).

Similarly, AM were loaded with dihydoethidium (DHE)
to measure intracellular ROS directly and the results are
presented in the Figure 5e. All of the TiO2 nanoparticles
caused statistically significant increases in intracellular
ROS compared to control AM over a 2-hour exposure
period, but there was no significant difference between
any of the individual nanoparticles for this effect indicat-
ing that the cytotoxicity caused by NB-2 could not be
solely the direct result of ROS production. Other possible

The mechanistic basis for TiO2 long nanobelt (NB-2)-induced toxicity to alveolar macrophages (AM) is lysosomal breakdown resulting in cathepsin B releaseFigure 4
The mechanistic basis for TiO2 long nanobelt (NB-2)-induced toxicity to alveolar macrophages (AM) is lyso-
somal breakdown resulting in cathepsin B release. A, panels illustrate the concentration-dependent cell death uniquely 
initiated by NB-2 exposure in the C57BL/6 AM. Cell viability by trypan blue exclusion is on the right, and measured apoptosis 
is on the left. B, corresponding cathepsin activity in the AM media showed significant increases in cultures that were exposed 
to NB-2. C, This is supported by the in vivo observation that cathepsins are significantly increased in the lavage fluid of mice 24 
hours following NB-2 instillation (30 μg/mouse). Panels in D, show acridine orange-stained lysosomes in unstimulated cells, 
NS-exposed AM, early (1hr) NB-2-exposed AM and late (4 hr) NB-2-exposed AM, respectively. The NS-exposure appears to 
concentrate the lysosomes in the AM, whereas the NB-2-exposure initially causes reorganization of the lysosomes and subse-
quently depletes the lysosomes from the AM. (E), similar patterns were visualized using a fluorescent cathepsin B substrate 
under identical assay conditions as in (D). The NS-exposure appears to concentrate the cathepsin B in the AM, whereas the 
NB-2-exposure depletes the cathepsin in the exposed AM. Data expressed as mean ± SEM. Asterisk (*) indicates P < 0.05, 
double asterisks (**) indicates P < 0.01, and triple asterisks (***) indicates P < 0.001 compared to baseline or control produc-
tion levels.
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indicators of cell death that were investigated but not
shown here were, nitrite release, peroxinitrite production,
hydrogen peroxide production and superoxide anion
release. All of these were negative for all TiO2 nanoparti-
cles tested in AM culture (data not shown).

The NB-2 Initiation of Inflammasomes

Inflammasomes are believed to be an early warning sys-
tem for dangers to the innate immune system [22]. Figure
6 demonstrates how TiO2 NB-2 (long wire) exposure can
uniquely affect AM cytokine production and cell signal-
ling. Using a proxy measure for the NALP3 inflammas-
ome, the NB-2 (100 μg/ml) significantly increased IL-1β
and IL-18 production in the presence of sub-stimulatory
amount (20 ng/ml) of LPS (Figures 6a and 6b). The LPS
was necessary for the pro-forms of the cytokines to be

present for caspase cleavage. No IL-33 release was detected
by this treatment (data not shown). Increased IL-1β and
IL-18 production were also measurable in vivo in lung lav-
age fluid 24 after instillation of NB-2 (Figures 6c and 6D).
This inflammasome activation was significantly disrupted
by the cathepsin B inhibitor peptide CA-074 Me as illus-
trated in the insets for Figures 6a and 6b, further implicat-
ing cathepsin B as an early initiator of TiO2 NB
inflammation. The formation of the NALP3 inflammas-
ome is consistent with other observations where AM are
exposed to asbestos fibres or silica [23-25]. This may be a
critical factor in the inflammatory and pathogenic proper-
ties of TiO2 NB-2 that are absent with the other forms of
the TiO2. It is important to note that these nanoparticle
exposures did not cause the same effects in virally trans-
fected murine cell lines (RAW and MH-S tested, data not

All forms of TiO2 cause reactive oxygen species (ROS) generationFigure 5
All forms of TiO2 cause reactive oxygen species (ROS) generation. The relative lipid peroxidation of the three TiO2 

nanoparticles using a fluorescent BODIPY stain in alveolar macrophages, which changes to green from red in the presence of 
oxygen radical damage. A: no particle control, B: NS, C: NB-1, and D: NB-2. All three nanoparticles produce some degree of 
lipid peroxidation indicated by the presence of green stain. In addition, intracellular ROS were measured over a 2 hour nano-
particle exposure in AM using the fluorescent tag DHE (E). All three nanoparticle types produced significant amounts of ROS, 
but there was no difference between the nanoparticle types indicating that oxygen radicals could not account for any difference 
in AM toxicity seen with NB-2 exposure.
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shown), and this was probably due to an inability to form
the NALP3 inflammasome in these cells [26]. However,
this effect is apparent in the human cell line THP-1 fol-
lowing phorbol ester (PMA) treatment and differentia-
tion.

Discussion
As seen in the list of toxicity studies presented in the back-
ground, there are a number of forms and/or shapes that
the TiO2 particle can be manipulated by manufacturing
techniques. The engineering aspect of TiO2 production
increases these possibilities exponentially as the surfaces

can be modified, the internal structures can be altered rel-
ative to the outside surface and the number of potential
shapes becomes nearly limitless. The one shape of greatest
concern to the toxicologist is the long wire or fibre. Fibres
greater than 15 μm present a challenge to the macro-
phage, which is responsible for removing the foreign
object from the body.

The AM, with its innate immune function, is responsible
for binding, uptake and removal of inhaled material. A
phenomenon referred to as "frustrated phagocytosis"
describes an AM overcome by the unwieldy dimensions of

Alveolar macrophages (AM) exposed to long TiO2nanobelts (NB-2) uniquely form the NALP3 inflammasomeFigure 6
Alveolar macrophages (AM) exposed to long TiO2nanobelts (NB-2) uniquely form the NALP3 inflammasome. 
A and B panels show proxy measures for the NALP3 inflammasome formation, IL-1β and IL-18 are significantly enhanced by 
NB-2 exposure in the presence of a low concentration of the co-stimulant lipopolysaccaride (LPS). These increases were 
unique to NB-2 exposure in vitro, and they were significantly inhibited by 10 μM of the cathepsin B inhibitor CA-074 Me 
(respective insets). B, IL-18 was significantly increased in NB-2 exposed cells even with the absence of LPS co-stimulation. In 
panels C and D, these observations are supported by the in vivo observation of significantly increased IL-1β and IL-18 in the lav-
age fluid of mice 24 hours following NB-2 instillation (30 μg/mouse). Data expressed as mean ± SEM. Asterisk (*) indicates P < 
0.05, double asterisks (**) indicates P < 0.01, and triple asterisks (***) indicates P < 0.001 compared to baseline or control 
production levels.
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a long fibre. This scenario usually applies to inhaled
amphibole asbestos fibres, and the end result is that the
fibres become biopersistent in the lung, because the fibres
cannot be removed by the normal clearing processes.

The new generation of engineered nanofibres presents a
justifiable concern to toxicologists. There is more than just
a superficial resemblance of these manufactured wires to
asbestos fibres. It would appear that the mechanism of
how an AM deals with an asbestos fibre is identical or very
similar to how an AM deals with a nanobelt or a nanowire
made of TiO2 or other material for that matter. For exam-
ple, Poland et.al., found that carbon nanotubes resem-
bling asbestos produced asbestos-like pathology in mice
[27]. This result was refuted in a more resent study on
mesothelioma, which used a rat exposure model for
MWCNT [28]. However, the end result (inflammation
and disease) could be the same regardless of the material,
depending more on the length of the material, rather than
the composition. The dysfunction of AM particle process-
ing results from an inability to sequester the fibre into a
lysosome within the cell resulting in the subsequent
release of cathepsin B and the formation of NALP3
inflammasome. This occurs with different forms of asbes-
tos, silica, and it also occurs with TiO2 nanobelts longer
than 15 μm.

Taken together, the data indicate that a relatively inert
material such as TiO2 can become quite toxic and inflam-
matory when the material is designed to be longer than a
lung macrophage can process. The term "frustrated phago-
cytosis" is simply a misnomer for a defective cell process,
an inability to form functional lysosomes that leads to a
cycle of cell death, inflammation, and eventually lung dis-
ease. The NB-2-induced inflammasome and the cathepsin
B release presented in this study are also common to AM
asbestos exposure and AM silica exposure. Every particle
that caused these two events is also a particle that caused
cell death in vitro, inflammation in vivo, and eventually
some form of lung pathology such as fibrosis with long-
term exposures.

Conclusions
The engineers of these nanoparticles should always take
into consideration the length of the particles they are cre-
ating. Eventually these particles could be the next occupa-
tional or environmental exposure of consequence.

Methods
Titanium Dioxide Synthesis

The nanobelts were synthesized as follows: 32 g NaOH
was dissolved into 80 ml deionized water. Next, 1.2 g of
anatase TiO2 particles was added to the 10 M NaOH
aqueous solution. The mixture was vigorously stirred for
1 hour and then transferred to a 100 ml Teflon-lined

stainless steel autoclave. The autoclave was sealed and put
into a preheated oven to perform hydrothermal treatment
at 200°C. After the hydrothermal processing, a white
fluffy powder was obtained and washed with D. I. water
and 0.1 M HCl. The washed samples were then calcinated
at 700°C for 30 min at a ramp rate of 1°C/min for heating
and cooling to get the long TiO2 nanobelts, while the
short nanobelts were obtained at a heating ramp rate of
10°C/min due to the rupture caused by thermal-gradient-
induced stress. For comparison tests, the TiO2 nano-
spheres were purchased directly from Alfa Cesar.

Electron Microscopy (particles)

Scanning electron microscopy (SEM) images of the nano-
particles were done with a Hitachi S4700 field-emission
scanning electron microscopy (SEM). The crystal structure
of the TiO2 particles was characterized by X-ray diffraction
with Cu Kα radiation (XRD, X'Pert Pro PW3040-Pro, Pan-
alytical Inc.) and high resolution transmission electron
microscopy (HRTEM), a 200 kV FEI/Philips CM20 appa-
ratus). For tunnelling electron microscopy (TEM) sample
preparation, the TiO2 powders were suspended in etha-
nol. The suspension was then dropped onto a holey car-
bon film supported by a copper grid, subsequently dried
in air prior to TEM observation.

Electron Microscopy (cells)

Macrophage suspensions were fixed in 2.5% EM grade
glutaraldehyde in cacodylate buffer at pH 7.2. The cells
were rinsed in dH2O and resuspended in 1% osmium
tetroxide for 1 hr and rinsed in dH2O. For SEM imaging
the cells were placed on a 0.6 um Millipore Isopore mem-
brane filter followed by a graded ethanol series. Once in
100% ethanol the mounted cells were critically point
dried in a Balzers CPD030, mounted on an aluminum
stub, and sputter coated with gold/palladium in a Pelco
Model 3 sputter coater. The cells were imaged in a Hitachi
S4700 field emission scanning electron microscope at 10
kV. For TEM the cells were dried in a graded ethanol series
followed by embedding of the cell pellet in epoxy. Thin
sections were stained with 2% uranyl acetate for 30 min at
room temperature, rinsed in dH2O, and stained for 5
minutes with Reynolds lead citrate stain. The cells were
imaged in a Hitachi H-7100 transmission electron micro-
scope at 75 kV.

In vitro experiments

Animals

C57BL/6 (2-months old) were housed in controlled envi-
ronmental conditions (22 ± 2°C; 30-40% humidity, 12-
hour light: 12-hour dark cycle) and provided food and
water ad libitum. All procedures were performed under
protocols approved by the IACUC of the University of
Montana.
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Particles

Nanospheres and nanobelts were suspended in PBS/3.5%
BSA solution. Nanospheres were sonicated for 1 minute
and nanowires were sonicated briefly and vortexed for 1
minute.

Alveolar macrophage isolation

Mice were euthanized by sodium pentobarbital
(Euthasol™), and the lungs with the heart were removed.
Lung lavage was performed using ice-cold PBS (pH 7.4).
Lung lavage cells were isolated by centrifugation (400 × g,
5 minutes, 4°C) and cell counts obtained using a Coulter
Z1 particle counter (Beckman Coulter).

Cell culture

The cells were suspended in RPMI media supplemented
with 10% fetal bovine serum, beta-mercapto ethanol,
sodium pyruvate, supplemented with an antimycotic and
antibiotics. Cells were suspended at 1 × 106 cells per ml
and cultures were conducted in 96-well plates (24 hr
adherent) or 1.5 ml microfuge tubes (4 hr suspension in
Labquake shakers) in 37°C water-jacketed CO2 incuba-
tors (ThermoForma).

Toxicity and Assays

Cell viability was determined by trypan blue exclusion,
and cell apoptosis was determined by Cell Death ELISA™
(Roche) according to the manufacturer's protocol. These
assays used colorometric dyes, which were determined
not to be affected by exposure to the titanium nanomate-
rials used in the experiments.

Bright Field Microscopy

Slides of alveolar macrophage cultures were prepared by
centrifugation (1500 rpm, 5 min) in Shandon Cytospin II
using 30 × 103 cells per slide and fixed/stained with
HEMA 3 reagents obtained from ThermoFisher Scientific.
Images were photographed with a Kodak digital camera
attached to a Zeiss Axioskop at 600×.

Uptake Assay

The flow cytometry technique using side scatter to assess
the amount of particle taken up by macrophage cells is
described elsewhere [29].

Cytokine and Cathepsin Assays

Cytokine assays were performed according to the manu-
facturers' instructions (IL-1β, IL-18, and IL-33 R & D Sys-
tems). Cathepsin activity assay was performed on culture
media (50 μl) mixed with 27 μM pan-cathepsin fluoro-
genic substrate (R & D Systems) for 1 hr at 37°C in a 96-
well plate. The resulting fluorescence was captured by a
Gemini plate reader (Molecular Devices) at 380 nm exci-
tation and 460 nm emission. Fluorescent photomicro-
graphs of lysosomes and cathepsin B were obtained in

cells stained with acridine orange and cell-permeable
cathepsin B fluorescent substrate respectively for 1 to 4
hours in culture.

ROS Assays

The lipid peroxidation imaging using C11-BODIPY(581-
591) fluorescent stain were taken on a BioRad confocal
microscope using the methods described elsewhere [30].
The assay for intracellular ROS involved culturing the iso-
lated AM with nanoparticles in the Gemini plate reader
warmed to 37°C. Dihydroethidium (DHE) was added
prior to the start of the experiment and kinetic readings
were taken throughout the 2-hour culture at 518 nm exci-
tation and 605 nm emission wavelengths.

In vivo experiments

Male C57BL/6J mice (2 months old) were obtained from
Jackson Laboratories and were housed in controlled envi-
ronmental conditions (22 ± 2°C; 30-40% humidity, 12-
hour light: 12-hour dark cycle) and provided food and
water ad libitum. All procedures were performed under
protocols approved by the IACUC of CDC-NIOSH. The
NIOSH animal program is accredited by the Association
for Assessment and Accreditation of Laboratory Animal
Care International. Nanospheres and nanobelts were sus-
pended in dispersion medium (DM), which is PBS con-
taining 0.6 mg/ml mouse serum albumin and 0.01 mg/ml
1,2-dipalmitoyl-sn-glycero-3-phosphocholine). Nano-
spheres were sonicated for 15 minutes (5 W output) and
nanobelts were mechanically stirred for 3 hours prior to
exposure. Mice were exposed to nanoparticles by pharyn-
geal aspiration. Mice were euthanized by sodium pento-
barbital (Euthasol™), and a tracheal cannula was inserted.
Lung lavages were performed using ice-cold PBS (pH 7.4)
containing 5.5 mM D-glucose. Lung lavage fluid was iso-
lated by centrifugation (650 × g, 5 minutes, 4°C) and
stored at -20°C until the assays were conducted.

Statistical Analyses

Statistical analyses involved comparison of means using a
one or two-way ANOVA followed by Bonferroni's test to
compensate for increased type I error. Statistical signifi-
cance is a probability of type I error at less than 5% (P <
0.05). The minimum number of experimental replica-
tions was 3.
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