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Abstract

Markov chain Monte Carlo (MCMC) and sequential Monte Carlo (SMC) methods

have emerged as the two main tools to sample from high-dimensional probability

distributions. Although asymptotic convergence of MCMC algorithms is ensured

under weak assumptions, the performance of these latters is unreliable when the

proposal distributions used to explore the space are poorly chosen and/or if highly

correlated variables are updated independently. In this thesis we propose a new

Monte Carlo framework in which we build efficient high-dimensional proposal

distributions using SMC methods. This allows us to design effective MCMC algo-

rithms in complex scenarios where standard strategies fail. We demonstrate these

algorithms on a number of example problems, including simulated tempering, non-

linear non-Gaussian state-space model, and protein folding.
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4.20 Lévy-driven SV with S&P 500 data: ACF of sampled parameters . 82
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Chapter 1

Introduction

Monte Carlo methods have become the standard tool to solve many problems in

statistics and scientific computing. Examples are abound, and include instances in

Bayesian statistics (posterior estimation), statistical physics (Ising model), particle

physics (simulation of high energy particles interacting with a detector), biology

(protein folding, Lotka-Volterra model), chemistry (chemical reaction networks),

and finance (option valuation), to name a few. The problems are becoming more

and more sophisticated and Monte Carlo methods are now expected to deal with

high dimensionalities and complex interactions between the model variables.

In this thesis we present a new framework [3] that allows us to expand the class

of problems that can routinely be addressed with Monte Carlo methods. It is based

on a non-trivial and novel combination of existing sampling strategies and takes

advantage of their strengths. We then apply the method to problems in Bayesian

statistics and biology and make comparisons with competitive algorithms.

Assume we are given a probability distribution π(dx) defined on a measurable

space (E,F) and that we are interested in sampling from this distribution, usually

to compute analytically intractable expectations of interest with respect to π(dx) by

invoking the law of large numbers [61, 68]. For ease of notation, we shall further

assume that π(dx) admits a density π(x) with respect to a σ-finite dominating

measure denoted dx.

Monte Carlo sampling is generally done by proposing samples from some in-

strumental distribution. A weighing and/or selection mechanism then corrects for
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the bias from the proposal distribution. As the dimension increases, finding a good

proposal distribution becomes harder. A good proposal distribution should take

into account key features of the target, such as multimodality, and ideally should

be as close as possible to the target.

There are two classes of Monte Carlo algorithms that are often used for sam-

pling from high-dimensional distributions: Markov chain Monte Carlo (MCMC)

and sequential Monte Carlo (SMC). MCMC relies on sampling a realization of a

Markov chain with invariant distribution π(dx). SMC is a sequential implemen-

tation of importance sampling, employing a population of samples (particles) and

a sequence of probability distributions (of increasing dimension), with the final

distribution being the target distribution to generate samples from π(dx). When

the consecutive distributions in the sequence are not too different one can find

good proposals to move the particles from one distribution to the next. An in-

troduction to this method is given in section 2.2. For a book-length review see

[27]. While initially designed for on-line inference in dynamic models, usually re-

ferred to as “particle filters” in that context, they are now also used in static models

[15, 32, 65]. SMC samplers have found a wide range of applications in fields as

diverse as econometrics [16], [67], ecology [12], and systems biology [48]. It was

realised later that the interest of SMC methods is not limited to dynamic models

and they are now increasingly used to perform inference for a wide range of mod-

els including contingency tables [15], mixtures models [32, 65], graphical models

[53], and population genetics [61, Section 4.1.2]. Where traditional importance

sampling would try to directly produce weighted samples on E to approximate

π (x), and most likely fail for the same reason that an independent Metropolis

Hastings (MH) algorithm would fail, an SMC algorithm will adopt a more pro-

gressive approach which can be beneficial in large dimensional scenarios. The first

ingredient of such an algorithm is a sequence of intermediate “bridging” proba-

bility distributions of increasing dimensions {πn (dxn) , n = 1, . . . , p−1} with

xn = (x1, x2, . . . , xn) ∈ X1 × · · · × Xn and such that πn (dxn) = πn (xn) dxn

where dxn = dxn−1 × dxn and πp (xp) = π (x).

However, sampling sequentially comes at a price. Indeed, if p is too large,

then the SMC approximation of the joint density π (x) deteriorates as components

imputed at any time n < p are not rejuvenated at subsequent time steps. As a
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result, when p − n is too large the approximation of the marginal π (xn) is likely

to be rather poor as the successive resampling steps deplete the number of distinct

particles. However, despite the potential drawbacks outlined above, SMC methods

have had a major impact on inference in dynamic systems in the last fifteen years,

and are now showing great promise for more classical “static” inference problems

e.g. [15], [65], [32], [53] and [61, Section 4.1.2].

This thesis proposes a novel sampling strategy which aims to combine the ad-

vantages of MCMC and SMC methods. As we shall see, this opens up the possibil-

ity to routinely tackle problems that cannot be satisfactorily addressed using either

of these approaches on its own. Several algorithms combining both approaches

have already been proposed in the literature. In particular MCMC algorithms have

been successfully used as updating mechanisms or proposals within SMC methods

[45]; see also [17], [65]. Our approach is entirely different because on the con-

trary it proposes to use SMC algorithms as a proposal mechanism within MCMC

methods. We use MCMC methods to allow us to “break” the complex task of

sampling from π (x) into a series of simulations from lower-dimensional distribu-

tions whereas we use SMC ideas to efficiently update very large sub-blocks of x.

Although this idea might seem natural, it is important to note that its realisation

is far from obvious. Indeed, a direct implementation of such a strategy is impos-

sible as the marginal distribution of a particle generated by an SMC algorithm is

not available in closed-form but would be required for the implementation. To by-

pass this problem we introduce a non-standard auxiliary target distribution on an

extended space which allows us to define a valid MH update and from which infer-

ence about π(x) can be carried out. We show that the resulting algorithm enjoys

attractive properties and can be used as a component of more advanced algorithms.

The rest of this thesis is organised as follows. In Chapter 2 we give a brief

review of MCMC and SMC and provide some convergence results to motivate our

new method. Note that SMC is presented in a non-standard notation in order to sim-

plify the proofs for the particle Markov chain Monte Carlo (PMCMC) algorithms.

Chapter 3 introduces the PMCMC framework, starting with the particle Metropolis

Hastings (PMH) sampler, followed by the particle Gibbs (PG) and particle marginal

Metropolis Hastings (PMMH) samplers. The PMH sampler (Section 3.1) is a novel

Metropolis Hastings sampler which uses SMC algorithms as proposals to sample

3



from π (x). The PG sampler (Section 3.2) extends the PMH algorithm to allow

sampling from distributions of the form π (θ,x) (defined on some space Θ × E),

which can be understood as being an approximation of the standard Gibbs sampler

(which alternates sampling from the full conditionals π (θ|x) and π (x|θ)), but has

the property that it leaves π(θ,x) invariant, and is hence not biased. In cases where

θ and x are strongly correlated, this approach is likely inefficient. This is addressed

by the PMMH algorithm (Section 3.3), which is an unbiased approximation of a

MH algorithm that works directly on the marginal space Θ. In Chapter 4 we present

a variety of applications to which this methodology can be applied and make com-

parisons with competitive alternative algorithms. In Section 4.1 we apply PMCMC

to a non-linear state-space model. Using PMH with simulated annealing we find

optimal configurations in a protein folding model in Section 4.2. We perform clus-

tering using Dirichlet mixture models in Section 4.3. We estimate parameters for

the Lotka-Volterra (LV) model in Section 4.4. In Section 4.5 we consider a Lévy-

driven stochastic volatility (SV) model for the Standard & Poor’s 500 (S&P 500)

data set. And in Section 4.6 we use PMH with tempering to sample from highly

multimodal distributions. Finally Chapter 5 summarises the contributions of this

thesis and outlines further extensions.
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Chapter 2

Review of Monte Carlo Methods

2.1 Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods are a class of algorithms based

on constructing a Markov chain which has the desired target distribution as its

equilibrium distribution. Two very popular MCMC algorithms are the Metropolis

Hastings (MH) and the Gibbs (G) sampler [68]. While originally mainly used in

physics, these algorithms soon found widespread use in many other disciplines.

Often they are used to solve integration and optimisation problems, for example

computing expectations in Bayesian statistics by invoking the law of large num-

bers.

In MCMC, a Markov chain is constructed from a transition kernelK(xn,xn+1).

This kernel is defined on (E,B(E)) such that K(x, ·) is a probability measure for

all X ∈ E. In the discrete domain the kernel is simply a transition matrix.

In order to establish that the Markov chain converges to the required target

distribution we require the following three properties:

• The invariant distribution of the Markov kernel is π(·)

• The Markov chain is irreducible: any subset of A ⊂ E for which π(A) > 0

is reachable from any starting point x(0) ∈ E

• The Markov chain is aperiodic
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Next we will (very) briefly introduce the MH and Gibbs samplers.

2.1.1 Metropolis-Hastings

The MH sampler uses an instrumental proposal distribution to generate candidates

that are accepted or rejected such that the resulting Markov chain has the target

π(x) = γ(x)/Z as the invariant distribution.

Algorithm 2.1: Metropolis-Hastings

Initialise X(0)1

For iteration i ≥ 12

Sample a candidate from a proposal distribution: X∗ ∼ q(X(i− 1), ·)3

With probability4

1 ∧ γ(X∗)

γ(X(i− 1))

q(X∗,X(i− 1))

q(X(i− 1),X∗)
(2.1)

set X(i) = X∗, otherwise set X(i) = X(i− 1)

The case where the proposal distribution is symmetric,

q(x,y) = q(y,x), ∀y,x ∈ E,

corresponds to the Metropolis algorithm, also known as random walk Metropolis.

When the proposal is independent of the current state of the Markov chain we get

the independent MH sampler. Many more variations and special cases exist. For

a thorough survey of these methods see [68]. We may for example use multiple

transition kernels and combine them through mixture or composition.

2.1.2 Gibbs Sampler

The Gibbs sampler is in fact a special case of the Metropolis-Hastings algorithm.

If we consider multiple kernels, one for each block of variables, and use them in

a composition, and additionally these kernels use the conditional distribution of

the target as the proposal, then the acceptance rate is 1 and we obtain the Gibbs

6



sampler.

Algorithm 2.2: Gibbs Sampler

Initialise X(0)1

For iteration i ≥ 12

For n = 1, . . . , p do3

Sample Xn(i) ∼ π(·|X1:n−1(i),Xn+1:p(i− 1))4

2.2 Sequential Monte Carlo

In this section, we briefly review the principle of SMC methods to sample from

a given target distribution π (x). As explained in the introduction the method re-

quires one to introduce a sequence of bridging probability densities

{πn (xn) , n = 1, . . . , p}

of increasing dimension such that πp (xp) = π (x); see Section 4 for detailed

examples. For ease of presentation, we will assume that Xi = X for any i =

1, . . . , p, implying that πn (xn) is defined on the product space X n. Each density

is assumed known up to a normalising constant, i.e. for n = 1, . . . , p

πn (xn) = Z−1
n γn (xn) ,

where γn : X n → R
+ can be evaluated pointwise, but the normalising constant

Zn is unknown. We will use the notation Z for Zp.

We describe below a generic SMC algorithm which encompasses numerous

variants proposed in the literature. Section 2.2.1 below is important and sufficient

to understand the description of the new algorithms presented in the paper. It is

worth noting for readers already familiar with SMC methods that our description

outlined below might appear slightly unorthodox in that it does not exactly match

standard computer implementations. It however enjoys the same important the-

oretical and practical properties and has the advantage of greatly simplifying the

mathematical developments required to show the validity of the algorithms pre-

sented throughout the paper. Section 2.2.2 focuses on such subtle issues, is only
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required to understand the theoretical justifications of our algorithms, and might be

skipped on a first reading.

2.2.1 Algorithm and Use of Its Output

An SMC algorithm requires one to specify an importance density M1 (x1) on X
in order to initialise the recursion at time 1 and a family of transition kernels with

associated densities {Mn (xn−1, xn) , n = 2, ..., p} in order to extend xn−1 ∈
X n−1 by sampling xn ∈ X conditional upon xn−1 at time instants n = 2, ..., p.

Guidelines on how to best select {Mn (xn−1, xn)} are well known, and the main

recommendation is that an approximation of the conditional density πn (xn|xn−1)

should be used [27], [61]. As mentioned earlier an SMC algorithm also involves

a resampling procedure of the N particles, which relies on a family of probability

distributions on {1, . . . , N}N , {r( ·|w),w ∈ [0, 1]N}. The resampling step is

usually necessary as in most applications the variance of the importance weights

would otherwise increase over time. This is an undesirable feature which rapidly

manifests itself in practice in that the majority of particles have negligible weights.

The algorithm proceeds as shown in Algorithm 2.3 in order to produce a se-

quence of samples {Xi
n, i = 1, ..., N} for n = 1, . . . , p. Note that in order to alle-

viate the notational burden we adopt below the convention that whenever the index

i is used we mean “for all i ∈ {1, ..., N}.” Further on, we also use the standard

convention whereby capital letters are used for random variables while lower case

letters are used for their values. We have used the notation Wn :=
(
W 1
n , ...,W

N
n

)

and An :=
(
A1
n, ..., A

N
n

)
. The variable Ain−1 plays an important rôle in our for-

mulation of SMC methods, and represents the index of the “parent” at time n − 1

of particle Xi
n for n = 2, . . . , p (see Figure 2.1). The vector An is thus a random

mapping defined on {1, . . . , N} → {1, . . . , N}N , and the standard resampling

procedure is hence interpreted here as being the operation by which child particles

at time n choose their parent particles at time n − 1 according to a probability

r(·|Wn−1) dependent on the parents’ weights Wn−1, or “fitness.”

Let Oin :=
∑N

k=1 I
(
Akn = i

)
be the number of offspring of particle i at time

n. A desirable property of a resampling scheme is that it satisfies the following

8



Algorithm 2.3: Sequential Monte Carlo Algorithm

At n = 11

Sample Xi
1 ∼M1(·)2

Update and normalise the weights3

w1

(
Xi

1

)
:=

γ1(X
i
1)

M1(Xi
1)
, W i

1 =
w1

(
Xi

1

)
∑N

k=1w1

(
Xk

1

) .

For n = 2, ..., p do4

Sample An−1 ∼ r (·|Wn−1)5

Sample Xi
n ∼Mn(X

Ai
n−1

n−1 , ·) and set Xi
n = (X

Ai
n−1

n−1 , Xi
n)6

Update and normalise the weights7

wn
(
Xi
n

)
:=

γn
(
Xi
n

)

γn−1

(
X
Ai

n−1

n−1

)
Mn

(
X
Ai

n−1

n−1 , Xi
n

) , (2.2)

W i
n =

wn
(
Xi
n

)
∑N

k=1wn (Xk
n)

(2.3)

unbiasedness condition

E
[
Oin|Wn

]
= NW i

n . (2.4)

The unbiasedness condition (2.4) ensures that future computational effort is con-

centrated on the most promising particles, while guaranteeing that the SMC algo-

rithm described earlier yields consistent approximations of the distributions

{πn (dxn) , n = 1, . . . , p}

and of their normalising constants {Zn, n = 1, . . . , p}. In particular, conditional

upon the sampled particles, an approximation of the target distribution π (dx) is

given by

π̂N (dx) :=

N∑

i=1

W i
pδXi

p
(dx) , (2.5)
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Figure 2.1: Illustration of particle ancestry in SMC.

from which expectations can be easily computed, but also an estimate of its nor-

malising constant Z

ẐN :=

p∏

n=1

[
1

N

N∑

i=1

wn
(
Xi
n

)
]
. (2.6)

The derivation for the estimate of the normalising constant is as follows:

Z := Zp = Z1

p∏

n=2

Zn
Zn−1

(2.7)

where Z1 and the ratio of normalising constants Zn/Zn−1 are given by

Z1 =

∫
γ1(x1)

M1(x1)
M1(x1) dx1 =

∫
wn (x1)M1(x1) dx1 ≈ 1

N

N∑

i=1

w1

(
Xi

1

)
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Zn
Zn−1

=
1

Zn−1

∫
γn(xn) dxn =

∫
γn(xn)

πn−1(xn−1)

γn−1(xn−1)
dxn

=

∫
γn(xn)

γn−1(xn−1)Mn(xn−1, xn)
πn−1(xn−1)Mn(xn−1, xn) dxn

=

∫
wn (xn) πn−1(xn−1)Mn(xn−1, xn) dxn ≈ 1

N

N∑

i=1

wn
(
Xi
n

)

Now substituting the Monte Carlo estimates of these integrals into Eqn. 2.7 yields

the estimate of the normalising constant given in Eqn. 2.6.

2.2.2 Implementation Issues

In fact in practice, for computational efficiency, On is drawn first (i.e. without

explicit reference to An) according to a probability distribution s(·|Wn) such that

(2.4) holds and the offspring then matched to their parents. For example, the sim-

plest unbiased resampling algorithm consists of sampling On according to a multi-

nomial distribution of parameter (N,Wn). More sophisticated schemes such as

residual resampling [61], stratified resampling [57] and minimum entropy resam-

pling [23] also satisfy (2.4). Once On has been sampled, this is followed by a

deterministic allocation procedure of the child particles to the parents, which de-

fines “computer” indices e.g. theO1
n first child particles are associated to the parent

particle number 1, i.e. A1
n = 1, ..., A

O1
n

n = 1, likewise for the O2
n following child

particles and the parent particle number 2, i.e. A
O1

n+1
n = 2, ..., A

O1
n+O2

n
n = 2 etc.

Further on, we will impose the slightly stronger unbiasedness condition.

(A1) For any i = 1, . . . , N and n = 1, . . . , p the resampling scheme satisfies

E
[
Oin|Wn

]
= NW i

n

and

r
(
Ain = k|Wn

)
= W k

n . (2.8)

Note that even if (2.4) holds then (2.8) is not necessarily satisfied, for example

by the standard deterministic allocation procedure, but this property can be easily

enforced by the addition of a random permutation of these “computer” indices. As
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we shall see our indexing system makes the writing of the probability distributions

underpinning our algorithms extremely simple.

2.2.3 Discussion of Convergence Results

The theoretical properties of SMC are now well understood, and we restrict our-

selves to some of the simplest assumptions required to ensure the validity of our

algorithms; see [64] for a full treatment and more sophisticated assumptions. The

following notation will be needed

Sn = {xn ∈ X n : πn (xn) > 0} ,
Q1 = {x1 ∈ X : M1 (x1) > 0} ,

Qn = {xn ∈ X n : πn−1 (xn−1)Mn (xn−1, xn) > 0} for n ≥ 2.

(A2) For n = 1, ..., p, we have Sn ⊆ Qn.

(A3) For any n = 1, ..., p, there exists {Bn <∞} such that for any xn ∈ Sn

wn (xn) ≤ Bn . (2.9)

(A4) There exist µ (·) a probability density on X and 0 < w,w, ε, ε < ∞ such

that for any n = 1, ..., p and any xn ∈ Sn,

w ≤ wn (xn) ≤ w

and

ε µ (xn) ≤Mn (xn−1, xn) ≤ ε µ (xn) .

Under assumption (A3) it is possible to establish results such as L
p bounds,

show that π̂N (dx) converges (weakly) almost surely (a.s.) as N → ∞ towards

π (dx) and that ẐN converges a.s. to Z. Under additional mixing assumptions

on the Feynman-Kac semi-group associated to {πn} and {Mn}, stronger results

can be established. In particular, it can be shown using a proof similar to [18,

Theorem 5], [64, Section 7.4.3] that for multinomial and residual resampling ẐN

satisfies a central limit theorem and that, under (A4), there exists a finite constant

12



C, depending on w,w, ε, ε, µ and the dimension of X but not p, such that the

variance var (N) of ẐN/Z satisfies for any N ≥ 1

var (N) ≤ C p

N
(2.10)

The so-called degeneracy phenomenon for SMC algorithms is well documented,

and manifests itself in practice by the fact that the approximation π̂N (dxn) of the

marginal π(dxn) of π (dx) is concentrated on a very limited number of particles

whenever p− n is large for a given number N of particles; this is the consequence

of the successive resampling steps between times n and p. As a result the approx-

imation of π̂N (dxn) is poor and cannot be used for inferential purposes. This

however does not necessarily mean that the distribution of the surviving path(s) is

not “close” to π (dxn). Under (A4), it can in fact be established [64, Section 8.3]

that there exists a finite constant D, depending on w,w, ε, ε but not p, such that the

unconditional distribution of a sample from π̂N (dx), denoted qN (dx), satisfies

∥∥qN (·) − π (·)
∥∥ ≤ D p

N
, (2.11)

where ‖·‖ is the total variation norm. Note that the constants C and D above typi-

cally increase with the dimensionality of X and decrease as the ergodic properties

of the Feynman-Kac semi-group improve.

These results suggest that, under sufficient mixing conditions, the performance

of SMC degrades “gracefully” linearly and not exponentially with p as is often the

case with other sampling strategies. Note however, that (A4) is a very strong as-

sumption not satisfied in most realistic scenarios and that it is difficult in practice

to obtain useful quantitative bounds on C and D that could guide the choice of N .

This generally results in a bias of unknown magnitude. Nevertheless, empirical

evidence from numerous researchers suggests that SMC can be designed to pro-

duce random samples whose distribution is “close” to π even for large p in realistic

scenarios where (A4) is not satisfied. This motivates using samples provided by

an SMC algorithm as a proposal to feed a MH based algorithm in order to correct

for the fact that qN (dx) 6= π (dx). As we shall see in the next section, this is not

straightforward.
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Figure 2.2: Construction of the proposal in CBMC. For each component sev-

eral candidates are sampled, of which one is selected with probability

proportional to it’s importance weight.

2.3 Configurational Bias Monte Carlo

We now briefly introduce the configurational bias Monte Carlo (CBMC) algorithm,

which is one of the methods used to tackle problems that we are interested in, as

mentioned in the introduction, and we will use it to compare against the perfor-

mance of PMCMC. CBMC is based on the scheme introduced by Rosenbluth and

Rosenbluth in 1955 [70] and was developed by J. Siepmann to sample the con-

formational space of linear chain molecules [73]. In this section we will briefly

introduce the basic CBMC algorithm. We will later compare the performance of

our new method with this algorithm.

CBMC is a Markov chain Monte Carlo algorithm where the proposal is built

up sequentially. In the case of a long molecule – or high dimensional state space –

only a subset of the variables may be updated at an iteration. As in SMC, we need

to define a sequence of distributions πn(·) (n = 1, . . . , p) of increasing dimension.

In the case of sampling chain molecules, this sequence is naturally given by the

Boltzmann distributions obtained when growing the chain.

The proposal configuration is built as follows. For each variable (element in the

chain) a population of candidate values are sampled, of which one is selected with

probability proportional to its importance weight. This yields a candidate chain X∗

with the importance weight ẐN,∗ given in Eqn. 2.12, as illustrated in Figure 2.2. To

compute the importance weight ẐN for the current configuration, this procedure is

repeated while ensuring that one of the candidates matches the current configura-

tion X. The candidate is then accepted with probability 1∧ ẐN,∗/ẐN . The details

are given in Algorithm 2.4.

This algorithm is quite greedy (as illustrated in Figure 2.2), and hence only
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works for moderately large chains. Several other extensions to the Rosenbluth

method have been proposed [40], such as PERM [51], DPERM [19], and recoil-

growth [20][40, Sec. 13.7]. PERM, like the Rosenbluth method, is a static Monte

Carlo method, and addresses the weight degeneracy problem of the Rosenbluth

method by pruning conformations with weights below some preset threshold and

replicating ones with weights above some threshold (adjusting the weights accord-

ingly). DPERM is the dynamic (Markov chain) generalisation of PERM. However,

the performance of (D)PERM is quite sensitive to the thresholds [19], and unlike

SMC, the particles (conformations) are not interacting. The recoil-growth (RG)

method uses a multi-step look-ahead in an effort to overcome the dead-alley prob-

lem of CBMC, which potentially spends much of the simulation time exploring

dead ends or evaluating importance weights of low probability candidates. In-

stead of generating N candidates at each step, RG proposes something similar to

a “depth-first” search (of finite depth) to find “open” and “closed” trial directions,

where “open” denotes directions that are deemed to have non-zero probability of

generating a complete chain (at least for the finite depth look ahead), and “closed”

indicates that the trial direction will result in a dead-alley, e.g. as in sampling self-

avoiding walks on a grid.

2.4 Inference in State-Space Models

We now take a look at how MCMC and SMC are applied to state-space models

(SSMs), and motivate the need for PMCMC. SSM is a very popular class of mod-

els and has broad application in many disciplines; for a thorough discussion of

SSM see [13, 29, 41]. Some examples include target tracking models [50], change-

point models [36], population dynamics models [12], stochastic volatility models

(Sec. 4.5), partially observed diffusions [37], and models appearing in systems bi-

ology (Sec. 4.4).

2.4.1 Model Description

We consider the following SSM, also known as a hidden Markov model (HMM),

where {Xn}n≥1 is an unobserved Markov process with initial density X1 ∼ µθ (·)
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Algorithm 2.4: Configurational Bias Monte Carlo

Initialise X(0) (arbitrarily)1

For iteration s ≥ 12

Sample proposal X∗ and compute importance weight:3

At n = 14

For k = 1, . . . , N , sample Xk,∗
1 ∼M1(·)5

Compute the weights: w1

(
X
k,∗
1

)
:= γ1

(
X
k,∗
1

)
/M1

(
Xk,∗

1

)
,6

and normalise W k,∗
1 = w1

(
X
k,∗
1

)
/
∑N

k=1w1

(
Xk

1

)

Sample X∗
1 ∼ π̂N1 (dx) :=

∑N
k=1W

k,∗
1 δ

X
k,∗
1

(dx)7

For n = 2, . . . , p do8

For k = 1, . . . , N , sample Xk,∗
n ∼Mn(X

∗
n−1, ·) and set9

X
k,∗
n = (Xn−1, X

k,∗
n )

Compute the weights wn

(
X
k,∗
n

)
:=

γn

“

X
k,∗
n

”

γn−1

“

X
k,∗
n−1

”

Mn

“

Xn−1,X
k,∗
n

”

10

and normalise W k,∗
n =

wn

“

X
k,∗
n

”

∑N
k=1wn

“

X
k,∗
n

”

Sample X∗
n ∼ π̂Nn (dx) :=

∑N
k=1W

k,∗
n δ

X
k,∗
n

(dx) and set11

X∗
n = (X∗

n−1, X
∗
n)

Compute importance weight:12

ẐN,∗ =

p∏

n=1

[
1

N

N∑

k=1

wn

(
Xk,∗
n

)]
(2.12)

Sample auxiliary variables and compute importance weight:13

At n = 114

Set X1
1 := X1(s) For k = 2, . . . , N , sample Xk

1 ∼M1(·)15

Compute the weights w1

(
Xk

1

)
as above16

For n = 2, . . . , p do17

Set X1
n := Xn(s) For k = 2, . . . , N , sample18

Xk
n ∼Mn(Xn−1(s), ·) and set Xk

n = (Xn−1, X
k
n)

Compute the weights wn
(
Xk
n

)
as above19

Compute importance weight: ẐN =
∏p
n=1

[
1
N

∑N
k=1wn

(
Xk
n

)]
20

With probability 1 ∧
(
ẐN,∗/ẐN (i− 1)

)
set X(i) = X∗, otherwise set21

X(i) = X (i− 1)
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Figure 2.3: State-space model, also known as a hidden Markov model

(HMM). The Markov process {Xn}n≥1 is not observed directly but

through a conditionally independent observation process {Yn}n≥1.

and transition probability density (with n > 1)

Xn|Xn−1 ∼ fθ ( ·|Xn−1)

where θ is a static parameter of the model. The process {Xn}n≥1 cannot be ob-

served directly, but only through observations {Yn}n≥1, which are assumed inde-

pendent conditional upon {Xn}n≥1 with

Yn|Xn ∼ gθ ( ·|Xn) .

The parameter θ may also be unknown, in which case it follows the prior distribu-

tion p (θ). The goal is now to perform Bayesian inference in this context.

First consider the case where the static model parameter θ is known. Given some

observations y1:T inference relies on the following posterior density

pθ (x1:T | y1:T ) ∝ µθ (x1) gθ (y1|x1)

T∏

n=2

fθ (xn|xn−1) gθ (yn|xn) . (2.13)

If we do not know θ, we assign a prior density p(θ) to θ and perform Bayesian

inference using the joint posterior

p (θ, x1:T | y1:T ) ∝ p(θ) pθ (x1:T | y1:T ) (2.14)

When the model is non-linear non-Gaussian, the posterior densities pθ (x1:T | y1:T )

and p (θ, x1:T | y1:T ) do not admit standard forms. This makes inference difficult

and we need to resort to approximations. Here we consider Monte Carlo methods,
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which have shown to be a flexible and efficient tool for inference in these types

of models. As SSMs are ubiquitous in many areas of science there are literally

thousands of papers published on this in the past decade alone. Instead of a thor-

ough review, we instead highlight the underlying principles of applying MCMC

and SMC in this context, as well as point out some of their limitations, which will

motivate the use of PMCMC.

2.4.2 Markov Chain Monte Carlo for State-Space Models

In order to perform inference in SSM using Monte Carlo (MC) we need to be able

to generate samples from the posteriors pθ (x1:T | y1:T ) or p (θ, x1:T | y1:T ) in the

case of fixed (known) or unknown parameter θ, respectively.

It is generally impossible to sample exactly from pθ (x1:T | y1:T ), except for lin-

ear Gaussian models and finite state-space HMMs. As outlined in Section 2.1 the

Metropolis Hastings (MH) sampler makes use of a proposal distribution q(x1:T , x
∗
1:T )

to generate candidates x∗1:T , which are then accepted or rejected with some prob-

ability. The high dimensionality of x1:T makes it impossible to design good pro-

posal distributions to update all states jointly, and a popular strategy consists of

updating only a subset of components at a time. For example we can divide the T

components into adjacent blocks of length K and iteratively update all the blocks,

conditioned on the components outside the current block and the observations. A

block xn:(n+K−1) is then updated according to an MCMC step of invariant density

pθ
(
xn:(n+K−1)|y1:T , x1:(n−1), x(n+K+1):T

)
∝

n+K∏

k=n

fθ (xk|xk−1)

n+K−1∏

k=n

gθ (yk|xk)

(2.15)

As long as K is not too large, it may be possible to design good proposals to be

used in a MH update. For example if the transition density fθ is linear Gaussian and

the observation density gθ is log-concave, then we may design a proposal density

based on a Gaussian approximation of Eqn. 2.15, as illustrated in [71]. However, as

K increases a Gaussian approximation may become insufficient. Even seemingly

benign differences between the proposal and target distribution in low dimension

can accumulate in higher dimensions and result in the acceptance rate dropping to

zero, which limits the number of components K that can be updated simultane-
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ously. This is a serious limitation, as it can severely constrain and slow down the

exploration of the support of pθ (x1:T |y1:T ) and introduce dependence between the

samples produced by the MCMC algorithm.

If the parameter is unknown we need to be able to sample from the joint density

p (θ, x1:T | y1:T ). A common approach is to alternately update the state components

x1:T conditional on θ and the parameter θ conditional upon x1:T . Sampling exactly

from p (θ| y1:T , x1:T ) can often be performed efficiently due to its small or mod-

erate size. However, when the parameter θ and states x1:T are strongly correlated,

this approach can result in poor mixing and thus yield an inefficient algorithm. In

this case we would like to be able to update the parameter and states jointly. How-

ever, this would require sampling all the states jointly, which in general we cannot

do as outlined above.

2.4.3 Sequential Monte Carlo for State-Space Models

The SMC algorithm decomposes the problem of sampling from pθ (x1:T | y1:T ) into

a series of simpler sub-problems, as illustrated in Section 2.2, where we define the

sequence of distributions

{πn(xn) = pθ (x1:n| y1:n) , n = 1 . . . , p = T} ,

as well as transition densities

M1(x1) = qθ (x1| yn) and

Mn(xn−1, xn) = qθ (xn|xn−1, yn) , for n = 2 . . . , p = T .

The incremental particle weights (Eqn. 2.2) in this case are:

w1 (x1) =
µθ (x1) gθ (y1|x1)

qθ (x1| y1)
and wn (xn) =

fθ (xn|xn−1) gθ (yn|xn)
qθ (xn|xn−1, yn)

This allows us to efficiently generate a population of samples (particles) from

pθ (x1:T | y1:T ). However, SMC also suffers from well-known drawbacks. If T

is too large, then the SMC approximation of the joint density deteriorates as com-

ponents at earlier times are not rejuvenated at subsequent time steps. This is due to
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the resampling which diminishes the diversity of the samples at earlier times. As

a result the approximation of the marginals pθ(xn|y1:T ) is likely very poor when

T − n is large. This is also the reason why it is very difficult, although possi-

ble [2, 31, 43], perform inference on static parameters using SMC, i.e. to sample

from the joint distribution p (θ, x1:T | y1:T ).

This naturally suggest to combine MCMC with SMC and leverage the strengths

of each by using SMC to build an approximation of the joint posterior distribution

which can then be used to generate proposals to be used in MCMC. In the next

Chapter we will present the framework to do this and also perform parameter esti-

mation, i.e. to sample from the joint posterior. Chapter 4 demonstrates this novel

methodology on several applications, including SSMs.
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Chapter 3

Particle Markov Chain Monte

Carlo

As discussed previously, a simple independent MH update which leaves π (x) in-

variant requires a proposal density q(x). In order to sample a realisation {X(i)}
of the associated Markov chain, the MH update proceeds as follows at iteration i:

(a) sample X∗ ∼ q (·), (b) set X(i) = X∗ with probability

1 ∧ π (X∗)

π (X(i− 1))

q (X(i− 1))

q (X∗)
,

otherwise set X(i) = X(i−1). We could suggest using as proposal density q (x) =

qN (x), i.e. the density of a particle generated by an SMC algorithm targeting

π(x). This is likely to result in an efficient independent MH algorithm following

the discussion of the previous section. This would however require being able to

evaluate qN (x) in order to compute the acceptance ratio above. This quantity is

unfortunately not available in closed-form. Indeed, for n = 1, ..., p let us denote

Xn :=
(
X1
n, ..., X

N
n

)
∈ XN the set of N simulated X -valued random variables at

time n, then it is not difficult to establish that the joint density of all the variables
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generated by the SMC algorithm described in Section 2.2 is

ψ (x̄1, ..., x̄p,a1, ...,ap−1)

= ψ (x̄1)
∏p

n=2
ψ (an−1|xn−1) × ψ (x̄n|x̄n−1,an−1) (3.1)

=

(
N∏

i=1

M1

(
xi1
)
)

p∏

n=2

(
r (an−1|wn−1)

N∏

i=1

Mn(x
ai

n−1

n−1 , x
i
n)

)
,

(3.2)

which is defined on X pN × {1, . . . , N}(p−1)N . Now, we deduce that the marginal

distribution of a particle drawn according to π̂N (dx) given in (2.5) is, denoting Eψ

the expectation with respect to ψ,

qN (dx) = Eψ

(
π̂N (dx)

)
= Eψ

(∑N
i=1W

i
pδXi

p
(dx)

)
,

which cannot be computed analytically in most situations of interest. In the next

section we present a general methodology to circumvent this difficulty.

3.1 Particle Metropolis-Hastings Sampler

In order to illustrate the simplicity of the implementation of our approach we first

describe a particular instance of the methodology in order to sample from π(x),

where x is updated in one single block. The particle Metropolis Hastings (PMH)

algorithm by itself does not offer any advantage over SMC, but would instead be

used as a component of more complex MCMC algorithms. For example in the pro-

tein folding application (Sec. 4.2) we use PMH in simulated annealing to perform

block updates. We can show that this particular MCMC update is nothing but an in-

dependent MH sampler with an auxiliary target distribution defined on an extended

space with the output of an SMC algorithm as a proposal. However, the principle

underlying the construction of the auxiliary target distribution is not classical.

3.1.1 Algorithm

In order to sample from π(x) the particle Metropolis Hastings (PMH) sampler

proceeds as shown in Algorithm 3.1 (with the notation of Section 2.2, in particu-
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Algorithm 3.1: Particle Metropolis Hastings Sampler

Initialisation i = 01

Run an SMC algorithm targeting π(x)2

sample X(0) ∼ π̂N (·) and compute ẐN (0)3

For iteration i ≥ 14

Run an SMC algorithm targeting π(x), sample X∗ ∼ π̂N (·) and5

compute ẐN,∗

With probability6

1 ∧ ẐN,∗

ẐN (i− 1)
, (3.3)

set X(i) = X∗ and ẐN (i) = ẐN,∗, otherwise set X(i) = X (i− 1) and

ẐN (i) = ẐN (i− 1)

lar (2.5) and (2.6)). Note that the acceptance probability (3.3) is independent of

X∗ which makes it possible to sample X∗ only once the move is accepted. The

acceptance probability (3.3) also enjoys the attractive property that, under (A3), it

converges to 1 as N → ∞ as both ẐN,∗ and ẐN (i− 1) are consistent estimates

of Z, the unknown normalising constant of π(dx). In addition, under mixing as-

sumptions of the Feynman-Kac semi-group, the variance of this acceptance ratio

can be shown to be proportional to p/N .

3.1.2 Proof of Validity

In this section we establish the validity of the PMH algorithm by showing that it

is a standard independent MH update with specific target and proposal distribu-

tions defined on an extended space (Theorem 1). This results in straightforward

convergence properties, see Theorem 2.

At first sight, one might think that the sequence {X (i)} generated by the PMH

will have π (dx) as the desired equilibrium distribution only when N → ∞. We

can show that this is in fact the case for all N ≥ 1. The key to establish this result

is to reformulate the PMH as a standard independent MH sampler defined on an

extended state-space with a suitable invariant distribution.

In the following we will need the following notation related to particle ances-
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Figure 3.1: Illustration of running an SMC algorithm and selection of a path

{X6
1 , X

3
2 , X

4
3 , X

3
4} (yellow) to use as a proposal within PMCMC. The

arrows show the resampling and resulting assignment of ancestry vari-

ables Ain.

tries. Assume that we have selected particle Xk
p at time p. For k = 1, . . . , N and

n = 1, . . . , p, let ikn denote the index of the ancestor particle of xkp at generation

n. More formally we define ikp := k, ikp−1 := akp−1 (with the notation of Section

2.2) and for n = p−1, . . . , 1 we have the backward recursive relation ikn := a
ikn+1
n .

As a result we can rewrite xkp = (x
ik1
1 , x

ik2
2 , . . . , x

ikp−1

p−1 , x
ikp
p ). The matrix a = {akn}

is sampled row by row at the resampling steps of the SMC algorithm and allows

us to represent the ancestries of all Xi
n (e.g. see arrows in Figure 3.1 which point

from parent to offspring), while ik lets us easily index the path of particle k. For

example in Figure 3.1 the highlighted path is i34 = 3, i33 = 4, i32 = 3, i31 = 6.

Theorem 1 Assume (A1 )-(A2) then for any N ≥ 1 the PMH sampler is an inde-
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pendent MH sampler defined on the extended space defined on

X pN × {1, . . . , N}(p−1)N+1,

with target density

π̃N (k, x̄1, ..., x̄p,a1, . . . ,ap−1) = (3.4)

1

Np

π
(
xkp
)

M1(x
ik1
1 )
∏p
n=2 r(i

k
n−1|wn−1)Mn(x

ikn−1

n−1 , x
ikn
n )
ψ (x̄1, ..., x̄p,a1, ...,ap−1) ,

with ψ defined in (3.1), and proposal density

qN (k, x̄1, ..., x̄p,a1, . . . ,ap−1) := wkp × ψ (x̄1, ..., x̄p,a1, . . . ,ap−1) , (3.5)

where wkp is a realization of the normalised importance weight defined in (2.3).

The proof is given below. Here xkp is distributed according to π(dx). As a

result the sequence {X(i)} = {XK(i)
p (i)} is of interest, because from standard

MH theory it will leave π(dx) invariant.

Proof of Theorem 1. We can easily check that (3.4) and (3.5) are both positive

and sum to one; the factor 1/Np corresponds to the uniform distribution on the set

{1, ..., N}p for the random variables K,A
IK
2

1 , . . . , A
IK
p

p−1, i.e. there are Np equiv-

alent orderings of the indices in the particle path. Now the acceptance ratio of

an independent MH algorithm is known to depend on the following “importance

weight”

π̃N (k,x1, ...,xp,a1, . . . ,ap−1)

qN (k,x1, ...,xp,a1, . . . ,ap−1)

=
1

Np

π
(
xkp
)

wkp ×M1(x
ik1
1 )

p∏
n=2

r(ikn−1|wn−1)Mn(x
ikn−1

n−1 , x
ikn
n )

First we make use of (A1), i.e. r(ikn|wn) = w
ikn
n = wn(x

ikn
n )/

∑N
i wn(x

i
n), with
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some abuse of notation. This yields:

π̃N (·)
qN (·) =

1

Np

π
(
xkp
)

M1(x
ik1
1 )

p∏
n=2

Mn(x
ikn−1

n−1 , x
ikn
n )

p∏
n=1

w
ikn
n

=

γ(xk
p)

Z
1
Np

p∏
n=1

∑N
i=1wn

(
xin
)

M1(x
ik1
1 )

p∏
n=2

Mn(x
ikn−1

n−1,n, x
ikn
n )

p∏
n=1

wn(x
ikn
n )

In the above manipulations we have also substituted γ
(
xkp
)
/Z for π

(
xkp
)
.

π̃N (·)
qN (·) =

γ(xk
p)

Z
1
Np

p∏
n=1

∑N
i=1wn

(
xin
)

M1(x
ik1
1 )

p∏
n=2

Mn(x
ikn−1

n−1,n, x
ikn
n )

γ1(x
ik1
1 )

M1(x
ik1
1 )

p∏
n=2

γn(x
ikn
n )

γn−1(x
ik
n−1

n−1 )Mn(x
ik
n−1

n−1 ,x
ikn
n )

=
ẐN

Z

The final result is obtained thanks to the definitions of the incremental weights (2.2)

w1

(
xi1
)

:=
γ1(x

i
1)

M1(xi1)
and wn

(
xin
)

:=
γn
(
xin
)

γn−1

(
x
ikn−1

n−1

)
Mn

(
x
ikn−1

n−1 , x
i
n

) ,

and of the normalising constant estimate (2.6)

ẐN :=

p∏

n=1

[
1

N

N∑

i=1

wn
(
xin
)
]
.

It should now be clear that the PMH algorithm described above corresponds to sam-

pling particles according to qN defined in (3.5) and that the acceptance probability

(3.3) corresponds to that of an independent MH algorithm with target distribution

π̃N given by (3.4).

As a result, Theorem 1 is powerful since by showing that our PMH algorithm

is a MH algorithm in disguise, it allows us to use standard results concerning the
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convergence properties of the independent MH algorithm to prove the following

theorem. Let LN (X (i) ∈ ·) denote the distribution of X (i) generated by the PMH

algorithm with N ≥ 1 particles.

Theorem 2 Assume (A1)-(A2) then for any N ≥ 1 the PMH sampler generates a

sequence of probability distributions
{
LN (X (i) ∈ ·)

}
such that

∥∥LN (X (i) ∈ ·) − π(·)
∥∥→ 0 as i→ ∞ .

In addition, under (A3), there exists ρ ∈ [0, 1) such that for any i ≥ 1 and N ≥ 1,

∥∥LN (X (i) ∈ ·) − π(·)
∥∥ ≤ ρi .

The proof can be found in Appendix A. Note that the second result might ap-

pear negative since from the proof we do not observe an improvement on the rate

of convergence of the algorithm as N increases. However, as a particular case of

[1, Theorem 1] it is possible to show that for any ǫ, η > 0 there exists N0 such that

for any N ≥ N0 and any i ≥ 1

∥∥LN∗ (X (i) ∈ ·) − π(·)
∥∥ ≤ ǫ

with ψ−probability larger than 1−η, where LN∗ (X (i) ∈ ·) denotes the conditional

distribution of X (i) conditional upon the random variables generated at iteration

0 by the SMC algorithm.

3.1.3 Extensions and Variations

As pointed out earlier, Theorem 1 is fundamental since it highlights the standard

MH nature of the PMH algorithm and allows us to easily establish its validity. In

this section we show how this property can also suggest further improvements.

Using All the Particles

One criticism of PMH is that a lot of work seems wasted by only selecting one can-

didate from the SMC proposal, especially considering that the importance weight

(estimate of the normalisation constant) is independent of the selected path. We
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propose to use all the particles in order to carry out inference using a strategy

which shares some characteristics with [39].

The ‘standard’ estimate of Eπ(f) for L MCMC iterations is 1
L

∑L
i=1 f(X(i)).

We will show in this thesis that the following estimator, which utilises all the par-

ticles, converges towards Eπ(f) as L→ ∞ for any N ≥ 1:

Theorem 3 Assume (A1)-(A2) and Eπ(|f |) <∞. Then for any N ≥ 1,

1. the estimate

1

L

L∑

i=1

(
N∑

k=1

W k
p (i) f(Xk

1:p(i))

)
(3.6)

converges almost surely towards Eπ(f) asL→ ∞ where {W k
p (i) , Xk

1:p(i)}
corresponds to the set of normalised weights and particles used to compute

Ẑ (i),

2. denoting {W ∗k
p (i) , X∗k

1:p(i), k = 1, . . . , N} the set of proposed particles at

iteration i (i.e. before deciding whether or not to accept this population)

1

L

L∑

i=1

(
1 ∧ ẐN,∗ (i)

ẐN (i− 1)

)(
N∑

k=1

W ∗k
p (i) f(X∗k

1:p(i))

)
(3.7)

+

(
1 − 1 ∧ ẐN,∗ (i)

ẐN (i− 1)

)(
N∑

k=1

W k
p (i− 1) f(Xk

1:p(i− 1))

)
(3.8)

converges almost surely towards Eπ(f) as L→ ∞.

The proof is given in Appendix A. The estimate (3.6) is an average of impor-

tance sampling estimates. Each of these estimates is biased but the MH mecha-

nism allows us to obtain asymptotically consistent estimates by rejecting some of

the populations of particles proposed. Following [39] is also possible to propose

an estimate which recycles the candidate populations of particles rejected by the

PMH.

Subblock Updates of π

We have focused on the case where all the components of x = (x1, ..., xp) are

updated simultaneously. Again, if p is too large compared to the number N of par-
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ticles, then the particle approximation of π produced by the SMC algorithm might

be poor, resulting in an inefficient MH algorithm. In such situations we can sug-

gest the use of mixtures/compositions of PMH transition probabilities that update

subblocks of the form xa:b for 1 ≤ a < b ≤ p, effectively targeting conditional dis-

tributions of the type π (xa:b|x−a:b). The theoretical results of Section 2.2 suggest

that under favourable conditions the number of particles required to approximate

π (xa:b|x−a:b) for a given precision decreases linearly with the size b−a+1 of the

subblock. For such a strategy there is a tradeoff between the accuracy of the pro-

posal distribution for the conditional update, and the dependence structure on the

complementary block which might result in long correlation time in the sequence

{X(i)}.

Partial Particle Updates

Although the structure of the target distribution π̃N naturally lends itself to full

updates of all the particles using SMC algorithms we might consider rejuvenating

some of the particles conditional upon the others for computational purposes. For

example, given xkp and its “ancestral lineage” (ik1, i
k
2, . . . , i

k
p) which is such that

xkp = (x
ik1
1 , x

ik2
2 , . . . , x

ikp−1

p−1 , x
ikp
p ) then we could propose to update the N −1 remain-

ing particles and their “ancestral lineages” according to a Gibbs step under π̃N ;

this “conditional SMC sampling” strategy is detailed in Section 3.2. Any classical

MCMC updates that leave π̃N invariant can also obviously be used. Another pos-

sible suggestion in order to fight the aforementioned degeneracy for large p’s is to

use possibly standard MCMC transition probabilities in order to update subblocks

xa:b of x for 1 ≤ a < b ≤ p such that xa:b corresponds to a region of x where

particle depletion is severe.

3.2 Particle Gibbs Sampler

Assume now that we are interested in sampling from a distribution

π (θ,x) =
γ (θ,x)

Z
(3.9)
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where γ : Θ × E → R
+ is known pointwise. We show here again how SMC

algorithms can be used as a component of an MCMC algorithm, namely a Gibbs

sampler, to sample from distributions of the type π(θ,x) in situations where sam-

pling from π(x|θ) is difficult without resorting to SMC methods.

A standard strategy to sample from π (θ,x) consists of using the Gibbs sam-

pler; that is sampling iteratively from the full conditionals π (θ|x) and π (x|θ).
In numerous situations it is possible to sample exactly from π (θ|x), and we will

assume here that this is the case. Otherwise an MH update of invariant density

π (θ|x) might be used. For models of practical interest x can be high dimensional

(e.g. a vector of latent variables of the size of a large dataset) and the conditional

distribution π (x|θ) non-standard, precluding practical exact sampling. We have

π (x|θ) =
γ (θ,x)

γ (θ)
, (3.10)

where γ (θ) :=
∫
E γ (θ,x) dx is assumed unknown.

It is therefore natural to suggest the use of an SMC algorithm in order to pro-

pose approximate samples from this conditional distribution. Hence we consider a

family of bridging distributions {πn (xn|θ) ;n = 1, . . . , p} where

πn (xn| θ) =
γn (θ,xn)

Zθn
, (3.11)

such that πp (xp|θ) = π (x|θ) and a family of transition probability densities

{M θ
n (xn−1, xn)} that defines sampling of xn ∈ X conditional upon xn−1 ∈

X n−1; note that γp (θ,xp) = γ (θ,x) and Zθp = γ (θ).

3.2.1 Algorithm

The particle Gibbs (PG) sampler is an approximation of the “ideal” Gibbs sampler

where we approximately sample from π (x|θ) using an SMC algorithm. Contrary

to the PMH algorithm, sampling from the approximation π̂N (dx|θ) of π (x|θ)
using the PG algorithm requires us to keep track of the “ancestral lineage” I :=

(I1, I2, . . . , Ip) of the random variable X which, we point out again, is such that
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X = (XI1
1 , ..., X

Ip
p ). The PG sampler is shown in Algorithm 3.2.

Algorithm 3.2: Particle Gibbs Sampler

Initialisation i = 01

Set randomly θ (0)2

Run an SMC algorithm targeting π (x|θ (0))3

Sample X (0) ∼ π̂N (·|θ (0)) and denote I (0) its ancestral lineage.4

For iteration i ≥ 15

Sample θ (i) ∼ π (·|X (i− 1))6

Run a conditional SMC algorithm for θ (i) consistent with7

X (i− 1) , I (i− 1)
Sample X (i) ∼ π̂N (·|θ (i)) and denote I (i) its ancestral lineage8

The conditional SMC step is the non-standard step of the algorithm which,

given (θ, I,X = X
Ip
p ), yields an SMC approximation of π (x|θ) by using the “frozen”

particle X and sampling N − 1 “free” particles consistent with this particle and its

ancestral lineage. This is shown in Algorithm 3.3, where we have used the notation

A−In
n−1 = An−1\{AInn−1}.

To sample from the discrete-valued conditional distribution r(a−In
n−1|wn−1, a

In
n−1),

we can use the following procedure.

1. Sample the number of offspring On−1 ∼ s
(
·|Wn−1, O

In
n−1 ≥ 1

)
.

2. Sample the indices of the N − 1 “free” offspring uniformly on the set

{1, ..., N} \ {In}.

When sampling from s
(
·|Wn−1, O

In
n−1 ≥ 1

)
cannot be performed in closed-

form, we can use a rejection sampling procedure by sampling On−1∼s ( ·|Wn−1)

until OInn−1 ≥ 1. Note however that it is possible to sample directly from

s(·|Wn−1, O
In
n−1≥1) in important cases. We consider multinomial and stratified

resampling below.

Remark 1 Note that the conditional SMC algorithm does not correspond to sam-

pling from a conditional distribution of the distribution of the SMC algorithm ψθ

(given in (3.16)). However this becomes true as N → ∞.
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Algorithm 3.3: Conditional Sequential Monte Carlo Algorithm

At n = 11

For i 6= I1, sample Xi
1 ∼M θ

1 (·)2

Update and normalise the weights3

w1

(
Xi

1

)
=
γ1(θ,X

i
1)

M θ
1 (Xi

1)
, W i

1 =
w1

(
Xi

1

)
∑N

k=1w1

(
Xk

1

) .

For n = 2, ..., p do4

Sample A−In
n−1 ∼ r(·|Wn−1, A

In
n−1)5

For i 6= In, sample Xi
n ∼M θ

n(X
Ai

n−1

n−1 , ·) and set Xi
n = (X

Ai
n−1

n−1 , Xi
n)6

Update and normalise the weights7

wn
(
Xi
n

)
=

γn
(
θ,Xi

n

)

γn−1

(
θ,X

Ai
n−1

n−1

)
M θ
n

(
X
Ai

n−1

n−1 , Xi
n

) , (3.12)

W i
n =

wn
(
Xi
n

)
∑N

k=1wn (Xk
n)
. (3.13)

Multinomial Resampling

For multinomial resampling, we can factorise the probability of the number of

offsprings as

P(On−1|Wn−1, O
In
n−1≥1) = P(OInn−1|Wn−1, O

In
n−1≥1) P(O−In

n−1|Wn−1, O
In
n−1)

We then have the following procedure to perform multinomial resampling:

Algorithm 3.4: Conditional Multinomial Resampling

Sample OInn−1 ∼ B+
(
N,W In

n−1

)
1

Compute W
i
n−1 ∝W i

n−1 with
∑

i6=In
W

i
n−1 = 1 and set2

Wn−1 =
(
W

1
n−1, . . . ,W

In−1
n−1 ,W

In+1
n−1 , . . . ,W

N
n−1

)

Sample O−In
n−1 ∼ M

(
N,Wn−1

)
3
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where B+
(
N,W In

n−1

)
is the Binomial distribution of parameters (N,W In

n−1) re-

stricted to the support {1, 2, . . .}.

Stratified Resampling

Algorithm 3.5: Conditional Stratified Resampling

Compute adjusted weights W i,∗
n−1 as given in Eqn.3.141

if W In,∗
n−1 ≥ 1/N then2

sample On−1 ∼ s
(
·|W∗

n−1

)
3

else4

sample U1 uniformly on
(∑In−1

k=1 W k,∗
n−1,

∑In
k=1W

k,∗
n−1

)
5

compute Uj = U1 + j−1
N for j ∈ Z and set6

Oin−1 = #

{
Uj :

i−1∑

k=1

W k,∗
n−1 ≤ Uj ≤

i∑

k=1

W k,∗
n−1

}
.

For the popular stratified resampling algorithm [57], we can use the method

given in Algorithm 3.5. The condition of having at least one offspring of particle

In changes the resample distribution and results in the following adjusted weights:

W In,∗
n−1 =

W In
n−1

1 − (1 −W In
n−1)

N
, W i6=In,∗

n−1 = W i
n−1

(
1 −W In,∗

n−1

1 −W In
n−1

)
(3.14)

3.2.2 Proof of Validity

In this section we establish the validity of the PG algorithm under mild assump-

tions. The following notation will be needed, for any θ ∈ Θ, let

Sθn = {xn ∈ X n : πn (xn| θ) > 0} ,

Qθ
1 =

{
x1 ∈ X : M θ

1 (x1) > 0
}
,

Qθ
n =

{
xn ∈ X n : πn−1 (xn−1| θ)M θ

n (xn−1, xn) > 0
}

for n ≥ 2,
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and

S = {θ ∈ Θ : π (θ) > 0} .

(A5) For any θ ∈ S, we have Sθn ⊆ Qθ
n for n = 1, ..., p.

(A6) The ‘ideal’ Gibbs (G hereafter) sampler defined by the conditionals π (θ|x)

and π (x|θ) is irreducible and aperiodic (and hence converges for π-almost

all starting points).

We have the following result.

Theorem 4 Assume (A1)-(A5), then for any N ≥ 2 the PG sampler defines an

MCMC kernel on the extended space Θ×X pN ×{1, . . . , N}(p−1)N+1 with target

density

π̃N (θ, k,x1, ...,xp,a1, . . . ,ap−1) := (3.15)

1

Np

π
(
θ,xkp

)

M θ
1 (x

ik1
1 )
∏p
n=2 r(i

k
n−1|wn−1)M θ

n(x
ikn−1

n−1 , x
ikn
n )

ψθ(x1, ...,xp,a1, ...,ap−1) ,

where

ψθ (x1, ...,xp,a1, ...,ap−1) := (3.16)
(

N∏

i=1

M θ
1

(
xi1
)
)

p∏

n=2

(
r (an−1|wn−1)

N∏

i=1

M θ
n

(
x
ai

n−1

n−1 , x
i
n

))
.

Additionally assume (A6) holds then for any N ≥ 2 the PG sampler generates

a sequence {θ (i) ,X (i)} whose marginal distributions {LN ((θ (i) ,X (i)) ∈ ·)}
satisfy ∥∥LN ((θ (i) ,X (i)) ∈ ·) − π(·)

∥∥→ 0 as i→ ∞ .

The proof can be found in Appendix A.
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3.2.3 Extensions

Alternative Moves

The PG algorithm is an appealing algorithm which has the property that it con-

verges to the standard Gibbs sampler asN → ∞. However, given p and for a finite

N for which the degeneracy problem is severe, the fact that the PG sampler forces

the “frozen” path I,X = X
Ip
p to survive during the conditional PMH step can

have detrimental effects and result in a highly dependent Markov chain. Indeed, in

such situations most of the particles at time p generated by the conditional SMC

algorithm coalesce with the ancestral lineage of the “frozen” path I,X = X
Ip
p . To

limit this problem, various alternatives to update of X (i) proposed above can be

suggested. For example, we can suggest to update X (i) using the PMH algorithm,

which yields Algorithm 3.6.

Algorithm 3.6: Alternate Move for Particle Gibbs Sampler

For iteration i ≥ 11

Sample θ (i) ∼ π (·|X (i− 1))2

Run a conditional SMC algorithm for θ (i) consistent with3

X (i− 1) , I (i− 1) and set γ̂N (θ (i)) = ẐN

Run an SMC algorithm targeting π (x|θ (i)), sample X∗ ∼ π̂N (·|θ (i))4

and set γ̂N,∗ (θ (i)) = ẐN

With probability5

1 ∧ γ̂N,∗ (θ (i))

γ̂N (θ (i))

set X(i) = X∗ and I(i) = I∗, otherwise set X(i) = X (i− 1) and

I(i) = I (i− 1)

Following the developments concerning the PG sampler, we can easily show

that under mild assumptions (A1-A5) and for any N ≥ 1 this algorithm has the

desired invariant distribution.
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Optimisation

In some situations we might be interested in maximising π (θ). As π (θ) is typ-

ically unknown, even up to a normalising constant, it is not possible to use an

algorithm such as the simulated annealing algorithm. However, we can introduce

the following distribution, defined on Θ × Em

πm
(
θ,x1, ...,xm

)
∝
∏m

i=1
π
(
θ,xi

)
(3.17)

whose marginal distribution πm (θ) is proportional to [π(θ)]m [28]. This distri-

bution concentrates itself on the set of global maxima of π (θ) as m increases. It

is straightforward to apply a modified version of the PG sampler to sample from

πm
(
θ,x1, ...,xm

)
by sampling m independent conditional SMC algorithms. At

iteration i, it proceeds as follows:

Algorithm 3.7: Marginal Maximisation using Particle Gibbs

Sample θ (i) ∼ πm
(
·|X1 (i− 1) , ...,Xm (i− 1)

)
1

For k = 1, ...,m2

Run a conditional SMC algorithm for θ (i) consistent with3

Xk (i− 1) , Ik (i− 1)

Sample Xk (i) ∼ π̂N (·|θ (i)) and denote Ik (i) its ancestral lineage4

It can be shown under mild assumptions (A1-A5) and for any N ≥ 2 that the

Markov kernel associated to this algorithm admits πm
(
θ,x1, ...,xm

)
as invariant

distribution.

An alternative consists of considering the following extended distribution

π̃N (θ, k1, ..., km,x1, ...,xp,a1, . . . ,ap−1)

∝
∏m

i=1
π
(
θ,xki

p

) N∏

i=1,i6=i
k1:km
1

M θ
1

(
xi1
)

(3.18)

×
p∏

n=2


r
(

a
−i

k1:km
1

n−1

∣∣∣∣wn−1, a
i
k1:km
n
n−1

) N∏

i=1,i6=i
k1:km
n

M θ
n

(
x
ai

n−1

n−1 , x
i
n

)


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where ka 6= kb for a 6= b and ik1:km
n =

(
ik1n , ..., i

km
n

)
. Note that even if ka 6= kb,

these paths might have a common ancestor; that is there exists n such that ika
n =

ikb
n . To sample from (3.18) and thus from πm

(
θ,x1, ...,xm

)
, we could propose the

following iterative algorithm. At each iteration, sample θ ∼ πm
(
·|xk1p , ...,xkm

p

)

then run a conditional SMC algorithm for θ consistent with xk1p , ...,x
km
p and their

ancestral lineages. Finally, sample (k1, ..., km) from

π̃N (k1, ..., km| θ,x1, ...,xp,a1, . . . ,ap−1) .

However, in this scenario the full conditional distribution of (k1, ..., km) does not

take a simple form because of the potential coalescences of the paths and an MH

step is required.

3.3 Particle Marginal Metropolis-Hastings Sampler

Assume we are interested in sampling from π (θ,x) defined in (3.9). In cases where

x and θ are highly correlated, the Gibbs sampling strategy described in the previ-

ous section might be inefficient. In this case, we might want to sample directly

from the marginal π (θ) using say an MH algorithm. However, if π (θ) is unknown

even up to a normalising constant, this is impossible. We present here a particle

approximation of this “ideal” marginal MH algorithm.

Our algorithm is based on the following remark. Consider a MH algorithm of

target density π (θ,x) and proposal density

q ((θ,x) , (θ∗,x∗)) = q (θ, θ∗)π (x∗| θ∗) .

Then the acceptance ratio is given by

1 ∧ π (θ∗,x∗)

π (θ,x)

q ((θ∗,x∗) , (θ,x))

q ((θ,x) , (θ∗,x∗))
= 1 ∧ π (θ∗)

π (θ)

q (θ∗, θ)

q (θ, θ∗)
.

Consequently, provided that it is possible to sample the component x from a good

approximation of π (x| θ) then the resulting MH algorithm will essentially approx-

imate the “marginal” MH algorithm.
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To build a proposal approximating π (x| θ), we use an SMC method and in-

troduce as in the PG sampler a sequence of distributions {πn (xn| θ)} defined in

(3.11) and some transition kernels {M θ
n (xn−1, xn)}. The key point is that the

normalising constant estimate obtained at time p is an estimate of γ (θ), the unnor-

malised version of π (θ), i.e. recall that γ(θ,x) = π(x|θ)γ(θ) from (3.10).

3.3.1 Algorithm

Algorithm 3.8: Particle Marginal Metropolis-Hastings Sampler

Initialisation i = 01

Set randomly θ (0)2

Run an SMC algorithm targeting π (x|θ (0))3

Sample X (0) ∼ π̂N ( ·| θ (0)) and set γ̂N (θ (0)) = ẐN4

For iteration i ≥ 15

Sample θ∗ ∼ q (θ (i− 1) , ·)6

Run an SMC algorithm targeting π (x|θ∗) sample X∗ ∼ π̂N ( ·| θ∗) and7

set γ̂N (θ∗) = ẐN

With probability8

1 ∧ γ̂N (θ∗)

γ̂N (θ (i− 1))

q (θ∗, θ (i− 1))

q (θ (i− 1) , θ∗)
(3.19)

set θ (i) = θ∗, X (i) = X∗, γ̂N (θ (i)) = γ̂N (θ∗),
otherwise set θ (i) = θ (i− 1), X (i) = X (i− 1),
γ̂N (θ (i)) = γ̂N (θ (i− 1))

The particle marginal Metropolis Hastings (PMMH) sampler is given in Al-

gorithm 3.8. Note that the acceptance probability (3.19) is independent of X∗ so

that it is possible to sample X∗ only once the move is accepted and, if we are

only interested in estimating π (θ), then this simulation step can always be omit-

ted. The computational complexity of each iteration is of orderO (N). Under mild

assumptions the acceptance probability of this sampler converges to the acceptance
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probability of the “ideal” marginal MH algorithm as

γ̂N (θ∗)

γ̂N (θ (i− 1))
→ γ (θ∗)

γ (θ (i− 1))
=

π (θ∗)

π (θ (i− 1))

when N → ∞. Moreover, under mixing assumptions, the variance of the accep-

tance ratio is proportional to p/N . We can also show under mild assumptions (A1-

A5,A7) that for anyN ≥ 1 the PMMH sampler generates a sequence {θ (i) ,X (i)}
whose sequence of distributions {LN ((θ (i) ,X (i)) ∈ ·)} satisfies

∥∥LN ((θ (i) ,X (i)) ∈ ·) − π(·)
∥∥→ 0 as i→ ∞ .

3.3.2 Proof of Validity

We show here that the PMMH is a standard MCMC algorithm on an extended

space and that for all N ≥ 1 it generates a sequence converging towards the target

distribution of interest. The following assumption will guarantee convergence.

(A7) The “ideal” MH sampler of target density π (θ) and proposal density q (θ, θ∗)

is irreducible and aperiodic (and hence converges for π-almost all starting

points).

Theorem 5 Assume (A1 )-(A5), then for any N ≥ 1 the PMMH sampler is an MH

sampler defined on the extended space Θ×{1, . . . , N}×X pN×{1, . . . , N}(p−1)N+1

with target density (3.15) and proposal density

q (θ, θ∗) × w∗k
p × ψθ

∗ (
x∗

1, ...,x
∗
p,a

∗
1, ...,a

∗
p−1

)

where ψθ
∗

is defined in (3.16) and {w∗k
p } consists of the normalised importance

weights associated to the proposed population of particles as defined in (2.3).

Assume in addition that (A7) holds. Then for any N ≥ 1 the PMMH

sampler generates a sequence {θ (i) ,X (i)} whose sequence of distributions

{LN ((θ (i) ,X (i)) ∈ ·)} satisfies

∥∥LN ((θ (i) ,X (i)) ∈ ·) − π(·)
∥∥→ 0 as i→ ∞ .
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The proof can be found in Appendix A.

3.3.3 Extensions

Alternative Proposals

It can be difficult to select the proposal distribution for θ. However, our framework

is flexible enough that it allows us to design proposal distributions for θ relying

on the set of current particles. For example, if π (θ|x) is a standard distribution

dependent on a set of sufficient statistics of x then we could use an independent

proposal of the same functional form with sufficient statistics computed using the

set of current particles with possibly an inflated variance, as long as the dimension

of θ is not too large.

Optimisation

To sample from (3.17), we can use straightforwardly the PMMH by sampling m

independent SMC algorithms at each iteration i. This is shown in Algorithm 3.9.

Algorithm 3.9: PMMH with m Independent SMC Algorithms

For iteration i ≥ 11

Sample θ∗ ∼ q (θ (i− 1) , ·)2

Run m independent SMC targeting π (x|θ∗) and let3

γ̂Nm (θ∗) =

m∏

i=1

ẐNi

where ẐNi is the normalising constant estimate provided by the ith SMC

algorithm.

With probability4

1 ∧ γ̂Nm (θ∗)

γ̂Nm (θ (i− 1))

q (θ∗, θ (i− 1))

q (θ (i− 1) , θ∗)

set θ (i) = θ∗, γ̂Nm (θ (i)) = γ̂Nm (θ∗),
otherwise set θ (i) = θ (i− 1), γ̂Nm (θ (i)) = γ̂Nm (θ (i− 1))
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Under (A1)-(A5), the invariant distribution of the Markov kernel associated to

this algorithm is πm (θ) ∝ πm(θ) for any N ≥ 1.

3.4 Extensions

In this section, we present various extensions of the PMCMC methodology and dis-

cuss connections with earlier work. The content of this section is not required to

understand the examples in Section 4, where applications of the PMCMC method-

ology are presented.

3.4.1 Dynamic and Optimal Resampling

In many applications of SMC, the resampling step is only performed when the

accuracy of the estimator is poor. Practically, this is assessed by looking at the

variability of the weights using the so-called effective sample size (ESS) criterion

[61, pp. 35-36] given at time n by

ESS =

(
N∑

i=1

(
W i
n

)2
)−1

.

Its interpretation is that inference based on the N weighted samples is approxi-

mately equivalent to inference based on ESS perfect samples from the target. The

ESS takes values between 1 andN and we resample only when it is below a thresh-

old NT .

All the strategies presented in the previous sections can also be applied in this

context. The PMH and PMMH can be implemented in the dynamic resampling

context without any modification. However, the PG is more difficult to imple-

ment as the conditional SMC step requires simulating a set of N − 1 particles

not only consistent with a ‘frozen’ path but also consistent with the resampling

times of the SMC method used to generate the ‘frozen’ path. For example assume

that the ‘frozen’ path has been generated by an SMC algorithm resampling at time

n1, n2, ..., nm. Then the conditional SMC method has to generate a set of N − 1

particles which are such that when the ESS is computed with this N − 1 ‘free’ par-

ticles plus the frozen one, then it is below the threshold NT at times n1, n2, ..., nm
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and only at these time indices. This implies that the N − 1 particles cannot be

simulated independently anymore. The easiest way to implement the conditional

SMC consists of using a rejection method. However the acceptance rate of this

rejection step is expected to be only reasonable when N is large - as the variance

of ESS is inversely proportional to N - and if p is moderate.

The SMC algorithm proposed in [32], [34] for discrete-valued variables is not

of the form described in Section 2.2 as the ‘sampling’ step is deterministic and the

proposed so-called optimal resampling step does not attribute equal weights to all

particles. It can be shown though that we can use it directly within the PMH and

PMMH algorithms. However the peculiar structure of the optimal resampling step

seems to prevent the development of a simple PG-type algorithm.

3.4.2 Arbitrary Target Distribution

For the time being, we have considered it possible to devise a sequence of distri-

butions of increasing dimensions which progressively evolves towards the target

distribution of interest. However, there are many problems where such a decompo-

sition might not be obvious to define. In this case, it remains possible to use SMC

to sample from any target distribution using the general methodology presented in

[65]; see also [17], [45], [56].

Assume now that the target π̃ (x) is defined on X . To sample from π̃ (x)

using SMC-type ideas, we introduce a sequence of p − 1 intermediate distribu-

tions {π̃n (x)} on X moving smoothly from π̃1 (x) – an easy to sample distribu-

tion – to π̃p (x) = π̃ (x), where π̃n (x) = Z−1
n γ̃n (xn). Here γ̃n : X → R

+

is known pointwise but Zn might be unknown. For example, we could have

π̃n (x) ∝ [π̃ (x)]ηn where 0 < η1 < η2 < · · · < ηp = 1 or, in a Bayesian

context, π̃n (x) could be the posterior distribution of X given observations until

time n [17]. To move from π̃n−1 (xn−1) to π̃n (xn) we use a sequence of Markov

kernels Mn (xn−1, xn) = Mn (xn−1, xn). In most applications, Mn is an MCMC

kernel of invariant distribution π̃n although this is not necessary. We then build the

distributions πn (xn) on X n for n = 2, ..., p using

γn (xn) = γ̃n (xn)
n−1∏

k=1

Lk (xk+1, xk)
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where {Ln} is a sequence of auxiliary (backward) Markov kernels giving the prob-

ability density to move from xn+1 to xn. By construction, we have

π̃ (xp) =

∫
πp (xp) dxp−1 .

Once {π̃n} , {Mn} and {Ln} have been selected (see [65] for guidelines), then we

can straightforwardly implement the algorithms proposed in Section 3.1 to sample

from πp (xp) and hence from its marginal πp (xp) = π̃ (xp).

We can also directly adapt the PMMH presented in Section 3.3 to sample from

π̃ (θ, x) = Z−1γ̃ (θ, x) on some space Θ ×X by defining

πn (xn| θ) =
γn (θ,xn)

Zθn

where

γn (θ,xn) = γ̃n (θ, xn)
n−1∏

k=1

Lθk (xk+1, xk)

and γ̃p (θ, xp) = γ̃ (θ, xp). However, even if we can sample from π̃ (θ|x), the PG

sampler proposed in Section 3.2 cannot be applied as it does not require sampling

from π̃ (θ|xp) but from πp (θ|xp) which is usually intractable. To bypass the

simulation step from πp (θ|xp), we can use a collapsed Gibbs sampler strategy

where we first sample θ from π̃ (θ|xp) then sample Xp−1, ..., X1 from

n−1∏

k=1

Lθk (xk+1, xk) .

3.5 Discussion

The PMH algorithm presented in Section 3.1 is related to the configurational bias

Monte Carlo (CBMC) method which is a very popular method in molecular simu-

lation used to sample long proteins [40, 74]. However, on the contrary to the PMH

algorithm, the CBMC algorithm does not propagateN particles in parallel. Indeed,

at each time step n, the CBMC algorithm samples N particles but the resampling

step is such that a single particle survives, to which a new set ofN offsprings is then

43



attached. Using our notation, this means that the CBMC algorithm corresponds to

the case where Ain = Ajn for all i, j = 1, . . . , N and A1
n ∼ r(·|Wn) i.e. at any

time n, all the children share the same and unique parent particle. The problem

with this approach is that it is somewhat too greedy and that if a “wrong” decision

is taken too prematurely then the proposal will be most likely rejected. It can be

shown that the acceptance probability of the CBMC algorithm does not converge

to 1 for p > 1 as N → ∞ contrary to that of the PMH algorithm. It has been more

recently proposed in [19] to improve the CBMC algorithm by propagating forward

several particles simultaneously in the spirit of the PMH algorithm. However, con-

trary to us, the authors in [19] propose to kill or multiply particles by comparing

their unnormalised weights wn
(
Xi
n

)
with respect to some pre-specified lower and

upper thresholds; i.e. the particles are not interacting and their number is a ran-

dom variable. In simulations, they found that the performance of this algorithm

was very sensitive to the values of these thresholds. Our approach has the great

advantage of bypassing the delicate choice of such thresholds.

In statistics, a variation of the CBMC algorithm known as the multiple-try

Metropolis (MTM) has been introduced in the specific case where p = 1 in [60].

The key of our methodology is to build efficient proposals using sequential and

interacting mechanisms for cases where p ≫ 1: the sequential structure might be

natural for some models but can also be induced in other scenarios in order to take

advantage of the potential improvement brought in by the interacting mechanism.

In this respect, both methods do not apply to the same class of problems.

The idea of approximating the marginal MH algorithm which samples directly

from π (θ), by approximately integrating out the latent variables x, was proposed

in [6] then generalised and studied theoretically in [1]. The present work is a sim-

ple mechanism which opens up the possibility to make this approach viable in large

dimensional setups. Indeed the PMMH approach is expected to lead to approxi-

mations of π (θ) (up to a normalising constant) with a variance which for high-

dimensional problems is likely to scale favourably compared to estimates based,

for example, on standard non-sequential and non-interacting importance sampling.

The results in [1] suggest that this is a property of paramount importance in order

to design efficient marginal MCMC algorithms.
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Chapter 4

Applications

4.1 Nonlinear State-Space Model

Consider the following non-linear non-Gaussian dynamic model where {Xn}n≥1

is an unobserved Markov process defined by X1 ∼ µθ (·) and for n > 1

Xn|Xn−1 ∼ fθ ( ·|Xn−1)

where the observations {Yn}n≥1 are assumed independent conditional upon {Xn}n≥1

with

Yn|Xn ∼ gθ ( ·|Xn) .

The parameter θ is also unknown and follows the prior distribution p (θ). Having

observed y1:T , we are interested in sampling from the target distribution

p (θ, x1:T | y1:T ) ∝ p (θ)µθ (x1) gθ (y1|x1)

T∏

n=2

fθ (xn|xn−1) gθ (yn|xn) .

Although sampling from p (θ| y1:T , x1:T ) can typically be performed using stan-

dard techniques, sampling from p (x1:T | y1:T , θ) is impossible except for lin-

ear Gaussian models and finite state-space Markov chains [14], [41]. The

standard approach consists of sampling alternatively from the full conditional

p(xn|yn, xn−1, xn+1, θ) directly or using a MH step but this strategy can be ex-
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tremely inefficient due to the strong dependence between xn and (xn−1, xn+1).

A more efficient strategy would consists of sampling blocks of variables say

p (xn:n+L−1| yn:n+L−1, xn−1, xn+L, θ). When this distribution is log-concave,

it is possible to design efficient proposal distributions [71]. However for

more complex scenarios, this can be very challenging. We propose here to

use the PMH algorithm to sample from p (x1:T | y1:T , θ) or from subblocks

p (xk:k+L−1| yk:k+L−1, xk−1, xk+L, θ) whenever T is too large. In this case,

the “natural” sequence of bridging distributions to consider is πn (xn) =

p (xn| y1:n, θ).

We illustrate our methodology on the following example

Xn =
Xn−1

2
+ 25

Xn−1

1 +X2
n−1

+ 8 cos(1.2n) + Vn (4.1)

Yn =
X2
n

20
+Wn (4.2)

where X1 ∼ N (0, 5), Vn
iid∼ N

(
0, σ2

V

)
, Wn

iid∼ N
(
0, σ2

W

)
; N

(
m,σ2

)
denotes

the Gaussian distribution of mean m and variance σ2. We set θ = (σV , σW ). This

example is often used in the literature in order to assess the performance of particle

methods; e.g. [27], [47], [57]. The posterior distribution p (xT | y1:T , θ) for this

non-linear state-space (NLSS) model is highly multimodal as there is uncertainty

about the sign of the state Xn which is only observed through its square.

We generated a set of observations y1:200 according to the model (4.1)-(4.2) for

θ = (σV , σW ) =
(√

10, 1
)
. We first compared the acceptance rates for the PMH

and CBMC algorithm [40] when sampling from p (xT | y1:T , θ) for various lengths

T of the observations and a varying number of particles N .

To sample from p (xT | y1:T ) we used for the proposal M θ
n (xn−1, xn) an ap-

proximation of the conditional distribution

p (xn| yn, xn−1, θ) ∝ gθ (yn|xn) fθ (xn|xn−1)

given by the extended Kalman filter (local-linearisation); see [26] for details. We

also used the most basic resampling scheme; i.e. multinomial resampling. The

results are displayed in Figure 4.1. The PMH algorithm performs consistently

46



better than the CBMC algorithm, and is able to successfully sample large blocks

of variables for a reasonable number of particles. As expected, the PMH algorithm

can achieve acceptance rates close to 1 for a sufficiently large number of particles.

We then compared the acceptance rates for proposal from prior (P) versus pro-

posal using local-linearisation (LL). Here we used θ = (
√

15,
√

2). The simula-

tions with the P proposal used multinomial resampling at every time step (boot-

strap) while the simulations with the LL proposal used dynamic and stratified re-

sampling. The result is shown in Figure 4.2. We found that for low number of par-

ticles the LL proposal does slightly better, but as the number of particles increases

proposing from the prior does as well or better than LL. This can be explained by

the fact that the LL proposal doesn’t handle multimodalities well. At low parti-

cles it is able to steer more particles into regions of higher posterior density than

the much more diffuse prior. However, this advantage becomes less important and

eventually the property of being a unimodal Gaussian proposal for a multimodal

posterior becomes a handicap for LL as the number of particles increases and the

prior is able to propose sufficient number of particles into high probability regions.

We then set the following prior on θ = (θ1, θ2) = (σV , σW )

θ2
1 ∼ IGa (a, b) , θ2

2 ∼ IGa (a, b) ,

where IGa is the Inverse-Gamma distribution with a = b = 0.01.

To sample from p (xT , θ| y1:T ), we used the PG sampler described in Sec-

tion 3.2 with for M θ
n (xn−1, xn) an approximation of the conditional distribution

p (xn| yn, xn−1, θ) ∝ gθ (yn|xn) fθ (xn|xn−1)

given by the extended Kalman filter as before (LL proposal). The full conditional

distribution p (θ| y1:T ,xT ) is of a standard form. We compared the PG sampler

to a standard algorithm where one updates the states Xn one-at-a-time using a

MH step of invariant distribution p (xn| yn, xn−1, xn+1, θ) and proposal distribu-

tion M θ
n (xn−1, xn). In the one-at-a-time algorithm, we updated N times the state

variables XT at each iteration before updating θ. Hence the PG sampler and the
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Figure 4.1: Acceptance probabilities for PMH (top) and CBMC (bottom) as

a function of T and N . Each point was computed over an average of

250,000 iterations.
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standard algorithm have approximately the same computational complexity. Note

that in this case, it is difficult to design efficient block proposal distributions to

sample from p (xk:k+L−1| yk:k+L−1, xk−1, xk+L, θ) for L > 1 as this distribution

can be multimodal.

We used T = 500 and N = 1000. For θ fixed to its real value, the average ac-
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Figure 4.4: ACF of the output of the PG and MH algorithms.

ceptance rate of our PMH algorithm of Section 3.1 using the ‘improved’ proposal

and a multinomial resampling scheme was equal to 0.43. This is quite remarkable

as this effectively corresponds to updating 500 real-valued dependent variables si-

multaneously. We then ran the PG algorithm and the standard one-at-a-time sam-

pler for 50,000 iterations with a burn-in of 10,000 iterations. In Figure 4.4, we

display the auto-correlation functions (ACFs) of the parameters (σV , σW ) for the

PG and the MH one-at-a-time algorithms obtained using N = 1000. The autocor-

relation sequences for the various parameters consistently vanish faster for the PG

sampler.

In Figure 4.5, we present the estimates of the marginal distributions of the

parameters for both algorithms. Contrary to the PG sampler, the standard algorithm

clearly misses the main mode of the posterior distribution and over-estimates the

parameter σV .

The block proposal for the states XT of the PG sampler allows us to avoid

getting trapped in this secondary mode. Out of 100 independent runs of both al-

gorithms on the same dataset, the PG algorithm never experienced being trapped

in such a secondary mode of the target distribution and produced consistent results
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whereas the standard algorithm, initialised at θ = (10, 10) for data with ground

truth (
√

10, 1), was trapped 67 times. In practice, we can obviously combine both

strategies by only occasionally updating the state variables with the PG sampler to

avoid such traps while using more standard and cheaper updates for large propor-

tion of the computational time. In simulations not presented here, we also applied

our algorithm to the stochastic volatility model presented in [67], [71]. This model

is somewhat ‘easier’ than the toy example presented here and the particle MCMC

algorithms perform very well in this case.

We also compared the performance of the PG sampler with the PMMH sam-

pler. In this case we used the prior as a proposal in the SMC with multinomial

resampling. The PMMH used a normal random walk proposal with a diagonal

covariance matrix. The standard deviation was equal to 0.15 for σV and 0.08 for

σW . We present in Figure 4.6 the auto-correlation function for (V,W ) for the PG

and PMMH samplers and various number of particles N . Clearly the performance

improves as N increases, and while dependent on the test function f considered
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Figure 4.6: ACF of parameters σV and σW for the PG sampler and the

PMMH sampler.

(as in Eqn. 3.6), it is possible to choose N in order to optimise the ratio integrated

autocorrelation function/particle number N . In this scenario, it appears necessary

to use at least 2000 particles to get the ACF to drop sharply, whereas increasing N

beyond 5000 does not improve performance. That is for N > 5000 we observe

that the ACFs (not presented here) are very similar toN = 5000 and probably very

close to that of the corresponding “ideal” MMH algorithm.
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4.2 Protein Folding

One of the most important and challenging scientific problems is simulating molec-

ular structures. Protein folding is one of the more well known open problems in

structural biology and biophysics. Proteins are the final products of most genes

and perform a variety of roles: they serve as structural units, control metabolic

pathways, participate in the catalysis or inhibition of various chemical reactions,

and serve many other functions. Proteins are chain-like polymers, composed of

small subunits (amino acids). There are 20 different types of these amino acids,

with a few less common modified versions thereof, which can be loosely grouped

into classes based on their chemical properties, such as hydrophobic, hydrophilic

(or polar), and charged [8].

The protein folding problem consists of predicting the structure of the protein

given its sequence of amino acids. This may include the prediction of the folding

pathways to arrive at the “final” shape. The protein structure is dictated by the

free energy landscape, lower energy structures being preferred. The native state

of a protein is usually at the minimum free energy, and we will consider proteins

where this is the case. Exceptions to this can occur when the folding takes place

under kinetic control [22]. The function of a protein is primarily determined by its

structure, and the sequence of amino acids dictates the structure (Central Dogma

of genomics) [22].

There are several different approaches that have been taken to investigate these

types of problems, including SMC, CBMC, prune-enriched Rosenbluth method

(PERM), recoil-growth (and variations thereof) [40, 61, 74], replica exchange

Monte Carlo (parallel tempering) [75], ant colony optimisation [72], and model

based search [11].

Next we apply the PMCMC method to this class of problems. We will focus

only on the lattice approximations, in particular the HP model, and leave the off-

lattice case for future studies.

4.2.1 Lattice Model

Instead of modelling the full protein with all the interacting forces, it is often pos-

sible to imitate the protein folding using a simple 2-D or 3-D lattice-bead model.
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→

Figure 4.7: Illustration of protein folding in HP model. The left configuration

is in a high energy state (U = 0), while on the right the protein sequence

is folded into into the lowest energy configuration (U = −9).

The positions of the amino acids (now beads) in the protein sequence are thus re-

stricted to a lattice and we only need to account for interactions of non-covalent

bonds and ensure a self-avoiding walk (SAW), i.e. no two beads can occupy the

same position and neighbouring elements in the sequence must be neighbours on

the lattice. One of the simplest models used is an Ising model and has only two

types of beads: white and black, corresponding to hydrophilic and hydrophobic

amino acids, respectively [61]. The energy function for this model is

Un(xn) = −
∑

|i−j|>1

c(xi, xj) (4.3)

where c(xi, xj) = 1 if xi and xj are non-bonding neighbours and both beads are

black (hydrophobic), and c(xi, xj) = 0 otherwise.

4.2.2 Implementation

We used PMH with sub-block updating and simulated annealing [68, Chapter 5] to

optimise the protein configuration for the lowest energy. The inverse temperature

for the annealing was increased linearly from βmin = 0.1 to βmax = 5 with incre-

ments △β, using 50×L iterations at each temperature, where L is the length of

the protein sequence. The subblocks were chosen at random positions with sizesB

sampled from [2, 20], either uniformly or “reverse-linearly”, that is, with a distribu-

tion Prl(B) ∝ 21 −B. We also used an adaptive number of particles which scaled
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linearly with the current block size. This might break detailed balance, however,

since this is an optimisation problem, we can afford this approximation and benefit

from a more efficient algorithm. To further improve the efficiency of the sampler

we implemented the resampling scheme suggested by Fearnhead & Clifford [35].

The method works well for discrete state models, especially when the number of

possible states is small.

4.2.3 Results

In order to do comparison with other methods, we ran our method on the data sets

given in [75] and [76]. The protein sequences and corresponding lowest (known)

energies are given in Tables 4.1 and 4.2, for folding in 2D and 3D, respectively.

The results are summarised in Table 4.3. The time is given in seconds. kr spec-

ifies the scaling factor used for adapting the number of particles to the block size

(i.e. N = 1+kr×B). △β is the increment of the inverse-temperature for the

annealing. “bsd” is the block size distribution, where “u” indicates uniform and

“rl” is reverse-linear. We show both the best performance as well as the median

performance over 15 runs at the given settings. The performance of our method

is currently not as good as some of the competing methods, such as replica ex-

change Monte Carlo (REMC) [75], fragment regrowth via energy-guided sequen-

tial sampling (FRESS) [76], or specialised versions of PERM (nPERMis [55] and

PERMtExp
[55, 75]). However, the results are encouraging. We are able to find the

lowest known energy for most of the protein sequences in a reasonable amount of

time. However, we do struggle with the 3D sequences from the data set of [76]. Ta-

bles 4.4 and 4.5 compare our results to the other methods for the data sets from [75]

and [76], respectively. Further tuning of the method, plus adding some specialised

moves could make this a competitive approach.
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ID Length Emin Protein Sequence

S1-1 20 -9 (HP)2 PH(HP)2 (PH)2 HP(PH)2
S1-2 24 -9 H2 (P2H)7 H

S1-3 25 -8 (P2H)2 HP4H2P4H2P4H2

S1-4 36 -14 P3 (H2P2)2 P3H5 (H2P2)2 P2H(HP2)2
S1-5 48 -23 P2HP2 (H2P2)2 P3H10P6 (H2P2)2 HP2H5

S1-6 50 -21 H(HP)4 H4PH(P3H)2 P(P3H)3 PH3 (HP)4 H2

S1-7 60 -36 P2H3PH8P3H9 (HP)2 P2H12P4H4 (H2P)2 HP

S1-8 64 -42 H11 (HP)3 P(H2P2)2 HP2 (H2P2)2 HP2 (H2P2)2
(HP)2 H12

S1-9 85 -53 H4P4H12P6H12P3H12P3H12P3HP2 (H2P2)2 HPH

S1-10 100 -50 P(P2H2)2 H2P2H(H2P)3 H4P8H6P2H6P9H(PH2)2
H9P2H(H2P)2 HP(PH)2 H2P6H3

S1-11 100 -48 P5 (PH)2 HP5H3PH3 (H2P)2 P(P2H2)2 PH5PH8

(H2P)2 H7P11H7P(PH)2 H2P5 (PH)2 H

2D50 50 -21 H(HP)4 H4PH(P3H)2 P(P3H)3 PH3 (HP)4 H2

2D60 60 -36 P2H3PH8P3H9 (HP)2 P2H12P4H4 (H2P)2 HP

2D64 64 -42 H11 (HP)3 P(H2P2)2 HP2 (H2P2)2 HP2 (H2P2)2
(HP)2 H12

2D85 85 -53 H4P4H12P6H12P3H12P3H12P3HP2 (H2P2)2 HPH

2D100a 100 -48 P5 (PH)2 HP5H3PH3 (H2P)2 P(P2H2)2 PH5PH8

(H2P)2 H7P11H7P(PH)2 H2P5 (PH)2 H

2D100b 100 -50 P(P2H2)2 H2P2H(H2P)3 H4P8H6P2H6P9H(PH2)2
H9P2H(H2P)2 HP(PH)2 H2P6H3

Table 4.1: Benchmark collection of protein sequences for 2D HP model. Hi

and Pi indicate strings of i consecutive H’s and P’s and (s)i denotes i
repetitions of string s. Emin is the lowest known energy.
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ID Length Emin Protein Sequence

S2-1 48 -32 HPH2P2H(H3P)2 PH2P(PH)2 H(HP)2 (H2P2)2
PHP8H2

S2-2 48 -34 H2 (H2P)2 H5 (P2H)2 (HP2)2 P2 (P2H)2 P3H(P2H2)2
HPH

S2-3 48 -34 PH(PH2)2 H4P2 (HP)2 (PH)2 (HP)3 P2HP2 (H2P2)2
(HP)2 PHP

S2-4 48 -33 (PH)2 HP(PH)2 H2P2 (H2P)2 P2H5P(PH)2 (HP)3 P

(P2H)2 PHP

S2-5 48 -32 P2HP2 (PH)2 H3P2H2 (H2P)2 H3P2 (HP)2 (HP2)2 P4

(H2P)2 H

S2-6 48 -32 H3P3H(HP)2 (H2P)3 HP7 (HP)2 PHP(P2H)2 H5PH

S2-7 48 -32 PHP3 (PH)2 H(HP)2 H2 (H2P)3 P2 (HP)2 P2H(H2P2)3
PH

S2-8 48 -31 (PH2)2 HPH(H3P2)2 P3 (PH)2 HP2H(HP)2 P2H(HP)3
H2P3

S2-9 48 -34 P(HP)2 P3 (HP)3 (PH)2 H5P2H2 (HP)2 (PH)2 HP

(PH)2 H2P4H

S2-10 48 -33 PH2P3 (P3H2)2 (HP)2 (PH)2 H(P2H)2 (P2H2)2
H5P2H2

3D58 58 -44 PHP(H3P)2 PH2PH(PH2)2 (HP)3 H2P2H3P2 (HP)2 P

(P2H)3 H(P2H)2
3D64 64 -56 P(H2P)2 H3P2 (HP)2 P(HP)2 PH(H2P)3 P(H2P)2

H3P2 (HP)2 P(HP)2 PH(H2P)3
3D67 67 -56 PHP(H2P)2 HP2H3P3HP(H2P)2 HP2H3P3HP(H2P)2

HP2H3P3HP(H2P)2 HP2H3P

3D88 88 -72 PHP(H2P)2 HP2H2 (P2H)6 HP2 (H3P2)4 HP(H2P)2 H

(P2H)3 H(P2H)3 HP2HP

3D103 103 -57 P2H2P3 (P2H2)2P(HP2)2P2 (P3H)2HPH2P4 (P2H)2P

(HP2)2 P3H3P4 (H2P)2 P4H2P4H3 (HP)2 P7H4 (HP2)2
3D124 124 -75 P3H2 (HP)2 P3HP5H2P2 (P2H2)2 (P4H)2 (P2H)2

HP3H(HP)2 H3P4H3P6H2 (P2H)2 P(HP2)2 P3 (P2H)2
H2P(P3H)2 H4P4H(HP)4 H

3D136 136 -83 HP(P4H)2 P(H2P)2 P2 (PH)2 H2P4 (HP)2 H4P9 (P2H)2
P2 (PH)2 HP3H2 (P2H)2 P(HP)2 P4 (P3H)2 H5P

(P2H2)2 HP2 (PH2)2 H3P5 (P4H)2 PHP4

Table 4.2: Benchmark collection of protein sequences for 3D HP model. Hi

and Pi indicate strings of i consecutive H’s and P’s and (s)i denotes i
repetitions of string s. Emin is the lowest known energy.
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Best performance Median performance Setting

Protein Emin E Time #iter E Time #iter kr △β bsd

S1-1 -9 -9 0.0 0 K -9 0.1 0 K 2 .100 u

S1-2 -9 -9 0.1 1 K -8 0.2 2 K 1 .100 rl

S1-3 -8 -8 0.1 1 K -7 0.3 2 K 1 .100 u

S1-4 -14 -14 0.4 1 K -12 0.1 1 K 2 .100 u

S1-5 -23 -23 0.4 4 K -20 0.8 6 K 1 .100 rl

S1-6 -21 -21 0.4 2 K -17 0.2 1 K 2 .100 rl

S1-7 -36 -36 5.8 56 K -35 2.4 24 K 1 .010 rl

S1-8 -42 -42 22.5 80 K -38 9.8 58 K 2 .010 u

S1-9 -53 -53 242.9 1535 K -51 71.2 725 K 1 .001 u

S1-10 -50 -49 182.0 696 K -47 189.1 440 K 3 .001 rl

S1-11 -48 -47 4.2 43 K -45 2.5 26 K 1 .010 rl

2D50 -21 -21 0.5 2 K -19 1.0 4 K 2 .100 u

2D60 -36 -36 536.4 1170 K -35 151.9 571 K 3 .001 u

2D64 -42 -42 6.6 72 K -40 8.5 59 K 1 .010 rl

2D85 -53 -53 108.5 366 K -52 77.0 409 K 2 .001 u

2D100a -48 -48 112.3 737 K -46 67.7 664 K 1 .001 u

2D100b -50 -49 52.5 303 K -46 79.1 283 K 2 .001 rl

S2-1 -32 -32 45.5 216 K -31 60.1 181 K 2 .001 rl

S2-2 -34 -34 7.1 35 K -31 4.9 16 K 2 .010 rl

S2-3 -34 -34 8.0 44 K -31 2.6 23 K 1 .010 u

S2-4 -33 -33 45.5 240 K -31 18.0 154 K 1 .001 u

S2-5 -32 -32 2.1 9 K -29 1.3 4 K 2 .100 rl

S2-6 -32 -32 3.7 36 K -30 4.9 46 K 1 .010 rl

S2-7 -32 -32 117.0 978 K -31 80.2 454 K 1 .001 rl

S2-8 -31 -31 4.8 41 K -29 4.3 24 K 1 .010 rl

S2-9 -34 -33 12.8 25 K -31 22.2 40 K 3 .010 u

S2-10 -33 -33 362.3 1179 K -33 362.3 1179 K 3 .001 rl

3D58 -44 -43 8.1 24 K -39 2.7 14 K 2 .010 u

3D64 -56 -52 260.0 835 K -51 631.8 1200 K 3 .001 rl

3D67 -56 -50 128.8 1130 K -49 177.8 995 K 1 .001 rl

3D88 -72 -67 607.1 1708 K -64 223.4 1053 K 2 .001 u

3D103 -57 -55 5.9 36 K -48 4.9 46 K 1 .010 u

3D124 -75 -70 150.8 515 K -68 237.2 498 K 3 .001 rl

3D136 -83 -78 66.7 613 K -74 97.8 884 K 1 .001 rl

Table 4.3: Protein folding results for HP model using PMH with subblock

updating and tempering. The time is given in seconds.
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PMCMC FRESS nPERMis

Protein Emin E Time E Time E Time

2D50 -21 -21 0.53 -21 – – –

2D60 -36 -36 536.41 -36 – -36 –

2D64 -42 -42 6.62 -42 – -42 –

2D85 -53 -53 108.51 -53 – -52 –

2D100a -48 -48 112.34 -48 – -48 –

2D100b -50 -49 52.54 -50 – -50 –

3D58 -44 -43 8.07 -44 5.4 -44 11.4

3D64 -56 -52 259.98 -56 32.4 -56 27

3D67 -56 -50 128.81 -56 84.6 -56 66

3D88 -72 -67 607.10 -72 301.8 -69

3D103 -57 -55 5.94 -57 268.2 -55 187.2

3D124 -75 -70 150.82 -75 – -71 738

3D136 -83 -78 66.65 -83 – -80 6600

Table 4.5: Comparison of protein folding performance for the data set from

[76]. The time is given in seconds.
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4.3 Dirichlet Mixture Model

We consider a Dirichlet process (DP) mixture model for the observations Y1:T . We

have the following hierarchical model

G ∼ DP (α,G0) ,

Un|G i.i.d.∼ G,

Yn|Un ∼ gUn (·) ,

where DP (α,G0) is a Dirichlet process of base measure G0 and scale parameter

α. By integrating out G and using the Polya urn representation of the predictive

distribution of Un given U1:n−1, we can equivalently reformulate the model by

introducing a vector of cluster labels X1:n which satisfy

P (Xn = j|x1:n−1) =

{
mj
n−1/ (n− 1 + α) for j = 1, ..., kn−1

α/ (n− 1 + α) j = kn−1 + 1
(4.4)

where kn−1 is the number of clusters in the assignment x1:n−1 and mj
n−1 is the

number of observations that x1:n−1 assigns to cluster j. The cluster locations are

such that

θk
i.i.d.∼ G0

and

Yn| θXn ∼ gθXn
(·) .

Assuming α is also unknown with a suitable prior π (α), the posterior of in-

terest is given by π (xT , θ1:kT
, α| y1:T ) . We will consider here the case where the

base measure G0 and the likelihood gθ are conjugate so that it is possible to com-

pute the marginal π (xT , α| y1:T ) up to a normalising constant. In such situations,

several SMC methods have already been proposed to sample from π (xT | y1:T , α)

[32], [61, Section 4.4.2]. We focus here on the following Gaussian mixture model

for real-valued observations where θ =
(
µ, σ2

)
and

G0

(
µ, σ2

)
= IG

(
σ2; a, b

)
N
(
µ; η, τσ2

)
.
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For the scale parameter, we use

α ∼ Ga (c, d) . (4.5)

Using standard calculations [32], we can show that

π (y1:n|x1:n, α) =

kn∏

j=1





baΓ
(
a+mj

n/2
)

Γ (a)
√
mj
nτ + 1


b+

mj
n

2



(
σ̂jn
)2

+

(
yjn − η

)2

1 +mj
nτ







−(a+mj
n/2)





where

yjn =
1

mj
n

n∑

k=1

I (xk = j) yk,

(
σ̂jn
)2

=
1

mj
n

n∑

k=1

I (xk = j)
(
yk − yjn

)2
.

We cannot sample from π (α| y1:T ,xT ) directly. However, following [30], we can

introduce an auxiliary variable υ ∈ (0, 1) such that

α| y1:T ,xT , υ ∼ γυ Ga (c+ kT , d− log υ)+(1 − γυ)Ga (c+ kT − 1, d− log υ)

with γυ/ (1 − γυ) = (c+ kT − 1) / (T (d− log υ)) and

υ| y1:T ,xT , α ∼ Be (α+ 1, T )

where Be is the Beta distribution.

We first applied our algorithm to the Galaxy dataset [68, p. 426] and used the

version of the data in [32] with T = 82. We used a = b = 1, η = 20, τ = 152

[32] and c = 1, d = 0.5. To sample from π (xT , α| y1:T ), we ran the PG algo-

rithm of Section 3.2 with π (xn|α) = π (xn| y1:n, α) and the stratified resampling

scheme at each iteration. We also used the PMMH algorithm of Section 3.3 with

the same sequence π (xn|α) and using both stratified and dynamic resampling
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scale parameter number of clusters

S E (α| y1:T ) V (α| y1:T ) E (kT | y1:T ) V (kT | y1:T )

PG 9000 0.911 0.267 5.342 2.686

PMMH 9000 0.916 0.273 5.416 2.683

PMH 49000 fixed to α = 1 5.754 1.843

SMC [32] 50,000 fixed to α = 1 5.75 –

Gibbs [32] 50,000 fixed to α = 1 5.75 –

Gibbs [30] 10,000 ∼1.0 ∼0.2 7.01 3.41

Table 4.6: Results for Galaxy data set. S is the number of samples used

in the Monte Carlo estimate. Both PG and PMMH used 100 parti-

cles. The Gibbs sampler in Escobar & West [30] used the prior p(α) =
Ga(2, 0.25).

schemes; resampling being performed when ESS< N/2. The proposal for α is a

Gaussian random walk proposal of standard deviation 0.5. We ran the algorithms

for 10, 000 iterations and a burn-in of 1, 000. For N = 50, we found that the

PG and the PMMH algorithms provided similar results in terms of posterior mean

and posterior variance of α and kT ; the results for the galaxy data set are sum-

marised in Table 4.6, and the histogram, trace, and ACF for the PG and PMMH

samplers are shown in Figure 4.8. Increasing the number of particles did not sig-

nificantly improve the performance of the algorithms. For example for N = 50

the average acceptance rate of the PMMH algorithm was 0.62 while for N ≥ 100

it stabilised at 0.71. This suggests that in this scenario N = 100 is sufficient to

approximate the marginal MH algorithm. Fearnhead [32] performed inference on

the number of clusters using Gibbs sampling and SMC. The reported mean was

5.75 and agrees with our results, however we should note that in [32] the scaling

parameter was fixed at α = 1 while in our simulations α was also sampled and had

mean 0.91 with variance 2.7. Escobar & West [30] analysed the Galaxy data using

a Ga(2, 0.25) as a prior for α and obtained a posterior for the scale parameter with

E(α) ≈ 1 and V(α) ≈ 0.2, which is a bit larger and more peaked than what we

found. Note that they also learn the prior parameters η and τ and we have used a

slightly different prior for α.

We also applied our algorithm to a large simulated dataset of 10, 000 real-

valued observations generated from the Dirichlet process Gaussian mixture model.
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Figure 4.8: Histogram (top), trace (middle), and ACF (bottom) of parame-

ter α for PG (left) and PMMH (right). The histogram and trace plots

were obtained using 100 particles. The PG resampled at every time

step, while the PMMH used dynamic resampling. Both used stratified

resampling.
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Figure 4.9: Average acceptance rate for various versions of the PMH algo-

rithm for varying number of data points and N = 100

For α fixed to its true value, α = 1, we compared the performance of the PMH

sampler for varying SMC schemes and numbers of data points for N = 100 par-

ticles. The results are displayed in Figure 4.9. Even for only N = 100 particles,

the acceptance rate of the PMH algorithms based on SMC proposals with dynamic

resampling is equal to 0.31 for T = 10, 000 observations.

For T = 10, 000 we also implemented the PG sampler to sample from

π (xT , α| y1:T ) based on an SMC proposal using stratified resampling at each it-

eration . We ran the algorithm for 10, 000 iterations with 1, 000 iterations for the

burn-in. In Figure 4.10, we display the autocorrelation function for the simulated

values
{
α(i)
}

and the estimate of π (α| y1:T ). The PMMH algorithms for stratified

and dynamic resampling yield similar results.

We also compared our method to Gibbs sampling. In order to keep the com-

putational complexity the same, we allow the Gibbs sampler to run N full Gibbs

updates for the state variables between each parameter update, whereN is the num-

ber of particles used in the PMMH and PG samplers (see Algorithm 4.1). For this

problem however, we found that particle MCMC does not give any improvement in
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Figure 4.10: Auto-correlation function for parameter α (left) and estimate of

π (α| y1:T ) (right). The vertical line corresponds to the true value.

performance over Gibbs sampling. As there is only weak dependence between the

label assignments Xk and between the parameter α and Xk, the PMCMC method

has only limited advantage over Gibbs. Given the greater complexity of PMCMC,

the simpler Gibbs sampler would be the preferred method to use on this model.

Algorithm 4.1: Gibbs Sampler for Dirichlet Mixture Model.

// see Appendix C.1 for details

sample α(0) from prior1

initialise state vector X(0)2

For iteration i ≥ 13

sample α(i) ∼ π(·|X(i− 1))4

set X(i) = X(i− 1)5

for k = 1, .., N do6

for n = 1, .., T do7

sample Xn(i) ∼ π(Xn(i)|X−n(i),y1:T )8
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4.4 Markov Jump Processes (Lotka-Volterra)

We consider here a discretely observed stochastic kinetic Lotka-Volterra (LV)

model [9]; see [49] for a description of such models and their applications in sys-

tems biology. For this model it is not possible to compute the prior between two

given times; i.e. P (Zt+T |Zt) (integrating out the paths between times t and t+T ),

which prevents us from designing proposals with the observations taken into ac-

count. We are thus required to propose from the prior. As we shall see, PMCMC

allows us to still obtain good performance despite this limitation.

The LV model describes the evolution of two species Z1
t (prey) and Z2

t (preda-

tor) which are non-negative integer-valued processes. In a small time interval

(t, t+ dt], there are three possible transitions for the Markov jump process (MJP)

Zt =
(
Z1
t , Z

2
t

)

P
(
Z1
t+dt = z1

t + 1, Z2
t+dt = z2

t

∣∣ z1
t , z

2
t

)
= α z1

t dt + o (dt) ,

P
(
Z1
t+dt = z1

t − 1, Z2
t+dt = z2

t + 1
∣∣ z1
t , z

2
t

)
= β z1

t z
2
t dt + o (dt) ,

P
(
Z1
t+dt = z1

t , Z
2
t+dt = z2

t − 1
∣∣ z1
t , z

2
t

)
= γ z2

t dt + o (dt) ,

corresponding respectively to prey reproduction, predator reproduction & prey

death, and predator death. We assume that we only observe the process Yn =(
Y 1
n , Y

2
n

)
at discrete time points τn which is given by

Y i
n = Ziτn +W i

n , (4.6)

where W i
n

i.i.d.∼ N
(
0, σ2I

)
for i = 1, 2. The observation times are assumed to be

evenly spaced at τn = n∆. We are interested here in making inference about the

parameters θ = (α, β, γ) which are assumed to be a priori distributed as

α ∼ Ga(1, 10), β ∼ Ga(1, 0.25), γ ∼ Ga(1, 7.5)

where Ga is the Gamma distribution. For the initial populations we used

x0 ∼ U(20, 80),

Although it is possible to analyse such models directly using reversible-jump

67



MCMC (RJMCMC) [9], a very popular alternative consists of using a diffusion ap-

proximation instead [49, pp. 188-189] which typically leads to ‘simpler’ inference

algorithms [48]. For the Lotka-Volterra model, one can obtain a two-dimensional

diffusion processXt =
(
X1
t , X

2
t

)
with drift and instantaneous variance-covariance

matrix given by [33]

(
αX1

t − βX1
tX

2
t

βX1
tX

2
t − γX2

t

)
and

(
αX1

t + βX1
tX

2
t βX1

tX
2
t

−βX1
tX

2
t βX1

tX
2
t + γX2

t

)
.

(4.7)

Most approaches rely on data augmentation (by discretising time using the

Euler-Maruyama approximation) to solve the stochastic differential equations

(SDEs). We applied PMCMC to this problem and have developed a Gaussian

proposal for the SMC using an unscented Kalman smoother (UKS). However, we

only had limited success with this approach and have found that a simpler method

works much better (and faster) for this model.

Instead of transforming the problem into an SDE, we would prefer to stay in

the discrete state space and use the exact model. Unfortunately we cannot evaluate

the prior (transition) probability P(Z1
(n+1)△, Z

2
(n+1)△|z1

n△, z
2
n△). However, we are

able to sample exactly from the prior using Gillespie’s algorithm [46]. And since

we are able to evaluate the likelihood, we can use SMC to sample the states, and

PMCMC to sample the parameters (α, β, γ). Of course for this to work efficiently,

the likelihood must be sufficiently diffuse in order to get enough particles in regions

of high probability.

We generated T = 50 observations y1:50 by simulating the MJPZt =
(
Z1
t , Z

2
t

)

using Gillespie’s algorithm [46, 49] and (4.6) with parameters α = 2, β = 0.05,

and γ = 1.5, ∆ = 0.2, and σ2 = 4; see Figure 4.11.

Applying PMMH, the parameters were sampled using a Gaussian random walk

proposal (independent for each component). In order to improve mixing, random

subsets of the parameters were updated at each iteration. The number of compo-

nents n to update was sampled uniformly. The variances used for the random walk

proposal are s2α = 0.22/n, sβ = 0.0052/n, and sγ = 0.152/n.

The acceptance rate for the sampler was 36%, with an average ESS/N of 17.1%

and resample rate of 95%. The simulation took 4hrs (17412.8 seconds) using a sin-
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Figure 4.11: Synthetic data generated from the Lotka-Volterra model using

Gillespie’s algorithm. The prey (Z1
t ) and predator (Z2

t ) are shown in

green and red, respectively. The squares and circles indicate the obser-

vations Y 1
n and Y 2

n , respectively.

gle core of an Intel Core2 Duo 6300 @ 1.86GHz. Figure 4.12 shows the histogram

and trace plots of the parameters. The algorithm mixes well, and the posterior is

centred around the true value. The auto-correlation functions of the parameters are

shown in Figure 4.13. PMMH also gives posterior estimates of the hidden states at

the observation times, as shown in Figure 4.14.

Boys et al. [9] perform exact inference (i.e. without SDE approximation) on

this type of model using RJMCMC and a block updating (BU) method. They use

a different observation model, where the prey is observed without error, but the

predator is unobserved. In their BU method, the latent process (reaction events)

is updated in blocks consisting of pairs of intervals between observations, keeping

the endpoints (i.e. population sizes at the beginning and end of the block) fixed and

using a random walk proposal on the number of reactions. The parameters are up-

dated conditional on sampled events. The authors note that, while RJMCMC mixes

much worse than BU and requires significantly more CPU time, both “algorithms
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Figure 4.13: ACFs of the sampled parameters.

suffered significant mixing problems” when the predators where unobserved, and

due to CPU constraints no satisfactory results were obtained using RJMCMC. As

evident from the trace plots in Figure 4.12 PMCMC does not suffer from this (al-

though note that a direct comparison should be taken with a grain of salt due to the

difference in the observation model).
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Figure 4.14: Histograms of prey (top) and predator (bottom) states. The

ground truth trajectory and observations are shown in green and blue,

respectively.
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4.5 Lévy-Driven Stochastic Volatility Model

We now consider another model in which the prior cannot be evaluated, but we can

sample from it. This model has the additional challenge of complex dependence

between the parameters.

The logarithm of an asset price y∗ (t) is assumed to be determined by the fol-

lowing stochastic differential equation

dy∗ (t) =
(
µ+ βσ2 (t) dt

)
+ σ (t) dB (t)

where µ is the drift parameter, β the risk premium andB (t) is a Brownian motion.

The instantaneous latent variance/volatility σ2 (t) is assumed to be stationary and

independent from B (t). It is modelled by the following Lévy-driven Ornstein-

Uhlenbeck process proposed in [4]

dσ2 (t) = −λσ2 (t) dt+ dz (λt) (4.8)

where λ > 0 and z (t) is a purely non-Gaussian Lévy process with positive incre-

ments with z (0) = 0.

We define the integrated volatility

σ2∗ (t) =

∫ t

0
σ2 (u) du

which satisfies from (4.8)

σ2∗ (t) = λ−1
{
z (λt) − σ2 (t) + σ2 (0)

}
.

Let ∆ denote the length of time between two periods of interests, then the incre-

ments of the integrated volatility satisfy

σ2
n = σ2∗ (n∆) − σ2∗ ((n− 1) ∆)

= λ−1
{
z (λn∆) − σ2 (n∆) − z (λ (n− 1) ∆) + σ2 ((n− 1) ∆)

}
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where (
σ2 (n∆)

z (λn∆)

)
=

(
exp (−λ∆)σ2 ((n− 1) ∆)

z (λ (n− 1) ∆)

)
+ ηn

with

ηn
d
=

(
exp (−λ∆)

∫ ∆
0 exp (λu) dz (λu)∫ ∆

0 dz (λu)

)
. (4.9)

By aggregating returns over a time interval of length ∆, we have

yn =

∫ n∆

(n−1)∆
dy∗ (t) = y∗ (n∆) − y∗ ((n− 1) ∆)

thus, conditional on the volatility, we have

yn ∼ N
(
µ∆ + βσ2

n, σ
2
n

)
.

Many publications have restricted themselves to the case where σ2 (t) follows

marginally a Gamma distribution in which cases the stochastic integrals appear-

ing in 4.9 can be represented by a finite number of random variables. In this case

sophisticated MCMC schemes were developed so as to perform Bayesian infer-

ence on λ and the parameters of the Gamma [42, 52, 69]. However, as outlined

in [44] the use of Gamma models seems to have been mostly motivated by com-

putational tractability. We address here the case where σ2(t) follows a tempered

stable marginal distribution TS(κ, δ, γ) which includes the class of inverse Gaus-

sian distributions for κ = 1
2 ; this class of models has been successfully used to

fit the returns from exchange rate time series [5]. The tempered stable distribution

does not admit a closed-form expression, but it is shown in [5] that

σ2 (0)
d
=

∞∑

i=1

{(
aiκ

A0

)−1/κ

∧ eiv1/κ
i

}
(4.10)

where {ai}, {ei}, {vi} are independent of one another. The {ei} are i.i.d. expo-

nential with mean 1/B, the {vi} are standard uniforms whereas a1 < a2 < . . . are
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arrival times of a Poisson process of intensity 1 and

A0 = δ2κ
κ

Γ (1 − κ)
, B =

1

2
γ1/κ.

It is also established that to ensure a TS(κ, δ, γ) marginal for σ2(t) then z (t) has to

be the sum of an infinite activity Lévy process and of a compound Poisson process

such that

ηn
d
=

∞∑

i=1

(
exp (−λ∆ri)

1

){( aiκ

Aλ∆

)−1/κ
∧ eiv1/κ

i

}
+

N(λ∆)∑

i=1

(
exp (−λ∆r∗i )

1

)
ci

(4.11)

where

A = δ2κ
κ2

Γ (1 − κ)
, B =

1

2
γ1/κ.

In (4.11), {ai} , {ei}, {ri}, {r∗i }, {vi} are independent of one another. The

{ai} , {ei}, {vi} follow the same distributions as in (4.10), the {ci} are i.i.d.

Ga (1 − κ,B), and {ri}, {r∗i } are standard uniforms. Finally N (λ∆) is a Pois-

son random variable of mean λ∆δγκ. It was shown experimentally in [5] that

the infinite series appearing in (4.10)-(4.11) are dominated by the first few terms,

“although as κ goes to one this becomes less sharp”.

Performing inference in this context is extremely challenging as, although it

is possible to sample approximately from the prior, it is not possible to evaluate it

pointwise. In [44] the authors have proposed an MCMC algorithm for Bayesian

inference. This requires sampling the volatility process
{
σ2
n

}
; this is achieved by

updating {ηn} one at a time with an independent MH sampler using the prior as

proposal (and relying on an alternative infinite series expansion of ηn). In [21] an

SMC algorithm was proposed to estimate
{
σ2
n

}
when the parameters of the models

are fixed: it uses the prior as a proposal as any alternative proposal would require

a pointwise evaluation of the prior.

We applied PMCMC to this model in order to perform Bayesian inference on

the parameters {κ, δ, γ, λ} and we set here µ = β = 0 as in [21]. First we ran

PMMH on a synthetic data set and then used the daily Standard & Poor’s 500

(S&P 500) closing prices from January 12, 2002 to December 30, 2005.
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4.5.1 Synthetic Data

We generated a synthetic data set with T = 400 observations using parameters

θtrue = (κ, δ, γ, λ) =
(
0.5,

√
2,
√

8, 0.1
)
.

The MH step in the PMMH used a Gaussian random walk proposal using the

following covariance matrix ΣRW, which was found by running the algorithm for

some time using a diagonal covariance matrix and then computing the sample co-

variance:

ΣRW =




0.00834501 −0.0602253 0.0346668 −0.00188407

−0.0602253 0.694237 0.0921531 0.000170793

0.0346668 0.0921531 1.82894 −0.121654

−0.00188407 0.000170793 −0.121654 0.199951




We found that the parameters κ and δ were quite correlated. To improve mixing,

we alternated between the following two proposals:

q1(θ, θ
∗) = N(θ∗; θ, 1.52

4 ΣRW)

q2(θ1:2, θ
∗
1:2) = N(θ∗1:2; θ1:2,

1.52

2 ΣRW
1:2 ), with θ∗3:4 = θ3:4

The simulation is quite sensitive to κ, so we use a fairly informative prior. This

was also observed in [44]. We used a Beta prior for κ and Gamma priors for the

other three parameters:

π(κ) = Be(10, 10)

π(δ) = Ga(1, 7)

π(γ) = Ga(1, 14)

π(λ) = Ga(1, 0.5)

We ran simulations using using 50, 100, and 200 particles. The autocorrelation

of the parameters is shown in Figure 4.15), the histograms and scatter plots of the

parameters (using 200 particles) are given in Figure 4.16, and the trace is plots are

shown in Figure 4.17. The posterior for κ is almost the same as the prior, suggest-

ing that the prior is either too informative, or that there is very little information

about κ in the data. We also tried a broader prior and found that the posterior is

also similar to the prior, but the simulation does not mix as well, in particular when

κ gets close to 1. The acceptance rate for the PMMH was 10%. We used dynamic
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Figure 4.15: Lévy-driven SV model using synthetic data: Comparison of

auto-correlation functions for different number of particles.

resampling in the SMC proposal and resampled on average at 12% of the time

steps.

4.5.2 Standard & Poor’s 500

The Standard & Poor’s 500 (S&P 500) data set has 1000 observations, which are

the daily increments in the log-prices from 12/01/2002 to 30/12/2005, and rescaled

to have unit variance (the mean is 0.0079). The data is shown in Figure 4.18. Next

we show simulations results using two different priors; the first one being a bit

more informative than the second.

Prior 1

The MH step in the PMMH used a Gaussian random walk proposal using the fol-

lowing covariance matrix ΣRW, which again was generated by running the algo-

rithm for some time using a diagonal covariance matrix and then computing the
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Figure 4.16: Lévy-driven SV model using synthetic data: Histogram and

2D scatter plots of sampled parameter values. The prior is shown as

dashed curve and the true value is shown by the vertical dashed line:

θtrue = (κ, δ, γ, λ) =
(
0.5,

√
2,
√

8, 0.1
)
. The data set has 400 obser-

vation and the simulation used 200 particles.

sample covariance:

ΣRW =




0.00133842 −0.104184 9.80768e−05 1.24963e−05

−0.104184 16.3029 0.0881985 −0.000947038

9.80768e−05 0.0881985 0.00670481 7.94049e−06

1.24963e−05 −0.000947038 7.94049e−06 2.25697e−06




The same proposal was used as before (i.e. alternating between updating first two

parameters, κ and δ, and updating all parameters jointly). The prior was chosen

quite informative as follows:

π(κ) = Be(4, 36)

π(δ) = Ga(1, 7)

π(γ) = Ga(1, 14)

π(λ) = Ga(1, 0.5)
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Figure 4.17: Lévy-driven SV model with synthetic data: Trace plots.

where Be(α, β) is the Beta distribution, and Ga(k, θ) is the Gamma distribution

with shape k and scale θ. The histograms and scatter plots of the parameters are

shown in Figure 4.19. As evident from the trace and auto-correlation plots given

in Figure 4.21 and 4.20, the Markov chain mixes quite well given the complex

structure of the posterior. The SMC proposal performs very well with a resample

rate of only 4% and average ESS of about 0.75N , where N = 500 is the number

of particles used. The main difficulty lies is proposing good candidates for the

parameters. The acceptance rate was 21%.

Prior 2

For this simulation we broadened the priors1 as follows:

π(κ) = Be(1, 15)

π(δ) = Ga(1, 20)

π(γ) = Ga(1, 10)

π(λ) = Ga(1, 1)

1The prior for γ was tightened, but this change had negligible effect on the posterior
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Figure 4.18: S&P 500 data set for Lévy-driven SV. Top: daily prices from

from 12/01/2002 to 30/12/2005. Bottom: difference of log of prices,

scaled to have unit variance.

The same covariance matrix as before was used for the random walk proposal,

and we again alternated between updating the first two components and updating

all parameters jointly. The acceptance rate was 23% with an average resampling

rate of 4% and ESS=0.75N (again using N = 500 particles). The histograms and

scatter plots of the samples are given in Figure 4.22. Figures 4.23 and 4.24 show

the autocorrelation and trace, respectively.

Discussion

As expected from the simulations using the synthetic data, the simulation using the

more informative prior 1 mixes much better than using prior 2. In both cases, we

get similar results for the posterior of the parameters (see Table 4.5.2 for details).

With this application we showcased a model in which we cannot evaluate the

prior, but can only sample from it. This forced us to propose from the prior, which
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Figure 4.19: Lévy-driven SVs model using daily S&P 500 prices from

12/01/2002 to 30/12/2005: Histogram and 2D scatter plots of sam-

pled parameter values. The prior is shown as the dashed curve. The

data set has 1000 observation and the simulation used 500 particles.

can be very inefficient, especially when the observations are informative. However,

using PMCMC we are still able to achieve good performance.
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Figure 4.20: Lévy-driven SV model using daily S&P 500 prices from

12/01/2002 to 30/12/2005: autocorrelation function of sampled param-

eter values.

Figure 4.21: Lévy-driven SV model using daily S&P 500 prices from

12/01/2002 to 30/12/2005: Trace plots of sampled parameter values.

82



0.1 0.2 0.3 0.4 0.50.1 0.2 0.3 0.4 0.5 20 40 60 8020 40 60 80 0.6 0.8 1 1.2 1.4 1.60.6 0.8 1 1.2 1.4 1.6 0.0067 0.0134 0.02010.0067 0.0134 0.0201

κ

δ

γ

λ

Figure 4.22: Lévy-driven SV model using daily S&P 500 prices from

12/01/2002 to 30/12/2005: Histogram and 2D scatter plots of sam-

pled parameter values. The priors are shown as dashed curves

and are π(κ) = Be(1, 15), π(δ) = Ga(1, 20), π(γ) = Ga(1, 10),
π(λ) = Ga(1, 1)
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Figure 4.23: Lévy-driven SV model using daily S&P 500 prices from

12/01/2002 to 30/12/2005: autocorrelation function of sampled param-

eter values.

Figure 4.24: Lévy-driven SV model using daily S&P 500 prices from

12/01/2002 to 30/12/2005: Trace plots of sampled parameter values.
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Prior 1

parameter κ δ γ λ
prior Be(4, 36) Ga(1, 7) Ga(1, 14) Ga(1, 0.5)

mean 0.1555 8.939 1.163 0.008472

std 0.0524 5.034 0.126 0.002055

10th percentile 0.0923 3.877 1.027 0.006461

median 0.1502 7.883 1.151 0.007924

90th percentile 0.2260 15.254 1.322 0.011302

Prior 2

parameter κ δ γ λ
prior Be(1, 15) Ga(1, 20) Ga(1, 10) Ga(1, 1)

mean 0.1452 14.004 1.155 0.008661

std 0.0794 11.523 0.134 0.002337

10th percentile 0.0555 3.630 1.030 0.006501

median 0.1301 10.443 1.136 0.008071

90th percentile 0.2555 30.212 1.326 0.011558

Table 4.7: Posterior statistics of parameters for S&P 500 data set.
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4.6 Tempering

Following the idea outlined in [65, Sec. 4.2.2] we use particle Metropolis Hastings

to sample from a multimodal target distribution. By using a sequence of tempered

distributions we sample a chain of variables such that the marginal of the last vari-

able in the chain is our target distribution. The sequence of distributions is built

such that each two consecutive distributions are similar. An alternative method

is Tempered Transitions by Neal [66], where the first distribution in the chain is

the target distribution, and the following distributions are progressively easier to

sample from (i.e. tempered) until the centre of the chain, at which point the distri-

butions start approaching the target distribution, with the last distribution being the

target. The method is shown in Algorithm 15.

Note that for this case it is actually preferable to use SMC, as in [65], instead

of PMH. In fact the only potential benefit of using PMH is its iterative nature,

which allows us run it for an unspecified amount of time, e.g. until some time

limit or a sufficient number of samples have been generated. However, this can

also be accomplished using the sequentially interacting Markov chain Monte Carlo

(SIMCMC) sampler [10], though we have not yet made any comparison with this

method.

Algorithm 4.2: Tempered Transitions

Initialise X(s = 0)1

At iteration s ≥ 12

Set X∗
0 = X(s− 1)3

For n = 1, . . . , 2p: Sample X∗
n ∼ Tn(·|X∗

n−1)4

With probability:5

1 ∧
2p∏

j=0

πn+1(Xn)

πn(Xn)
(4.12)

set X(s) = X∗
2p, otherwise set X(s) = X(s− 1)

The target density is π(·) = π0(·) and the sequence of distributions π0, . . . , π2p

with πp−n = πp+n, such that for n ≤ p, πn(·) is easier to sample from than πn−1.

We also define a sequence of transition kernels T1, . . . , T2p, where Tn(X, ·) has

πm(·) as an invariant distribution, with m = n for n ≤ p and m = 2p− n+ 1 for
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n > p. The following reversibility condition must hold:

πn(x)Tn(x, x
′) = πn(x

′)T2p−n+1(x
′, x), for n < p (4.13)

Note that we may choose Tn to be the same as T2p−n+1.

Tempered Sampling with PMH and CBMC

For the PMH and CBMC samplers we only need the second half of the sequence

defined above. In this context we label them π̄1, . . . , π̄p, with π̄p = π0. We also

choose different transition kernels more suitable for the particle method. This gives

rise to joint distributions as given in [65] using the artificial backwards transitions

Ln(xn+1, xn):

π̃n(x1:n) = γ̃n(x1:n)/Zn (4.14)

where

γ̃n(x1:n) = γn(xn)
n−1∏

j=1

Ln(xn+1, xn) (4.15)

and γj(xj) ∝ π̄j(xj). The transition kernels Tn(xn|xn−1) have π̄n as invariant

distribution.

Using the second half this sequence of target distributions we can sample

“chains” of variables from the joint target distribution and obtain the marginal by

simply discarding all but the last variable in the chain.

Mixture of Gaussians

We used the above algorithm to sample from a highly multimodal distribution. The

example was taken from [66]. The probability distribution function (PDF) was a

mixture of over 4000 Gaussians in 2-D with means separated by many times their

widths. Despite being low dimensional, this is a difficult distribution to sample

from, using MCMC and pretending we only have access to πn(x, y) (Eqn. 4.16)

pointwise and up to an unknown normalising constant, and serves well to demon-
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strate tempering using PMH.

π0(x, y) =
∑5

i=−5

∑5
j=−5 exp

(
− |(x,y)−µ1,i,j |

2

2σ2 )
)

+
∑5

i=−5

∑5
j=−5 exp

(
− |(x,y)−µ2,i,j |

2

2σ2 )
)

+
∑22

i=−22

∑22
j=−22 exp

(
− |(x,y)−µ3,i,j |

2

2σ2 )
)

+
∑22

i=−22

∑22
j=−22 exp

(
− |(x,y)−µ4,i,j |

2

2σ2 )
)

(4.16)

with σ = 0.001 and

µ1,i,j = (0.0025i+ 15, 0.0025j + 15)

µ2,i,j = (0.1500i− 15, 0.1500j + 15)

µ3,i,j = (0.0025i− 15, 0.0025j − 15)

µ4,i,j = (0.1500i+ 15, 0.1500j − 15)

(4.17)

We then define a tempering schedule by choosing a sequence β1, . . . , βp with

βp = 1 and 0<βn<βn+1≤1. The distributions are then π̄n = πβn

0 .

The performance of the PMH sampler for this example was compared with

Neal’s tempered transitions (NTT) and CBMC, the results are given in Table 4.8.

Each algorithm was run 3 times for 8 hours (the results shown are averages). For

each algorithm we chose 5 settings (number of particles and temperatures) that

gave the best performance in terms of mean and standard deviation of the target

distribution. PMH gives comparable performance as both CBMC and tempered

transitions. Figure 4.25 shows the trace of the last 3000 samples for a PMH run

using 5 particles and 20 temperatures.

As we can see, there is a tradeoff between the number of particles N , the

number of distributions p, and the number of samples to generate, given a fixed

computation budget. In this model the best setting, among the ones tried, was to

use only a small number of particles (N = 5), a medium number of tempered

distributions (p = 20), and opt for a larger number of samples. Unfortunately we

have no theoretical result to tell us this “sweet” spot in advance and one should

perform a few short simulations at various settings to determine a “good” setting

using standard MCMC and SMC diagnostics to measure performance.
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Figure 4.25: Trace and marginal posterior distributions for mixture of Gaus-

sians distribution using PMH with 5 particles and numT=20 tempera-

tures (length of sequence of distributions), a maximum temperature of

228=2.7×108, and 10 Metropolis-Hastings steps within each temper-

ature. The large (bottom-left) frame shows the trace of the last 1000

iterations (lines and small blue circles) and the locations of the 4292

modes of the target distribution (larger red circles). The top and the

right frames show the histograms of the marginals using 26201 sam-

ples.

Density Estimation using Finite Mixture of Gaussians

Given data y1, . . . , yc, which are independent and identically distributed, we want

to infer the distribution from which they arise. We model the distribution as a finite

mixture of Normal distributions as in [65]:

yi|θr ∼
r∑

j=1

ωj N (µj , λ
−1
j ) (4.18)

where θr=(µ1:r, λ1:r, ω1:r), 2≤r<∞ and the number of Gaussians, r, is known.

The weights ωj must sum to one. The priors are exchangeable for each mixture
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component:

µj ∼ N (ξ, κ−1) (4.19)

λj ∼ Ga(ν, χ), ν = shape, χ = scale (4.20)

ω1:r−1 ∼ D(ρ) (4.21)

The parameters ξ and κ are set to the midpoint of the data range R and a small

multiple ι of 1/R2:

ξ =
min(yi) + max(yi)

2
κ =

ι

[max(yi) − min(yi)]
2 (4.22)

The parameters for the Gamma distribution are set as follows:

(2 =)ν > 1 > g = 0.2

h = 10 [max(yi) − min(yi)]
−2

χ = h/g

The Dirichlet prior has parameter ρ = (1, . . . , 1). The log prior is given by:

log f(θr) =

r∑

j=1

log
{
N (µj |ξ, κ−1) Ga(λj |ν, χ)

}
+ logD(ω1:r|ρ)

We define a sequence of distributions which starts with the prior and ends with the

full posterior:

πp(θr) ∝ l(y1:c|θr)φp f(θr), p = 1, . . . , n (4.23)

with 0 ≤ φ1 < . . . < φn = 1

We have compared the performance of PMH with NTT and with CBMC. The

data set was taken from [65] and is shown in Figure 4.26. The acceptance rates

for the three different algorithms are presented in Figure 4.27. The algorithm set-

tings are chosen such that all have comparable computational complexity. PMH

achieves at least double the acceptance rate over the other methods, using 20 par-

ticles and a sequence of 50 distributions (temperatures). The tempered transitions
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Figure 4.26: Data set for 4-component mixture of Gaussians (green) and pos-

terior probability for parameter µ1 (red) using PMH with p = 50 and

20 particles. The temperatures (1/βn) schedule was linear with a max-

imum temperature of 50. Bottom: trace of µ1.

algorithm requires a much finer temperature scale with a sequence of 1000 distri-

butions. CBMC fails to achieve acceptance rates of more than a few percent.
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Chapter 5

Conclusion

We have presented a new class of MCMC algorithms which rely on proposal dis-

tributions built using SMC methods. One of the major advantages of this approach

is that it “automatically” builds efficient high-dimensional proposal distributions

whilst requiring the practitioner to design only low-dimensional proposal distri-

butions. It offers the possibility to simultaneously update large vectors of depen-

dent random variables. This strategy is computationally expensive but to some

extent unavoidable and useful in complex scenarios for which standard proposals

are likely to fail. Indeed, as demonstrated in simulation, they can allow algorithms

to better explore the posterior distribution in multimodal cases for example. In ad-

dition, in practice these algorithms can be combined with “standard” local moves

which are computationally cheaper.

It is difficult to specify in advance when PMCMC will yield better performance

than some alternative, possibly simpler, methods. However, we can take some

lessons from the applications presented in this thesis and provide a few (rough)

guidelines, as shown in Table 5.1. We only list the most commonly used algo-

rithms, namely Gibbs, MH, and SMC, as well as the the methods introduced in

this thesis. As a rule of thumb, the simpler methods should be tried first (unless it

is clear that they will be inefficient). If they do not perform well, then implement-

ing a PMCMC algorithm requires only little extra work, as it is based on MCMC

and SMC, so part of the work would have already been done.

For models in which the prior cannot be evaluated, but only sampled from (e.g.
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x low dimensional x high dimensional

dependence weak strong weak strong

in x G or MH MH G or SMC SMC or PMH

between θ and x G or MH MH PG PMMH

Table 5.1: These are rough guidelines for algorithm choice. θ represents the

parameters and x the states. G stands for Gibbs. PMH would be used for

subblock updating.

MJP or Lévy-driven SV models with certain marginals), PMCMC may be the only

feasible method.

We believe that many problems where SMC methods have already been suc-

cessfully used could benefit from the particle MCMC methodology. These in-

clude contingency tables [15], graphical models [53], changepoint models [36],

population dynamic models in ecology [12], volatility models in financial econo-

metrics [16, 25], partially observed diffusions [37], population genetics [24],[61,

Section 4.1.2], systems biology [48, 49], and experimental design problems [59].

The CBMC method, to which our approach is related, is a very popular method

in computational chemistry and physics which has been widely used for molecular

and polymer simulation [40], and particle MCMC algorithms might also prove a

useful alternative in these areas. In this thesis we have addressed some of these top-

ics to demonstrate the use of PMCMC. We are already aware of recent successful

applications of PMCMC methods in econometrics [38] and statistics [7].

There are also numerous possible extensions to the PMCMC framework. Some

have already been added, such as stratified sampling. Other resampling techniques

could potentially also be added, for example antithetic sampling. In practice, the

performance of the particle MCMC are closely related to the variance of the SMC

estimates of the normalising constants. The SMC literature has many more tech-

niques that could be used within PMCMC. For example we might investigate

whether the SMC smoothing techniques in [47, 58] could be used to design bet-

ter proposal distributions. We can also add adaptive strategies to set the algorithm

parameters in PMCMC. It would nice to automatically adjust the number of parti-

cles used in the proposal to ensure a reasonable acceptance rate. In order to speed

up the computation, a parallel implementation of the SMC component would also
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be very useful. For example [63] and [54] have already demonstrated a parallel

particle filter running on the GPU of a graphics card.

From a theoretical point of view, it is possible to study how “close” the particle

MCMC algorithms are from the ideal MCMC algorithms they are approximating

(corresponding to N → ∞) using the techniques developed in [1].
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Appendix A

Proofs

Proof of Theorem 2. Assumption (A2) ensures that qN covers the support of π̃N

and hence that the PMH defines an irreducible and aperiodic Markov chain with

invariant distribution π̃N from Theorem 1. It follows that the marginal distribution

of the sequence of random variables generated by the algorithm converges to π̃N .

Since x(i) = x
K(i)
p (i) we have established the first result. Now under (A3) we

have for all x1, ...,xp,a1, . . . ,ap−1

π̃N (k,x1, ...,xp,a1, . . . ,ap−1)

qN (k,x1, ...,xp,a1, . . . ,ap−1)
=
ẐN

Z
< Z−1

p∏

n=1

Bn < +∞.

For an independent MH algorithm this implies uniform geometric ergodicity to-

wards π̃N , with a rate at least 1 − Z/

(
p∏

n=1

Bn

)
; see for example [62, Theorem

2.1]. This, together with a reasoning similar to above concerning x(i), we deduce

the second statement of the theorem.

Proof of Theorem 3. To simplify notation, we note z = (x̄1, ..., x̄p,a1, . . . ,ap−1).

The transition probability of the PMH is of the form

P
(
(k, z) ,

(
k̇, ż
))

= ẇk̇p × ψ (ż) × α (z, ż) (A.1)

+

(
N∑

m=1

∫
w̌mp × ψ (ž) × (1 − α (z, ž)) dž

)
. δ(k,z)

(
k̇, ż
)
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where

α (z, ż) = 1 ∧ ZN (ż)

ZN (z)
.

Note the important fact used below that the acceptance probability is independent

of k and k̇ (which, as pointed out earlier, means that k̇ needs to be sampled only

when a new set of particles has been accepted). Now consider the function

F (k, z) :=
N∑

l=1

f
(
xlp

)
I {l = k} ,

and note the fact that since by construction π̃N (k, z) is invariant with respect to P ,

N∑

k,k̇=1

∫
π̃N (k, z)P

(
(k, z) ,

(
k̇, ż
))

F
(
k̇, ż
)
dzdż (A.2)

=

N∑

k̇=1

∫
π̃N
(
k̇, ż
)
F
(
k̇, ż
)
dż = Eπ(f)

Let Z ∼ π̃N , Ż ∼ ψ (defined in (3.2)) and U be a random variable uniformly

distributed on [0, 1]. Then, using (A.1), the following quantity is an estimate of the

left hand side of (A.2)




N∑

k̇=1

Ẇ k̇
p f(Żk̇p)


 I

{
U<α

(
Z, Ż

)}
+I

{
U>α

(
Z, Ż

)} N∑

k=1

F (k,Z) π̃N (k|Z) ,

(A.3)

and it can be checked using (3.4) that

π̃N (k| z) =
π̃N (k, z)

π̃N (z)
= wkp .

The result of the theorem follows straightforwardly from this and the fact that under

(A1)-(A2), the simulated Markov chain is ergodic i.e. as i → ∞, (K(i),Z(i)) ∼
π̃N (k, z).
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Proof of Theorem 4. To establish the result, we first rewrite (3.15) as

π̃N (θ, k,x1, ...,xp,a1, . . . ,ap−1) =

1

Np
π
(
θ,xkp

) N∏

i=1,i6=ik1

M θ
1

(
xi1
) p∏

n=2

r
(
a
−ikn
n−1

∣∣∣wn−1, a
ikn
n−1

) N∏

i=1,i6=ikn

M θ
n

(
x
ai

n−1

n−1 , x
i
n

)

(A.4)

Notice that with ik = (ik1, i
k
2, . . . , i

k
p) the ancestral lineage of xkp , we have

π̃N
(
θ,xkp, i

k
)

=
1

Np
π
(
θ,xkp

)
.

Now the PG sampler can be interpreted as a standard Gibbs sampler of invariant

distribution (3.15) which iterates the following steps

(a) θ|(xkp, ik) ∼ π̃N
(
·|k,xkp, ik

)
= π

(
θ|xkp

)

(b) (x
−ik1
1 , ...,x

−ikp
p ,a

−ik2
1 , . . . ,a

−ikp
p−1) ∼ π̃N

(
·|θ, k,xkp, ik

)

(c) k|(θ,x1, ...,xp,a1, . . . ,ap−1) ∼ π̃N (·|θ,x1, ...,xp,a1, . . . ,ap−1)

with π̃N (k|θ,x1, ...,xp,a1, . . . ,ap−1) = wkp . Note that (a) might appear unusual

but leaves (3.15) invariant and is known in the literature under the name “collapsed

Gibbs sampling” [61, Section 6.7].

Let A ∈ B(Θ), B ∈ B(X p), C ∈ B(X (N−1)p × {1, . . . , N}(N−1)p), k ∈
{1, . . . , N} and i ∈ {1, . . . , N}p be such that π̃N ({k} ×A×B × {i} × C) > 0.

From (A5) it is possible to show that accessible sets for the G sampler are

also marginally accessible by the PG sampler i.e. more precisely if A × B ∈
B(Θ) × X p is such that LG ((θ(j),x (j)) ∈ A×B) > 0 for some finite j > 0

then also LPG ((K(j), θ(j),x (j) , I(j)) ∈ {k} ×A×B × {i}) > 0 for all k ∈
{1, . . . , N} and i ∈ {1, . . . , N}p. From this and the assumed irreducibility of the

G sampler in (A6), we deduce that if π((θ,x) ∈ A × B) > 0 then there exists a

finite j such that LPG ((K(j), θ(j),x (j) , I(j)) ∈ {k} ×A×B × {i}) > 0 for

all k ∈ {1, . . . , N} and i ∈ {1, . . . , N}p. Now because π((θ,x) ∈ A × B) > 0

and step (b) corresponds to sampling from the conditional distribution of π̃N , we
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deduce that

LPG
(

(K(j+1), θ(j+1),x (j+1) , I(j+1), x
−I

K(j+1)
1

1 (j+1), ...,x
−I

K(j+1)
p

p (j+1),

A
−I

K(j+1)
2

1 (j+1), . . . ,A
−I

K(j+1)
p

p−1 (j+1)

)
∈ {k} ×A×B × {i} × C

)
> 0

and the irreducibility of the PG sampler follows. Aperiodicity can be proved by

contradiction. Indeed from (A5) we deduce that if the PG sampler is periodic, then

so is the G sampler, which contradicts (A6).

Proof of Theorem 5. The proof of the first part of the theorem is similar to the

proof of Theorem 1 and is shown below. The second part of the proof is a direct

consequence of [1, Theorem 1] and (A5)-(A7).

π̃N (·)
qN (·) =

1

Np

π
(
θ,xkp

)

q (θ∗, θ) × wkp ×M θ
1 (x

ik1
1 )

p∏
n=2

r(ikn−1|wn−1)M θ
n(x

ikn−1

n−1 , x
ikn
n )

=
π
(
θ,xkp

)

q (θ∗, θ)M θ
1 (x

ik1
1 )

p∏
n=2

M θ
n(x

ikn−1

n−1 , x
ikn
n )

1
Np

p∏
n=1

w
ikn
n

=
π
(
θ,xkp

)

q (θ∗, θ)M θ
1 (x

ik1
1 )

p∏
n=2

M θ
n(x

ikn−1

n−1,n, x
ikn
n )

1
Np

p∏
n=1

∑N
i=1wn

(
xin
)

p∏
n=1

wn(x
ikn
n )

=
✘

✘
✘

✘✘γ
(
θ,xkp

)
/Z

q (θ∗, θ)

γ̂N (θ)

✘
✘

✘
✘✘γ

(
θ,xkp

) =
1

Z

γ̂N(θ)

q (θ∗, θ)

where γ̂N (θ) = ẐN is given in (2.6). In the manipulations above we have used

(A1) on the second line, whereas the final result is obtained thanks to the definitions

of the incremental weights (2.2)

w1

(
xi1
)

:=
γ1(θ,x

i
1)

M θ
1 (xi1)

, wn
(
xin
)

:=
γn
(
θ,xin

)

γn−1

(
θ,x

Ai
n−1

n−1

)
M θ
n

(
x
Ai

n−1

n−1 , Xi
n

) ,

and of the normalising constant estimate (2.6).
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Appendix B

Nonlinear State-Space Model

B.1 Gibbs Sampling for State-Space Model

We want to sample the time series using Gibbs sampling. Thus we need the condi-

tional probabilities π(θ|x1:T ) and π(xj |x−j ,y1:T ).

B.1.1 Sampling Parameters

For now, assume that we are interested in the variance of the noise in the state

transition, i.e. σ2
V .

π(σ2
V |x1:T ) ∝ π(x1:T |σ2

V )π(σ2
V )

= π(σ2
V )π(x1)

∏T
j=2

1√
2πσ2

V

exp
{
− [xj−f(xj−1)]2

2σ2
V

}

∝ π(σ2
V )σ

−(T−1)
V exp

{
−
(

1
2

∑T
j=2[xj − f(xj−1)]

2
)
σ−2
V

}

= π(σ2
V ) σ

−(T−1)
V e−βV σ

−2
V

where we set βV = 1
2

∑T
j=2[xj − f(xj−1)]

2. Setting κV = σ−2
V we get:

π(κV |x1:T ) ∝ π(κV )κ
(T−1)/2
V e−βV κV = π(κV ) κ

(T−1)/2
V e−βV κV

Now we need to choose a prior for κV . A convenient one is the Gamma distribution
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with shape ξv and scale γv:

π(κV |x1:T ) ∝ κ
(T−1)/2+ξV −1
V e

−
“

βV + 1
γv

”

κV
(B.1)

∝ Ga
(
κV ;

T − 1

2
+ ξV ,

(
βV +

1

γV

)−1
)

(B.2)

Note that this implies

π(σ2
W ) = IGa(ξv, 1/γv)

Similarly, for the variance of the observation error we get:

π(σ2
W |x1:T ) ∝ π(x1:T |σ2

V ,y1:T )π(σ2
W ) (B.3)

= π(σ2
W )π(x0)

T∏

j=1

1√
2πσ2

W

exp

{
− [yj − g(xj)]

2

2σ2
W

}
(B.4)

∝ π(σ2
W )σ−TW e−βW σ−2

W (B.5)

where βW = 1
2

∑T
j=1[yj − g(xj)]2. Using the same approach as above, we sample

κW = σ−2
W using a Gamma prior with shape ξW and scale γW :

π(κW |x1:T ) ∝ κ
T/2+ξW−1
W e

−
“

βW + 1
γW

”

κW

∝ Ga
(
κW ;

T

2
+ ξW ,

(
βW +

1

γW

)−1
)

(B.6)

B.1.2 Sampling State Variables

The conditional distribution for the latent variables xi is as follows:

π(xj |x−j ,y1:T ) =





π(xj+1|xj) π(xj |yj), for j = 1

π(xj |xj−1) π(xj+1|xj)π(xj |yj), for 1 < j < T

π(xj |xj−1) π(xj |yj), for j = T
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with

π(xj |xj−1) = N
(
xj ; f(xj−1), σ

2
V

)

π(xj |yj) = N
(
yj ; g(xj), σ

2
W

)

In general we cannot sample from this directly (except for some simple func-

tions f and g). We therefore use a few MH steps within the Gibbs sampler. The

proposal for this is the same as for the PMCMC (i.e. proposing from prior or using

the extended Kalman filter (EKF) proposal).
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Appendix C

Dirichlet Mixture Model:

Derivation

C.1 Gaussian Mixture

The posterior is proportional to the prior times the likelihood:

P(x1:n|y1:n, α) ∝ P(x1:n|α)π(y1:n|x1:n, α) = P(x1:n|α)π(y1:n|x1:n) (C.1)

The prior P(x1:n|α) is given by equation 4.4

P(x1:n|α) =

n∏

i=1

P(xi|x1:i−1, α) =
αkn

∏kn

j=1(m
j
n − 1)!

α (α+ 1)...(α+ n− 1)
(C.2)

The likelihood factorises since the observations are independent given the cluster:

π(y1:n|x1:n, α) =

kn∏

j=1

π(y{s|xs=j}|x1:n, α) =

kn∏

j=1

∫
π(y{s|xs=j}, θj |x1:n) dθj

=

kn∏

j=1

∫ 


∏

{i|xi=j}

π(yi|θj)


π(θj) dθj =

kn∏

j=1

∫ 


∏

{i|xi=j}

gθj
(yi)


 dG0(θj)

(C.3)
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We can now substitute for gθj
and G0:

π(y1:n|x1:n, α)

=

kn∏

j=1

∫ 


∏

{i|xi=j}

N (yi; µj , σ
2
j )


 IGa(σ2

j ; a, b)N (µj ; η, τσ
2
j ) dµj d(σ

2
j )

=

kn∏

j=1

∫



∏

{i|xi=j}

exp

{
− (yi−µj)

2

2σ2
j

}

√
2πσ2

j




×



ba exp

{
−b
σ2

j

}

Γ(a)
(
σ2
j

)a+1







exp

{
− (µj−η)

2

2τσ2
j

}

√
2πτσ2

j


 dµj d(σ

2
j )

=

kn∏

j=1

(
ba

Γ(a)

)∫ exp

{
−

P

{i|xi=j}(yi−µj)
2

2σ2
j

− b
σ2

j

− (µj−η)
2

2τσ2
j

}

(
2πσ2

j

)mj
n/2 (

σ2
j

)a+1 (
2πτσ2

j

)1/2
dµj d(σ

2
j )

∝
kn∏

j=1

ba

Γ(a)

∫
(
σ2
j

)−(1+a+
m

j
n+1
2

)

√
τ

× exp



− 1

σ2
j


b+1

2

∑

{i|xi=j}

(yi−µj)2+
1

2τ
(µj−η)2






 dµj d(σ

2
j )

We now have to complete the square in order to integrate out µj :

Φj
n =

∑

{i|xi=j}

(yi − µj)
2 +

1

τ
(µj − η)2

= µ2
j

(
mj
n +

1

τ

)
− 2µj






∑

{i|xi=j}

yi


− η

τ


+




∑

{i|xi=j}

y2
i


+

η2

τ
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Now define the first and second moment:

ỹjn,1 =
1

mj
n

∑

{i|xi=j}

yi ≡ ȳjn (C.4)

ỹjn,2 =
1

mj
n

∑

{i|xi=j}

y2
i ≡ (σ̂jn)

2 + (ȳjn)
2 (C.5)

We continue to complete the square and further simplify the expression Φj
n:

Φj
n = µ2

j

(
mj
n +

1

τ

)
− 2µj

(
mj
nỹ

j
n,1 −

η

τ

)
+mj

nỹ
j
n,2 +

η2

τ

=

(
mj
n +

1

τ

)(
µj −

mj
nỹ

j
n,1 − η/τ

mj
n + 1

τ

)2

+ mj
n

[(
ỹjn,2 − (ỹjn,1)

2
)

+
(ỹjn,1 − η)2

1 +mj
nτ

]

Now we end up with an expression that has the form of a Gaussian in µj : If we

now reinsert this into the above exponential, we can easily marginalise out µj .

π(y1:n|x1:n, α) ∝
kn∏

j=1

ba

Γ(a)
√
τ

∫ (
σ2
j

)−(1+a+
m

j
n+1
2

)

× exp

{
− 1

σ2
j

(
b+

mj
n

2

[(
ỹjn,2 − (ỹjn,1)

2
)

+
(ỹjn,1 − η)2

1 +mj
nτ

])}

× exp



− 1

2σ2
j

(
mj
n +

1

τ

)(
µj −

mj
nỹ

j
n,1 − η/τ

mj
n + 1

τ

)2


 dµj d(σ

2
j )

For ease of notation, we define

Ψj
n =

(
b+

mj
n

2

[(
ỹjn,2 − (ỹjn,1)

2
)

+
(ỹjn,1 − η)2

1 +mj
nτ

])
(C.6)
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The integral over µj simply evaluates to the normalising constant of a Gaussian:

π(y1:n|x1:n, α) ∝
kn∏

j=1

ba

Γ(a)
√
τ

∫ (
σ2
j

)−(1+a+
m

j
n+1
2

)

√√√√ 2πσ2
j

mj
n + 1

τ

e−Ψj
n/σ

2
j d(σ2

j )

=

kn∏

j=1

ba

Γ(a)
√
τ

√
2π

mj
n + 1

τ

∫ (
σ2
j

)−(1+a+
m

j
n

2
)
e−Ψj

n/σ
2
j d(σ2

j )

This integral has the form of the Inverse-Gamma distribution, thus we can solve it

analytically and the result is the normalising constant:

∫
x−(α+1) exp

(−β
x

)
dx = Γ(α) β−α (C.7)

Thus we get

π(y1:n|x1:n, α) ∝
kn∏

j=1

(
ba

Γ(a)
√
τ

√
2π

mj
n + 1

τ

)
Γ

(
a+

mj
n

2

)
(Ψj

n)
−(a+

m
j
n

2
)

∝
kn∏

j=1





ba Γ
(
a+mj

n/2
)

Γ(a)
√
mj
nτ + 1

(
b+

mj
n

2

[
(
σ̂jn
)2

+
(ȳjn − η)2

1 +mj
nτ

])−(a+
m

j
n

2
)




(C.8)

The derivation for sampling α conditional on the current state (number of clus-

ters) is outlined in [30]. We repeat it here for convenience:

We first determine the probability distribution of the number of clusters given

α and the number of data points.

P(kn|α, n) = cn(kn)n!αkn
Γ(α)

Γ(α+ n)
(C.9)

where cn(kn) = P(kn|α = 1, n). It is possible to write the above fraction of

Gamma functions in terms of a Beta function, which has the following definition
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and property:

β(x, y) =

∫ 1

0
tx−1(1 − t)y−1dt =

Γ(x)Γ(y)

Γ(x+ y)

Thus rewriting this and inserting it into the equation of P(kn|α, n) gives (where we

let x = α+ 1, y = n):

P(kn|α, n) = cn(kn)n!αkn
Γ(α+ 1)/α

Γ(α+ 1 + n)/(α+ n)

= cn(kn)n!αkn
(α+ n)β(α+ 1, n)

αΓ(n)

We now replace the Beta function with its definition as an integral:

P(kn|α, n) =
cn(kn)n!

Γ(n)
αkn−1(α+ n)

∫ 1

0
tα(1 − t)n−1dt

By Bayes’ formula the posterior for α conditional on kn is thus:

π(α|kn, n) ∝ π(α)π(kn|α, n) ∝ π(α)αkn−1(α+ n)

∫ 1

0
tα(1 − t)n−1dt

This suggests that we can interpret π(α|kn, n) as the marginal of a joint distribution

for α and another variable v defined on the continuous space v ∈ (0, 1):

π(α, v|kn, n) ∝ π(α)αkn−1(α+ n) vα(1 − v)n−1

Thus we can now establish conditional posteriors π(α|v, kn, n) and π(v|α, kn, n).

Under a Gamma prior for α (Eqn. 4.5) we have: 1

π(α|v, kn, n) ∝ Ga(α; c, d)αkn−1 (α+ n) vα ∝ αc−1 e−α/d αkn−1(α+ n) vα

= (α+ n)αc+kn−2 e−α/d+α log(v)

= αc+kn−1 e−α(1/d−log(v)) + nαc+kn−2 e−α(1/d−log(v))

1Note that Escobar and West [30] define Ga(a, b) with b being the scale parameter on pg. 584,

which is a typo and b is actually the rate parameter (inverse of scale).
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This can be written as a mixture of two Gamma distributions:

(α|v, kn, n) ∼ πv Ga (c+ kn, θv) + (1 − πv)Ga (c+ kn − 1, θv) (C.10)

where θv =
(

1
d − log(v)

)−1
is the scale parameter, and the weights πv are given

by the ratio of the normalising constants of the two Gamma distributions. Recall

the density of the Gamma distribution is defined as:

Ga(x; k, θ) = xk−1 e−x/θ

θk Γ(k)
for x > 0 and k, θ > 0 (C.11)

where k and θ denote the shape and scale, respectively.

πv n

1 − πv
=

θc+kn
v Γ(c+ kn)

θc+kn−1
v Γ(c+ kn − 1)

=
c+ kn − 1
1
d − log(v)

(C.12)

Thus we get:

πv =

{
1 +

n
(

1
d − log(v)

)

c+ kn − 1

}−1

(C.13)

Now consider the conditional distribution for v|α, kn, n:

π(v|α, kn, n) ∝ vα(1 − v)n−1 (0 < v < 1)

This is simply a Beta distribution with mean (α+ 1)/(α+ n+ 1):

π(v|α, kn, n) = B(v; α+ 1, n) (C.14)

Thus we can sample α by first sampling v ∼ B(α+ 1, n) and then sample α from

the mixture of Gamma distributions defined above.
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C.2 Implementation

The optimal proposal for the particle filter is q(xn|x1:n−1, y1:n, α) =

πn(xn|xn−1):

q(xn|x1:n−1, y1:n, α) = P(xn|x1:n−1, y1:n, α) =
π(y1:n|x1:n, α) P(xn|x1:n−1, α)

π(y1:n|x1:n−1, α)

=
π(y1:n|x1:n, α) P(xn|x1:n−1, α)∑

x′n
π(y1:n|x′n, x1:n−1, α) P(x′n|x1:n−1, α)

(C.15)

Since we have a finite (and generally low) number of clusters, we can compute

q(xn|x1:n−1, y1:n, α) for all possible values of xn. Thus we can compute the nor-

malising constant and sample from P(xn|x1:n−1, y1:n, α) exactly.

xn ∼
∑kn−1+1

j=1 π(y1:n|xn, x1:n−1, α) P(xn|x1:n−1, α) δj(xn)
∑kn−1+1

x′n=1 π(y1:n|x′n, x1:n−1, α) P(x′n|x1:n−1, α)

As noted above, in SMC the optimal proposal for xn is πn(xn|x1:n−1), which

gives the following (incremental) weight (the dependence on α is suppressed for

ease of notation):

wn(xn) =
πn(x1:n)

πn−1(x1:n−1) πn(xn|x1:n−1)
=

πn(x1:n−1) ✭
✭

✭
✭

✭
✭✭

πn(xn|x1:n−1)

πn−1(x1:n−1) ✭
✭

✭
✭

✭
✭✭

πn(xn|x1:n−1)

=
P(x1:n−1|y1:n)

P(x1:n−1|y1:n−1)
=

∑
x′n

P(x′n, x1:n−1|y1:n)

P(x1:n−1|y1:n−1)

=

∑
x′n
π(y1:n|x′n, x1:n−1) P(x′n, x1:n−1) / π(y1:n)

π(y1:n−1|x1:n−1) P(x1:n−1) / π(y1:n−1)

∝
∑

x′n
π(y1:n|x′n, x1:n−1) P(x′n|x1:n−1)

π(y1:n−1|x1:n−1)
(C.16)

=
∑

x′n

∏kn

j=1 f(mj
n, ȳ

j
n, (σ̂

j
n)2|x1:n−1, x

′
n, y1:n)

∏kn−1

j=1 f(mj
n−1, ȳ

j
n−1, (σ̂

j
n−1)

2|x1:n−1, y1:n−1)
P(x′n|x1:n−1)

=
αf(1, yn, 0)

n− 1 + α
+

kn−1∑

j=1

mj
n−1

n− 1 + α

f(mj
n, ȳ

j
n, (σ̂jn)2|x1:n−1, xn=j, y1:n)

f(mj
n−1, ȳ

j
n−1, (σ̂jn−1)

2|x1:n−1, y1:n−1)

(C.17)
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where f is the likelihood contribution from a cluster at time n (the sufficient statis-

tics obviously depend on xn):

f(mj
n, ȳ

j
n, (σ̂

j
n)

2|x1:n, y1:n) =

ba Γ
(
a+mj

n/2
)

Γ(a)
√
mj
nτ + 1

(
b+

mj
n

2

[
(
σ̂jn
)2

+
(ȳjn − η)2

1 +mj
nτ

])−(a+
m

j
n

2
)

Note that the weight for the particle is independent of the choice of xn. We also

see that the numerator in equation (C.16) is simply the normalisation factor used

in equation (C.15). This allows for an efficient computation of the particle weight

since both the normalisation constant and the likelihood of the previous time steps

have already been computed.
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