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PARTICLE METHODS: AN INTRODUCTION WITH APPLICATIONS

Piere Del Moral1 and Arnaud Doucet2

Abstract. Interacting particle methods are increasingly used to sample from complex high-dimensional
distributions. They have found a wide range of applications in applied probability, Bayesian statistics
and information engineering. Understanding rigorously these new Monte Carlo simulation tools leads
to fascinating mathematics related to Feynman-Kac path integral theory and their interacting particle
interpretations. In these lecture notes, we provide a pedagogical introduction to the stochastic modeling
and the theoretical analysis of these particle algorithms. We also illustrate these methods through sev-
eral applications including random walk confinements, particle absorption models, nonlinear filtering,
stochastic optimization, combinatorial counting and directed polymer models.

Résumé. Les méthodes particulaires en interaction sont de plus en plus utilisées pour simuler des
mesures de probabilités complexes dans des espaces de grandes dimensions. Leurs domaines d’applica-
tions sont diverses et variés en probabilités appliquées, en statistique bayesienne et dans les sciences
de l’ingénieur. L’analyse rigoureuse de ces nouvelles techniques de simulation de type Monte Carlo
conduit à des techniques mathématiques fascinantes liées à la théorie des intégrales de Feynman et
leurs interprétations particulaires. Nous présentons dans ces notes une introduction pédagogique à la
modélisation stochastique et l’analyse théorique de ces algorithmes particulaires. Nous illustrons ces
modèles avec différentes applications, telles le confinement de marches aléatoires, des modèles d’évo-
lutions de particules dans des milieux absorbants, des modèles de filtrage non linéaire, des problèmes
d’optimisation stochastique, des questions de comptage combinatoire et des modèles de polymères
dirigés.

Introduction
Interacting particle methods are a class of Monte Carlo methods to sample from complex high-dimensional

probability distributions and to estimate their normalizing constants. This class of algorithms approximate the
target probability distributions by a large cloud of random samples termed particles. Practically, the particles
evolve randomly around the space independently and to each particle is associated a non negative potential
function. Periodically we duplicate particles with high potentials at the expense of particles with low potentials
which die. This intuitive genetic mutation-selection type mechanism has appeared in numerous applications
ranging from nonlinear filtering [3,9,10,19–21,23,28,34], Bayesian statistics [7,11,22,35], combinatorial counting
[1], molecular and polymer simulation [29], rare events simulation [5, 6, 26], quantum Monte Carlo methods
[2, 31,37] and genetic algorithms [27,32] among others.

From a mathematical point of view, these methods can be interpreted as stochastic numerical approximations
of Feynman-Kac measures. Feynman-Kac measures represent the distribution of the paths of a reference Markov
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process, weighted by a collection of potential functions. These functional models are natural mathematical
extensions of the traditional change of probability measures, commonly used in importance sampling. The
particle interpretation consists in evolving a population of particles mimicking natural evolution mechanisms.
During the mutation stage, the particles evolve independently of one another, according to the same probability
transitions as the ones of the reference Markov chain. During the selection stage, each particle evaluates the
potential value of its location. The ones with small relative values are killed, while the ones with high relative
values are multiplied. The corresponding genealogical tree occupation measure converges, as the population
size tends to infinity, to the complete Feynman-Kac distribution on path space.

The two authors and their collaborators started working on the design and the mathematical analysis of
these algorithms in the mid 90’s (see for instance [9, 10, 19], and references therein). Over the past few years,
the popularity of these computationally intensive methods has dramatically increased thanks to the availability
of cheap powerful computers. In particular in signal processing and machine learning, these algorithms are
now widely used to solve nonlinear filtering problems. In this context, they are known as particle filters. The
mathematical analysis of these algorithms offers a rigorous and unifying framework to analyze the convergence
of numerous heuristic-like algorithms currently used in physics, statistics and engineering. It applies to any
problem which can be translated in terms of functional Feynman-Kac type measures.

In this set of lecture notes, we provide a pedagogical introduction to the stochastic modeling and the theoret-
ical analysis of these interacting particle algorithms. In a first section, section 1, we present several application
areas and provide a detailed description of the corresponding interacting particle algorithms. Section 2 provides
a brief treatise on Feynman-Kac modeling techniques. The last section, section 3, gives an overview of some
convergence results, including variance and Lp-mean error estimates, fluctuations and concentration properties.
We have tried to give a brief "exposé" of the modern mathematical theory that is useful for the analysis of
the asymptotic behavior of Feynman-Kac and particle models. To simplify the presentation and to clarify the
main ideas behind these stochastic models, we have chosen to restrict these lectures notes to finite or count-
able state space models, avoiding any measure theory irrelevancies. In this simplified framework, we develop
a rigorous mathematical analysis only involving vector and matrix operations. We emphasize that all of these
particle models and the associated convergence results can be extended to general state-space models, including
path-space models and excursion spaces on measurable state spaces.

We undertook this project for two main reasons:
First, we felt that there was no accessible and pedagogical treatment on stochastic particle models and their

application areas. One objective in writing these lecture notes is to throw some new light on some interesting
links between physical, engineering, statistical and mathematical domains which appear disconnected at first
glance.

Second, the mathematical concepts and models are now at a point where they provide a very natural and
unifying mathematical basis for a large class of Monte Carlo algorithms. We hope that this unifying point of
view will help to develop fruitfully this field further.

1. Examples
The list of applications discussed here is by no means exhaustive and it just reflects the scientific interests of

the authors.

1.1. Random walks confined in a set
We consider a symmetric random walk Xn on the integers Z starting at the origin X0 = 0. More formally,

we take independent random variables Un, where P (Un = 1) = P (Un = −1) = 1/2 and we set Xn = X0 +∑
1≤p≤n Up. We fix A = {−a+ 1,−a+ 2, ..., a− 1}, with a ∈ N. We want to compute the conditional target

distributions
Law ((X0, . . . , Xn) | ∀0 ≤ p ≤ n, Xp ∈ A ) (1.1)
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as well as the quantities
Zn := P (∀0 ≤ p < n, Xp ∈ A)

A naive Monte Carlo rejection type method consists with sampling N independent copies (Xi
n)1≤i≤N of the

chain Xn. Rejecting the samples that exit the set A, we will have the estimates

ZNn = NA
n /N 'N↑∞ Zn with NA

n :=
∑

1≤i≤N
1{∀0≤p<n, Xip∈A} =

∑
1≤i≤N

∏
0≤p<n

1A(Xi
p)

and
1
NA
n

∑
1≤i≤N

1{∀0≤p<n, Xip∈A} δ(Xi0,...,Xin) 'N↑∞ Law ((X0, . . . , Xn) | ∀0 ≤ p ≤ n, Xp ∈ A )

Notice that the l.h.s. of the above display is well defined as soon as the number of samples NA
n remaining in A

during n time step is not null. The main drawback of this rejection type Monte Carlo method comes from the
fact that NA

n = 0, after some very sort time period, in the sense that

P
(
NA
n > 0

)
= P

(
∃1 ≤ i ≤ N : ∀0 ≤ p < n, Xi

p ∈ A
)

= 1− (1−Zn)N ' 1− e−NZn

for small values of Zn. In addition, we have

E

((
ZNn
Zn
− 1
)2)

= 1
NZn

(1−Zn)

These observations show that the number of samples N needs to be much larger that Zn to have a well behaved
approximation. For small valued of a, the probability Zn for a random walk to remains confined in A for is
exponentially small w.r.t. the time parameter. This shows that the naive rejection Monte Carlo method cannot
be used to approximate these quantities.

One way to solve this problem is to introduce correlations between the samples. The following mean field
interacting type particle algorithm can be interpreted as a rejection type Monte Carlo scheme incorporating
interacting recycling mechanisms.

We start with N particles at the origin denoted by ξi0 = 0, with i = 1, . . . , N . Each of them evolve ξi0  ξi1
according to one transition of the random walk; more formally, we sample N independent copies (U i1)1≤i≤N of
the random variables U1, and we set ξi1 = ξi0 + U i1. We denote

ηN1 (1A) = 1
N

∑
1≤i≤N

1A(ξi1) = 1
N

Card
{

1 ≤ i ≤ N : ξi1 ∈ A
}

the proportion of points ξi1 in the set A. We define from the sample population
(
ξi1
)

1≤i≤N a new population

of N individuals
(
ξ̂i1

)
1≤i≤N

as follows. For each i = 1, . . . , N , we perform the following operation: If ξi1 ∈ A,

we set ξ̂i1 = ξi1. If ξi1 6∈ A, we pick randomly an individual ξ̃i1 among those ξj1 in the set A and we set ξ̂i1 = ξ̃i1.
In other words, individuals within A do not move, while the individuals outside A are replaced by a randomly
chosen individual among those in the set A. It may happen that all individuals ξi1 are outside of the set A.
In this case, the algorithm stops and we set τN = 1 to report the time of this event. If the algorithm has not
stopped, we have a new configuration

(
ξ̂i1

)
1≤i≤N

of N individuals in the set A. We evolve ξ̂i1  ξi2 according to

one transition of the random walk; that is we sample N independent copies (U i2)1≤i≤N of the random variables
U2, we set ξi2 = ξ̂i1 + U i2 and we define

ηN2 (1A) = 1
N

∑
1≤i≤N

1A(ξi2) = 1
N

Card
{

1 ≤ i ≤ N : ξi2 ∈ A
}
.
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As before, we define from the sample population
(
ξi2
)

1≤i≤N a new population of N individuals
(
ξ̂i2

)
1≤i≤N

:
individuals within A do not move, while the individuals outside the desired set are replaced by a randomly
chosen individual among those in the set A. If all individuals ξi2 fall are outside of the set A, we set τN = 2.
Iterating this stochastic process, for every time n (< τN ), we define a sequence of genetic type populations

ξn :=
(
ξin
)

1≤i≤N ∈ ZN
selection
−−−−−−−−→ ξ̂n :=

(
ξ̂in

)
1≤i≤N

∈ ZN
mutation
−−−−−−−→ ξn+1 ∈ ZN (1.2)

This stochastic algorithm can be interpreted as a genetic type model with mutation transitions given by
the one of a symmetric random walk and an acceptance-rejection selection type transition associated with
the potential indicator type function 1A. Several estimates can be extracted from this interacting sampling
algorithm.

First, we mention that the stopping time τN tends to infinity as the size of the population N → ∞. More
precisely, the probability that the algorithm stops at a given time n tends to zero exponentially fast, as N tends
to infinity. More interestingly, the product of the proportions of surviving particles at each time step

ZNn :=
∏

0≤p<n
ηNp (1A)

is asymptotically a consistent estimate of the quantity Pn(A) and it is unbiased; that is we have

lim
N→∞

ZNn = Zn and E
(
ZNn
)

= Zn (1.3)

The convergence on the l.h.s. is an almost sure asymptotic convergence. It can be made precise by non
asymptotic estimates including non asymptotic variance estimates and more refined exponential type deviations.
If we interpret the selection transition as a birth and death process, then the important notion of the ancestral
line of a current individual arises. More precisely, when a particle ξ̂in−1 −→ ξin evolves to a new location ξin,
we can interpret ξ̂in−1 as the parent of ξin. Looking backwards in time and recalling that the particle ξ̂in−1 has
selected a site ξjn−1 in the configuration at time (n − 1), we can interpret this site ξjn−1 as the parent of ξ̂in−1
and therefore as the ancestor ξin−1,n at level (n − 1) of ξin. Running back in time we can construct the whole
ancestral line

ξi0,n ←− ξi1,n ←− . . .←− ξin−1,n ←− ξin,n = ξin (1.4)
of each current individual. The occupation measures of the corresponding N -genealogical tree model converge
as N →∞ to the conditional distribution (1.1). In a sense to be given, for any function f on the set Zn+1, we
have the convergence, as N →∞,

lim
N→∞

1
N

N∑
i=1

f(ξi0,n, ξi1,n, . . . , ξin,n) 1τN>n = E (f(X0, . . . , Xn) | ∀0 ≤ p < n, Xp ∈ A ) (1.5)

This convergence result can be refined in various directions. For instance, we can prove that the ancestral
lines are “almost” independent with a common distribution given by the limiting conditional distribution. This
property is often called the propagation of chaos property in applied probability. It refers to the fact that the
initial population consists of independent and identically distributed random variables and that this property
“propagates” approximately despite the introduction of interactions. Many other results can be derived including
the fluctuations and the exponential concentration of the occupation measures of the genealogical tree around
the limiting conditional distribution.

Besides the fact that the particle model approximate the (rare event) probabilities (1.3) and the conditional
distributions (1.5) in path spaces, it also contains some information about the top of the spectrum of the matrix
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Q defined below
∀(x, y) ∈ {−a,−a+ 1, ..., a− 1, a} Q(x, y) := G(x) M(x, y)

with
G(x) := 1A(x) and M(x, y) = 1

2 1x−1(y) + 1
2 1x+1(y)

Indeed, if we let λ the top eigenvalue of Q and we denote by h the corresponding eigenvector s.t.
∑
x h(x) = 1,

then we have
lim
N→∞

lim
n→∞

1
n

∑
0≤p≤n

log ηNp (1A) = log λ

In addition, the value h(x) coincides with the long time proportion of visits of the algorithm to the state x. In
other words, h(x) can be interpreted as the limiting distribution of the individuals within the set A; that is

lim
N,n→∞

1
n

∑
0≤p≤n

1
N

∑
1≤i≤N

1x(ξ̂in) 1τN>n = h(x) = lim
N,n→∞

1
N

∑
1≤i≤N

1x(ξ̂in) 1τN>n

The particle approximation model discussed above is far from unique. Many other interacting sampling
strategies can be introduced by a simple change of probability measure. For instance, we can replace the
mutation or the free evolution of the individuals in the previous algorithm by local moves restricted to the
desired set A. These mutation type transitions ξ̂n−1  ξn can also be seen as transitions of a simple random
walk on Z reflected at the boundaries of the set A. By construction all the individuals ξin at any time horizon
n and for any index i = 1, . . . , N are in the desired set A.

The corresponding selection transition ξn  ξ̂n is now defined as follows: Each individual ξin = x on the
boundary x ∈ ∂A = {−a+ 1, (a− 1)} of the set A has a probability G(x) := 1/2 to stay in A, while the other
individuals ξin (which are in the set A) have a probability G(x) = 1 to stay in A. The population ξ̂n is now
defined as follows. For every index i, with a probability G(ξin), we set ξ̂in = ξin, otherwise we replace ξin be
a new individual ξ̂in = ξjn randomly chosen in the whole population with a probability proportional to G(ξjn).
If we now write ηNn (G) = 1

N

∑
1≤i≤N G(ξin), all the previous particle approximation results (corresponding to

G(x) = 1A(x)) we have presented remain valid for this new particle algorithm.

1.2. Particle absorption models
The sampling techniques described in section 1.1 are far from being restricted to random walks models

confined to a set. These strategies apply to a variety of application areas including computational physics,
nonlinear filtering, biology, as well as in rare event analysis. From the pure mathematical point of view, they
correspond to interacting particle approximation models of Feynman-Kac measures in path spaces.

To introduce these models, we recall that the conditional distributions discussed in (1.1) can be represented
in terms of the distributions of the free path evolutions

Pn(x0, . . . , xn) = Proba ((X0, . . . , Xn) = (x0, . . . , xn))
= 10(x0) M1 (x0, x1) . . . Mn (xn−1, xn) (1.6)

of the simple random walk starting at the origin with elementary transitions given by the matrix Mn :=
(Mn(x, y))x,y∈Z with entries given by

Mn (x, y) := 1
2 1x−1(y) + 1

2 1x+1(y)

More formally, if we set

Qn(x0, . . . , xn) := Proba ((X0, . . . , Xn) = (x0, . . . , xn) | ∀0 ≤ p < n, Xp ∈ A )
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then we have

Qn(x0, . . . , xn) = 1
Zn

 ∏
0≤p<n

Gp(xp)

 Pn(x0, . . . , xn) (1.7)

with the indicator potential functions Gn(x) = 1A(x) and Pn(x0, . . . , xn) being the distribution of a free path
of length n of the symmetric random walk. In (1.7), Zn is the normalizing constant given by

Zn = P (∀0 ≤ p < n, Xp ∈ A) = E

 ∏
0≤p<n

Gp(Xp)


These path integration type models are called Feynman-Kac measures in reference to Feynman path integral

formulation of quantum mechanics where the classical notion of a single deterministic trajectory for a system is
replaced by a sum over all possible trajectories weighted by the contributions of all the histories in configuration
space. The Feynman-Kac measures presented in (1.7) can be regarded as the distribution of the paths of a
Markov particle evolving using the Markov transitions Mn in an environment with absorbing obstacles related
to potential functions Gn, and starting with some initial distribution Law(X0) = η0 with η0 (x0) = 10(x0) in
(1.6). To be more precise, we consider an auxiliary coffin or cemetery state c and we set Ec = E ∪ {c}. We
define an Ec-valued Markov chain Xc

n with two separate killing/exploration transitions:

Xc
n

killing
−−−−−−−−−→ X̂c

n

exploration
−−−−−−−−−→Xc

n+1 (1.8)

This killing/exploration mechanism are defined as follows:
• Killing: If Xc

n = c, we set X̂c
n = c. Otherwise the particle Xc

n is still alive. In this case, with a
probability Gn(Xc

n), it remains in the same site so that X̂c
n = Xc

n, and with a probability 1−Gn(Xc
n)

it is killed and we set X̂c
n = c.

• Exploration: Once a particle has been killed, it cannot being brought back to life so if X̂c
n = c then

we set X̂c
p = Xp = c for any p > n. Otherwise, the particle X̂c

n ∈ E evolves to a new location Xc
n+1 = x

in E randomly chosen according to the distribution Mn+1(Xc
n, x).

In this physical interpretation, the measure Qn represent the conditional distributions of the paths of a non
absorbed Markov particle. To see this claim, we denote by T the time at which the particle has been killed

T = inf {n ≥ 0 ; X̂c
n = c}

By construction, we have

Proba(T > n− 1)

= Proba(X̂c
0 ∈ E, . . . , X̂c

n−1 ∈ E)
=
∫
E(n+1)

η0(dx0) G0(x0) M1(x0, dx1) . . .Mn−1(xn−2, dxn−1)Gn−1(xn−1)

= E

(
n−1∏
p=0

Gp(Xp)
)

This also shows that the normalizing constants Zn represent respectively the probability for the particle to be
alive at time n− 1. In other words, we have that

Zn = Proba(T > n− 1)
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Similar arguments yield that is the distribution of a particle conditional upon being alive at time n− 1

Qn(x0, . . . , xn) = Proba ((Xc
0 , . . . , X

c
n) = (x0, . . . , xn) | T > n− 1)

The particle sampling technique of any distribution Qn associated with some Markov transition Mn and
some sequence of [0, 1]-valued potential function Gn on some (countable) state space E is defined as before
in terms of a genetic type algorithm with Mn-mutations and Gn-selection type transitions. More precisely, at
every time step n, we sample the mutation-selection transitions as follows: During the mutation step, every
individual performs a local random move according to the Markov transition Mn. During the selection step,
every individual evaluates its potential value Gn(ξin), with 1 ≤ i ≤ N . For every index i, with a probability
Gn(ξin), we set ξ̂in = ξin, otherwise we replace ξin be a fresh new individual ξ̂in = ξjn randomly chosen in the whole
population with a probability proportional to Gn(ξjn). Notice that the number of individual remains constant.

More precisely, for any time horizon n and any function f on the set En+1, we have

lim
N→∞

1
N

N∑
i=1

f(ξi0,n, ξi1,n, . . . , ξin,n) 1τN>n =
∑

x0,...,xn

f(x0, . . . , xn) Qn(x0, . . . , xn) (1.9)

Furthermore, the N -particle approximation of the normalizing constants Zn are given by

ZNn :=
∏

0≤p<n
ηNp (Gp) with ∀n ∈ N ηNn (Gn) := 1

N

∑
1≤i≤N

Gn(ξin) (1.10)

For time homogeneous models (Gn,Mn) = (G,M) associated with a reversible matrix M w.r.t. to some
measure λ on E, i.e. λ (x)M (x, y) = λ (y)M (y, x), the corresponding particle model also contains information
about the top of the spectrum of the matrix Q defined through

∀(x, y) ∈ E Q(x, y) := G(x) M(x, y)

More precisely, if we let λ the top eigenvalue of Q in L2(λ) and we denote by h the corresponding eigenvector
s.t.

∑
x λ(x)h(x) = 1, then we have

lim
N→∞

lim
n→∞

1
n

∑
0≤p≤n

log ηNp (G) = log λ

as well as

lim
N,n→∞

1
n

∑
0≤p≤n

1
N

∑
1≤i≤N

1x(ξ̂in) 1τN>n = λ(x)h(x) = lim
N,n→∞

1
N

∑
1≤i≤N

1x(ξ̂in) 1τN>n

For further details on this subject, we refer the reader to [9, 10,16,17] and references therein.

1.3. Nonlinear filtering problems
We discuss here the application of these particle model to filtering problems. Suppose that at every time

step the state of the Markov chain Xn is partially observed according to the following schematic picture

X0 −→ X1 −→ X2 −→ . . .
↓ ↓ ↓
Y0 Y1 Y2 . . .
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with some random variables Yn whose values only depend on the current state of the chain

Proba (Yn = yn | Xn = xn ) = G(xn, yn)

We consider the following pair of events

An(x) := {(X0, . . . , Xn) = (x0, . . . , xn)} and Bn−1(y) := {(Y0, . . . , Yn−1) = (y0, . . . , yn−1)}

The filtering problem consists of computing the conditional distributions of the state variables An(x) given
the observations Bn(y). By construction, given An(x), the random variables are independent and identically
distributed with a distribution given by

Proba (Bn−1(y) |An(x) ) =
∏

0≤p<n
G(xp, yp)

By direct application of Bayes’ rule we have the following formula

Proba (An(x) ∩Bn−1(y)) = Proba (Bn−1(y) |An(x) )× Proba (An(x))

=

 ∏
0≤p<n

G(xp, yp)

 Pn(x0, . . . , xn) (1.11)

from which we conclude that

Proba (An(x) | Bn−1(y) ) = 1
Zn(y)

 ∏
0≤p<n

G(xp, yp)

 Pn(x0, . . . , xn)

with the normalizing constants

Zn(y) := Proba(Bn−1(y)) =
∑

x0,...,xn

 ∏
0≤p<n

G(xp, yp)

 Pn(x0, . . . , xn)

These Feynman-Kac formulae express the conditional distributions of the path sequence (X0, . . . , Xn) as the
distribution of the signal paths (X0, . . . , Xn) = (x0, . . . , xn) weighted by the product of the likelihood functions
G(xp, yp) from the origin p = 0 up to time p = n. If we fix the observation sequence Yn = yn and set Gn(xn) :=
G(xn, yn), these measures have exactly the same form as the one presented in (1.7). The corresponding particle
approximations are often referred as particle filters in signal processing and statistics (see for instance [19], and
references therein). These particle algorithms can also be used to approximate the log-likelihood functions using
(1.10); that is the log-likelihood

Ln(y) := logZn(y)
is approximated using

LNn (y) := logZNn (y) =
∑

0≤p<n
log ηNp (Gp).

1.4. Stochastic optimization algorithms
Suppose we want to compute the global minima of a given non negative cost function V on some finite

state space E equipped with the counting measure λ(x) := 1
Card(E)

. From the probabilistic point of view, this
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problem amounts of sampling random states according to the Boltzmann-Gibbs distributions associated with a
large inverse temperature parameter β and given below

µβ(x) := 1
Zβ

e−βV (x) λ(x) with Zβ :=
∑
x

e−βV (x) λ(x) (1.12)

There is no loss of generality to assume that infx V (x) = 0 and for any state x 6∈ V0 := V −1({0}), V (x) ≥ δ for
some δ > 0. It follows that we have

Card(V0) ≤ Zβ ≤ Card(V0) + Card(V c0 ) e−βδ →β↑∞ Card(V0)

and therefore
lim
β→∞

µβ(x) = µ∞(x) := 1V0(x)/Card(V0)

This simple observation shows that sampling according to µβ is roughly equivalent to that of sampling randomly
an unknown state variable with minimal cost. For very large state spaces, it is typically impossible to sample
from µβ directly.

The celebrated simulated annealing algorithm to sample from µ∞ consists of sampling approximately from
a sequence of distributions µβn where βn is a non-decreasing sequence going to ∞. The rationale is that it is
“easier” to sample from µβ when β is small; if β = 0 then µ0 is the uniform counting measure on E from which it
is trivial to sample. For βn > 0, we sample approximately from each intermediate distribution µβn using Markov
chain Monte Carlo (MCMC) sampling techniques; that is we select a transition matrixMβn = (Mβn(x, y))x,y∈E
with left eigenvector µβn associated with the eigenvalue 1, that is∑

x

µβn(x)Mβn(x, y) = µβn(y)

The probabilistic interpretation of the above equation is as follows: pick randomly a state x with distribution
µβn(x) and take a random transition x  y from the distribution Mβn(x, y), then the probability of being
at state y is again µβn(y). The literature on MCMC methods discusses numerous choices of transitions Mβn

satisfying this property. The most famous is the Metropolis-Hastings transition associated to a symmetric
transition matrix K(x, y) = K(y, x) and defined by

Mβn(x, y)

= K(x, y) min
(
1, e−βn(V (y)−V (x)))+

(
1−

∑
zK(x, z) min

(
1, e−βn(V (z)−V (x)))) 1x(y)

Using the fundamental ergodic theorem for regular Markov chains, starting from any initial state x0, the n-th
step of a run of the Markov chain with transitions Mβn has a probability very close to µβn(y) of being at the
site y, for a large n. Practically, we select β1 and we run the chain starting at X0 = x0 for a large enough
number of runs n1 such that the law of the state Xn1 is close to µβ1

X0 = x0
Mβ1−→ X1

Mβ1−→ . . .
Mβ1−→ Xn1 with n1 large enough s.t. Law(Xn1) ' µβ1

Notice that the choice of n1 depends on β1: the larger β1 is, the “peakier” µβ1 is and the larger n1 is. When the
chain is stabilized, we choose a β2 > β1 and we run the chain starting at Xn1 for a new large enough number
of time steps n2 such that the law of the state Xn1+n2 is close to µβ2

Xn1

Mβ2−→ Xn1+1
Mβ2−→ . . .

Mβ2−→ Xn1+n2 with n2 large enough s.t. Law(Xn1+n2) ' µβ2
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The theoretical “optimal” inverse temperature parameter ensuring convergence in some sense of the Markov
chain to µ∞ is logarithmic [30]. This amounts to say that we change by one unit the parameter β on every time
interval with exponential length. This is unrealistic from a practical point of view.

We present now an alternative particle strategy for sampling random states according to the sequence of
measures µβn associated with a given non decreasing sequence of inverse temperature parameters βn. We
suppose that β0 = 0 so that µβ0 coincides with the uniform counting measure on the set E. We start with
N independent individuals ξ0 :=

(
ξi0
)

1≤i≤N randomly chosen in E according to µβ0 . We perform a selection

transition ξ0  ξ̂0 :=
(
ξ̂i0

)
1≤i≤N

using the potential functions G0 defined by

G0(x) = exp (−(β1 − β0)V (x))

In other words, every individual evaluates its potential value G0(ξi0). For every index i, with a probability
G0(ξi0), we set ξ̂i0 = ξi0, otherwise we replace ξi0 be a new individual ξ̂i0 = ξj0 randomly chosen in the whole
population with a probability proportional to G0(ξj0). During the mutation step ξ̂0  ξ1 :=

(
ξi1
)

1≤i≤N , every
selected individual ξ̂i0 performs a local random move ξ̂i0  ξi1 (independently of one another) according to the
Markov transition Mβ1 . Then, we perform another selection transition ξ1  ξ̂1 :=

(
ξ̂i1

)
1≤i≤N

using the fitness
functions G1 defined below:

G1(x) = exp (−(β2 − β1)V (x))
After this selection stage we mutate each selected individual using the Markov transition Mβ2 , and so on.
Iterating these transitions, we define a simple genetic model with mutations transitions Mβn and selection
fitness functions Gn:

ξn :=
(
ξin
)

1≤i≤N ∈ E
N

selection
−−−−−−−−→ ξ̂n :=

(
ξ̂in

)
1≤i≤N

∈ EN
mutation
−−−−−−−→ ξn+1 ∈ EN (1.13)

This algorithm was first proposed in [11]. A variety of convergence results can be established for this algorithm.
For instance, for any function f on E and any time horizon, we have

lim
N→∞

1
N

∑
1≤i≤N

f(ξin) =
∑
x

µβn(x) f(x)

In addition, if we set ηNn (Gn) := 1
N

∑
1≤i≤N Gn(ξin), the unbiased N -particle approximation ZNβn of the normal-

izing constants Zβn is given by

ZNβn :=
∏

0≤p<n
ηNp (Gp) −→N→∞ Zβn

The particle model described above can be extended in various ways. For instance, an adaptive version
based on tuning temperature schedules with the number of Markov Chain Monte Carlo iterations can be easily
developed replacing Mβn by some mn-iterated transitions Mmn

βn
. Another strategy is to choose at every time

step the next inverse temperature βn+1(≥ βn) s.t. ηNn
(
e−(βn+1−βn)V ) is below some given threshold εn [12,25].

This class of interacting simulated annealing algorithm clearly differs from the Metropoplis type low and
higher temperature exchanges used in Parallel tempering (a.k.a. replica exchange MCMC sampling) [8, 24,38].

1.5. Combinatorial counting and sampling
Suppose we want to compute the cardinality of a given subset A of some finite state space E equipped

with the counting measure λ(x) := 1
Card(E)

. Once again, from a probabilistic point of view, this problem is
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equivalent to computing the normalizing constant of the following Boltzmann-Gibbs distribution

µA(x) := 1
ZA

1A(x) λ(x) with ZA :=
∑
x

1A(x) λ(x) (1.14)

To sample from µA and compute ZA, the idea consists of selecting a judicious sequence of decreasing subsets
An in such a way that it is easy to sample states in An starting from the set An−1. We suppose that A0 = E so
that µA0 coincide with the uniform counting measure on the set E. The algorithm is thus very similar to the
one described above for optimization.

For any set An, we introduce an MCMC transition matrix MAn = (MAn(x, y))x,y∈E with left eigenvector
µAn associated with the eigenvalue 1, that is∑

x

µAn(x)MAn(x, y) = µAn(y)

A simple Metropolis-Hasting type transition associated with a symmetric transition matrix K(x, y) = K(y, x)
is given by

MAn(x, y) = K(x, y) 1An(y) +
(

1−
∑
z

K(x, z) 1An(z)
)

1x(y)

The N -particle stochastic algorithm is defined as follows. We start with N independent random individuals
ξ0 :=

(
ξi0
)

1≤i≤N randomly chosen in E with µA0 . We perform a selection transition ξ0  ξ̂0 :=
(
ξ̂i0

)
1≤i≤N

using the fitness functions G0 = 1A1 . In other words, every individual in the set A1 stays in the same place
ξ̂i0 = ξi0, otherwise we replace ξi0 be a fresh new individual ξ̂i0 = ξj0 randomly chosen among the individuals
ξj0 ∈ A1. When no individuals ξj0 are in the set A1, the algorithm stops and we set τN = 0. Assuming that
τN > 0, during the mutation step ξ̂0  ξ1 :=

(
ξi1
)

1≤i≤N , every selected individual ξ̂i0 performs a local random
move ξ̂i0  ξi1 (independently of one another) in the set A1 according to the Markov transition MA1 . Then,
we perform another selection transition ξ1  ξ̂1 :=

(
ξ̂i1

)
1≤i≤N

using the fitness functions G1 = 1A2 . When no

individuals ξj1 are in the set A2, the algorithm stops and we set τN = 1. After this selection stage we mutate
each selected individual using the Markov transition MA2 , and so on. For any function f on E and any time
horizon n, we have

lim
N→∞

1
N

∑
1≤i≤N

f(ξin)1τN>n =
∑
x

µAn(x) f(x)

In addition, if we set ηNn (Gn) := 1
N

∑
1≤i≤N Gn(ξin), the proportion of individuals in An+1 after the n-th

mutation, the unbiased N -particle approximation ZNAn of the normalizing constants ZAn is given by

ZNAn :=
∏

0≤p<n
ηNp (Gp) −→N→∞ ZAn = Card(An)/Card(E)

Replacing (e−(βn+1−βn)V ,Mβn) by (1An+1 ,MAn) we observe that the particle model described above has the
same form as the one discussed in section 1.4. Rephrasing the remarks given at the end of section 1.4, it can also
be extended in various ways. For instance, an adaptive version based on tuning temperature schedules with the
number of Markov Chain Monte Carlo iterations can be easily developed replacing MAn by some mn-iterated
transitions Mmn

An
. Another strategy is to choose at every time step the next subset An+1(⊂ An) s.t. ηNn

(
1An+1

)
is below some given threshold εn [12, 25].
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1.6. Genetic search algorithms
We consider an energy function or a cost criteria V : x ∈ E 7→ (x) on some finite state space E where we

assume infx V (x) = 0 without loss of generality. The objective is to find the global minima points x? ∈ E s.t.
V (x?) = infx∈E V (x). Let V ? denote the set of these points. We described in Section 1.4 an interacting particle
algorithm to solve this problem which relies on interacting simulated annealing type chains. We present here
the more standard genetic algorithm with mutation and proportional selection.

To construct this algorithm, we introduce a collection of Markov transitionsMn(x, y) from E into itself. This
collection of transition matrices represents the probability Mn(x, y) that a individual at site x evolves to a new
state x during the n-th mutation transition.

The genetic algorithm with N individuals is defined as follows. We start with N independent random
individuals ξ0 :=

(
ξi0
)

1≤i≤N randomly chosen in E with some distribution, say η0. We perform a proportional

type selection transition ξ0  ξ̂0 :=
(
ξ̂i0

)
1≤i≤N

using the potential functions G0
(
ξi0
)

= exp (−β0V
(
ξi0
)

), where

β0 ≥ 0 is an inverse temperature parameter. In other words, with probability G0(ξi0) every individual stays
in the same place ξ̂i0 = ξi0; otherwise, we replace ξi0 by a new individual ξ̂i0 = ξj0 randomly chosen among the
individuals ξj0 with a probability proportional to its weight G0(ξi0). Formally, we set

ξ̂i0 = εi0 ξ
i
0 +

(
1− εi0

)
ξ̃i0

where εi0 stands for a sequence of independent {0, 1}-valued Bernoulli random variables with distributions

G0(ξi0) := Proba
(
εi0 = 1 | ξ0

)
= 1− Proba

(
εi0 = 0 | ξ0

)
and ξ̃0 :=

(
ξ̃i0

)
1≤i≤N

are independent, identically distributed and
{
ξj0, 1 ≤ j ≤ N

}
-valued random variables

with common distributions given for any index 1 ≤ i ≤ N by

∀1 ≤ j ≤ N Proba
(
ξ̃i0 = ξj0 | ξ0

)
= G0(ξj0)/

∑
1≤j≤N

G0(ξj0)

During the mutation step ξ̂0  ξ1 :=
(
ξi1
)

1≤i≤N , every selected individual ξ̂i0 performs a local random
move ξ̂i0  ξi1 (independently of one another) according to the Markov transition M1. Then, we perform
another proportional type selection transition ξ1  ξ̂1 :=

(
ξ̂i1

)
1≤i≤N

using the potential functions G1
(
ξi1
)

=

exp (−β1V
(
ξi1
)

), where β1 ≥ 0 is another inverse temperature parameter, and so on. We define in this way
a sequence of genetic type populations ξn, ξ̂n, as in (1.2) and the corresponding genealogical tree model (1.4)
associated with the ancestral lines

(
ξip,n

)
0≤p≤n of every i-th individuals after the n-th mutation. In the same

way, running back in time we have the whole ancestral line

ξ̂i0,n ←− ξ̂i1,n ←− . . .←− ξ̂in−1,n ←− ξ̂in,n = ξ̂in (1.15)

of every i-th individual after the n-th selection.
For any function f on E(n+1) and any time horizon n, we can prove that

lim
N→∞

1
N

N∑
i=1

f(ξ̂i0,n, ξ̂i1,n, . . . , ξ̂in,n) =
E
(
fn(X0, . . . , Xn) exp

(
−
∑

0≤p≤n βp V (Xp)
))

E
(

exp
(
−
∑

0≤p≤n βp V (Xp)
))
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In other words, the proportion of paths (ξ̂i0,n, ξ̂i1,n, . . . , ξ̂in,n) taking some value (x0, . . . , xn) is given by

lim
N→∞

1
N

N∑
i=1

1(x0,...,xn)(ξ̂i0,n, ξ̂i1,n, . . . , ξ̂in,n) = 1
Zn+1

exp

− ∑
0≤p≤n

βp V (xp)

 Pn(x0, . . . , xn)

with the probability of a free evolution path involving only mutation transitions

Pn(x0, . . . , xn) = η0(x0)M1(x0, x1) . . .Mn(xn−1, xn)

and Zn+1 is a normalizing constant.
Suppose that every free evolution path has the same chance to be sampled, in the sense that

Pn(x0, . . . , xn) = Pn(y0, . . . , yn)

for any paths admissible pair of paths (x0, . . . , xn) and (y0, . . . , yn). This condition is satisfied if η0 is the
uniform counting measure on E and the mutation transitions Mn(x, y) correspond to local random choices of
the same number of neighbors, starting from any state x. In this case, for any admissible path (x0, . . . , xn) we
have that

lim
N→∞

1
N

N∑
i=1

1(x0,...,xn)(ξ̂i0,n, ξ̂i1,n, . . . , ξ̂in,n) = 1
Z ′n

exp

− ∑
0≤p≤n

βp V (xp)

 (1.16)

for some normalizing constant Z ′n. When the inverse temperature parameter βp increases the r.h.s. probability
mass quantity only charges admissible paths (x0, . . . , xn) that minimize the path potential function

Vn(x0, . . . , xn) = inf
(y0,...,yn)

∑
0≤p≤n

V (yp)

In other words at low temperature, the ancestral lines of the simple genetic model described above converge
to the uniform measure on all the paths (x0, . . . , xn) of length n that minimize the energy function Vn. For
time homogenous mutation transitions associated with stochastic matrices Mn(x, y) = M(x, y) satisfying the
following condition for some integer m ≥ 1 and any pair (x, y) ∈ E2

M(x, x) > 0 and Mm(x, y) ≥ εMm(x, z)

we also have the convergence result

lim
n→∞

lim
N→∞

1
N

N∑
i=1

1V ?(ξ̂in) = 1

as soon as βn = C log (n+ 1) for some constant C that depends on m and on the oscillations of the function
V . This convergence result is also true for βn = C (n+ 1)α, with any α ∈]0, 1, as soon as the above condition
is met for m = 1. Further details on these concentration properties can be found in [14]. Related convergence
results for fixed population sizes can be found in [4]. To give a flavor of these results, let us suppose that the
mutation transitions Mn(x, y) also depend on the inverse temperature parameter and

Mn(x, y)→n→∞ 1x(y) as βn ↑ ∞

Intuitively speaking, the genetic mutations become rare transitions at low temperature. In this situation, we
can prove that there exists a “critical population size” N? that depends on the energy function as well as on
the free evolution model such that

∀N ≥ N? lim
n→∞

Proba
(
∀1 ≤ i ≤ N ξ̂in ∈ V ?

)
= 1
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The particle algorithm described above is more general than the interacting simulated annealing models dis-
cussed in section 1.4. If we replace the temperature parameters βn by temperature increments (βn − βn−1),
and if we choose the MCMC type mutation transitions Mβn discussed in section 1.4, then this model coincides
with the one presented in 1.4. In more general situations, the limiting Feynman-Kac type measures (1.16) differ
from the Boltzmann-Gibbs measures (1.12) and (1.14) presented in section 1.4 and section 1.5.

1.7. Directed polymers and self avoiding walks
In biology and chemistry, flexible polymers describe the kinetic structure of macromolecules in a given

chemical solvent. The polymer chain at time n is regarded as a sequence of random variables

Xn = (X ′0, . . . , X ′n) ∈ En = E × . . .× E︸ ︷︷ ︸
(n+1) times

taking values in some finite or countable state space E. Of course, in concrete situations the state space is
not a finite set but some Euclidian state space E = Rd, for some d ≥ 1. This countable state space condition
is only made to avoid unnecessary technicalities in the presentation of these stochastic models in path spaces.
The following discussion is mainly taken from section 12.5 in the book [9].

The elementary states X ′p represent the different directed monomers of the macromolecules Xn. The length
parameter n represents the degree of polymerization. The monomers are connected by chemical bonds and
interact with one another as well as with the chemicals in the solvent. The energy of a polymerization sequence

X0 = X ′0 −→ X1 = (X ′0, X ′1) −→ X2 = (X ′0, X ′1, X ′2) −→ . . . −→ Xn = (X ′0, . . . , X ′n)

is defined in terms of a Boltzmann potential

exp
(
−β

n∑
p=0

Vp(X ′0, . . . , X ′p)
)

(1.17)

The parameter β ∈ R+ represents the inverse temperature of the solvent, and each potential function

Vn : (x0, . . . , xn) ∈ En → Vn(x0, . . . , xn) ∈ R+

reflects the local intermolecular energy between the monomerX ′n = xn in the polymer chainXn−1 = (x0, . . . , xn−1)
during the nth polymerization

Xn−1 = (x0, . . . , xn−1) −→ Xn = ((x0, . . . , xn−1), xn)

The potential functions Vn depend on the nature of the solvent and the physico-chemical structure of the
polymer. At low temperature, β ↑ ∞, the interaction between monomers may be strongly repulsive at short
distances and attractive or repulsive at larger ones. For instance, the monomers may tend to avoid being closed
on each other. These excluded volume effects and repulsive interactions can be modeled by choosing a potential
function satisfying the following condition:

Vn(x0, . . . , xn) = 0⇐⇒ xn 6∈ {x0, . . . , xn−1} (1.18)

In this situation, every self-interaction is penalized by a factor e−βVn so that the energy of an elementary
polymerization is minimal if and only if the new monomer differs from the previous ones. In this context, the
inverse temperature parameter β is sometimes called the strength of repulsion.

In the opposite case, at high temperature, β → 0, the interaction forces disappear. In this situation,
it is commonly assumed that X ′n is an E-valued Markov chain with elementary transitions M ′n and initial
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distribution η′0. By the definition of the chain Xn = (X ′0, . . . , X ′n), this Markovian hypothesis implies that the
Markov transitions Mn have the form

Mn((x0, . . . , xn−1), (y0, . . . , yn−1, yn)) = 1(x0,...,xn−1)(y0, . . . , yn−1) M ′n(yn−1, dyn)

for any paths (x0, . . . , xn−1) ∈ En−1 and (y0, . . . , yn) ∈ En and for some Markov transition M ′n from E into E.
The Boltzmann-Gibbs measures associated with these directed polymer models are the measures in the

product spaces En defined below

Qn(x0, . . . , xn) := 1
Zn

exp
(
−β

n−1∑
p=0

Vp(x0, . . . , xp)
)

Pn(x0, . . . , xn)

with the distribution of the free paths of the monomer chain

Pn(x0, . . . , xn) = η′0(x0)M ′1(x0, x1) . . .M ′n(xn−1, xn)

These measures can alternatively be rewritten in the following form

Qn(x0, . . . , xn) := 1
Zn

{
n−1∏
p=0

Gp(x0, . . . , xp)
}

Pn(x0, . . . , xn)

with the exponential weight functions

∀n ≥ 0 Gn(x0, . . . , xn) := exp (−βVn(x0, . . . , xn))

To illustrate these models, let us suppose that X ′n is a simple random walk on the d-dimensional lattice Zd
starting at the origin and set

Gn(x0, . . . , xn) := 1Zd−{x0,...,xn−1}(xn)
In this situation, we have that

Qn = Law
(
X ′0, . . . , X

′
n

∣∣∀0 ≤ p < q < n X ′p 6= X ′q
)

and
Zn = Proba

(
∀0 ≤ p < q < n X ′p 6= X ′q

)
= Card (Sn−1) /(2d)n−1

where Sn−1 is the set of self-avoiding walks of length n− 1 starting at the origin.
The N particle approximation of these quantities is nothing but a simple genetic type evolution model with

N path-valued particles

ξin :=
(
ξi0,n, ξ

i
1,n, . . . , ξ

i
n,n

)
ξ̂in :=

(
ξ̂i0,n, ξ̂

i
1,n, . . . , ξ̂

i
n,n

)
∈ En

During the selection stage, with a probability Gn(ξin) every path-valued individual stays in the same place
ξ̂in = ξin; otherwise, we replace ξin be a new individual ξ̂in = ξjn randomly chosen among the individuals ξj0
with a probability proportional to its weight Gn(ξin). This mechanism is intended to favor minimal energy
polymerizations. For instance, in the case of repulsive interaction (1.18), a given polymer with degree n, say
(ξi0,n, . . . , ξin,n), has more chance of being selected if the last monomer ξin,n added during the nth sampled
polymerization differs from the previous ones; that is, if ξin,n 6∈ {ξi0,n, . . . , ξin−1,n}. Each selected polymer is
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a path-valued individual ξ̂in. During the mutation transition, ξ̂in evolves randomly according to the transition
Mn+1 of the path-valued Markov chain Xn.

ξin+1 = ((ξi0,n+1, . . . , ξ
i
n,n+1), ξin+1,n+1)

= ((ξ̂i0,n, . . . . . . , ξ̂in,n), ξin+1,n+1) ∈ En+1 = (En × E) (1.19)

where ξin+1,n+1 is a random variable with distribution M ′n(ξ̂in, .). Various asymptotic estimates can be derived.
For instance, for any function f on En = E(n+1) and any time horizon n, we have

lim
N→∞

1
N

N∑
i=1

f(ξi0,n, ξi1,n, . . . , ξin,n) =
∑

x0,...,xn

Qn(x0, . . . , xn)f(x0, . . . , xn)

and unbiased estimates of the normalizing constants

ZNn :=
∏

0≤p<n
ηNp (Gp) −→N→∞ Zn

where ηNp (Gp) is the empirical mean value of the potential functions after the mutation stage

∀n ≥ 0 ηNn (Gn) := 1
N

∑
1≤i≤N

Gn
(
ξi0,n, ξ

i
1,n, . . . , ξ

i
n,n

)
2. A brief treatise on Feynman-Kac modeling

2.1. Stochastic matrices and Markov semigroups
We let E be a finite set. A Markov chain X = (Xn)n≥0 is defined by a matrix M with positive entries

M(x1, x2) ≥ 0 s.t.
∑
x2
M(x1, x2) = 1 for each state x1. Such matrices are called transition matrices or

stochastic matrices in the literature on Markov chains. For instance, for finite state spaces E = {1, . . . , d}, with
cardinality d ≥ 1, we can identify a Markov transition M(x, y) from E into itself with a d× d matrix M(1, 1) · · · M(1, d)

...
...

...
M(d, 1) · · · M1(d, d)

 .

Starting from x1 we sample the chain transition by choosing randomly a state x2 with distribution M(x1, x2).
The outcomes X0 = x0, X1 = x1, X2 = x2, ... are referred as a realization of the chain X starting from
X0 = x0. By construction, we have

P (Xn = xn | Xn−1 = xn−1 ) = M(xn−1, xn)

and more generally

P (X1 = x1, X2 = x2, . . . , Xn = xn | X0 = x0 ) = M(x0, x1)M(x1, x2) . . .M(xn−1, xn)

These simple observations already show that the law of the random state Xn at time n starting from X0 = x0
is given by the n-th power of the matrix M ; that is we have

P (Xn = xn | X0 = x0 ) =
∑

x1,...,xn−1

M(x0, x1)M(x1, x2) . . .M(xn−1, xn) = Mn(x0, xn)
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Identifying functions f : x ∈ E 7→ f(x) ∈ R with column type vector f = (f(x))x∈E , the conditional
expectations of he random variable f(Xn) given X0 = x0 are also given by a matrix operation

E (f(Xn) |X0 = x0 ) =
∑
xn

Mn(x0, xn)f(xn) = Mn(f)(x0)

where Mn(f) stands for the function given by the column vector Mn(f) = (Mn(f)(x0))x0∈E . For instance, for
finite state spaces E = {1, . . . , d}, functions

f(x) =
d∑
i=1

f(i) 1i(x)

are identify with the column vector

f = (f(1), . . . , f(d))? :=

 f(1)
...

f(d)

 . (2.1)

In this situation, the function M(f) defined by

M(f)(x) := E (f(Xn) | Xn−1 = x)

is given by the finite sum

∀1 ≤ i ≤ d M(f)(i) =
d∑
j=1

M(i, j) f(j).

Using the vector notation we find that the function M(f) can alternatively be defined by the following matrix
operation:

M(f) :=

 M(f)(1)
...

M(f)(d)

 =

 M(1, 1) · · · M(1, d)
...

...
...

M(d, 1) · · · M(d, d)


 f(1)

...
f(d)

 = Mf

In the same way, identifying probability measures η0 on E with row type vectors η0 = (η0(x0))x0∈E s.t. η0(x0) ≥
0 and

∑
x0
η0(x0) = 1, the distribution ηn of the state Xn of the chain starting randomly from X0 with

distribution η0 is given by

ηn(xn) = P (Xn = xn) =
∑
x0

η0(x0)Mn(x0, xn) = η0M
n(xn)

where η0M
n stands for the probability on E given by the row vector η0M

n = (η0M
n(xn))xn∈E . Furthermore,

we have
ηn(f) =

∑
xn

ηn(xn)f(xn) = E (f(Xn))

In matrix notation, we simply have that

ηn = η0M
n and ηn(f) = (η0M

n)(f) = η0([Mn(f)])

For instance, for instance, for finite state spaces E = {1, . . . , d}, the sum ηn(f) can be rewritten as

ηn(f) = ηnf = (ηn(1), . . . , ηn(d))

 f(1)
...

f(d)

 =
d∑
i=1

f(i) ηn(i).
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and we have

(η0M) := [(η0M)(1), . . . , (η0M)(d)]

= [η0(1), . . . , η0(d)]

 M(1, 1) · · · M(1, d)
...

...
...

M(d, 1) · · · M(d, d)

 = η0M.

In much the same way, we find that

ηn = ηn−1M = (ηn−2M)M = ηn−2M
2 = . . . = η0M

n

By construction, the law of the random states Xp and Xn, with 0 ≤ p ≤ n are given by the following matrix
operation

ηn = ηpM
(n−p)

The collection of matrices Mn, with n ≥ 0, is called the Markov semigroup associated with the transition
probabilities M . For n = 0, we use the convention M0 = Id the identity matrix with zero off-diagonal elements
and unit diagonal elements.

For instance, if E = {1, 2} then the Markov transition M is given by the 2× 2-matrix

M =
(
M(1, 1) M(1, 2)
M(2, 1) M(2, 2)

)
We further assume that the entries M(i, j) ∈ [0, 1] are chosen s.t. c := M(1, 2) + M(2, 1) > 0. Using an
elementary induction on the time parameter n, we prove

Mn = 1
c

(
M(2, 1) M(1, 2)
M(2, 1) M(1, 2)

)
+ (1− c)n

c

(
M(1, 2) −M(1, 2)
−M(2, 1) M(2, 1)

)
.

Except in some very particular cases, the matrix semigroup Mn has no explicit expression.
Time nonhomogenous models can be studied in the same line of arguments. For non homogeneous Markov

transitions Mn, we have
P (Xn = xn | Xn−1 = xn−1 ) = Mn(xn−1, xn)

The law of the chain Xn is now given by the following matrix composition

ηn = η0M1M2 . . .Mn

The semigroup Mp,n associated with this sequence of measures is now given by the following formulae

ηn = ηpMp,n with the matrix Mp,n := Mp+1Mp+2 . . .Mn

2.2. The Bayes-Boltzmann-Gibbs transformation
We consider a non negative potential function G and a probability measure η on a finite or countable state

space E. We recall that η(G) is the quantity defined by the sum

η(G) :=
∑
x

η(x)G(x)

For indicator potential functions G = IA, sometimes we slightly abuse notation and we set

η(1A) =
∑
x

η(x)1A(x) =
∑
x∈A

η(x) := η(A)
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Definition 2.1. We let ΨG(η) be the probability measure on E defined by

ΨG(η)(x) := 1
η(G) G(x) η(x)

Note that this probability measure ΨG(η) is well-defined if and only if η(G) > 0. The transformation ΨG is
called the Bayes-Boltzmann-Gibbs transformation (abbreviate BBG-transformation) associated to the potential
function G.

When G = 1A, we notice that ΨG(η) is the restriction of the measure η to the set A;

Ψ1A(η)(x) := ηA(x) := 1
η(A) 1A(x) η(x).

In this case, we have

A ⊂ B =⇒ Ψ1A(Ψ1B (η)) = Ψ1B (Ψ1A(η)) = ηA∩B = Ψ1A∩B (η) = Ψ1A(η)

In nonlinear filtering problems discussed in section 1.3, the measure η represents the conditional law of
a Markov chain Xn given a series of observations (Y0, . . . , Yn−1) and G is the likelihood function G(xn) =
gn(yn, xn) associated with an observation Yn = yn delivered by some sensor. In this context the BBG transfor-
mation describes the way a new observation is incorporated into the filtering distribution

η = Law(Xn | (Y0, . . . , Yn−1)) Ψgn(yn,.)(η) = Law(Xn | (Y0, . . . , Yn−1,Yn))

We shall return more precisely to this BBG transformation in the further developments of the article. In matrix
notation, if the state space is given by E = {1, . . . , d} we can also identify the multiplicative potential function
G with the following diagonal matrix

G =


G(1) 0 · · · 0 0

0 G(2) 0 · · · 0 0
...

...
...

...
0 0 · · · G(d− 1) 0
0 0 · · · 0 G(d)

 .

Using the row and column vector identifications, we find that

ηG = (η(1), . . . , η(d))G = (η(1)G(1), . . . , η(d)G(d))

with the normalizing constant given by the L1-norm of the vector ηG

η(G) = ‖ηG‖1 =
d∑
i=1

(ηG)(i) = ηG(1) = ηG

 1
...
1

 =
d∑
i=1

µ(xi) G(xi).

In this matrix notation, the BBG transformation takes the following form

ΨG(η) = 1
‖ηG‖1

ηG.

We end this section with a nonlinear Markov interpretation of the BBG-transformation.
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Proposition 2.2. For any collection of non negative parameters ε(η,G) that may depend on G and on η, and
such that

ε(η,G) G(x) ≤ 1 for every x ∈ E s.t. η(x) > 0
we have the following decomposition

∀y ∈ E ΨG(η)(y) = (ηSη)(y) :=
∑
x

η(x) Sη(x, y) (2.2)

with the collection of selection type Markov transitions on E defined by

Sη(x, y) = ε(η,G) G(x) 1x(y) + (1− ε(η,G) G(x)) ΨG(η)(y).

Before getting into the details of the proof of this proposition, for finite state spaces E = {1, . . . , d}, the
BBG-transformation takes the following matrix form

(ηSη) := [(ηSη)(1), . . . , (ηSη)(d)]

= [η(1), . . . , η(d)]

 Sη(1, 1) · · · Sη(1, d)
...

...
...

Sη(d, 1) · · · Sη(d, d)

 = ηSη = ΨG(η).

Proof:
To check this assertion, we choose a function f on E and observe that

Sη(f)(x) :=
∑
y

Sη(x, y) f(y)

= ε(η,G) G(x) f(x) + (1− ε(η,G) G(x)) ΨG(η)(f)

from which we find that

η (Sη(f)) :=
∑
x

η(x)Sη(f)(x)

= ε(η,G) η(Gf) + (1− ε(η,G) η(G)) ΨG(η)(f)

= ε(η,G) η(Gf) + ΨG(η)(f)− ε(η,G) η(G) η(Gf)
η(G) = ΨG(η)(f).

This ends the proof of the proposition.

2.3. Positive matrices and Feynman-Kac measures
Let E be a finite set. We consider a collection of matrices Qn := (Qn(x, y))x,y∈E with non negative entries

Qn(x, y) ≥ 0. To simplify the presentation, we further assume that the entries are strictly positive. Given a
probability measure η0 on E, we denote by Γn the measure on E(n+1) defined for any path (xp)0≤p≤n ∈ E(n+1)

of length n by the following formula:

Γn(x0, . . . , xn) := η0(x0) Q1(x0, x1) Q2(x1, x2) . . . Qn(xn−1, xn)

Notice that Γn can alternatively be defined by the following recursive formula

∀n ≥ 1 Γn(x0, . . . , xn) = Γn−1(x0, . . . , xn−1)×Qn(xn−1, xn)
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with Γ0(x0) = η0(x0). We choose a function fn on path space E(n+1) and we set

Γn(fn) =
∑

x0,...,xn

Γn(x0, . . . , xn) fn(x0, . . . , xn) (2.3)

Feynman-Kac models provide a precise meaning of these sums. To be more precise, we set

Mn(x, y) := Qn(x, y)∑
z Qn(x, z) and Gn(x) :=

∑
z

Qn+1(x, z) = Qn(1)(x)

The r.h.s. term in the above display expresses the sum in terms of a matrix type operation with the unit
function 1, defined by 1(x) = 1 for any x ∈ E. By construction, it is readily checked that

Γn(x0, . . . , xn) :=η0(x0)

 ∏
1≤p≤n

Qp(1)(xp−1)

×
 ∏

1≤p≤n

Qp(xp−1, xp)
Qp(1)(xp−1)


=

 ∏
0≤p<n

Gp(xp)

×
η0(x0)

∏
1≤p≤n

Mp(xp−1, xp)


We conclude that

Γn(x0, . . . , xn) =

 ∏
0≤p≤n

Gp(xp)

× Pn(x0, . . . , xn)

with the law of the path (xp)0≤p≤n of a non homogeneous Markov chain Xn with initial distribution η0 =
Law(X0) and local Markov transitions Mn

Pn(x0, . . . , xn) := η0(x0)
∏

1≤p≤n
Mp(xp−1, xp)

In this interpretation, the quantities (2.3) can alternatively be rewritten in terms of a Feynman-Kac formula

Γn(fn) = E

fn(X0, . . . , Xn)
∏

0≤p<n
Gp(Xp)


It is also important to observe that

Γn(1) =
∑

x0,...,xn

Γn(x0, . . . , xn) = E

 ∏
0≤p<n

Gp(Xp)


The above constructions clearly works for any decomposition of Qn in the following form

Qn(x, y) = Gn−1(x) Mn(x, y)

for some Markov transition Mn and some potential function Gn−1. Note that in this case we have

Qn(1)(x) =
∑
y

Qn(x, y) = Gn−1(x)
∑
y

Mn(x, y) = Gn−1(x)
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Definition 2.3. We let Xn be a Markov chain with Markov transitions Mn on some finite or countable state
space E, and we consider a sequence of [0, 1]-valued potential functions Gn on the set E. The Feynman-Kac
path measure associated to the pairs (Mn, Gn) is the measure Qn defined for any fn on E(n+1) by the following
formulae

Qn(fn) := Γn(fn)
Γn(1) with Γn(fn) = E

fn(X0, . . . , Xn)
∏

0≤p<n
Gp(Xp)

 (2.4)

Notice that Qn can alternatively be defined by the following formulation:

Qn(x0, . . . , xn) = 1
Zn

 ∏
0≤p<n

Gp(xp)

 Pn(x0, . . . , xn)

with the normalizing constant Zn := Γn(1), and the distribution of the free path evolution of the reference
Markov chain Xn given by:

Pn(x0, . . . , xn) = η0(x0)
∏

1≤p≤n
Mp(xp−1, xp)

We also consider the measure Q̂n on E(n+1) defined as Qn by taking a product of potential functions from the
origin p = 0, up to the final time horizon p = n

Q̂n(x0, . . . , xn) = 1
Ẑn

 ∏
0≤p≤n

Gp(xp)

 Pn(x0, . . . , xn)

with the normalizing constant Ẑn = Zn+1.

Another important quantities are the n-th marginals ηn and η̂n of the measure Qn and Q̂n defined by

ηn(xn) =
∑

x0,...,xn−1

Qn(x0, . . . , xn−1, xn) and η̂n(xn) =
∑

x0,...,xn−1

Q̂n(x0, . . . , xn−1, xn) (2.5)

It is important to observe that this pair of measures can be alternatively defined for any function f on E by
the following formulae

ηn(f) := γn(f)/γn(1) with γn(f) = E

f(Xn)
∏

0≤p<n
Gp(Xp)

 (2.6)

and

η̂n(f) = γ̂n(f)/γ̂n(1) with γ̂n(f) = E

f(Xn)
∏

0≤p≤n
Gp(Xp)

 (2.7)

For n = 0, we use the convention
∏
∅ = 1, so that η0 = Law(X0). The above assertions can be proved directly

from the definitions of the measures Qn and Q̂n. In reference to filtering, the measure ηn is often called the
prediction measure at time n, while η̂n is referred as the updated measure at time n.
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We end this section with the following elementary observation connecting the pair of measures Qn and Q̂n. ∏
0≤p≤n

Gp(xp)

 Pn(x0, . . . , xn) = η0(x0) G0(x0)
∏

1≤p≤n
Mp(xp−1, xp) Gp(xp)

= η0(G0)

 ∏
0≤p<n

Ĝp(xp)

 P̂n(x0, . . . , xn)

with the probability measure P̂n defined below

P̂n(x0, . . . , xn) := η̂0(x0)
∏

1≤p≤n
M̂p(xp−1, xp)

and the pair (Ĝp, M̂p) of potential and transitions given by

M̂p(xp−1, xp) = Mp(xp−1, xp)Gp(xp)
Mp(Gp)(xp−1) and Ĝp(xp) = Mp+1(Gp+1)(xp)

These formulae imply that

Q̂n(x0, . . . , xn) = 1
Ẑ ′n

 ∏
0≤p<n

Ĝp(xp)

 P̂n(x0, . . . , xn)

with some normalizing constant Ẑ ′n. In other words Q̂n coincides with the measure defined as Qn by replacing
the pair (Gn,Mn) by the pair of updated type quantities (Ĝn, M̂n). From the pure mathematical point of view,
this rather elementary observation shows that the two models Qn and Q̂n are equivalent.

2.4. Examples as Feynman-Kac models
We illustrate the rather abstract models presented in section 2.3 in the examples discussed in section 1.
(1) Random walks confined to a set

We let Mn(x, y) be the transitions of a symmetric random walk Xn on the integers Z starting at the
origin X0 = 0. we also fix a interval A = {−a+ 1,−a+ 2, ..., a− 1}, with a > 0, and we set Gn := 1A.
In this situation, we have

Qn = Law ((X0, . . . , Xn) | ∀0 ≤ p < n, Xp ∈ A )

and
Q̂n = Law ((X0, . . . , Xn) | ∀0 ≤ p ≤ n, Xp ∈ A )

(2) Particle absorption models
For any [0, 1]-valued potential functions Gn and any Markov transitions Mn, the measures Qn have

the following interpretations

Qn = Law ((Xc
0 , . . . , X

c
n) | T ≥ n )

and
Q̂n = Law ((Xc

0 , . . . , X
c
n) | T > n )

where Xc
n is the particle absorption model defined in (1.8), and T the random absorption time of the

particle with Mn-free evolution and absorption rates Gn.
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(3) Nonlinear filtering problems
A given Markov chain Xn with transitions Mn is partially observed at every time step n by some

noisy sensor that delivers a random observation Yn = yn with distribution

Proba (Yn = yn | Xn = xn ) = G(xn, yn)

For every fixed sequence of observations Yn = yn, we set Gn(x) = G(x, yn). In this situation, the
measures Qn and their normalizing constants Zn have the following interpretations

Qn = Law ((X0, . . . , Xn) | ∀0 ≤ p < n, Yp = yp )

and
Zn = P ((Y0, . . . , Yn−1) = (y0, . . . , yn−1))

In the same way, we have

Q̂n = Law ((X0, . . . , Xn) | ∀0 ≤ p ≤ n, Yp = yp )

(4) Stochastic optimization algorithms
We consider a collection of MCMC transitions Mβ(x, y), indexed by some inverse temperature pa-

rameter β ≥ 0, on some finite state space E equipped with the counting measure λ(x) := 1/Card(E).
We assume that Mβ(x, y) is a Markov transition with an invariant Boltzmann-Gibbs distribution µβ
associated with a non negative cost function V on E

µβ(x) := 1
Zβ

e−βV (x) λ(x) with Zβ :=
∑
x

e−βV (x) λ(x) (2.8)

The genealogical tree model associated with the genetic search model defined in (1.13), section 1.4, is
defined by the line of ancestors of each individual ξin in the current population:

∀1 ≤ i ≤ N ξi0,n ←− ξi1,n ←− . . .←− ξin−1,n ←− ξin,n = ξin (2.9)

We recall that this stochastic algorithm is defined in terms of a genetic type model with mutations
transitions Mβn and selection fitness functions Gn = e−(βn+1−βn)V . For a more precise description of
these ancestral lines we refer the reader to (1.4). In this situation, we can prove that Qn coincide with
the limiting distribution of the ancestral lines of the genetic search algorithm, in the sense that

∀1 ≤ i ≤ N Qn = lim
N→∞

Law
(
ξi0,n, ξ

i
1,n, . . . , ξ

i
n,n

)
(2.10)

In addition, Qn can also be interpreted as the limiting occupation measure of the genealogical tree, in
the sense that:

Qn(fn) = lim
N→∞

1
N

N∑
i=1

fn(ξi0,n, ξi1,n, . . . , ξin,n) (2.11)

Much more is true, we can prove that the ancestral lines are “almost” independent and identically
distributed random paths with common distribution Qn. In much the same way, the measures Q̂n are
approximated using the ancestral lines of the selected individuals ξ̂in at time n.

In the end of section 2.5, we shall prove that the n-th marginal measures ηn defined in (2.6) also
coincide with the Boltzmann-Gibbs measures (2.8) associated with an inverse temperature parameter
βn; that is, we have that

ηn(xn) = µβn(x) := 1
Zβn

e−βnV (x) λ(x) and Zβn =
∏

0≤p<n
ηp(Gp) = γn(1) (2.12)
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(5) Combinatorial counting and sampling
Our next objective is to provide an interpretation of the measures Qn in terms of the genetic particle

models presented in section 1.5. These models are defined as above by replacing in (2.8) the exponential
Boltzmann-Gibbs measures by the measure λ restricted to a given non increasing sequence of subsets
An ⊂ An−1 ⊂ E; that is, by the measures µAn defined below

µAn(x) := 1
ZAn

1An(x) λ(x) with ZAn :=
∑
x

1An(x) λ(x)

We recall that the corresponding stochastic algorithm is defined in terms of a genetic type model with
mutations transitions MAn and selection potential functions Gn = 1An+1 , where MAn stands for a
sequence of MCMC transitions with invariant measures µAn . The genealogical tree model associated
with this genetic model is defined as in (2.9) and the pair of convergence results (2.10) and (2.11) are
satisfied for the measures Qn associated with the Markov transitions MAn and the potential functions
Gn = 1An+1 . Furthermore, the n-th time marginals measures ηn defined as in (2.6) are given by

ηn(f) := γn(f)/γn(1) with γn(f) = E

f(Xn)
∏

0≤p<n
1Ap+1(Xp)


In the end of section 2.5, we shall also prove that

ηn(xn) = µAn(x) := 1
ZAn

1An(x) λ(x) and ZAn =
∏

0≤p<n
ηp(1Ap+1) = γn(1) (2.13)

(6) Genetic search algorithms
The interpretation of the measures Qn in terms of simple genetic models has already been developed

in section 1.6. In this example, we recall that Qn can be seen as the asymptotic distribution of the
ancestral lines of a simple genetic model with mutation transitionsMn and selection potential functions
Gn. The n-th time marginal ηn of the measures Qn defined in (2.5) or in (2.6) can be regarded as the
asymptotic distribution of an individual as the size of the population N tends to infinity. We can also
interpret ηn as the limiting occupation measure of the genetic population at time n. These measures
are often called the infinite population model in the literature on theoretical aspects of genetic models.

(7) Directed polymers and self avoiding walks
The interpretation of the measures Qn in terms of directed polymer models has already been devel-

oped in section 1.7. We simply notice that the probability measures ηn defined in (2.11) can be extended
to path-valued Markov chains

Xn = (X ′0, . . . , X ′n) ∈ En := E × . . .× E︸ ︷︷ ︸
(n+1) times

whereX ′n stands for an auxiliary E-valued Markov chain. In this situation, we observe that the potential
functions Gn are defined on the path space En. Whenever X ′n is the simple random walk on the d-
dimensional lattice E = Zd, for the choice of potential functions

∀n ≥ 0 Gn(Xn) = Gn(X ′0, . . . , X ′n) = 1Zd−{X′0,...,X′n−1}(X
′
n)

we have that
Qn = Law

(
(X ′0, . . . , X ′n)

∣∣ ∀0 ≤ p < q < n X ′p 6= X ′q
)
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and
Q̂n = Law

(
(X ′0, . . . , X ′n)

∣∣ ∀0 ≤ p < q ≤ n X ′p 6= X ′q
)

In this situation, we recall that

γn(1) = Proba
(
∀0 ≤ p < q < n X ′p 6= X ′q

)
= Card (Sn−1) /(2d)n−1

where Sn−1 is the set of self-avoiding walks of length (n− 1) starting at the origin.

2.5. Nonlinear recursive equations
This section is concerned with the analysis of the flow of probability measures ηn and η̂n defined respectively

in (2.6) and (2.7). First, using the Markov property of the signal, we readily prove that

γn(f) = E

E

f(Xn)
∏

0≤p<n
Gp(Xp) |X0, . . . , Xn−1


= E

E (f(Xn) |X0, . . . , Xn−1 )
∏

0≤p<n
Gp(Xp)


from which we conclude that

γn(f) = E

E (f(Xn) | Xn−1 )
∏

0≤p<n
Gp(Xp)


Recalling that E (f(Xn) | Xn−1 ) = Mn(f)(Xn−1), we conclude that γn(f) = γ̂n−1Mn(f). In matrix notation,
we conclude that

γn = γ̂n−1Mn (2.14)
On the other hand, we have

γ̂n(f) = E

[f(Xn)Gn(Xn)]
∏

0≤p<n
Gp(Xp)

 = γn(fGn) (2.15)

with the multiplicative function (fGn)(xn) = f(xn)Gn(xn). Our next objective is to derive the nonlinear
recursions of the sequence of measures ηn and η̂n. From previous formulae, we find that

η̂n(f) = γn(Gnf)
γn(Gn) = γn(Gnf)/γn(1)

γn(Gn)/γn(1) = ηn(Gnf)
ηn(Gn)

This shows that η̂n is deduced from ηn using the following formula

η̂n := ΨGn(ηn)

with the BBG transformation:
ΨGn(ηn)(xn) := 1

ηn(Gn) Gn(xn) ηn(xn)

On the other hand, we have

ηn(f) = γ̂n−1Mn(f)
γ̂n−1(1) = η̂n−1Mn(f)
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from which we conclude that
ηn := η̂n−1Mn

From these expressions, it is not difficult to establish the following proposition.
Proposition 2.4. The measures ηn and η̂n satisfy the following equations:

ηn := ΨGn−1(ηn−1)Mn and η̂n := ΨGn (η̂n−1Mn)

Another important observation is that the unnormalized distributions γn can be expressed in terms of the
sequence of normalized measures from the origin up to the current time horizon. To be more precise, we have

γn+1(1) = γn(Gn) = γn(Gn)
γn(1) γn(1) = ηn(Gn) γn(1)

This multiplicative recursion yields the following integration exchange formula.

γn+1(1) = E

 ∏
0≤p≤n

Gp(Xp)

 =
∏

0≤p≤n
ηp (Gp) (2.16)

More generally, we have the following proposition which can be easily checked.
Proposition 2.5. For any function f , and any time n ≥ 1, we have

γn(f) = ηn(f) γn(1) with γn(f) = ηn(f)
∏

0≤p≤n
ηp (Gp)

We end this section with a two-line proof of the pair of formulae (2.12) and (2.12). In the first situation,
combining the fixed point equation with the BGG transformation given below

ηn = ηnMβn and ηn = ΨGn−1(ηn−1) with Gn−1 = exp [−(βn − βn−1)V ]

we find that
ηn = ηnMβn = ΨGn−1(ηn−1)Mβn

Also observe that
Zβn = λ

(
e−βnV

)
= ηn−1 (Gn−1)Zβn−1 = Z0 ×

∏
0≤p<n

ηp (Gp)

In much the same way, in the second situation, combining the fixed point equation with the BGG transformation
given below

ηn = ηnMAn and ηn = ΨGn−1(ηn−1) with Gn−1 = 1An
we find that

ηn = ηnMAn = ΨGn−1(ηn−1)MAn

2.6. Nonlinear Markov chain models
In this section we design a nonlinear Markov interpretation of the flow of Feynman-Kac probability measures

ηn associated with a pair of potential functions and Markov transitions (Gn,Mn). To simplify the presentation,
we further assume that the potential functions Gn take values in [0, 1]. More general models can be handled
using the developments of section 2.2, dedicated to the transformations ΨGn associated with more general
potential functions Gn.

Combining proposition 2.4 with (2.2), we readily find that

∀n ≥ 0 ηn+1 = ΨGn(ηn)Mn+1 and ΨGn(ηn) = ηnSn,ηn
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with the Markov transitions

Sn,ηn(x, y) = Gn(x) 1x(y) + (1−Gn(x)) ΨGn(ηn)(y).

This implies that

ηn+1(z) =
∑
y

(∑
x

ηn(x)Sn,ηn(x, y)
)
Mn+1(y, z)

=
∑
x

ηn(x)
(∑

y

Sn,ηn(x, y)Mn+1(y, z)
)

from which we conclude that
ηn+1(z) =

∑
x

ηn(x)Kn+1,ηn(x, z)

with the Markov transitions Kn+1,ηn defined as the matrix composition of the selection type transition Sn,ηn
with the free exploration Markov transition Mn+1 given by

Kn+1,ηn(x, z) :=
∑
y

Sn,ηn(x, y)Mn+1(y, z)

We let (Xn)n≥0 be a Markov chain on E, with initial distribution η0 = Law(X0) and elementary Markov
transitions given by

P
(
Xn+1 = y | Xn = x

)
= Kn+1,ηn(x, dy) with Law(Xn) = ηn

By a simple induction on the time parameter, we can easily check that ηn coincides with the distribution of the
random states Xn.

Definition 2.6. The law of the paths of this non linear Markov chain

P
(
(X0, X1, . . . , Xn) = (x0, x1, . . . , xn)

)
= η0(x0)K1,η0(x0, x1) . . .Kn,ηn−1(xn−1, xn)

is called the Mc-Kean measure associated with the Markov transitions Kn+1,ηn .

2.7. Feynman-Kac semigroup models
In section 2.1 we have seen that the distribution of a Markov chain on some finite space can be computed

by simple matrix operations. In this case, if we denote the law of the chain ηp = Law(Xp) at time p then we
obtain the law at any time n ≥ p by an elementary composition of (n− p) transition matrices

ηn = ηpMp,n with the matrix Mp,n := Mp+1Mp+2 . . .Mn

For the flow of Feynman-Kac measures ηn defined in (2.6) the situation is more involved. By proposition 2.4,
the measure ηn is connected to ηn−1 by some transformation given by

ηn = Φn(ηn−1) := ΨGn−1(ηn−1)Mn

Definition 2.7. The semigroup of the flow of Feynman-Kac measures ηn is given by the composition of the one
step mappings Φn; that is, we have

∀0 ≤ p ≤ n Φp,n = Φn ◦ Φn−1 ◦ . . . ◦ Φp+1
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with the convention Φn,n = Id the identity mapping. By construction, for any pair of indexes 0 ≤ p ≤ n, the
measure ηp and ηn are connected with the following formula

ηn = Φp,n (ηp)

Our next objective is to make more precise the definition given above.
First, using (2.14) and (2.15) we find that

∀n ≥ 0 γn(y) = (γ̂n−1Mn)(y) =
∑
x

γ̂n−1(x)Mn(x, y) and γ̂n(x) = γn(x)Gn(x)

from which we conclude that

γn(y) = (γn−1Qn)(y) =
∑
x

γn−1(x)Qn(x, y) with Qn(x, y) = Gn−1(x)Mn(x, y)

In other words, we have proved that

γn = γn−1Qn = γn−2Qn−1Qn = . . .

= γpQp,n with the matrix Qp,n := Qp+1Qp+2 . . . Qn

and therefore, for any function f on the set E, we have

ηn(f) := γn(f)
γn(1) = γpQp,n(f)

γpQp,n(1) = γpQp,n(f)/γp(1)
γpQp,n(1)/γp(1) = ηpQp,n(f)

ηpQp,n(1)

In summary, we have proved the following proposition.
Proposition 2.8. For any function f on E we have

∀0 ≤ p ≤ n Φp,n (ηp) (f) := ηpQp,n(f)
ηpQp,n(1)

3. Interacting particle algorithms

3.1. Mean field particle interpretation models
In section 2.6 we provide a nonlinear Markov interpretation of the flow of Feynman-kac measures ηn. In this

interpretation, ηn can be seen as the distribution of the random states Xn of a Markov chain (Xn)n≥0 on E,
with initial distribution η0 = Law(X0) and elementary Markov transitions given by

P
(
Xn+1 = y | Xn = x

)
= Kn+1,ηn(x, dy) with Law(Xn) = ηn

At a first level of analysis, let us suppose that the elementary transitions Xn−1  Xn are easy to sample. In
this situation,we can approximate the flow of measures by sampling a series of N independent copies (Xi

n)1≤i≤N
of the chain Xn. By the well-known law of large numbers, in some sense we have for any time horizon n and
any function f

ηNn (f) := 1
N

N∑
i=1

f(Xi

n) −→N↑∞ ηn(f) = E
(
f(Xn)

)
In the above displayed formula we have used the notation

∀x ∈ E ηNn (x) = 1
N

N∑
i=1

1
X
i

n
(x) =⇒ ηNn (f) =

∑
x

ηNn (x)f(x) = 1
N

N∑
i=1

f(Xi

n)
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More generally, for any function fn on the path space En+1, we have

1
N

N∑
i=1

fn(Xi

0, . . . , X
i

n) −→N↑∞ E
(
fn(X0, . . . , Xn)

)
The schematic picture of this elementary Monte Carlo algorithm is given below

X
1
n

Kn+1,ηn
−−−−−−−−−−→

...

X
i

n

Kn+1,ηn
−−−−−−−−−−→

...

X
N

n

Kn+1,ηn
−−−−−−−−−−→

X
1
n+1
...
...

X
i

n+1
...

X
N

n+1

Unfortunately, for most realistic models we can rarely compute explicitly the law ηn of random states of the
chain Xn. We can use the occupation measure of the N samples at every time step n to approximate the law
ηn.

Under some appropriate regularity conditions on the Markov transitions Kn+1,ηn(x,y) we have(
(∀f : E 7→ R) ηNn (f) 'N↑∞ ηn(f)

)
=⇒ Kn+1,ηNn (x, y) 'N↑∞ Kn+1,ηn(x, y)

We illustrate this rather abstract discussion with the Markov transitionsKn+1,ηn(x, z) discussed in section 2.6.
We recall that in this case, Kn+1,ηn(x, z) is given by the following matrix composition

Kn+1,ηn(x, z) :=
∑
y

Sn,ηn(x, y)Mn+1(y, z) (3.1)

with the Markov transitions

Sn,ηn(x, y) = Gn(x) 1x(y) + (1−Gn(x)) ΨGn(ηn)(y).

and the BBG transformation
ΨGn(ηn)(x) := 1

ηn(Gn) Gn(x) ηn(x)

Replacing ηn by the occupation measure ηNn (x) = 1
N

∑N
i=1 1

X
i

n
(x), we find that

Kn+1,ηNn := Sn,ηNnMn+1 with Sn,ηNn (x, y) = Gn(x) 1x(y) + (1−Gn(x)) ΨGn(ηNn )(y)

and the weighted BBG occupation measures

ΨGn(ηNn )(y) =
∑

1≤j≤N

Gn(Xj

n)∑
1≤k≤N Gn(Xk

n)
1
X
j

n
(y)

We use this mean field approximation strategy inductively to define a Markov chain

(ξ1
n, ξ

2
n, . . . , ξ

N
n )n≥0
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on the product state spaces EN . The initial state (ξ1
0 , ξ

2
0 , . . . , ξ

N
0 ) consists of N independent and identically

distributed random variables with common distribution η0 termed particles. The elementary transitions are
defined by the following synthetic diagram

ξ1
n

K
n+1,ηNn

−−−−−−−−−−→
...

ξin

K
n+1,ηNn

−−−−−−−−−−→
...

ξNn

K
n+1,ηNn

−−−−−−−−−−→

ξ1
n+1
...
...

ξin+1
...

ξNn+1

The mean field particle interpretation of this nonlinear measure valued model is an EN -valued Markov chain

ξn =
(
ξ1
n, ξ

2
n, . . . , ξ

N
n

)
∈ EN

with elementary transitions defined as

P
(
ξn+1 = (x1, . . . , xN ) | ξn

)
=

N∏
i=1

Kn+1,ηNn (ξin, xi) with ηNn := 1
N

N∑
j=1

1ξjn (3.2)

In other words, given the population of N particles ξn =
(
ξ1
n, ξ

2
n, . . . , ξ

N
n

)
at time n, the population of particles

ξn+1 =
(
ξ1
n+1, ξ

2
n+1, . . . , ξ

N
n+1
)
at time (n+ 1) are independent random variables with respective distributions

Kn+1,ηNn (ξ1
n, x

1) , Kn+1,ηNn (ξ2
n, x

2) , . . .Kn+1,ηNn (ξNn , xN )

The rationale behind this approximation is that ηNn+1 is the empirical measure associated with N independent
variables with distributions Kn+1,ηNn (ξin, x), so as soon as ηNn is a good approximation of ηn then, in view of
(3.2), ηNn+1 should be a good approximation of ηn+1.

In the situation where Kn+1,ηn is given by the (3.1), the flow of Feynman-Kac measures evolves according to
the two-step updating/prediction transitions,

ηn
Sn,ηn
−−−−−−−−→ η̂n = ηnSn,ηn = ΨGn(ηn)

Mn+1
−−−−−−−→ ηn+1 = η̂nMn+1 (3.3)

In the N -mean field particle interpretation model, this pair of recursions has been replaced by a two-step
selection/mutation transition in product spaces

ξn ∈ EN
selection
−−−−−−−−→ ξ̂n ∈ EN

mutation
−−−−−−−→ ξn+1 ∈ EN (3.4)

The genetic type evolution of the system is summarized by the following synthetic picture:

ξ1
n
...
ξin
...
ξNn


S
n,ηNn

−−−−−−−−−−→



ξ̂1
n

Mn+1
−−−−−−−−−−→

...
ξ̂in −−−−−−−−−−→
...
ξ̂Nn −−−−−−−−−−→

ξ1
n+1
...

ξin+1
...

ξNn+1
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with the selection Markov transition :

Sn,ηNn (ξin, x) := Gn(ξin) 1ξin(x) +
(
1−Gn(ξin)

) ∑
1≤j≤N

Gn(ξjn)∑
1≤k≤N Gn(ξkn)1ξjn(x)

Using the Feynman-Kac modeling techniques presented in section 2.4, it is now easy to check that the
corresponding mean field particle interpretations discussed above coincide with the algorithms discussed in
section 1.

3.2. Some particle estimates
In section 3.1 we have designed a mean field particle interpretation of the flow of Feynman-Kac measures

ηn(f) := γn(f)/γn(1) with γn(f) = E

f(Xn)
∏

0≤p<n
Gp(Xp)


We also recall from (2.16) that the normalizing constants γn(1) are expressed in terms of the flow of measures
(ηp)0≤p<n with the following multiplicative formula

γn(1) = E

 ∏
0≤p<n

Gp(Xp)

 =
∏

0≤p<n
ηp (Gp)

This also implies that the unnormalized Feynman-Kac measures can be rewritten in the following form:

γn(f) = ηn(f) γn(1) with γn(f) = ηn(f)
∏

0≤p<n
ηp (Gp)

The mean field particle interpretation of these measures presented in section 3.1 can be seen as genetic type
algorithms with Mn-mutation transitions and Gn-potential functions, where Mn represents the Markov transi-
tion of the reference Markov chain Xn. Inversely, any genetic type model of that forms converge, in some sense,
as the size of the population N tends to infinity to the above Feynman-Kac measures.

More formally, for any function fn on the product space E(n+1), we have that

limN→∞
1
N

N∑
i=1

fn
(
ξi0, ξ

i
1, . . . , ξ

i
n

)
=
∑
x0,...,xn

η0(x0)K1,η0(x0, x1) . . .Kn,ηn−1(xn−1, xn) fn(x0, . . . , xn)

and for any function f on E

lim
N→∞

ηNn (f) = ηn(f) with ηNn (f) = 1
N

N∑
i=1

fn
(
ξin
)

(3.5)

The normalizing constants γn(1) = limN→∞ γNn (1) can be computed using the unbiased particle estimates γNn (1)
defined below

γNn (1) :=
∏

0≤p<n
ηNp (Gp) with ∀n ≥ 0 ηNn (Gn) = 1

N
Gn(ξin)

To give a flavor of some non asymptotic variance estimates that can be obtained for such particle estimates, we
present a recent result for time homogeneous models (Gn,Mn) = (G,M).
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Theorem 3.1 ( [5]). Suppose that the pair of potential-transitions (G,M) are chosen so that

∀(x, x′, y) ∈ E3 G(x) ≤ δ G(x′) and Mm(x, y) ≤ β Mm(x′, y) (3.6)

for some m ≥ 1 and some parameters (δ, β) ∈ [1,∞[2. In this situation, any n ≥ 0, and any N > (n + 1)βδm
we have

E
[(
γNn (1)− γn(1)

)2] ≤ γn(1)2
(

4
N

(n+ 1) β δm
)

(3.7)

More general results can be found in [9, 10], under weaker regularity conditions. In this connection, we
mention that the N -particle approximation of the unnormalized measures γn is given by the unbiased estimates

γNn (f) := ηNn (f)× γNn (1) −→N→∞ γn(f) = ηn(f)× γn(1)

At the end of this section, we discuss some path space particle estimates associated to these genetic algorithms.
First, it is important to observe that the above constructions can be extended to Feynman-Kac models with
reference Markov chains and potential functions on path spaces

Xn := (X ′0, . . . , X ′n) ∈ En = (E′)(n+1) and Gn(Xn) := Gn (X ′0, . . . , X ′n) (3.8)

This observation is essential for the analysis of the directed polymers and the self avoiding walks discussed
in section 1.7. In this situation, every particle at time n is a path-valued particle of length n. The selection
transition consists of selecting the path-particle with high potential value, while the mutation transition simply
consists of a path extension with an elementary move according to the auxiliary process X ′n, with Markov
transitions M ′n on the state space E′.

When the potential functions only depend on the terminal value of the paths

Gn(Xn) := G′n(X ′n)

for some fitness function G′n, we can check that the path-valued particle model represents the time evolution of
the genealogical tree model associated with the time evolution of the individuals ξin evolving withM ′n-mutations
and G′n-selections. In this situation, if

ξin := (ξi0,n, ξi1,n, . . . , ξin,n)
stands for the i-th ancestral line of the current individual ξin,n after the n-th mutation, then for any function
fn on En, we have that

lim
N→∞

1
N

N∑
i=1

fn
(
ξi0,n, ξ

i
1,n, . . . , ξ

i
n,n

)
=

E
(
fn(X ′0, . . . , X ′n)

∏
0≤p<nG

′
p(X ′p)

)
E
(∏

0≤p<nG
′
p(X ′p)

) (3.9)

Note that the n-th time marginals converge to the Feynman-Kac measures associated to the pair (G′n,M ′n);
that is, for any function f on the state space E′ we have

lim
N→∞

1
N

N∑
i=1

f
(
ξin
)

= η′n(f) = γ′n(f)
γ′n(1) with γ′n(f) := E

f(X ′n)
∏

0≤p<n
G′p(X ′p)

 (3.10)

Another quantity of interest is the complete ancestral tree defined by the whole population of individuals from
the origin up to the current time horizon

∀1 ≤ i ≤ N
(
ξi0,0, ξ

i
1,1, . . . , ξ

i
n−1,n−1, ξ

i
n,n

)
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The occupation measures of this complete ancestral converge to the Mc-Kean distributions of the nonlinear
Markov chain with initial distribution η0 = η′0 and elementary transitions K ′n+1,η′n(x, y) on E′ defined as the
transitions Kn+1,ηn by replacing the triplet (ηn, Gn,Mn) by the triplet (η′n, G′n,M ′n). In other words, we have

limN→∞
1
N

N∑
i=1

fn
(
ξi0,0, ξ

i
1,1, . . . , ξ

i
n,n

)
=
∑
x0,...,xn

η′0(x0)K ′1,η′0(x0, x1) . . .K ′n,η′
n−1

(xn−1, xn) fn(x0, . . . , xn)

3.3. An elementary proof
In this section, we provide a simple proof of the convergence result (3.5) using a rather elementary induction

w.r.t. the time parameter n. To simplify the analysis we assume that the potential functions Gn are chosen so
that δ(Gn) := supx,y(Gn(x)/Gn(y)) <∞ and E is a finite set. The main result of this section is the following
elementary variance estimates.

Proposition 3.2. For any function f on E, any time horizon n ≥ 0, and any population size N , we have the
variance estimate

E
([
ηNn (f)− ηn(f)

]2) ≤ c(n)
N

osc(f)2 (3.11)

for some finite constant c(n) <∞, whose values do not depend on the parameter N .

3.3.1. The initial particle approximation
We observe that the initial population ξ0 =

(
ξ1

0 , ξ
2
0 , . . . , ξ

N
0
)
consists of N independent and identically dis-

tributed random variables with common distribution η0. For any function f on E, we have

ηN0 (f) = η0(f) + 1√
N

V N0 (f)

with the random quantities

V N0 (f) := 1√
N

∑
1≤i≤N

[
f(ξi0)− η0(f)

]
=
∑
x

V N0 (x)f(x)

and the random occupation measures

V N0 (x) = 1√
N

∑
1≤i≤N

[
1ξi0(x)− η0(x)

]
Using the decomposition

V N0 (f)2 = 1
N

∑
1≤i≤N

[
f(ξi0)− η0(f)

]2 + 1
N

∑
1≤i6=j≤N

[
f(ξi0)− η0(f)

] [
f(ξj0)− η0(f)

]
it is now a simple exercise to check that

E
([
V N0 (f)

]2) = η0([f − η0(f)]2) = η0(f2)− η0(f)2 ≤ osc(f)2

where osc(f) stands for the oscillation of the function f

osc(f) = sup
x,y
|f(x)− f(y)|
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This shows that the initial distribution η0 is approximated using the initial occupation measure ηN0 , and we
have the variance estimates

E
([
ηN0 (f)− η0(f)

]2) = 1
N

η0([f − η0(f)]2) ≤ 1
N

osc(f)

3.3.2. The local sampling errors
We recall that the population of particle at time (n+ 1) is the sequence of conditionally independent random

variables
ξn+1 =

(
ξ1
n+1, ξ

2
n+1, . . . , ξ

N
n+1
)

with respective distributions

Kn+1,ηNn (ξ1
n, x

1) , Kn+1,ηNn (ξ2
n, x

2) , . . .Kn+1,ηNn (ξNn , xN )

We observe that for any y ∈ E and any n ≥ 0, we have

E
(
ηNn+1(f) |ξn

)
= 1
N

∑
1≤i≤N

E
(
f(ξin+1) |ξn

)
= 1
N

∑
1≤i≤N

Kn+1,ηNn (f)(ξin)

with the function
Kn+1,ηNn (f)(x) =

∑
y

Kn+1,ηNn (x, y)f(y)

This implies that
E
(
ηNn+1(f) | ξn

)
= ηNn Kn+1,ηNn (f) = Φn+1

(
ηNn
)

(f)
with the probability measures

Φn+1
(
ηNn
)

(y) =
(
ηNn Kn+1,ηNn

)
(y) =

∑
x

ηNn (x)×Kn+1,ηNn (x, y)

On the other hand, for any function f on E, we have the decomposition

ηNn+1(f)− Φn+1
(
ηNn
)

(f) = ηNn+1(f)− ηNn Kn+1,ηNn (f)

= 1
N

∑
1≤i≤N

[
f(ξin+1)−Kn+1,ηNn (f)(ξin)

]
= 1√

N
V Nn+1(f)

In the above displayed formulae, V Nn+1(f) stands for the random variable defined below

V Nn+1(f) := 1√
N

∑
1≤i≤N

[
f(ξin+1)−Kn+1,ηNn (f)(ξin)

]
=
∑
x

V Nn+1(x)f(x)

with the random measures

V Nn+1(x) = 1√
N

∑
1≤i≤N

[
1ξin+1

(x)−Kn+1,ηNn (ξin, x)
]

Rewritten in a different way, we have

ηNn+1 = Φn+1
(
ηNn
)

+ 1√
N

V Nn+1
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while the limiting measures satisfy the following equation

ηn+1 = Φn+1 (ηn)

These decompositions show that the random measures V Nn can be interpreted as the local sampling errors
induced by the mean field particle transitions. The above formulae also show that the N -particle model can
also be interpreted as a stochastic perturbation of the limiting system.

Using the fact that[
V Nn+1(f)

]2 = 1
N

∑
1≤i≤N

[
f(ξin+1)−Kn+1,ηNn (f)(ξin)

]2
+ 1
N

∑
1≤i6=j≤N

[
f(ξin+1)−Kn+1,ηNn (f)(ξin)

]
×
[
f(ξjn+1)−Kn+1,ηNn (f)(ξjn)

]
It is rather elementary to check that

E
(
V Nn+1(f) | ξn

)
= 0 (3.12)

and

E
([
V Nn (f)

]2 | ξn) = 1
N

∑
1≤i≤N

E
([
f(ξin+1)−Kn+1,ηNn (f)(ξin)

]2 |ξn) ≤ osc(f)2

From these calculations, we readily prove the following local error estimates.

Proposition 3.3. For any function f on E, any time horizon n ≥ 0, and any population size N , we have the
almost sure estimates

E
([
ηNn+1(f)− Φn+1

(
ηNn
)

(f)
]2 | ξn) 1

2 ≤ 1√
N

osc(f)

3.3.3. The proof by induction
The main object of this section is to complete the proof of proposition 3.2.
By definition of the one step mappings, for any function f on E, any time horizon n ≥ 0, and any population

size N , we have
Φn+1

(
ηNn
)

(f) = ηNn (GnMn+1(f))/ηNn (Gn)
and therefore

Φn+1
(
ηNn
)

(f)− Φn+1 (ηn) (f) = ηNn (f̃n)/ηNn (g̃n)
with the functions

f̃n(x) := g̃n(x)×Mn+1 [f − Φn+1 (ηn) (f)] (x) and g̃n(x) := Gn(x)
ηn(Gn) (3.13)

Notice that the function f̃n is such that

ηn(f̃n) = 0 ηn(g̃n) = 1 and ‖f̃n‖ := sup
x
|f̃n(x)| ≤ δ(Gn) osc(f)

From the above observations, we prove the following decomposition

Φn+1
(
ηNn
)

(f)− Φn+1 (ηn) (f) = 1
ηNn (g̃n)

[
ηNn (f̃n)− ηn(f̃n)

]
(3.14)

This implies that ∣∣Φn+1
(
ηNn
)

(f)− Φn+1 (ηn) (f)
∣∣ ≤ δ(Gn)×

∣∣ηNn (f̃n)− ηn(f̃n)
∣∣
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and therefore
E
([

Φn+1
(
ηNn
)

(f)− Φn+1 (ηn) (f)
]2) ≤ δ(Gn)2 E

([
ηNn (f̃n)− ηn(f̃n)

]2)
We end the proof of proposition 3.2 using the following decomposition

ηNn+1(f)− ηn+1(f) =
[
ηNn+1(f)− Φn+1

(
ηNn
)

(f)
]

+
[
Φn+1

(
ηNn
)

(f)− Φn+1 (ηn) (f)
]

Using the conditional unbiased property (3.12) and the local estimates stated in proposition 3.3, we prove that

E
([
ηNn+1(f)− ηn+1(f)

]2)
= E

([
ηNn+1(f)− Φn+1

(
ηNn
)

(f)
]2)+ E

([
Φn+1

(
ηNn
)

(f)− Φn+1 (ηn) (f)
]2)

≤ 1
N osc(f)2 + δ(Gn)2 E

([
ηNn (f̃n)− ηn(f̃n)

]2)
The end of the proof of the variance estimates stated in proposition 3.2 is now clear. In section 3.3.1 we have
seen that (3.11) is true at rank n = 0. Assuming that (3.11) is true at rank n, the above inequality implies
that the result is also satisfied at rank (n + 1). This ends the proof of the variance estimates stated in the
proposition.

3.4. Lq-mean error and bias estimates
We extend in this section the variance estimates stated in proposition 3.2 to any Lq-mean errors bounds.

The forthcoming analysis is developed under the regularity conditions stated in the beginning of section 3.3.

Proposition 3.4. For any function f on E with osc(f) ≤ 1, any time horizon n ≥ 0, any population size N ,
we have ∣∣E (ηNn (f)

)
− ηn(f)

∣∣ ≤ c(n)/N (3.15)
for some finite constant c(n) <∞. In addition, for any integer q ≥ 1, we have the variance estimate

√
N E

(∣∣ηNn (f)− ηn(f)
∣∣q) 1

q ≤ b(q) c(n)

for some finite constant c(n) <∞, and the collection of constants b(q) defined below for any p ≥ 0:

b(2p)2p := (2p)p 2−p

b(2p+ 1)2p+1 :=
(2p+ 1)(p+1)√

p+ 1/2
2−(p+1/2) with (q + p)p := (q + p)!/p! (3.16)

In the further development of this section, we provide a rather elementary proof of the above proposition
based on a simple induction on the time parameter combined with Kintchine’s type inequalities. The resulting
estimates of the upper bound constants c(n) are far from being “sharp”. Next, we present without proofs some
more precise extensions of these results. Detailed proofs of these results can be found in [9, 10].

(1) When the flow of measures is stable, in the sense that it forgets exponentially fast its initial conditions,
we can prove uniform estimates w.r.t. the time horizon. For instance, under the regularity condition
(3.6) for some parameters (m, δ, β), we can prove that the Lq-mean error estimates (3.11) holds with
some constants c(n) such that

sup
n≥0

c(n) ≤ 2mδ2m−1β3
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(2) Similar Lq-mean error estimates (3.11) can be derived for the convergence of the occupation measures
(3.9) associated with genealogical tree models. Up to a state space enlargement the convergence analysis
of models associated with path-valued Markov chains (3.8) follows exactly the same line of arguments.
In addition, when the flow of marginal measures η′n introduced in (3.10) is stable, we can prove Lq-mean
errors bounds (3.11) for the occupation measures of genealogical tree models with some constant that
grows linearly w.r.t. the time parameter; that is, such that c(n) = c n, form some finite constant c <∞.

(3) The extensions of the Lq-mean errors bounds (3.11) to general state space models and Zolotarev’s type
seminorms ∥∥ηNn − ηn∥∥F := sup

f∈F

∣∣ηNn (f)− ηn(f)
∣∣

associated with some collection F of functions can also be found in [9].
(4) Note that the mean value of the occupation measures coincides with the law of a given particle; that is,

we have that
E
(
ηNn (f)

)
= 1
N

∑
1≤i≤N

E
(
f(ξin)

)
= E

(
f(ξ1

n)
)

For finite state space models, the bias estimates (3.15) states that∥∥Law(ξ1
n)− ηn

∥∥
tv :=

∑
x

∣∣P(ξin = x)− ηn(x)
∣∣ ≤ c(n)/N

One again, the constant c(n) can be uniformly bounded w.r.t. the time parameter under appropriate
regularity conditions. Furthermore, similar estimates holds true for the ancestral line of the correspond-
ing genealogical tree models. Notice that in this situation ηn is replaced by the Mc-Kean measure
introduced in definition 2.6.

All of these estimates can be extended to general state space models and to the law of the first q
particles in the population∥∥∥Law(ξ1

n, . . . , ξ
q
n)− Law(X1

n, . . . , X
q

n)
∥∥∥

tv
≤ c(n) q2/N

where Xi

n is a sequence of independent and identically distributed random variables with common
distribution ηn. This property is called the propagation of chaos property in applied probability.

We end this section with a pair of Bernstein’s type exponential concentration estimates recently obtained
in [13]. For any N ≥ 1, any n ≥ 0, and any λ > 0, we have

− 1
N

logP
(

[ηNn − ηn](f) ≥ r

N
+ λ

)
≥ λ2

2

((
σ +
√

2r√
N

)2

+ 2λ
(
r + βδm

3

))−1

and

− 1
N

logP
(

[ηNn − ηn](f) ≥ r

N
+ λ
)
≥ λ2

2

((
σ̂ +
√

2r√
N

)2

+ 2λr
)−1

.

with some parameters (r, σ, σ̂) such that

r ≤ 4mδ4m−1β5 σ2 ≤ 16mδ5m−1β6 σ2 and σ̂2 ≤ 4mδ3m−1β4

with the uniform local variance parameters:

σ2 := sup µ
(
Kn,µ [fn −Kn,µ(fn)]2

)
(≤ 1) .
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In the above displayed formula the supremum is taken over all integers n ≥ 1, any probability measures and all
functions f on E with osc(f) ≤ 1.

To see how these parameters enter into the local fluctuation variance, we notice that for any probability
measure we have

µ
[
Kn,µ

(
(f −Kn,µ(f))2)] = Φn(µ)

[
(f − Φn(µ)(f))2]− µ [[Gn−1(Id−Ψn(µ))(Mn(f))]2

]
We also have the following formula

µ
[
Kn,µ

(
(f −Kn,µ(f))2)] = µΓLn,µ(f, f)− µ

[
Ln,µ(f)2]

in terms of the operators

Ln,µ(f) = Gn−1 (Mn − Id)(f)

+ (1−Gn−1) [(Ψn−1(µ)− Id) + Ψn−1(µ)(Mn − Id)] (f)

and their “carré du champ” function ΓLn,µ(f, f) defined for any x ∈ E by

ΓLn,µ(f, f)(x) = Ln,µ

(
[f − Ln,µ(f)(x)]2

)
(x) = Ln,µ(f2)(x)− 2f(x) Ln,µ(f)(x)

3.4.1. Kintchine’s type inequalities
The Lm-mean errors analysis developed in this section is based on the following Kintchine type inequality

for martingales with symmetric and independent increments.

Lemma 3.5. Let Mn :=
∑

0≤p≤n ∆p be a real valued martingale with symmetric and independent increments
(∆n)n≥0. For any integer m ≥ 1, and any n ≥ 0, we have

E (|Mn|m)
1
m ≤ b(m) E

(
[M ]m

′/2
n

) 1
m′ (3.17)

with the smallest even integer m′ ≥ m, the bracket process [M ]n :=
∑

0≤p≤n ∆2
p, and the collection of constants

b(m) defined in (3.16).

Proof:
We prove the lemma by induction on the parameter n. The result is clearly satisfied for n = 0. Suppose the
estimate (3.17) is true at rank (n− 1). To prove the result at rank n, we use the binomial decomposition

(Mn−1 + ∆n)2m =
2m∑
p=0

(
2m
p

)
M2m−p
n−1 (∆n)p

Using the symmetry condition, all the odd moments of ∆n are null. Consequently, we find that

E
(

(Mn−1 + ∆n)2m
)

=
m∑
p=0

(
2m
2p

)
E
(
M

2(m−p)
n−1

)
E
(
∆2p
n

)
Using the induction hypothesis, we prove that the above expression is upper bounded by the quantity

∑m
p=0

(
2m
2p

)
2−(m−p) (2(m− p))(m−p) E

(
[M ]m−pn−1

)
E
(
∆2p
n

)
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To take the final step, we use the fact that(
2m
2p

)
2−(m−p) (2(m− p))(m−p) = 2−m (2m)m

2−p (2p)p

(
m
p

)
and (2p)p ≥ 2p

to conclude that

E
(

(Mn−1 + ∆n)2m
)
≤ 2−m (2m)m

m∑
p=0

(
m
p

)
E
(

[M ]m−pn−1

)
E
(
∆2p
n

)
= 2−m (2m)m E ([M ]mn )

For odd integers we use twice the Cauchy-Schwarz inequality to deduce that

E(|Mn|2m+1)2 ≤ E(M2m
n ) E(M2(m+1)

n )

≤ 2−(2m+1) (2m)m (2(m+ 1))(m+1) E
(

[M ]m+1
n

) 2m+1
m+1

Since we also have
(2(m+ 1))(m+1) = (2(m+ 1))!

(m+ 1)! = 2(2m+ 1)!
m! = 2 (2m+ 1)(m+1)

and
(2m)m = 1

2m+ 1
(2m+ 1)!

m! = 1
2m+ 1 (2m+ 1)(m+1)

we conclude that
E(|Mn|2m+1) ≤ 2−(m+1/2) (2m+ 1)(m+1)√

m+ 1/2
E
(

[M ]m+1
n

)1− 1
2(m+1)

This ends the proof of the lemma.

3.4.2. Initial and local sampling estimates
By construction, for any function f on the set E and any n ≥ 0 we have

V Nn (f) =
N∑
i=1

∆(N)
n,i (f) with ∆(N)

n,i (f) := 1√
N

[
f(ξin)−Kn,ηN

n−1
(f)(ξin−1)

]
For n = 0, we use the convention Kn,ηN

n−1
(f)(ξin−1) = η0(f), so that

V N0 (f) =
√
N
[
ηN0 (f)− η0(f)

]
Given ξn−1, we let (ζin)1≤i≤N be an independent copy of (ξin)1≤i≤N . We readily check that

∆(N)
n,i (f) := E

(
1√
N

[
f(ξin)− f(ζin)

]
| ξn−1

)
For n = 0, the above conditional expectation is a simple expectation w.r.t. the initial random variables ξ0 and
its independent copy ζ0. This yields the formula

V Nn (f) = E
(
M

(N)
n,N (f) | ξn−1

)
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with the terminal value M (N)
n,N (f) of the martingale sequence defined below

i ∈ {1, . . . , N} 7→M
(N)
n,i (f) :=

i∑
j=1

1√
N

[
f(ξjn)− f(ζjn)

]
By a direct application of Kintchine’s inequality, we prove the following proposition

Proposition 3.6. For any N ≥ 1, m ≥ 1, n ≥ 0 and any test function f we have the almost sure estimate

E
(∣∣V Nn (f)

∣∣m |ξn−1

) 1
m ≤ b(m) osc(f) (3.18)

The proof of the Lm-mean errors stated in proposition 3.4 follows the same line of arguments as those
developed in section 3.3.3. Once again, we use the decomposition

ηNn+1(f)− ηn+1(f) =
[
ηNn+1(f)− Φn+1

(
ηNn
)

(f)
]

+
[
Φn+1

(
ηNn
)

(f)− Φn+1 (ηn) (f)
]

= 1√
N

V Nn+1(f) +
[
Φn+1

(
ηNn
)

(f)− Φn+1 (ηn) (f)
]

and the fact that ∣∣Φn+1
(
ηNn
)

(f)− Φn+1 (ηn) (f)
∣∣ ≤ δ(Gn)×

∣∣ηNn (f̃n)− ηn(f̃n)
∣∣

with the function f̃n defined in (3.13), to prove that

∣∣ηNn+1(f)− ηn+1(f)
∣∣ ≤ 1√

N

∣∣V Nn+1(f)
∣∣+ δ(Gn)×

∣∣ηNn (f̃n)− ηn(f̃n)
∣∣

This implies

E
(∣∣ηNn+1(f)− ηn+1(f)

∣∣m) 1
m ≤ 1√

N
E
(∣∣V Nn+1(f)

∣∣m) 1
m

+ δ(Gn)× E
(∣∣ηNn (f̃n)− ηn(f̃n)

∣∣m) 1
m

≤ b(m)√
N

+ δ(Gn)× E
(∣∣ηNn (f̃n)− ηn(f̃n)

∣∣m) 1
m

The end of the proof can be conducted using a simple induction on the time parameter.

3.4.3. Proof of the bias estimates
The proof of the bias stated in proposition 3.4 needs a little bit more work. Using decomposition (3.14), we

have
Φn+1

(
ηNn
)

(f)− Φn+1 (ηn) (f) = 1
1− [1− ηNn (g̃n)]

[
ηNn (f̃n)− ηn(f̃n)

]
Using the fact that

1
1− u = 1 + u+ u2

1− u,

we obtain
1

1− [1− ηNn (g̃n)] = 1 +
[
1− ηNn (g̃n)

]
+
[
1− ηNn (g̃n)

]2
ηNn (g̃n) .
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Now we have

E
([
ηNn+1(f)− ηn+1(f)

])
= E

(
Φn+1

(
ηNn
)

(f)
)
− Φn+1 (ηn) (f)

= E
([
ηNn (f̃n)− ηn(f̃n)

])
+ E

([
ηNn (f̃n)− ηn(f̃n)

]
×
[
1− ηNn (g̃n)

])
+E

([
ηNn (f̃n)− ηn(f̃n)

]
× [1−ηNn (g̃n)]2

ηNn (g̃n)

)
Using proposition 3.4, we have∣∣E ([ηNn (f̃n)− ηn(f̃n)

]
×
[
1− ηNn (g̃n)

])∣∣
≤ E

([
ηNn (f̃n)− ηn(f̃n)

]2)1/2
× E

([
1− ηNn (g̃n)

]2)1/2
≤ c(n)/N

and in much the same way ∣∣∣∣E([ηNn (f̃n)− ηn(f̃n)
]
× [1−ηNn (g̃n)]2

ηNn (g̃n)

)∣∣∣∣ ≤ c(n)/(N
√
N)

for some finite constant c(n) <∞. This implies∣∣E ([ηNn+1(f)− ηn+1(f)
])∣∣ ≤ ∣∣E ([ηNn (f̃n)− ηn(f̃n)

])∣∣+ c(n)/N

The end of the proof of the bias estimates stated in proposition 3.4 is now clear.

3.5. Central limit theorems
Let us come back to the interpretation of the mean field particle model as a stochastic perturbation of the

limiting system. This perturbation model is summarized by the pair of formulae

ηNn+1 = Φn+1
(
ηNn
)

+ 1√
N

V Nn+1

ηn+1 = Φn+1 (ηn)

with the centered random measures V Nn defined below

V Nn (x) = 1√
N

∑
1≤i≤N

[
1ξin(x)−Kn,ηN

n−1
(ξin−1, x)

]

These quantities can be thought as a stochastic perturbation of the limiting system, while the quantity 1√
N

is
the usual precision of Monte Carlo approximation models.

Our next objective is to analyze the local sampling mean error variance associated with the particle model.
To clarify the presentation, we slightly abuse the notation, and we set

x ∈ E 7→ Kn+1,ηNn

([
f −Kn+1,ηNn (f)

]2) (x)
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the function on E defined for any x by

Kn+1,ηNn

([
f −Kn+1,ηNn (f)

]2) (x) =
∑
x

Kn+1,ηNn (x, y)
[
f(y)−Kn+1,ηNn (f)(x)

]2
Lemma 3.7. For any N ≥ 1, any n ≥ 0 and any functions f, g on E we have

E
(
V Nn (f) |ξn−1

)
= 0

E
(
V Nn (f)2 |ξn−1

)
= ηNn−1Kn,ηN

n−1

([
f −Kn,ηN

n−1
(f)
]2
)

Proof:
The first assertion is immediate. Using the fact that

E
([
f(ξin+1)−Kn+1,ηNn (f)(ξin)

]2 |ξn)
=
∑
xKn+1,ηNn (ξin, x)

[
f(x)−Kn+1,ηNn (f)(ξin)

]2 := Kn+1,ηNn

([
f −Kn+1,ηNn (f)

]2) (ξin)

we find that

E
(
V Nn (f)2 |ξn−1

)
= 1

N

∑
1≤i≤N E

([
f(ξin+1)−Kn+1,ηNn (f)(ξin)

]2 |ξn)
= 1

N

∑
1≤i≤N Kn+1,ηNn

([
f −Kn+1,ηNn (f)

]2) (ξin) := ηNn Kn+1,ηNn

([
f −Kn+1,ηNn (f)

]2)
This ends the proof of the lemma.

The next theorem indicates that these random perturbations behave asymptotically as Gaussian random
perturbations. The details of the proof of this functional central limit theorem can be found in [9].
Theorem 3.8. For any fixed time horizon n ≥ 0, the sequence of random fields V Nn converges in law, as the
number of particles N tends to infinity, to a sequence of independent, Gaussian and centered random fields Vn
; with, for any f , and n ≥ 0,

E(Vn(f)2) = ηn−1Kn,ηn−1([f −Kn,ηn−1(f)]2) . (3.19)

This fluctuation theorem can be used to analyze the fluctuations of the occupation measures ηNn around their
limiting value ηn (cf. for instance [9,10], and the references therein). The extension of these results to general
mean field models can be found in [13].
Theorem 3.9. For any n ≥ 0 and any function fn on E s.t. ηn(fn) = 0, we have the following convergence in
law

lim
N→∞

√
N ηNn (fn) =

n∑
q=0

Vq
(
Qq,n(fn)

)
Proof:
We consider the following matrices:

∀0 ≤ p ≤ n Qp,n(x, y) = Qp,n(x, y)
ηpQp,n(1) with ηpQp,n(1) =

∑
x,y

ηp(x)Qp,n(x, y)



44 ESAIM: PROCEEDINGS

By construction, we have that
ηpQp,n = ηn (3.20)

We also observe that
ηpQp,n(1) = γpQp,n(1)

γp(1) = γn(1)
γp(1) =

∏
p≤q<n

ηq(Gq)

from which we prove that Qp,n is a well defined semigroup of matrices, in the sense that

Qp,n(x, y) = Qp,n(x, y)
∏

p≤q<n

ηq(Gq)

=

 ∏
p≤q<r

ηq(Gq)

 ∏
r≤q<n

ηq(Gq)

 (Qp,rQr,n)(x, y) = Qp,rQr,n(x, y)

The following easily checked decomposition is pivotal

ηNp Qp,n(f) = ηN0 Q0,n(f) +
p∑
q=1

[
ηNq Qq,n(f)− ηNq−1Qq−1,n(f)

]
= ηN0 Q0,n(f) +

p∑
q=1

[
ηNq Qq,n(f)− Φq

(
ηNq−1

)
Qq,n(f)

]
+

p∑
q=1

[
Φq
(
ηNq−1

)
Qq,n(f)− ηNq−1Qq−1,n(f)

]
Choosing f = fn s.t. ηn(fn) = 0, we find that

√
N ηNp Qp,n(fn) =

p∑
q=0

V Nq
(
Qq,n(fn)

)
+RNp,n(fn)

with the remainder term

RNp,n(fn) :=
√
N

p∑
q=1

[
Φq
(
ηNq−1

)
Qq,n(fn)− ηNq−1Qq−1,n(fn)

]
Using the fact that

ηNq−1Qq−1,n(fn) = ηNq−1Qq−1,qQq,n(fn)
and

Φq
(
ηNq−1

)
Qq,n(fn) =

ηNq−1Qq−1,qQq,n(fn)
ηNq−1Qq−1,q(1)

=
ηNq−1Qq−1,qQq,n(fn)
ηNq−1Qq−1,q(1)

we prove that[
Φq
(
ηNq−1

)
Qq,n(fn)− ηNq−1Qq−1,n(fn)

]
= Φq

(
ηNq−1

) (
Qq,n(fn)

) [
1− ηNq−1Qq−1,q(1)

]
By (3.20), we conclude that

Φq
(
ηNq−1

) (
Qq,n(fn)

) [
1− ηNq−1Qq−1,q(1)

]
=
[
Φq
(
ηNq−1

) (
Qq,n(fn)

)
− Φq (ηq−1)

(
Qq,n(f)

)] [
ηq−1Qq−1,q(1)− ηNq−1Qq−1,q(1)

]
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and therefore RNp,n(fn) →N→∞ 0, almost surely. The end of the proof is a now a direct consequence of theo-
rem 3.8.
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