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Particle methods are a set of powerful and versatile simula-
tion-based methods to perform optimal state estimation in non-
linear non-Gaussian state-space models. The ability to compute the
optimal filter is central to solving important problems in areas such
as change detection, parameter estimation, and control. Much re-
cent work has been done in these areas. The objective of this paper
is to provide a detailed overview of them.
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I. INTRODUCTION

Optimal filtering for nonlinear non-Gaussian state-space
models has numerous applications in signal processing and
related areas such as finance, robotics, telecommunications,
etc. However, except for simple models such as linear
Gaussian state-space models, optimal filters do not typically
admit a closed-form expression. Standard approximation
schemes can be unreliable (e.g., the extended Kalman filter)
or difficult to implement (e.g., deterministic integration
methods). Sequential Monte Carlo (SMC) methods, also
known as particle methods, are simulation-based approx-
imations of the posterior distributions of interest. These
flexible and powerful methods have become very popular
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over the last few years and the diversity of applications is
increasing, e.g., weather forecasting, bioinformatics, etc.

In this paper, we will not discuss standard applications of
SMC methods to state estimation. Instead, we will focus on
the application of the SMC principle to solve nontrivial prob-
lems in the following areas.

• Model validation/Change detection: The question one
tries to answer in this context is that of determining how
well a given model fits the data or how to detect an
abrupt change in some parameter values.

• Parameter estimation/System identification: Here,
given a model with unknown static parameters, the
aim is to design both offline and online algorithms to
estimate these parameters.

• Control: Assuming that it is possible to control the
state-space model, the aim is to find a control policy
that minimizes a given cost function of the states, ob-
servations and controls. Such problems arise in target
tracking applications. For example, in sensor manage-
ment, one must select at each time step a sensor, from a
collection of sensors, that measures some aspect of the
state of the target being tracked. The aim is to select
sensors to optimize the tracking performance.

This is a tutorial paper and contains only a few original
developments. It mostly attempts to summarize and present
as concisely as possible the main ideas of the recent works
published on the subjects mentioned above. We have kept the
level of notation and technicality to a minimum and, instead
of focusing on a rigourous mathematical development, we
have tried to focus on methodological aspects.

The paper is organized as follows. In Section II, we briefly
present a generic SMC method for optimal filtering and
likelihood evaluation in nonlinear non-Gaussian state-space
models. Methods to compute the derivative of the optimal
filter and the likelihood function with respect to some pa-
rameters are reviewed. Section III presents some algorithms
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for model validation and change detection. Section IV
reviews the various methods to perform offline and online
parameter estimation while Section V shows how some
control problems can be addressed using particle methods.
Finally, we discuss a few open problems in Section VI. A
detailed list of references is provided.

II. STATE-SPACE MODELS AND SEQUENTIAL MONTE CARLO

METHODS

A. State-Space Models

Let and be - and -valued sto-
chastic processes defined on a measurable space .
These stochastic processes depend on a parameter
where will be assumed to be an open subset of .
The process is an unobserved (hidden) Markov
process with initial density ; i.e., , and Markov
transition density ; i.e.,

(1)

Indirect measurements of are available through the
observed process . More precisely it is assumed
that the observations are conditionally independent given

and that their marginal conditional densities are
of the form ; i.e.,

(2)

All densities are defined with respect to appropriate domi-
nating measures on their spaces which we denote commonly
by ; e.g., Lebesgue or counting measures. The interpre-
tation of depends on the application under study and will
be made clear in the subsequent sections.

This class of models includes many nonlinear and non-
Gaussian time series models such as

where and are mutually independent
sequences of independent random variables and functions

determine the evolution of the state and observation
processes.

B. Optimal Filter

Here and in the following subsections, we will assume that
the parameter is known.

Optimal filtering consists of estimating recursively in time
the sequence of posterior densities
which summarizes all the information about the system
states as given by the collection of observations

. We have adopted the following notation: for any
sequence and random process , we define

and .

Using Bayes’ rule, one can check that the sequence of joint
posterior densities satisfies the following
recursion:

(3)

where is given by

(4)

Marginalizing over , one obtains the following
standard prediction-update recursion for the filtering
density . The prediction step to obtain the
one-step-ahead prediction density is given
by

(5)

Then, when the new observation becomes available and
by using Bayes’ formula, one obtains the new filtering den-
sity

(6)

Using (5), the density given by (3) can be
rewritten as

(7)

We now introduce formal alterations of these formulas,
which will prove to be useful when developing SMC
methods. Let us define a so-called importance density

. The relevance and signification of this
density will become clearer when discussing SMC methods
later. It is easy to check that one can also rewrite (3) as

(8)

where

(9)

is the so-called importance weight. The relationship (8) is
valid as long as

Marginalizing over , one obtains (10) and (11) (see
bottom of next page), the recursion for the filtering density

. The expressions (8), (10), and (11) are, re-
spectively, (3), (5)–(6), and (7) when

.
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C. The Likelihood

The (marginal) likelihood of is given by

(12)

It also admits the following recursive form:

(13)

with the convention .
In practice, one uses the log-likelihood which is numerically
better behaved and satisfies

(14)

Except in a few simple cases including finite state-space
hidden Markov models (HMMs) and linear Gaussian state-
space models, it is impossible to compute the optimal filter
and the log-likelihood/likelihood in closed-form and numer-
ical approximation schemes are required.

D. Optimal Filter and Log-Likelihood Sensitivities

We will see in the following sections that many algorithms
require one to be able to compute both the gradients of the
optimal filter and of the likelihood with respect to the param-
eter . For simplicity, we will denote by the derivative

of a function of with respect to the th component of
the derivative of

a function with respect to to the th component of evalu-
ated at and . From now
onwards we will assume that all derivatives written down are
well defined.

Taking the derivative of (8), one has (15), shown at the
bottom of the page. Note that is obviously
not a probability density function anymore and actually sat-
isfies , under weak regularity
assumptions.

Using (14) one obtains the so-called score function

(16)

where using (11)

(17)

Except in simple cases, it is impossible to compute the gra-
dients of the optimal filter and the log-likelihood function in
closed form, and one, therefore, resorts to numerical approx-
imation schemes. In Section II-E below, we detail the use of
SMC to approximate the optimal filter while in Section II-F
we show how SMC may be used to approximate the gradi-
ents of interest.

(10)

and

(11)

(15)
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E. SMC Approximation to the Optimal Filter and Likelihood

1) An SMC Algorithm: We here briefly describe a
generic SMC method to approximate the optimal filter
based on the sampling resampling approach. More elaborate
algorithms are reviewed in [15] and in this special issue.

Assume that at time , a collection of
random samples named particles
distributed approximately according to
is available. Now at time , one wishes to produce

particles distributed approximately according to
. An efficient way of doing this con-

sists of setting and then sample

.1 It follows that the empirical
distribution of the particles approximates the joint
density .

By substituting this empirical distribution into (8), one ob-
tains the following approximation of :

(18)

(where represents the delta Dirac mass) i.e., each particle
has now a weight where

and

At this stage it is possible to select particles, i.e., particles
with small (normalized) weights are discarded and particles
with high (normalized) weights are cloned. Many such re-
sampling schemes have been proposed in the literature; see
[15]. To sum up, the algorithm proceeds as follows at time .

Sampling step
� For i = 1; . . . ; N , set ~X

(i)
0:n�1 = X̂

(i)
0:n�1 and sample

~X
(i)
n � q�(� jYn; ~X

(i)
n�1).

� For i = 1; . . . ; N , evaluate the importance

weights

�
(i)
n / �� ~X

(i)
n�1:n; Yn ;

N

i=1

�
(i)
n = 1:

Resampling step
� Multiply/Discard particles f ~X

(i)
0:ng with re-

spect to the high/low weights f�
(i)
n g to obtain

particles fX̂
(i)
0:ng.

The computational complexity of this algorithm is in
. The memory requirements are if one

stores the whole paths . However, if one is only
interested in estimating the marginal density ,
then the only memory requirements to update the algorithm
are to store .

1One could actually sample ~X � q (� jY ; ~X ) but this gener-
alization is not useful for the class of models considered here.

Two possible approximations of the filtering density
can be performed. Before resampling, one

has (18) and after resampling

(19)

The approximation after resampling is always worse than be-
fore resampling as the resampling step introduces additional
variance in the estimate. However, resampling is beneficial
in the long term, as the algorithm would otherwise collapse.

Particle methods generate at time an approximation
of the joint distribution and not only of
the marginal filtering distribution . However,
only the particle approximation of the marginal distribution

over a small lag , say , can be
used “safely.” Indeed as particles are being resampled at
each step, the number of distinct trajectories for
a fixed decreases exponentially quickly as increases.
In practice, one typically focuses on the marginal filtering
distribution , so this is not an issue. However,
if one is interested in or some marginal, say,

, then it is practically necessary to
rely on alternative smoothing algorithms.

2) Pointwise Particle Approximation of the Likeli-
hood: Based on these approximations of the filtering
distributions, it is possible to propose an approximation of
the likelihood function. Using (11), one clearly has

(20)

Note that if the importance density is chosen equal to the
prior , then (20) becomes

If the importance density is optimal in terms of minimization
of , that is

then (20) becomes

If the resampling scheme is unbiased, i.e., the expected
number of times a particle is copied in the resampling
scheme is equal to its normalized weight, one can show that
(20) is an unbiased estimate of . However,
the estimate of the log-likelihood is obviously biased

(21)
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This bias can be reduced by using the following standard
correction technique based on a first-order Taylor expansion;
i.e., as , one typically has
and where here and var are an
expectation and a variance with respect to the randomness of
the algorithm. The constant can be easily estimated by,
say, using the particles. One has

so a biased-corrected estimate of the log-likelihood is given
by

(22)

3) Smooth Particle Method for Likelihood Function Ap-
proximation: Assume that one is interested in estimating the
log-likelihood function for various values of , as required
for example to perform maximum-likelihood (ML) param-
eter estimation or to compute a generalized likelihood ratio
(GLR). The true likelihood function is typically a contin-
uous function of and the estimate (20) is asymptotically

consistent. However, for a reasonable number of
particles, the variance of the estimates of the log-likelihood
might preclude a proper evaluation and maximization of the
likelihood surface. An importance sampling method is de-
scribed in [29] but its computational complexity is in
and it is only valid in the neighborhood of a suitably pre-
selected parameter value. We present here a more efficient
method recently proposed by Pitt to devise a “smooth” esti-
mate of the likelihood function [45].

The basic idea consists of explicitly rewriting the esti-
mate of the log-likelihood as a deterministic function of the
(pseudo)random numbers, say, used to sample
and resample the particles until time , i.e.,

(23)

If the mapping is continuous in given
, then by using the same random numbers (i.e.,
fixed) to estimate the likelihood function at all

points of interest, one would obtain a “smooth” approxima-
tion of the likelihood function. Note that the existence of this
mapping excludes the use of rejection sampling or any other
procedure using a random number of random variables to
generate particles.

Now any standard SMC algorithm in the literature, in-
cluding the one presented in this section, does not lead to a
function continuous in . This is due to
the fact that the resampling operation is not continuous in .
Indeed it consists of resampling from a discrete point mass
function (18) whose weights depend on ; so if for a value,
say, one resamples at time a particle, say, then for
a value very close to one might resample or

instead. Pitt has proposed a “smooth” version of the

resampling operation in the scalar state case, i.e., .
The particles are reordered, so that

and a continuous piecewise linear approxima-
tion of the cumulative distribution function associated with

instead of the piecewise constant (discontin-
uous) cumulative distribution function associated with (18)
is proposed. One resamples the particles from this new cu-
mulative distribution function, therefore “smoothing” the re-
sampling operation; see [45] for details. The computational
complexity of this algorithm is in as one needs
to reorder particles, which is still reasonable for most appli-
cations. When with , it seems unfortu-
nately difficult to avoid a computational complexity of order

.

F. SMC Approximation to the Optimal Filter and Likelihood
Gradients

In this section, we focus on the approximation of the filter
and likelihood derivatives. We present a particle method re-
cently introduced to address this problem [19]. An alternative
method has been proposed independently in [9] for a specific
continuous-time model. Other approaches are also discussed.

1) Importance Sampling: At time , after resam-
pling, one has the approximation (19) of the filtering
density. We propose to approximate here the derivative

using the same collection of particles
we used to approximate the filter (19), i.e.,

(24)

where the coefficients can be negative or positive and
do not sum to one as is not a probability
density function. Approximating by
(24) corresponds to an importance sampling strategy with
importance sampling density . The rationale
for this approximation is due to the following property.
Under weak assumptions, generalizing the arguments in
[9], if for any set

then
for any set

.
To derive a particle method to implement (15), one writes

It follows that the algorithm proceeds as follows at time .
We use the notation if and 0 otherwise.
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Sampling step
� For i = 1; . . . ; N , set ~X

(i)
0:n�1 = X̂

(i)
0:n�1 and sample

~X
(i)
n � q�(� jYn; ~X

(i)
n�1).

� For i = 1; . . . ; N , compute the weights

�̂(i)n;m =
1

N

rmq� ~X
(i)
n jYn; ~X

(i)
n�1

q� ~X
(i)
n j Yn; ~X

(i)
n�1

+ �
(i)
n�1;m:

Updating step
� For i = 1; . . . ; N , evaluate the importance

weights

�(i)n / �� ~X
(i)
n�1:n; Yn ;

N

i=1

�(i)n = 1:

~�(i)n;m =
rm�� ~X

(i)
n�1:n; Yn +N�� ~X

(i)
n�1:n; Yn �̂

(i)
n;m

N

j=1 ��
~X
(j)
n�1:n; Yn

�
�
(i)
n

N

j=1 ��
~X
(j)
n�1:n; Yn

�

N

j=1

rm�� ~X
(j)
n�1:n; Yn +N�� ~X

(j)
n�1:n; Yn �̂(j)n :

Resampling step
� Multiply/Discard particles f ~X

(i)
0:ng with re-

spect to the high/low weights �
(i)
n to obtain N

particles

fX̂
(i)
0:ng, i.e., X̂(i)

0:n = ~X
(' (i))
0:n where 'n(i) is deter-

mined by the resampling mechanism.
� set

�(i)n;m =
~�+n;m

( ~�=�)+n;m

~�
(' (i))
n;m

�
(' (i))
n

~�(' (i))
n;m

+
~��n;m

( ~�=�)�n;m
~�

�

� ~�
(' (i))
n;m

;

with

~�+n;m
4

=

N

i=1

~�(i)n;m ~�(i)n;m ;

( ~�=�)+n;m
4

=

N

i=1

~�(' (i))
n;m =�(' (i))

n
~�(' (i))
n;m ;

~��n;m
4

=

N

i=1

~�(i)n;m ~�(i)n;m ;

and

( ~�=�)�n;m
4

=

N

i=1

~�(' (i))
n;m =�(' (i))

n
~�(' (i))
n;m :

In this algorithm, the derivative
is approximated by

(25)

and, before resampling, is approximated
by

(26)

Using (17), it follows that one has

(27)

and an estimate of the score function (16) is given by (28),
shown at the bottom of the page.

2) Alternative Methods: Several alternative approaches
to estimate using particle methods are pos-
sible. The most natural one consists of using two distinct set
of particles for and .

In this approach, one uses the fact that under regularity
assumptions the derivative of a probability density function

with respect to the th component of can be written
as

where and are two prob-
ability density functions. There is actually an infinity
of such decompositions; the most obvious one is the
standard Hahn–Jordan decomposition where

and . How-
ever, this might not be the most convenient decomposition
and for standard densities there exist more appropriate de-
compositions where and are themselves standard
densities [43].

A first approach consists of using such a decomposition
for the importance sampling density. One writes

(29)

and modifies the sampling step of the algorithm described in
the previous subsection. Indeed, one has

(28)
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So by sampling particles from both and
, it is possible to obtain an approximation

of instead of using
importance sampling. One can then plug this approximation
in (15) and use the standard Hahn–Jordan decomposition for

. This is easily implemented in practice by
checking the sign of the weight of each particle; see [20].

A second approach consists of also using such decompo-
sitions for and ,2 i.e.,

Using such decompositions and plugging them in
(15), it is trivial to obtain recursions for

and , which can be
implemented using particle methods.

III. MODEL VALIDATION AND CHANGE DETECTION

The problems of model validation, change/fault detection,
and isolation in dynamic models have received considerable
attention; see, for example, [6] and [26]. We discuss here a
few applications of particle methods to these problems.

A. Model Validation

Assume here the parameter is fixed. Model validation
is the process of determining how well a given model fits
the data. Within a Bayesian framework, models can be com-
pared using posterior model probabilities, but this strategy
only provides relative performance indicators and does not
tell whether any particular model fits the data well. In this
section, we show how particles and frequentist methods can
be combined to determine the goodness of fit for any model
of the data.

Under the hypothesis that the model is the correct one, it is
straightforward to show [47] that the sequence
with

is a realization of independent identically distributed (i.i.d.)
variables uniformly distributed on given a realization
of the observations . This result holds true for any time
series and may be used in statistical tests to determine the ad-
equacy of the model. Computing can be gener-
ally performed using particle methods. Indeed, one has

(30)

2Properly normalized, � (x ; Y ) is a probability density of argu-
ment Y .

and one can obtains a particle approximation of the one-step
ahead prediction distribution by using a particle approxima-
tion of given by

and by sampling . It yields

where

(31)

If (31) cannot be expressed analytically, then another esti-
mate of (30) can be computed by

where . An importance sampling method
could also be used.

The estimates obtained for may be used in-
stead of the true values to determine the adequacy of the
model. Most of these tests are based on the transformation
of the sequence into a sequence
where , with the standard Gaussian cu-
mulative distribution function. Thus, under the hypothesis
that the model is correct the are i.i.d. distributed
according to . One can then employ standard statis-
tical tests such as Bownman–Shenton or Ljung–Box to test
the normality and whiteness of . In [56], this
method is applied to speech signals.

B. Change Detection Based on Likelihood Ratios

1) Method: We follow closely here the approach pro-
posed in [38]. Let us first consider a simple change detection
problem. Before the time change, we assume that we have
a dynamic model defined by (1)–(2) with . After
the change, for sake of simplicity, we will assume that new
model is the dynamic model (1)–(2) with .3

Given some observations , we replace the unknown
change time by its ML estimate, i.e.,

with

3This assumption can be easily relaxed. The new model could be any dy-
namic model with transition and observation equations of functional forms
different from (1)–(2).
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where denotes the predictive density of
given when one has for the time interval

and afterwards. One can easily check
that

where is the following likelihood ratio (LR):

(32)

The change detector can be obtained by

where corresponds to the decision function and is a
threshold. That is, we decide a change has occurred whenever

exceeds . The change/fault alarm is set at the time given
by

and the ML estimate of change onset time after a change
detection is equal to

Until now, we have considered the case where the model
after change is known. In many real-world applications, this
is not the case, and either the model parameter belongs
to a finite set (“simple” case) or a continuous set (“difficult
case”) . In this case, a second maximization is required to
compute and one requires the GLR

as the LR in (32) is now a function of .
Experimental results obtained in [38] demonstrate the

power of this method. However, contrary to the linear
Gaussian case, it seems difficult to make any precise theo-
retical statement on the optimal properties of such a test in
the nonlinear non-Gaussian framework.

2) Particle Implementation: Assume is fixed. In this
case, the change detection algorithm only requires com-
puting (32). This can be done easily using particle methods
using (21). However, to compute the LR for a given

one needs two particle filters (change at time and no
change). This means that to compute one requires
particle filters: one particle filter for which between
0 and and particle filters where for
and for where .

When is not fixed but belongs to a finite set of car-
dinality , one has to use particle filters. This is
computationally very intensive. In [38], the authors propose
to work over a time window of fixed width so as to limit
the computational complexity, whereas in [5] the author pro-
poses to modify this statistical test so as to keep a computa-
tional complexity independent of . Note that it is actually
possible to use a particle version of the two-filter smoothing

formula [32] in the spirit of [26, p. 355] to limit the compu-
tational complexity to filters and backward filters.

When is a continuous set, one requires to perform
the maximization of . This can be performed using
the ML parameter estimation procedures detailed in Sec-
tion IV-B. This leads to a quite complex algorithm.

To avoid this, it is possible to use alternatively a local test
method, i.e., testing small deviations from the nominal value

. This test only requires computing the score function (16)
at , which can be done using (28); see [36].

C. Change Detection Based on Multiple Models

When the number of potential models for the data is fi-
nite, i.e., corresponding to the scenario in the previous sec-
tion when is finite, then an alternative approach to change
detection is the so-called multiple models one ([26, ch. 10]).
In this case, there is, say, competing models for the data.
Formally, let us introduce a latent (i.e., unobserved) process

taking values in a finite set
then, when the latent process satisfies , the system
evolves according to

(33)

and

(34)

If is a constant random variable, then one can
select the model by computing the (penalized) likelihood4

for each candidate model and selecting the one maximizing
it. However, in most applications, the process is
not constant and follows a prior distribution, say, . In
this case, any Bayesian inference on given
relies on the joint posterior distribution .
This distribution satisfies

By considering the extended state , one can
approximate using particle methods.5

This is the approach followed recently, for example, by [12],
[22], [34], and [37]. Based on the approximation of this
distribution, one can, for example, estimate at any time the
posterior probabilities of .

We note that making use of the discrete nature of , it
is possible to develop elaborated particle methods. When,
conditional upon , the model (33) and (34) is linear
Gaussian, then one can use a special particle filter corre-
sponding to a mixture of Kalman filters. This method is based
on the fact that in this case

where is a Gaussian distribution of
known statistics and is computed by the Kalman filter. It

4One can use the Akaike information criterion, minimum description
length, or other criteria.

5The fact that fM g might not be Markovian—i.e.,
p(m jm ) 6= p(m jm ); thus, fZ g is not Markovian—is
not a problem. Particle methods still apply in this framework.
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follows one can concentrate the particles to the approxima-
tion of the lower-dimensional distribution ,
thus reducing the variance of the Monte Carlo estimates;
see, for example, [14] and [16] for details and [12] for a
detailed application. The same idea can be used for dynamic
Bayesian networks with a large state space [13]. Finally,
in the general nonlinear non-Gaussian case, one can still
make use of the discrete nature of to develop efficient
algorithms; see [3].

IV. PARAMETER ESTIMATION

In this section, we consider the model (1)–(2) for which
the parameter is not known. We will here denote the true
value of the parameter . After reviewing briefly particle
based methods that have been proposed in order to solve the
problem of the estimation of , we go on to present both
batch and online algorithms design to compute point esti-
mates of .

A. Filtering Methods

A standard approach followed in the literature consists of
setting a prior distribution on the parameter and then con-

sidering the extended state . This has the theo-
retical advantage of converting the static parameter inference
problem into an optimal filtering problem. It is then tempting
to use standard particle filtering techniques in order to esti-
mate the series of distributions and, thus,

. However, due to the lack of ergodicity of the
process , such approaches are bound to fail. This fact
motivated the development of alternative techniques, which
we now review.

1) Degeneracy and Kernel Methods: If one were to apply
the generic SMC algorithm described in Section II, the pa-
rameter space would only be explored at the initialization
of the algorithm as the transition probability of the Markov
process includes a delta-Dirac mass for the compo-
nent . As a consequence, after a few iterations the marginal
posterior distribution of the parameter is typically approxi-
mated by a single delta Dirac function, which corresponds
to one of the initial values sampled from the prior distribu-
tion at time 0. This problem was quickly identified, and in
order to limit it, several authors proposed using kernel den-
sity estimation methods [25], [39]. More precisely, assume
that at time , after resampling, the following approximation
of is available:

(35)

where many particles are actually equal. The idea of
kernel methods consists of substituting to the degenerate dis-
tribution (35) the kernel approximation

(36)

where is a convolution kernel, e.g., Gaussian. It is then
possible to sample from (36) to obtain a new set of particles.

The advantage of this approach is that it introduces diversity
in the set of particles, but this is at the cost of transforming
the fixed parameter into a slowly time-varying one whose
dynamics is related to the width of the kernel . Addi-
tionally, the choice of the kernel width and its effect on the
original problem is not always clear.

Another pragmatic approach consists of explicitly intro-
ducing artificial dynamics on the “static” parameter of in-
terest [28], [33]; say, e.g.,

where is an artificial (small) dynamic noise. Again,
as for the kernel method approach the choice of an appro-
priate variance for the artificial dynamic noise is difficult and
the original problem has again been modified.

2) Alternative Particle Methods: Coupling Particle
Methods with MCMC. To avoid the introduction of an
artificial dynamic model, an interesting approach proposed
in [23] consists of adding Markov chain Monte Carlo
(MCMC) steps so as to add “diversity” among the particles.
More precisely, assume that at time the approximation
(35) is available. In order to add diversity, one samples
new particles according to an MCMC kernel with invariant
distribution , i.e.,

before moving to the sequential importance sampling step.
Contrary to standard applications of MCMC, the kernel
does not have to be ergodic. It is actually never ergodic in
practice, as ensuring ergodicity would require one to sample
an increasing number of variables over time—the algorithm
would not be sequential anymore. In practice, one typically
samples and possibly for some integer

, therefore setting . Note that the
memory requirements for this method does not increase
over time if can be summarized by a set
of fixed dimensional sufficient statistics. This combination
of MCMC and particle methods has also been adopted
by Chopin [10]. Its main advantage over standard kernel
approximations is that, whatever the choice of the MCMC
kernel used, the target distribution is never
modified.

Storvik’s Method. Storvik [52] has recently proposed an
alternative method. It is based on the following decomposi-
tion:

(37)

Assuming that at time a set of particles
distributed according to

is available, one can sample new
samples . Following
(37), the importance weights are given by the equation
shown at the bottom of the next page. Note that the
algorithm is truly recursive if and

only depend on and
through a set of fixed dimensional sufficient statistics.
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Problems With These Methods. As opposed to the
methods relying on kernel or artificial dynamics, these two
approaches have the advantage of adding diversity to the
particles approximating without perturbing the
target distribution. However, both algorithms suffer from
an accumulation of error over time; see [1] for an example
showing the MCMC-based algorithm can even diverge over
time. The reason for this is that to approximate ,
one tries to compute

which is an integral whose dimension is increasing over time.
It is impossible to obtain an approximation whose error is not
increasing over time by using a fixed number of particles and
not rejuvenating the particles associated to from time 0
to .

In [46], a pragmatic approach is adopted to limit the de-
generacy of the paths . The idea is to make the
assumption that

(38)

for any and “large” enough, that is, has very
little influence on . Under this mixing assumption,
it is possible during the simulation to “freeze” the paths
from time 0 to after a few time steps as by assumption new
observations do not bring any new information about past
state values. Although reasonable when the parameter is
known, the mixing assumption (38) might be questionable
when the static parameter is unknown, as the model is not in
this case ergodic.

The problem of estimating sequentially in time the series
of distributions seems to be intractable and we
now focus on another type of approach, which aims at pro-
ducing point estimates of .

B. Point Estimation Methods

We now present some methods referred to as “point esti-
mation” methods; i.e., we do not aim at estimating the se-
ries of posterior distributions , and, therefore,
do not require the use of particles in the parameter space.
We focus rather on the estimation of directly, using for
example the ML principle. These methods can be used to
perform offline/online (penalized) ML parameter estimation
and rely either on greedy maximization or deterministic/sto-
chastic gradient techniques. It should, therefore, not be sur-
prising if they are found to be sensitive to initialization and
might get trapped in a local maximum.

1) Offline Methods: Greedy Maximization and Stan-
dard Gradient Methods. Assume one is given a fixed set of
data . To perform ML parameter estimation, one could

try to perform a greedy maximization as a function of of
the likelihood given by (14), or, more exactly, the particle ap-
proximation of it. In the latter case, to reduce the variance of
the estimate of the likelihood (14), one would require many
particles. It is also possible to use the “smooth” estimate of
the likelihood introduced by Pitt when [45]—see
Section II-C.

To perform ML parameter estimation, one may use a gra-
dient algorithm with a decreasing stepsize sequence
so as to average out the “noise” introduced by the Monte
Carlo estimates of the log-likelihood. One selects a stepsize
sequence satisfying

; e.g., , and . At itera-
tion of the gradient algorithm, we update using

where is the particle estimate of the likelihood
gradient from time 0 to at the current parameter value ,
as given by (28).

EM-type Algorithms. If the smooth likelihood method is
used for an unknown multidimensional parameter , it can be
difficult to properly scale the parameter increments used to
perform the greedy maximization. Similarly, it is difficult to
properly scale the components of the gradient. In the context
of linear Gaussian state-space models and finite state-space
HMMs, a very popular alternative method for parameter esti-
mation is the expectation–maximization (EM) algorithm and
its variants. The EM algorithm is a numerically well-behaved
gradient method which increases the log-likelihood at each
iteration. It proceeds as follows. Given an estimate of the
parameter, then at iteration

where

(39)

In the nonlinear non-Gaussian framework, one cannot com-
pute (39) exactly, and it is necessary to use an approxima-
tion. Using particle methods with , one can obtain
an approximation of the joint density which
substituted into (39) yields

This function can be easily maximized when
is in the exponential family. In this case
depends on only through a set of sufficient
statistics whose dimension is independent of
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.6 This method looks attractive but is actually inefficient.
This is because the particle approximation of the joint
distribution provided by (18) can be poor as
soon as is large. Consequently the variance of
would increase exponentially with . To obtain samples
from using particle methods, one can use
the forward filtering backward sampling method presented
in [24] and [29]. However, to obtain samples from

this method requires operations,
which is very expensive. In this offline context, a good
alternative to particle methods is MCMC methods.

2) Online Methods: We consider here online algorithms
to estimate the true parameter . All these algorithms rely
on a nonincreasing positive stepsize sequence such
that and ; typically one selects

where and . We point out that
the methods described here rely on the same principle: an
alternative contrast function to the likelihood is defined, and
this contrast function requires the evaluation of integration
over fixed spaces that do not depend on time.

Recursive ML. Consider the log-likelihood function
given by (14). Under regularity assumptions,

including the stationarity of the state-space model, one has
[54]

(40)

where is defined at the bottom of the page. In this ex-
pression, is the space of probability distributions
on and is the joint invariant distribu-
tion of . We have
made explicit the dependence of on both and
the true parameter . Maximizing amounts to mini-
mizing the following Kullback–Leibler information measure
given by

(41)

In order to optimize this cost function, one can suggest a re-
cursive ML (RML) algorithm, based on the following sto-
chastic gradient recursion:

where is similar to
except that the filter and its gradient

appearing in this expression are now computed using the
parameter at time . This is this approach followed in
[35] for finite state-space HMMs and in [9] and [19] for
general state-space models. In the general state-space case,
it is necessary to approximate

6With Q(�; � ) being evaluated through Monte Carlo, one cannot guar-
antee anymore that the log-likelihood function will increase monotonically.

based on the par-
ticle approximations of
and (computed
using the algorithm described in Section II-F using
parameter at time ) and using (20) and (27).
Convergence analysis of this algorithm requires nonstandard
stochastic approximation results developed in [53] and
geometric ergodicity results developed in [54].

Online EM Algorithm. The method presented here is de-
tailed in [2]. Similarly to the offline case, it can be difficult
to properly scale the different components of the gradient
when the parameter is multidimensional. One could sug-
gest using an online version of the EM algorithm, as it is a
numerically well-behaved gradient method. Online EM al-
gorithms have been established for finite state-space HMMs
and linear Gaussian state-space models [21]. However, simi-
larly to the offline case, although a direct implementation of
the online EM algorithm using particle methods is feasible
in the nonlinear non-Gaussian state-space case, it would fail
in practice because of an accumulation of errors over time.

To prevent the degeneracy inherent to this approach, one
can modify the contrast function to minimize. Instead of
considering the maximization of the average log-likelihood
function which leads to (41), we consider here the so-called
split-data likelihood (SDL) also called quasilikelihood as
proposed in [48], [49] for finite state-space HMM. In this
approach, the data set is divided in blocks of, say, data and
one maximizes the average of the resulting log-SDL. This
leads to an alternative Kullback–Leibler contrast function.
It can be shown under regularity assumptions that the set
of parameters optimizing this contrast function includes the
true parameter. We maximize here the average log-SDL
using an online EM algorithm. The crucial point here is that
the integrals that are needed with this approach are defined
on a fixed space, and means that it is possible to define
Monte Carlo estimators that have a finite variance.

First for a given and any we denote Y
and x . Assume

defined by (1) is a stationary Markov process with invariant
density . This implies that once the process
has reached its stationary regime, then for any , the vectors
x Y are identically distributed according to

x Y

(42)

One can naturally introduce the likelihood (in the stationary
regime) of the block of data Y

Y x Y x (43)
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and denote Y Y the associated log-likeli-
hood. Now we introduce the following so-called split-data
(marginal) likelihood of blocks of consecutive
observations

Y Y Y (44)

This split-data likelihood ignores the dependency between
adjacent data blocks. The underlying motivation for the in-
troduction of this quantity relies on the following property,
which parallels the classical scenario where the observations
Y ’s are independent, and the true likelihood is, therefore, a
simple product of densities. Under fairly general ergodicity
conditions, the average log-SDL of satisfies when

Y (45)

where

Y Y Y

and Y is the joint distribution of consecutive obser-
vations under the true parameter in the stationary regime.
Note the difference with the standard RML approach in
(40). Now, maximizing is equivalent to minimizing

[48]. is, therefore,
a valid alternative contrast function which has the clear
advantage of involving integral over fixed spaces only:
realistic Monte Carlo algorithms can, therefore, be used
in this case. Now in practice there is a tradeoff associated
with the choice of . For small , the algorithm is typically
easier to implement but the convergence might be slow. If
is large, the algorithm will converge faster as it mimics the
convergence properties of the RML estimate but this will be
at the cost of a more complex algorithm.

Now, in order to find one can use an online EM algo-
rithm. The standard batch EM algorithm would consist here
at iteration of the evaluation of

x Y x Y x

followed by the maximization

The online version computes the average function defined
by

y y

by a Monte Carlo method; we use the observations Y
which are naturally distributed according to . More pre-
cisely, once the block of observations Y is available, and
given our current estimate of , one computes

x Y x Y x (46)

and update the value of the parameter according to

Note naturally the dependence of the estimator of
on . In the case where the integral in the pre-
vious equation does not have an analytical expression, one
can again use a Monte Carlo method, and integrate with re-
spect to x Y . More precisely one can run a particle
filter to sample from this distribution, at least when is not
large, say, . Otherwise, when is large, one can use,
for example, the forward filtering backward sampling algo-
rithm [24]. In both cases the algorithm remains an online al-
gorithm. We refer the reader to [2] for further implementation
issues.

Note that although we have restricted ourselves to
nonoverlapping data blocks Y for clarity, it is pos-
sible to apply our framework to overlapping blocks. This
enables one to update the parameter estimate at the data rate
(e.g., see [48]) and it possesses nice asymptotic properties.

Finally, we would like to point out that it is possible to
adapt the ideas developed here in order to perform online pa-
rameter estimation in general state-space models using com-
putationally very efficient simulation-based methods which
do not rely on particle methods [4]; note that their computa-
tional efficiency is balanced by a rate of convergence slower
than that of the algorithms presented in this section.

V. CONTROL

The control framework presented in this section is more
commonly known as a partially observed Markov decision
process (POMDP). We will be presenting POMDPs where
the state, observation action spaces are uncountable, which
is more difficult than the standard finite state–observa-
tion–action (finite) POMDP. We refer the reader to [27]
for rigourous treatment of “uncountable” POMDPs and
to [8] for an exposition on the subject in general. For
finite state-space POMDPs, one can solve finite and infinite
horizon problems using value iteration [41]. For uncountable
POMDPs, the standard approach consists of discretizing
the state, action, and observation space to obtain a finite
POMDP and solve the latter using value iteration [27]. The
methods that we present in this section are not based on
discretization.

A. State-Space Models With Control

We consider here nonlinear non-Gaussian state-space
models for which it is possible to apply an -valued con-
trol term at time . More precisely conditional upon

, the process is a Markov process with
and Markov transition density , i.e.,

(47)

The observations are conditionally independent
with marginal density , i.e.,

(48)
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In the most general case, the control at time is
a function of all the available information at time which
can be summarized by the optimal filter .
We are interested in both finite horizon and infinite horizon
control problems whose detailed descriptions will be given
in the forthcoming subsections.

Solving optimal control problems for nonlinear non-
Gaussian state-space models is a formidable task. Although
the optimal controller is the solution to the Dynamic
Programming/Bellman recursion, except in very specific
cases, like a linear Gaussian state-space model and a
quadratic cost function, there is no analytical solution
to this recursion. In nonlinear non-Gaussian state-space
models, the value function admits as argument a probability
distribution, and it seems extremely difficult to come up
with any sensible approximation to it. This is why, despite
its numerous applications, the literature on applications
of particle methods for control of nonlinear non-Gaussian
models is extremely limited.

B. Finite Horizon Control Problems

Let us introduce a cost function .7 In
[42] and [50], the authors propose to address the following
problem. At time , the sequence has been se-
lected and the observations have been received. One
wants to minimize the function defined as

(49)

over where the expectation is with respect to
the joint distribution of both the states and the observations

given that is distributed ac-
cording to . Here is the control
horizon. Each control input takes its values in a finite set
of cardinality . It is possible to approximate
numerically using particle methods for the possible
values of and then select the optimal value.
Indeed one has

To approximate , one obtains samples from
for using the particle approxima-

tion (18) and then sampling particles

7One can generalize all the algorithms described below to the case c :

X � Y � A ! .

for . Then, one obtains the following approximation to
(49):

In [18], the following problem arising in sensor manage-
ment [31] is addressed. At time , one wants to minimize
over

(50)

where is a measure of “simi-
larity” between the prediction and the
filter , i.e., one aims to select a control input

maximizing the average information brought by about
. In this case, contrary to (49), the cost function does de-

pend on the unknown future observation . One has

If is minus the Kullback–Leibler information, then one
can easily establish that

Again, one can estimate this quantity by sampling from
and , for any ,

using particle methods and then selecting the optimal
value. If takes values in a continuous space and
is differentiable with respect to , an estimate of the
gradient of can be estimated and a stochastic gradient
algorithm can be used. This procedure requires the gradient
method developed in Section II-F.

In [51], a more complex control problem related to optimal
trajectory planning is addressed. At time , one wants to
minimize over

where , i.e., one wants to find the sequence of
control inputs such that the average mean square error be-
tween and its optimal minimum mean square

ANDRIEU et al.: PARTICLE METHODS FOR CHANGE DETECTION, SYSTEM IDENTIFICATION, AND CONTROL 435



estimate is minimum. If takes values in a contin-
uous space and is differentiable with respect
to , then one has

where

It is possible to optimize using a stochastic
gradient algorithm. Variance reduction techniques for esti-
mating have been developed in [51] to
improve the efficiency of the stochastic gradient algorithm.

C. Infinite Horizon Control Problems

In the infinite horizon case, we are interested in selecting a
control sequence to minimize the infinite horizon
discounted cost

(51)

where the discount factor , and the expecta-
tion is with respect to the joint distribution of both the states
and the observations. In [55], a particle method based on
Q-learning is proposed to solve for a stationary policy [see
(54) below] when is a finite set. This method is complex
as the Q-factors are functions that admit as arguments prob-
ability distributions over . It is, thus, necessary to perform
further approximations. Thrun develops a nearest-neighbor
type method to perform quantization in this space [55].

In an (infinite horizon) average cost formulation, one has

(52)

where the expectation is with respect to the joint distribu-
tion of both the states and the observations. We review here
two algorithms proposed recently by the authors to solve this
problem [17]. These algorithms are not based on any dis-
cretization. Instead, we limit the class of admissible policies
by defining a family of policies parameterized by a param-
eter . We then search over this space of policies for the op-
timal one using a stochastic gradient descent (or ascent) algo-
rithm. This approach is known as the policy gradient method
and hinges on one being able to obtain estimates of the gra-
dient of the performance criterion with respect to . As we
show, the gradient of the performance criterion involves the
filtering distribution, its derivative and integration with re-
spect to it. Thus, in the general state-space setting, one must
use a particle method to approximate the performance crite-
rion gradient. This will add a bias to the gradient, but in all
the application investigated by us thus far, the bias was ob-
served to be negligible.

More formally, let denote the set of probability dis-
tributions on a set . We consider the set of randomized sta-
tionary policies of the form

(53)

or deterministic stationary policies of the
form

(54)

is the parameter to be optimized.
Note that in selecting , the filtering distribution

is used, which is a function
of . The density
summarizes the information in the past controls and obser-
vations that is relevant for the future control of the system.

When parameterized policies are used, one has
. Under an ergodic assump-

tion ; i.e., the cost is independent of the
initial distribution and is a function of only

where

We propose to optimize using a stochastic gradient algo-
rithm. Under additional regularity assumptions, one has

For a randomized policy (53), one can easily check that an
unbiased estimate of the gradient is given by

(55)

In the nonlinear non-Gaussian state-space models, we com-
pute the first term using the particle approximation (18). Note
that in practice, a discount factor on the second term on the
right side of (55) is required in order to prevent the variance
of the gradient estimate from growing. This is at the cost of
an added bias. A stochastic gradient algorithm to minimize

follows directly; see [17] for details.
For a deterministic policy (54), the notation (54) is inad-

equate, as one should make explicit the dependency of the
filter on . In this case, an unbiased estimate of the gradient
is given by

where is the score given by (16). In nonlinear
non-Gaussian state-space models, we can easily approximate
all these terms using (26), (18), and (28). A discount factor
is added to the score term so as to prevent the variance of our
gradient estimate from growing, again at the cost of an added
bias. The convergence analysis of this algorithm requires
nonstandard stochastic approximation results developed in
[53] and geometric ergodicity results developed in [54].
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VI. SUMMARY

In this survey paper, we have discussed nonstandard appli-
cations of particle methods to change detection, system iden-
tification, and control in nonlinear non-Gaussian state-space
models. Many problems which were considered out of reach
just a few years ago can now be addressed “routinely” using
these simulation-based methods. Other nonstandard applica-
tions of particle methods in electrical engineering have been
recently developed, including rare event simulation and mul-
titarget tracking using random sets [57]. However, this re-
search area is still very new and many problems remain to
be addressed. One of the main issues is reduced variance es-
timators of the gradients of interest in order to improve the
convergence of the stochastic gradient algorithm.
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[19] A. Doucet and V. B. Tadić, “Parameter estimation in general state-
space models using particle methods,” Ann. Inst. Stat. Math., vol.
55, pp. 409–422, 2003.

[20] , “Weak derivatives for parameter estimation in general state-
space models,” Eng. Dept., Cambridge Univ., Tech. Rep., 2003.

[21] R. J. Elliott and V. Krishnamurthy, “New finite dimensional filters
for estimation of linear Gauss-Markov models,” IEEE Trans. Au-
tomat. Contr., vol. 44, pp. 938–951, May 1999.

[22] P. Fearnhead and P. Clifford, “On-line inference for hidden Markov
models via particle filters,” J. R. Stat. Soc. B, vol. 65, pp. 887–899,
2003.

[23] W. R. Gilks and C. Berzuini, “Following a moving target—Monte
Carlo inference for dynamic Bayesian models,” J. R. Stat. Soc. B,
vol. 63, pp. 127–146, 2001.

[24] S. J. Godsill, A. Doucet, and M. West, “Monte Carlo smoothing
for non-linear time series,” Inst. Stat. Decision Sci., Duke Univ.,
Durham, NC, Tech. Rep. TR00-01, 2000.

[25] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel approach
to nonlinear non-Gaussian Bayesian state estimation,” IEE Proc. F,
vol. 140, pp. 107–113, 1993.

[26] F. Gustaffson, Adaptive Filtering and Change Detection. New
York: Wiley, 2001.

[27] O. Hernandez-Lerma, Adaptive Markov Control Processes. New
York: Springer-Verlag, 1989.

[28] T. Higuchi, “Self organizing time series model,” in Sequential Monte
Carlo Methods in Practice, A. Doucet, J. F. G. de Freitas, and N. J.
Gordon, Eds. New York: Springer-Verlag, 2001, pp. 429–444.

[29] M. Hürzeler and H. R. Künsch, “Approximation and maximizing
the likelihood for a general state-space model,” in Sequential Monte
Carlo Methods in Practice, A. Doucet, J. F. G. de Freitas, and N. J.
Gordon, Eds. New York: Springer-Verlag, 2001, pp. 159–175.

[30] V. Kadirkamanathan, P. Li, M. H. Jaward, and S. G. Fabri, “Particle
filtering-based fault detection in nonlinear stochastic systems,” Int.
J. Syst. Sci., vol. 33, pp. 259–265, 2002.

[31] K. Kastella, “Discrimination gain for sensor management in multi-
target detection and tracking,” in Proc. IEEE-SMC and IMACS Mul-
ticonf. CESA, 1996, pp. 167–172.

[32] G. Kitagawa, “Monte Carlo filter and smoother for non-Gaussian
nonlinear state space models,” J. Comput. Graph. Stat., vol. 5, pp.
1–25, 1996.

[33] , “A self-organizing state-space model,” J. Amer. Stat. Assoc.,
vol. 93, pp. 1203–1215, 1998.

[34] X. Koutsoukos, J. Kurien, and F. Zhao, “Monitoring and diagnosis of
hybrid systems using particle filtering methods,” in Proc. 15th Int.
Symp. Mathematical Theory Networks and Systems, Notre Dame,
IN, 2002.

[35] F. LeGland and L. Mevel, “Recursive identification in hidden
Markov models,” in Proc. 36th IEEE Conf. Decision and Control,
1997, pp. 3468–3473.

[36] , “Fault detection in HMM’s: A local asymptotic approach,” in
Proc. 39th IEEE Conf. Decision and Control, 2000, pp. 4686–4690.

[37] U. Lerner, B. Moses, M. Scott, S. McIlraith, and S. Koller, “Mon-
itoring a complex physical system using a hybrid dynamic Bayes
net,” in Proc. Conf. Uncertainty in Artificial Intelligence, Edmonton,
AB, Canada, 2002.

[38] P. Li and V. Kadirkamanathan, “Particle filtering based likelihood
ratio approach to fault diagnosis in nonlinear stochastic systems,”
IEEE Trans. Syst., Man, Cybern. C, vol. 31, pp. 337–343, Aug. 2001.

[39] J. Liu and M. West, “Combined parameter and state estimation in
simulation-based filtering,” in Sequential Monte Carlo Methods in
Practice, A. Doucet, J. F. G. de Freitas, and N. J. Gordon, Eds. New
York: Springer-Verlag, 2001, pp. 197–223.

[40] L. Ljung and T. Söderström, Theory and Practice of Recursive Iden-
tification. Cambridge, MA: MIT Press, 1987.

[41] W. S. Lovejoy, “A survey of algorithmic methods for partially ob-
served Markov decision processes,” Ann. Oper. Res., vol. 28, pp.
47–66, 1991.

[42] L. Mazliaka, “Approximation of a partially observable stochastic
control problem,” Markov Processes Related Fields, vol. 5, pp.
477–486, 1999.

[43] G. Ch. Pflug, Optimization of Stochastic Models: The Interface Be-
tween Simulation and Optimization. Boston, MA: Kluwer, 1996.

[44] M. K. Pitt and N. Shephard, “Filtering via simulation: Auxiliary par-
ticle filter,” J. Amer. Stat. Assoc., vol. 94, pp. 590–599, 1999.

ANDRIEU et al.: PARTICLE METHODS FOR CHANGE DETECTION, SYSTEM IDENTIFICATION, AND CONTROL 437



[45] M. K. Pitt, “Smooth likelihood evaluation using particle filters,” De-
partment of Economics, Warwick University, Coventry, U.K., Tech.
Rep. 651, 2002.

[46] N. G. Polson, J. R. Stroud, and P. Muller, “Pratical filtering with
sequential parameter learning,” University of Chicago, Chicago, IL,
Tech. Rep., 2002.

[47] M. Rosenblatt, “Remarks on a multivariate transformation,” Ann.
Math. Stat., vol. 23, pp. 470–472, 1952.

[48] T. Rydén, “Consistent and asymptotically normal parameter
estimates for hidden Markov models,” Ann. Stat., vol. 22, pp.
1884–1895, 1994.

[49] , “On recursive estimation for hidden Markov models,” Stoch.
Process. Appl., vol. 66, pp. 79–96, 1997.

[50] D. Salmond and N. J. Gordon, “Particles and mixtures for tracking
and guidance,” in Sequential Monte Carlo Methods in Practice, A.
Doucet, J. F. G. de Freitas, and N. J. Gordon, Eds. New York:
Springer-Verlag, 2001, pp. 517–532.

[51] S. S. Singh, B. Vo, A. Doucet, and R. Evans, “Stochastic approxima-
tion for optimal observer trajectory planning,” presented at the 42nd
IEEE Conf. Decision and Control, Honolulu, HI, 2003.

[52] G. Storvik, “Particle filters in state space models with the presence
of unknown static parameters,” IEEE. Trans. Signal Processing, vol.
50, pp. 281–289, Feb. 2002.
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