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ABSTRACT

Particle Markov Chain Monte Carlo (PMCMC) samplers allow for

routine inference of parameters and states in challenging nonlinear

problems. A common choice for the parameter proposal is a simple

random walk sampler, which can scale poorly with the number of

parameters. In this paper, we propose to use log-likelihood gradi-

ents, i.e. the score, in the construction of the proposal, akin to the

Langevin Monte Carlo method, but adapted to the PMCMC frame-

work. This can be thought of as a way to guide a random walk pro-

posal by using drift terms that are proportional to the score function.

The method is successfully applied to a stochastic volatility model

and the drift term exhibits intuitive behaviour.

Index Terms— Bayesian inference, Sequential Monte Carlo,

Particle Markov Chain Monte Carlo, Langevin Monte Carlo.

1. INTRODUCTION

Particle Markov Chain Monte Carlo (PMCMC) is a relatively new

method for simultaneous Bayesian parameter and state inference in

general nonlinear state-space models,

xt+1|xt ∼ fθ(xt+1|xt), (1a)

yt|xt ∼ hθ(yt|xt), (1b)

with latent state xt ∈ X , observation yt ∈ Y and unknown static

parameter θ ∈ Θ. We model θ as a random variable with prior

density π(θ). Furthermore, fθ(·) denotes the transition kernel of the

latent process, hθ(·) denotes the observation kernel and the initial

state is distributed according to a density µθ(·).
PMCMC is one way to use sequential Monte Carlo (SMC), i.e.

a particle filter, as a proposal mechanism within MCMC. This fam-

ily of algorithms were derived and analysed in [1]. Similar ideas

have appeared in previous work on psuedo-marginal Monte Carlo

[2, 3]. Recent work in PMCMC has to a large extent been focused

on improving the efficiency of the inherent SMC samplers. Some

examples of this is the introduction of backward simulation [4, 5]

and ancestor sampling [6] in the Particle Gibbs sampler and the use

of fully adapted auxiliary particle filters within PMCMC [7].

In this work, we focus on the MCMC part of PMCMC. We

provide an extension to the Particle Marginal Metropolis-Hastings

(PMMH) algorithm, using well-known results from MCMC. This

extension aims to enable the use of more of the available informa-

tion when proposing new parameter values, than what is possible in

the PMMH algorithm. PMMH is often viewed as an exact approx-

imation of a marginal Metropolis-Hastings (MMH) sampler in the
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parameter space Θ. SMC is then only used to provide an unbiased

estimate of the intractable likelihood, which is used in computing

the MMH acceptance probability. However, PMMH does in fact tar-

get a distribution on an extended space, i.e. a large space containing

Θ, and there is more useful information available from the particle

filter than just the likelihood estimate. To exploit this, we propose

an extension to PMMH to allow for more general proposals, result-

ing in what we refer to as the Particle Metropolis-Hastings (PMH)

algorithm. The possibility for such an extension was first mentioned

in the discussions following the original PMCMC paper [8], but to

our knowledge, it has not been further exploited for constructing ef-

ficient proposal kernels.

In particular, we make use of Fisher’s identity and the particle

system generated by the particle filter to compute an estimate of the

score function (i.e. the log-likelihood gradient). Methods for score

estimation using particle filters have previous been proposed and

used for maximum likelihood inference in e.g. [9, 10, 11, 12, 13].

In this contribution, we propose a new algorithm called Langevin

Particle Metropolis-Hastings (LPMH). We combine the PMH algo-

rithm with a forward smoother for score estimation and ideas from

Langevin Monte Carlo (LMC) methods. LMC is a type of Hamilto-

nian Markov Chain Monte Carlo (HMCMC) method, with its roots

in statistical physics. HMCMC was first introduced in [14] under

the name Hybrid Monte Carlo, and has proved to be a very useful

tool for proposal construction in general MCMC samplers, see e.g.

[15, 16, 17, 18, 19].

2. SEQUENTIAL MONTE CARLO

Sequential Monte Carlo (SMC) samplers are a family of simulation

methods for sequentially approximating a sequence of target distri-

butions, see e.g. [20, 21]. For example, SMC can be used for state

inference in nonlinear non-Gaussian state-space models (1). We in-

troduce SMC in terms of the auxiliary particle filter (APF) [22]. The

APF consists of two steps: (i) resampling and mutating particles and

(ii) calculating the importance weights. Let {xi
1:t−1, w

i
t−1}

N
i=1 be

a weighted particle system targeting the joint smoothing density at

time t−1, i.e. pθ(x1:t−1 | y1:t−1). Then, the particle system defines

an empirical distribution,

p̂θ(dx1:t−1 | y1:t−1) ,
N∑

i=1

wi
t−1∑N

l=1 w
l
t−1

δxi

1:t−1

(dx1:t−1),

which approximates the target distribution. Here δz(dx) refers to a

Dirac point-mass at z. The resampling and mutation step propagates

the particles to time t by sampling from a proposal kernel,

(ai
t, x

i
t) ∼ Mθ,t(at, xt) ,

wat

t−1∑N

l=1 w
l
t−1

Rθ,t(xt|x
at

t−1), (2)



The variable at is the index to an ancestor particle xat

t−1 and Rθ,t is

a proposal kernel which proposes a new particle at time t given this

ancestor. In this formulation, the resampling is implicit and corre-

sponds to sampling these ancestor indices.

In the weighting step, new importance weights are computed

according to wi
t = Wθ,t(x

i
t, x

ai

t

t−1), with

Wθ,t(xt, xt−1) ,
hθ(yt|xt)fθ(xt|xt−1)

Rθ,t(xt|xt−1)
. (3)

Here, fθ(·) and hθ(·) are given by the model in (1) and yt denotes

the observation at time t. This results in a new weighted parti-

cle system {xi
1:t, w

i
t}

N
i=1, targeting the joint smoothing density at

time t. The SMC sampler thus iterates between propagating parti-

cles with high weights forward in time and computing new impor-

tance weights given the measurements. The method is initialised

by sampling from a proposal density xi
1 ∼ Rθ,1(x1) and assign-

ing weights wi
1 = Wθ,1(x

i
1) where the weight function is given by

Wθ,1(x1) , hθ(y1 | x1)µθ(x1)/R
θ
1(x1).

3. LANGEVIN PARTICLE METROPOLIS-HASTINGS

In this section, we introduce a general Particle Metropolis-Hastings

(PMH) algorithm, which allows the entire particle system to be used

for constructing a proposal in the parameter space. In particular, we

use the particle system to estimate the score function, which is then

used in an LMC proposal.

3.1. Particle Metropolis-Hastings

The PMMH algorithm [1] can be seen as an exact approximation

of an idealised MMH sampler. More precisely, the method is de-

signed as a standard Metropolis-Hastings sampler on the Θ-space,

with some proposal density q(θ | θ′). A standard choice is to use a

Gaussian random walk proposal, i.e.

q(θ|θ′) = N (θ; θ′,Σθ), (4)

where Σθ denotes the random walk covariance matrix, θ′ denotes the

last accepted parameter and θ denotes a new proposed parameter.

The target density is the posterior p(θ | y1:T ) ∝ pθ(y1:T )π(θ).
For this target density, the acceptance probability will depend on the

likelihood pθ(y1:T ), which in general is intractable for the model (1).

To deal with this issue, PMMH uses an SMC sampler to compute an

unbiased estimate of the likelihood,

p̂θ(y1:T ) ,

T∏

t=1

(
1

N

N∑

i=1

wi
t

)

. (5)

This estimate is then used in place of the true likelihood when eval-

uating the acceptance probability. The phrase exact approximation

refers to the fact that this seemingly approximate method, in fact

admits the exact posterior p(θ | y1:T ) as stationary distribution.

The way in which this property is established in [1], is to in-

terpret the PMMH sampler as a standard MCMC sampler on an

extended space. To formalise this, let xt , {x1
t , . . . , x

N
t } ∈ XN

and at , {a1
t , . . . , a

N
t } ∈ {1, . . . , N}N be the collections of par-

ticles and ancestor indices, respectively, generated at time t of the

SMC sampler. Define the space Ω , XNT × {1, . . . , N}N(T−1).

It then follows that a complete pass of the SMC sampler for

times t = 1, . . . , T , generates a collection of random variables

{x1:T ,a2:T } ∈ Ω. This is exploited in PMMH, which is interpreted

as a Metropolis-Hastings sampler on the extended space Θ× Ω, for

which SMC is used as part of the proposal mechanism.

This interpretation also suggests that we have more freedom in

designing the proposal for θ. At each iteration of PMMH, the state

of the Markov chain is given by some point {θ′,x′

1:T ,a
′

1:T } ∈ Θ×
Ω. Consequently, we can allow the proposal for θ to depend on all

these variables, and not only on θ′, as is done in PMMH. That is, we

choose some proposal kernel according to,

q(θ|θ′,x′

1:T ,a
′

2:T , y1:T ), (6)

resulting in what we refer to as the PMH algorithm. Clearly, PMH

contains PMMH as a special case. The use of a more general pro-

posal kernel as in (6) allows us to make use of valuable information

available in the particle system, which is otherwise neglected. In

the discussion following the seminal PMCMC paper, it is indeed

mentioned by [8] that this information can be useful in constructing

better parameter proposal densities.

The validity of PMH can be assessed analogously to that of

PMMH (see [1]), as the state trajectory proposal and the extended

target remains the same in both algorithms. The only affected quan-

tites are the proposal density (6) and the acceptance probability,

which in PMH is given by,

α(θ, θ′) = 1 ∧
π(θ)

π(θ′)

p̂θ(y1:T )

p̂θ′(y1:T )

q(θ′|θ,x1:T ,a2:T , y1:T )

q(θ|θ′,x′

1:T ,a
′

2:T , y1:T )
. (7)

Here π(θ) is the parameter prior density, p̂θ(y1:T ) is the likelihood

estimate given in (5) and a ∧ b , min(a, b).
The PMH proposal suggested in (6) allows for using the observa-

tions and the entire particle system generated by the particle filter to

propose new parameters. For instance, if a conjugate prior is used for

θ, we can let (6) be the posterior of θ given x1:T and y1:T to mimic

a Gibbs move. Whether or not this approach can be a useful alterna-

tive to the Particle Gibbs sampler when the conditional particle filter

degenerates and a backward kernel is not available for smoothing, is

a question which requires further investigation. In the next section,

we focus on another useful piece of information, namely the score

function.

3.2. Proposal using Langevin dynamics

Let ST (θ) = ∇ log pθ(y1:T ) denote the score function and let

L(θ) = ∇ log π(θ) be the gradient of the log-prior. If follows that

∇ log p(θ | y1:T ) = ST (θ) + L(θ). A Langevin diffusion with

stationary distribution p(θ | y1:T ) is thus given by the stochastic

differential equation (SDE),

dθ(τ) = [ST (θ(τ)) + L(θ(τ))]
dτ

2
+ dB(τ), (8)

where B denotes Brownian motion. Hence, in theory, it is possible

to draw samples from p(θ | y1:T ) by simulating this SDE to station-

arity. This idea underlies Langevin Monte Carlo (LMC), which uses

a first order Euler discretisation of (8),

θτ+1 = θτ +
(∆τ)2

2
[ST (θτ ) + L(θτ )] + (∆τ)zτ , (9)

where zτ ∼ N (0, I) and ∆τ is the discretisation step size. To

account for the discretisation error and ensure that p(θ | y1:T ) is

the stationary distribution of the process, a Metropolis-Hastings ac-

cept/reject decision is made after each simulation step.



Algorithm 1 Langevin Particle Metropolis-Hastings (LPMH)

Assume that a prior density π(θ) is specified. Assume that the pa-

rameter θ′, the score estimate Ŝ′

T (θ
′) and the likelihood estimate

p̂θ′(y1:T ) are available from the previous MCMC iteration. Then,

the next iteration is as follows:

1. Sample θ according to (11) (using the previous parameter

value and score estimate).

2. Run an SMC sampler, targeting pθ(x1:T | y1:T ) to obtain the

particle system {x1:T ,a2:T } and an estimate of the likelihood

p̂θ(y1:T ).

3. Compute the score estimate ŜT (θ) using the particle system

{x1:T ,a2:T } and (10).

4. Calculate the acceptance probability α(θ, θ′) as in (7) using

the contribution from the proposal density as given in (12).

5. Sample a random number u ∼ U [0, 1].

6. If u < α(θ, θ′), accept {θ, p̂θ(y1:T ), ŜT (θ)},

otherwise retain {θ′, p̂θ′(y1:T ), ŜT (θ
′)}.

A thorough and accessible introduction to LMC is given in [23].

The information contained in the score function gives useful guid-

ance for the parameter process. It is well-known [24, 25] that the

LMC proposal scales better than a random-walk proposal, as the di-

mension of the parameter space increases.

To be able to make use of LMC, we need to compute the score

function ST (θ), which is intractable for the models under study. To

make progress, we suggest to use an SMC estimate of the score func-

tion within the PMH algorithm, similarly to how an SMC estimate

of the likelihood is used in PMMH. To estimate the score function,

we use Fisher’s identity (see e.g. [10]),

∇ log pθ(y1:T ) =

∫
∇ log pθ(x1:T , y1:T )pθ(x1:T | y1:T )dx1:T ,

where log pθ(x1:T , y1:T ) is readily available from (1). Hence, com-

puting the score function equates to solving a smoothing problem.

We have access to the complete particle system {x1:T ,a1:T }, which

allows ut to address this problem as part of the proposal construction

in (6). This can be done in a range of different ways. The simplest

is probably to make use of use the filter/smoother by [26], which is

attractive due to its linear complexity in N . However, this method is

known to suffer from path degeneracy and the variance of the score

estimate grows at least quadratically with T [12].

Another option is to use the forward filter/backward smoother

[10], or its forward-only version [9]. The smoothing estimate of the

score function is here computed according to the latter alternative by

the following recursion,

T i
t (θ) =

[
N∑

k=1

W k
t−1fθ(x

i
t|x

k
t−1)

]−1 N∑

j=1

W j
t−1fθ(x

i
t|x

j
t−1)

×
[
T j
t−1(θ) +∇ log gθ(yt|x

i
t) +∇ log fθ(x

i
t|x

j
t−1)

]
, (10a)

Ŝt(θ) =
N∑

i=1

W i
tT

i
t (θ), (10b)

where Ŝt denotes the estimated score at time t. Note that this estima-

tor is biased, which is true for both smoothers mentioned above, but

Fig. 1. The estimated score function for φ with µ = µ⋆. The dot

indicates the true parameters and the thick lines the zero level.

the bias decreases as N−1. The computational complexity of this

method scales as N2, but the variance only grows linearly with T .

As mentioned above, other smoothers can also be used in PMH, e.g.

the forward filter/backward simulator [27] and its variants [28, 29].

Note that this require some further modifications due to the addi-

tional level of stochasticity in these algorithms.

Using an estimate ŜT (θ) ≈ ST (θ) according to (10), we con-

struct a proposal kernel similarly to (9),

θ = θ′ + ǫ
[
ŜT (θ

′) + L(θ′)
]
+ z′, (11)

with z′ ∼ N (0,Σθ). The parameter ǫ denotes a step-length, scaling

the score estimate and Σθ denotes a covariance matrix, possibly dif-

ferent from the one used in (4). The intuition behind this proposal

is that the score function indicates a direction in which the likeli-

hood is increasing. This information is useful as we are trying to

explore regions of high posterior probability. The contribution to the

acceptance probability (7) from this choice of proposal distribution

is given by,

q(θ′|θ,x1:T ,a2:T , y1:T )

q(θ|θ′,x′

1:T ,a
′

2:T , y1:T )
=

N
(
θ′; θ + ǫ

[
ŜT (θ) + L(θ)

]
,Σθ

)

N
(
θ; θ′ + ǫ

[
Ŝ′

T (θ
′) + L(θ′)

]
,Σθ

) .

(12)

3.3. Final algorithm

The PMH algorithm can be formulated using the PMMH algorithm

with the proposal density (6) and the acceptance probability (7).

The Langevin Particle Metropolis-Hastings (LPMH) method in Al-

gorithm 1, is a PMH algorithm with the special choice of proposal

given by (11). Note that the PMMH sampler is obtained as a spe-

cial case, by the choice ǫ = 0. Hence, the introduction of the drift

results in more parameters for the user to choose. However, guided

by (9), we can set the drift coefficient to half the noise variance as a

rule-of-thumb. We emphasize that LPMH admits the exact posterior

p(θ|y1:T ) as stationary distribution despite the fact that the proposal

is based on an SMC approximation.
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Fig. 2. Left: Trace plots of the three parameter with dotted lines

indicating the true parameters. Right: Score estimates at different

iterations for the three parameters shown as kernel regression esti-

mates.

4. NUMERICAL ILLUSTRATIONS

We consider a stochastic volatility model to illustrate the behaviour

of the score estimate and the proposed LPMH algorithm. The model

used is the reparametrized Cox-Ingersoll-Ross model [30] discussed

in [31], which is expressed as the following state-space model

xt+1 = µ+ xt + φ exp(−xt) + exp
(
−
xt

2

)
vt,

yt = σ exp
(xt

2

)
et,

where vt and et denote two independent standard normal processes,

i.e. N (0, 1). The problem is to infer the parameters θ = {µ, φ, σ}
given a set of observations {y1:T }. The covariance matrix of the

noise term in (11) was chosen as a diagonal matrix with the following

three diagonal elements {0.022, 0.042, 0.082}. The scaling of the

score function was chosen as ǫ = {0.022, 0.042, 0.082}/2, which

follows from the Euler discretisation as previously discussed.

The system was simulated for T = 100 time steps with true

parameters θ⋆ = {−0.03, 0.8, 0.2}. In Figure 1, we have estimated

the score function for φ by fixing µ = µ⋆. The dot indicates the

points (σ⋆, φ⋆) and the thick lines indicate the zero score level. The

score landscape exhibits an intuitive behaviour, i.e. being negative if

the parameters are larger than their true value and positive if smaller.

In Figure 2, we present the trace plots and the contribution of

the drift term for the initial 1 200 iterations from one run of the

LPMH algorithm using N = 100 particles. We initialize using θ0 =
{−0.2, 0.9, 2} and the priors π(µ) = U [−1, 1], π(φ) = U [−1, 1]
and π(σ) = U [0,∞]. To visualize the impact of the drift, an esti-
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Fig. 3. The posterior density estimates as histograms and kernel

density estimates with the vertical lines indicating the true parameter

values.

mate of the drift has been created using a non-parametric regression

with an Epanechnikov kernel [32].

The impact of the drift is noticeable in the beginning as the drift

to a large extent have the same sign, i.e. pulling the parameter to-

wards the true parameter value. Once the Markov chain has reached

the true value, the influence is somewhat increased and resembles

some additional zero-mean white noise. This suggests that a smaller

noise variance can be used compared with the random walk sampler

in PMMH.

In Figure 3, we present the resulting posterior density estimates

for M = 10 000 iterations (discarding the initial 3 000 iterations as

burn-in). The histogram is overlayed with a kernel density estimate

using an Epanechnikov kernel.

5. CONCLUSION

In this paper, we have explored the potential of using score informa-

tion to guide the random walks through the parameter space. The

LPMH algorithm is based on a generalised version of the PMMH

algorithm, called PMH, allowing us for exploiting more of the infor-

mation available in the generated particle systems. Combining the

PMH sampler with forward smoothing for score estimation gives us

the LPMH algorithm.

Future work includes applying the LPMH algorithm to high-

dimensional problems to investigate if the high-dimensional proper-

ties of the LMC sampler carries over to PMCMC. Using the particle

system for estimating other quantities than the score is also of inter-

est for designing more efficient proposal kernels. Other smoothers

are also of interest for decreasing the complexity of the score esti-

mation, making the algorithms faster and more efficient.
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