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Different on-line submicron particle sizing techniques report
different “equivalent diameters.” For example, differential mobil-
ity analyzers (DMAs) report electrical mobility diameter (dm), while
a number of recently developed instruments (such as the Aero-
dyne aerosol mass spectrometer, or AMS) measure vacuum aero-
dynamic diameter (dva). Particle density and physical morphology
(shape) have important effects on diameter measurements. Here
a framework is presented for combining the information content
of different equivalent diameter measurements into a single co-
herent mathematical description of the particles. We first present
a review of the mathematical formulations used in the literature
and their relationships. We then show that combining dm and dva
measurements for the same particle population allows the placing
of constraints on particle density, dynamic shape factor (χ), and
fraction of internal void space. The amount of information that
can be deduced from the combination of dm and dva measurements
for various particle types is shown. With additional measurements
and/or some assumptions, all relevant parameters can be deter-
mined. Specifically, particle mass can be determined from dm and
dva measurements if the particle density is known and an assump-
tion about χ is made. Even if χ and density are not known, particle
mass can be estimated within about a factor of 2 from dm and dva
measurements alone. The mass of a fractal particle can also be esti-
mated under certain conditions. The meaning of various definitions
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of “effective density” used in the literature is placed in the context of
the theory. This theoretical framework is applied to measurements
of fractal (soot-like) particles by using experimental results from
the literature as additional constraints.

INTRODUCTION
Aerosol particles have important effects on human health, cli-

mate, regional visibility, and the deposition of acidic and toxic
substances. Aerosols also have significant pharmaceutical and
industrial applications. Because the properties of particles with
respect to each of these issues are strongly affected by par-
ticle size, many instruments have been developed to measure
the concentration of particles (e.g., number, mass, or chemical
species concentration) as a function of particle size (Jayne et al.
2000; Baron et al. 2001a; Flagan 2001; Wexler and Johnston
2001).

Particles that deviate from the ideal characteristics of standard
density (1000 kg m−3 or 1.0 g cm−3) and spherical shape have
pronounced effects on particle sizing methods. Atmospheric
aerosol particles are often nonspherical. For example, in the
South Eastern Aerosol and Visibility Study, about 10% of the
particles in the 200–800 nm range were nonspherical (Dick et al.
1998). Soot aggregates are a type of non-spherical particles that
is almost always found in the ambient aerosol (Katrinak et al.
1993). Soot or “black carbon” particles are aggregates of indi-
vidual spherules produced by combustion, and are often termed
fractal. Diesel engines in particular emit large amounts of soot
particles. In addition to their importance in the atmosphere,
the study of aggregate particles is of significant interest in the
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pharmaceutical industry as well as in the industrial production
of nanoparticles. Aggregate particles have also been observed
as compact shapes (Stober 1972). The physical and chemical
characterization of nonspherical and fractal particles is an im-
portant area of current aerosol research (Friedlander and Pui
2004). This work focuses on the effect of particle shape and
density on the methods of sizing aerosols through their effects
on particle drag and inertia. A separate effect of particle shape
(not discussed here) is due to lift forces on particle beams for
irregular particles (Liu et al. 1995a; Jayne et al. 2000; Huffman
et al. 2004). This article extends shape characterization of par-
ticles to the free molecular regime, and the companion article
demonstrates the application of this framework to laboratory-
produced soot particles (Slowik et al. 2004). In the next sec-
tion we review the definitions of the various equivalent diame-
ters and other parameters used to describe the particles and ex-
plore their relationships. The following section presents a brief
overview of the literature on particle shape and density estima-
tion. The next section explores the information obtainable from
combined mobility and aerodynamic diameter measurements.
The last section focuses on the special case of aggregate par-
ticles. In this work we show that the combination of mobility
and vacuum aerodynamic diameter measurements can provide
constraints on the density, dynamic shape factor, and fraction
of void spaces of the particles. We illustrate the theory by dis-
cussing a series of particle types. Two additional independent
measurements (one of which could be particle mass obtained
with an aerosol particle mass analyzer (APM) or the Aerodyne
aerosol mass spectrometer (AMS)) allow the solution of the sys-
tem and the determination of all the unknown parameters in near
real-time. These parameters are particle mass, volume, dynamic
shape factor, and density. In the absence of additional measure-
ments, particle mass can still be estimated within about a factor
of two for irregular particles from dm and dva measurements
alone.

EQUIVALENT DIAMETERS AND RELATED CONCEPTS
In this section we define the terms and notations that will

be used throughout this article. Given the numerous definitions
of particle diameters and different notations used in the litera-
ture, there is a need to make the definitions unambiguous for
this work and to systematize the relationships between the dif-
ferent definitions. If particles are spherical and their material
density is known, often these relations are trivial or simply a
function of material density. When particles are nonspherical,
contain void spaces, or when their material density is not known,
the relationships between the different diameters become more
complex and often underdetermined. This section introduces a
framework that can be used for combining the information con-
tent of different diameter measurements into a single coherent
mathematical description of the particles.

We begin with a list of notation followed by definitions of the
various diameters used in characterizing aerosols.

Notation
λ mean free path of gas molecules
Kn Knudsen number
dp physical or geometric diameter
dve volume equivalent diameter
de envelope equivalent diameter (same as dve)
dme mass equivalent diameter
dm electrical mobility diameter
da aerodynamic diameter (in any flow regime)
dca continuum regime aerodynamic diameter
dta (Kn) or dta transition regime aerodynamic diameter
dva vacuum aerodynamic diameter (also known as

free-molecular regime aerodynamic diameter)
dadj adjusted sphere diameter (see section “Relation-

ship of χ to Flow Regime” below)
dA projected area diameter
dpp physical diameter of a primary particle of an

aggregate
Cc Cunningham slip correction factor
χ dynamic shape factor (in any flow regime)
χ c dynamic shape factor (continuum regime limit)
χ t (Kn) or χ t dynamic shape factor (transition regime)
χv dynamic shape factor (vacuum or free molecular

regime limit)
S Jayne shape factor
m p particle mass
ρ0 standard density (1 g cm−3)
ρm density of the material in the particle
ρ p particle density (see specific definition in Equa-

tion (5))
ρeff effective or “apparent” density (see various def-

initions in section “Effective Density” below)
D f fractal dimension
Vp particle volume (see specific definition in Equa-

tion (2))
Vm material volume (see specific definition in

Equation (1))
Vvoid void space volume
Va apparent volume
ω volume fraction of internal void spaces
δ parameter related to the fraction of internal void

spaces (see Equation (6))
ω′ volume fraction of external pseudovoid spaces

Equivalent Diameters
Physical Diameter (dp). At the simplest level a particle can

be characterized by its geometric or physical diameter. If the
particle is spherical the meaning of this parameter is obvious,
otherwise it does not have a precise meaning. Nonspherical (and
sometimes nonstandard density) particles are generally charac-
terized by equivalent diameters, defined as the diameter of a
sphere, which with a given instrument would yield the same
size measurement as the particle under consideration.
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Volume Equivalent Diameter (dve). The volume equivalent
diameter, also known as envelope equivalent diameter (de), is de-
fined as the diameter of a spherical particle of the same volume as
the particle under consideration (Baron and Willeke 2001). For
an irregular particle dve is the diameter that the particle would
have if it were melted to form a droplet while preserving any
internal void spaces. Internal void spaces are empty regions of
the particle that are isolated from the surrounding gas. Particles
with internal voids can be encountered in some systems. For
example, some aggregates from combustion sources can be rel-
atively compact particles that have internal void spaces which
are effectively isolated from the surrounding gas (Stober 1972;
Kasper 1982a). Also, dve has the advantage of being equal to
dp for spherical particles (Hinds 1999). The volume equivalent
diameter is the diameter to which we will reference all other
equivalent diameters discussed in this article.

Mass Equivalent Diameter (dme). The mass equivalent di-
ameter is similar in concept to dve but with the difference that
dme does not include internal voids. Therefore, for a particle
with no internal voids dme = dve. If the particle contains internal
voids, dve > dme (Baron and Willeke 2001). This distinction is
important because it leads to two parallel definitions of volume,
density, and dynamic shape factor.

Volume and Density
Material Volume (Vm). The material volume of a particle is

the volume taken up by all of the solid and liquid material in the
particle. In terms of dme this volume is:

Vm = π

6
d3

me. [1]

Particle Volume (Vp). The volume of the particle is deter-
mined by all material and void space enclosed within the particle
envelope. In terms of dve and the total volume of internal void
spaces (Vvoid), Vp is

Vp = π

6
d3

ve = Vm + Vvoid. [2]

Material Density (ρm) Material density is the average den-
sity of the solid and liquid material in the particle, and is ex-
pressed in terms of the particle mass (m p), material volume, and
mass equivalent diameter as

ρm = m p

Vm
= m p

π
6 d3

me

. [3]

If several solid or liquid phases (a, b, etc.) coexist in an individ-
ual particle, the material density is related to the density of the
individual phases by

ρm = m p

Vm
= ρa Va + ρbVb + · · ·

Va + Vb + · · · = ρaVFa + ρbVFb + · · · . [4]

Here ρi is the material density of phase i, Vi is its volume, and
VFi is its volume fraction in the particle.

Particle Density (ρp). Particle density is referenced to the
particle volume (Vp) and volume equivalent diameter. Particle
density is obtained when internal voids are included in Equa-
tion (4) as a phase with zero density:

ρp = m p

Vp
= m p

π
6 d3

ve

= ρa Va + ρbVb + · · ·
Vvoid + Va + Vb + · · · . [5]

Note that ρp ≤ ρm , with the equality being valid in the absence
of internal voids.

Internal Void Fraction of a Particle. The fraction of inter-
nal voids in a particle is generally characterized by use of the
parameter δ, defined as (Baron et al. 2001b)

δ =
(

ρm

ρp

)1/3

. [6]

By definition δ ≥ 1. The volume equivalent diameter, dve, can
be related to dme via Equation (6), yielding:

dve = δ · dme. [7]

We define the parameter ω as the volume fraction of internal
void spaces

ω = Vp − Vm

Vp
= 1 − 1

δ3
. [8]

The fraction of material volume of the particle is then

Vm

Vp
= 1

δ3
= 1 − ω. [9]

Flow Regimes
Often diameters reported by different instruments can be re-

lated to the above equivalent diameters as functions of density,
shape, and void fraction. However, in many instruments the mea-
surements may also depend on the flow regime of the gas around
the particle. This occurs because particles are often sized utiliz-
ing the ratio of drag force (exerted on the particle by the gas
molecules) to some other force exerted on the particle, and the
drag force can have different dependences on particle size and
shape in the different flow regimes.

Knudsen Number (Kn). The flow regime of the gas around
a particle is determined by the Knudsen number. Kn is defined as
the ratio the mean free path of the gas molecules to the particle
radius (Baron and Willeke 2001):

Kn = λ

r
= 2λ

d
. [10]

The limit of Kn � 1 is referred to as the continuum regime
flow where the gas can be thought of as a continuous fluid in
its flow around the particle. The limit of Kn � 1 is called the
free-molecular regime, where flow is described as a series of
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discrete “ballistic” collisions of the gas molecules with the par-
ticle. For intermediate values of Kn (0.1 < Kn < 10), particles
are said to be in the transition regime between continuum and
free-molecular flow.

Drag in the Continuum Regime. In the simplest case, Stokes
law governs the drag in the continuum regime, that is,

Fdrag = 3πηvdp. [11]

Here η is the gas dynamic viscosity and v is the velocity of
the particle relative to the gas. Nonspherical particles experi-
ence more drag than their volume or mass equivalent spheres
because they present a larger surface for interaction with the gas
molecules. If the drag force is expressed as a function of the
volume equivalent diameter, a correction factor must be used to
account for the increased drag due to nonspherical shape (see
section “Dynamic Shape Factor” below). If the particle Reynolds
Number, Rep > 0.1 the drag force must be corrected for non-
Stokesian effects.

Drag in the Transition and Free-Molecular Regimes. A cor-
rection to the drag equation must be introduced to account for
the reduction in drag that occurs when the relative velocity of the
gas at the particle surface is nonzero (Hinds 1999). The reduced
drag is significant when the flow around the particle is outside the
continuum regime (Kn > 0.1). This correction is implemented
via the Cunningham Slip Correction Factor, Cc(Kn), which was
parameterized by Allen and Raabe (1982, 1985) as:

Cc(Kn) = 1 + Kn

[
α + β exp

(
− γ

Kn

)]
[12]

Cc(d) = 1 + 2λ

d

[
α + β exp

(
− γ

2λ/d

)]
.

Here α, β, and γ are empirically determined constants specific
to the system under analysis. For example, if the suspending gas
is different than air at Normal Temperature and Pressure (NTP,
298 K and 1 Atm), then the parameter values vary accordingly
(Rader 1990). Kn is defined in Equation (10), and d is the particle
diameter according to one of the definitions presented above. In
general, the value of Cc will be different for the different equiv-
alent diameters of the same particle. Values of α, β, and γ have
been determined for solid particles and oil droplets under nor-
mal atmospheric conditions. For solid particles α is 1.142, β is
0.558, and γ is 0.999 (Allen and Raabe 1985). For oil droplets α

is 1.207, β is 0.440, and γ is 0.596 (Rader 1990). The asymptotic
limits for the slip correction allow for smooth transition of the
drag force between flow regimes. Cc asymptotically approaches
1 in the continuum regime limit (ignoring the Cunningham cor-
rection for Kn = 0.1 results in an error of approximately 10%)
and in the free-molecular regime Equation (12) becomes

Cc(d) ≈ 2λ

d
(α + β). [13]

Applying Equation (13) to a particle 1 µm in diameter at 1.5 Torr
(typical AMS conditions as described below) results in a max-
imum error of 0.6% when compared to the value calculated by
Equation (12). The error decreases as the diameter decreases or
λ increases.

Adding the slip correction to Equation (11), the equation for
drag on a sphere in any flow regime (Baron and Willeke 2001)
is

Fdrag = 3πηvdp

Cc(dp)
. [14]

Thus the drag force in the transition and free-molecular regimes
is smaller than the drag calculated in the continuum regime
(Equation (11)).

Dynamic Shape Factor (χ)
Definition of the Dynamic Shape Factor. A second correc-

tion must be introduced into Equation (11) to account for the
increased drag on a particle due to nonspherical shape. This
correction is called the dynamic shape factor (χ ) and was first
introduced by Fuchs (1964). It is defined as the ratio of the
resistance force (typically the drag force) on the nonspherical
particle to the resistance force on its volume equivalent sphere,
when both move at the same relative velocity with respect to the
gas (Hinds 1999):

χ = F p
D

Fve
D

. [15]

The dynamic shape factor is almost always greater than one for
irregular particles and equal to one for spheres. The dynamic
shape factor is used with the slip correction factor as an addi-
tional correction to Equation (11). The general equation for drag
in any flow regime is (Baron and Willeke 2001)

Fdrag = 3πηvχdve

Cc(dve)
. [16]

Effect of Particle Orientation on χ . In some cases parti-
cles with streamlined or nonsymmetrical shapes may adopt a
preferred orientation in the flow (Dahneke 1973a; Hinds 1999;
Baron et al. 2001b). In the case of streamlined particles it is
possible that the dynamic shape factor attains values less than
1 (Hinds 1999). Orientation effects likely do not play a role in
AMS sizing, where the particle is imparted a size-dependent ve-
locity when the particle Reynolds number is ∼0.03 or smaller
(Zhang et al. 2002), and as stated in Hinds (1999) no alignment is
expected for particle Reynolds numbers less than 0.1. Alignment
of particles in a differential mobility analyzer (DMA) or scan-
ning mobility particle sizer (SMPS) system can be a function of
the charge location on the particle and strength of the electric
field (Kousaka et al. 1996) and could play a role in measure-
ments of some types of irregular particles (Baron et al. 2001b).
Further research is needed to quantify the effects of orientation
in these sizing techniques.
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Relationship of χ to Flow Regime. The value of χ can de-
pend on the flow regime due to differences in the effect of the
nonsphericity on drag in the different flow regimes and the use
of dve in Cc on Equation (16) (Dahneke 1973a; Cheng 1991).
Here we use the symbol χ (as a short for χ (Kn)) for the general
dynamic shape factor of a particle that accounts for the different
flow regimes. In the limits of the continuum regime and free-
molecular regime, χ asymptotically approaches unique values,
termedχc andχv , respectively. In the transition regime, the shape
factor will be denoted as χt or χt (Kn). Note that χt will change
with gas pressure for a given particle due to this dependence on
Kn.

Dahneke (1973a, b) numerically calculated drag on regularly
shaped particles in the continuum and free-molecular regimes.
Translating his calculated drag results for bodies of revolu-
tion and cubes into dynamic shape factors (see method in Ap-
pendix A), we can shed some light on the relationship between
χc and χv . Dynamic shape factors for doublets and triplets of
spheres have also been reported in both the continuum and free-
molecular regimes (Kousaka et al. 1996; Baron et al. 2001b).
Figure 1 displays these results for a comparison between χc and
χ . It is expected that values of χt (Kn) in the transition regime
change smoothly between these two extremes (Dahneke 1973c).
A special case for aggregate particles is discussed later. Figure 1
neglects orientation effects, and χc and χv are calculated using
values averaged over all orientations. Consequently values of χ

Figure 1. Comparison of χc and χv values for several simple
particle shapes calculated from the results of Dahneke (1973a,
b, c) by the method shown in Appendix A. Values for chains of
spheres were taken from Chan and Dahneke (1981) and Kousaka
et al. (1996). Open symbols indicate when experimental results
for continuum flow drag were used, with all free-molecular flow
values numerically calculated. Filled symbols identify points in
which both χc and χv were calculated numerically.

could be different in cases when particles can have a preferred
orientation in the flow (Dahneke 1973a). Orientation effects are
not explicitly treated in this article, but the mathematical formu-
lation is still valid if orientation-specific shape factors such as
those given by Dahneke (1973a, b) are used.

Figure 1 suggests that for small values of χ (<2), χc ≈ χv is a
fair approximation. Note that this comparison is based on limited
experimental and numerical results, and more research into this
subject for additional particle types is necessary to verify or
discount this relationship. Figure 1 is meant to present the range
of χc and χv values for the same particles based on current
knowledge.

Estimation of χt (Kn) in the Transition Regime. Dahneke
introduced the adjusted sphere formulation to allow the estima-
tion of drag forces on a particle across flow regimes (Dahneke
1973a). In this formulation the adjusted sphere diameter (dadj)
replaces dve in the slip correction factor in the calculation of drag
(Equation (16)):

Fdrag = 3πηvχcdve

Cc(dadj)
. [17]

dadj is a calculated diameter that allows a smooth transition be-
tween the drag forces for the continuum regime to the free-
molecular regime based on an asymptotic fitting of the drag
forces in each extreme. In this formulation the dynamic shape
factor used in Equation (17) does not change with flow regime;
instead, it is held constant at χc and the adjusted sphere diameter
compensates for the change to the shape factor. This formulation
has been shown to be in good agreement with experimental data
over the transition regime for limited particle types (Dahneke
1973c; Cheng 1991; Chen et al. 1993). At the asymptotic limit
of the free molecular regime, Equations (13), (16), and (17) can
be used to relate dadj to our formulation as

dadj = χv

χc
dve. [18]

Using Equations (16–18) we can estimate the dynamic shape
factor in the transition regime as

χt (Kn) = χc
Cc(dve)

Cc
(

χv

χc
dve

) . [19]

Alternate Definition of the Dynamic Shape Factor Based on
dme. Equation (15) is the most commonly used definition of
the dynamic shape factor, i.e., the ratio of the drag forces for the
actual particle and its volume-equivalent sphere moving at the
same relative velocity with respect to the gas. It is also possible
to define a dynamic shape factor based on the mass-equivalent
diameter (dme) rather than on dve as

χ ′ = F p
D

Fme
D

. [20]
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For a particle with no internal voids this new definition equals the
dynamic shape factor (χ ) as defined by Equation (15). However,
for a particle with internal voids this definition deviates from the
standard definition due to the difference between dve and dme.
Although the dme-based shape factor is also generally denoted
as χ in the literature, here we will use the symbol χ ′ in order to
make the distinction clear. The general expression for the drag
force when χ ′ and dme are used is

Fdrag = 3πηvχ ′dme

Cc(dme)
. [21]

Equating the expressions for particle drag based on dve (Equa-
tion (16)) and dme (Equation (21)) allows the separation of χ ′

into two parts (Baron and Willeke 2001), one due to the external
shape of the particle and one due to the particle void spaces:

χ ′ = χ
dve

dme

Cc(dme)

Cc(dve)
= χδ

Cc(dme)

Cc(δdme)
. [22]

The external particle shape component of the dynamic shape
factor is captured by χ (sometimes denoted as κ in the literature
(e.g., Allen et al. 1979; Kasper 1982a)). The distinction between
χ and χ ′ in Equation (22) can be understood in the context of a
particle with internal void spaces. In this case dme < dve, which
is equivalent to saying ρp < ρm . Therefore, always χ ′ ≥ χ ,
with the equality being valid for particles without internal voids.
Deviations from a χ ′ value of 1 are not necessarily indicative
of a nonspherical particle and may in fact be due mostly to void
spaces within a nearly spherical particle. Note that equations
involving dve, ρp, and χ below could instead be written in an
alternate form using dme, ρm , and χ ′. Care should be taken not
to mix parameters from both formulations into the equations
below. For example, if ρm is used and the particles are known to
have internal voids, then the formulation with dme and χ ′ should
be used, otherwise an error will be introduced.

Electrical Mobility Diameter (dm)
The electrical mobility diameter is the diameter of a sphere

with the same migration velocity in a constant electric field as
the particle of interest (Flagan 2001). Instruments such as the
DMA and the SMPS measure dm . This measurement is obtained
via a force balance between the electrical force of a constant
electric field on the net charges on the particle and the drag
force experienced by the particle. The electrical force on the
particle is:

Felec = neE . [23]

Here n is the number of charges on the particle, e is the elemen-
tary unit of charge, and E is the strength of the electric field.
Under typical DMA conditions a particle reaches a terminal mi-
gration velocity extremely quickly, at which point the electrical
and drag forces are equal and opposite.

The relationship between the volume equivalent diameter
(dve) and dm is obtained from the electrical mobility, Z p, de-

fined as the steady-state migration velocity of a particle per unit
electric field strength. Applying this definition with the drag
force in Equation (16) and the electrical force in Equation (23),
we obtain

Z p = neCc(dve)

3πηχt dve
= neCc(dm)

3πηdm
. [24]

Note that particles in the DMA are generally in the transition
regime, thus the dynamic shape factor is represented by χt (as a
shorthand for χt (Kn)). Note that the charging probability for an
irregular particle is different than that for its volume equivalent
sphere (Rogak et al. 1993). From Equation (24), and assuming
the particle and its volume equivalent sphere have the same
charge, we obtain the commonly used relationship between dve

and dm :

dm

Cc(dm)
= dve · χt

Cc(dve)
. [25]

For spherical particles, dm equals dp and dve. For nonspherical
particles, dm is always greater than dve because χt (Kn) > 1,
and Cc is a monotonically decreasing function of d. Note that
for nonspherical particles dm is not unique but depends on the
pressure at which the measurement is performed, due to the de-
pendence of χt and Cc on Kn. Strictly speaking, we can define
dcm , dtm(Kn), and dvm to denote the mobility diameters in the
continuum, transition, and free-molecular regimes, respectively.
However, most measurements of dm are performed under pres-
sures near 1 atm, so in this article we will only use the symbol dm

for the mobility diameter. However, it is important to take into
account the effect of Kn on dm when the pressure in the DMA
changes in the course of the experiment, as when sampling from
aircraft.

In summary, mobility diameters increase with increasing de-
viation from a sphere. Figure 2a illustrates the trajectories of
spherical particles of different sizes in the electric field of a
DMA. It also shows an irregular particle with identical volume
as the smaller sphere that follows the same trajectory as the larger
sphere. Note that the diameter of the sphere following the same
trajectory as the irregular particle is the mobility diameter of
the irregular particle. An irregular particle experiences a larger
drag force but the same electrical force compared to its volume
equivalent sphere, so it is “sized” as a mobility-equivalent sphere
that is larger than its volume-equivalent sphere, i.e., for irregular
particles, dm > dve.

Aerodynamic Diameter
Aerodynamic Diameter (da). The aerodynamic diameter is

defined as the diameter of a sphere with standard density that
settles at the same terminal velocity as the particle of interest.
As will be discussed, the aerodynamic diameter depends on the
flow regime. We will begin our discussion of da with a general
exploration of the concept and then proceed to define specific
instances of da in the continuum and free-molecular regimes.
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Figure 2. A schematic representation of the different diameter sizing measurements for (a) the DMA and (b) the AMS. In each
case three particles are shown. In (a) the irregular particle has the same mass as the smaller sphere. Light gray arrows depict the
velocity vectors for the horizontal (sheath flow) and the vertical (electrical migration). In (b) the irregular particle has the mass of
the larger sphere. Gray arrows depict the velocity imparted to the particles at the nozzle expansion. All particles in the figure have
standard density.

Terminal settling velocity (vTS) is a measure of the aerody-
namic properties of the particle. Terminal velocity is obtained
when the gravitational force (FG) is equal and opposite to the
drag force from Equation (16):

FG = m p g = ρp
π

6
d3

ve g = 3πηvTSdveχ

Cc(dve)
= Fdrag. [26]

As stated above, the aerodynamic diameter is defined as the
diameter of a standard density (ρo) sphere with the same vTS

as the particle. That is, in Equation (26), ρp is standard den-
sity (ρ0), χ = 1, and the diameter is da . The force balance in
Equation (26) can then be expressed as

FG = m pg = ρ0
π

6
d3

a · g = 3πηvTSda

Cc(da)
. [27]

By definition, vTS is the same in Equations (26) and (27). Com-
bining these two equations, we obtain (Hinds 1999)

da = dve

√
1

χ

ρp

ρ0

Cc(dve)

Cc(da)
, [28]

ρ0d2
a Cc(da) = ρp

χ
d2

veCc(dve). [29]

The aerodynamic diameter increases with increasing particle
density. Unlike for dm (e.g., when sizing with a SMPS system),
particle density, and therefore particle composition, affects the

sizing of the particles even if the physical morphology is the
same. Spherical particles with ρp > 1.0 g cm−3 have a larger
aerodynamic diameter than their geometric or physical diameter.
The opposite is true for spheres with ρp < 1.0 g cm−3 (McMurry
2000). As with dm , particle shape affects the relationship be-
tween da and dve. Aerodynamic diameter decreases with increas-
ing dynamic shape factor. For an irregular particle of unit (or
lower) density, da is always smaller than dve, while dm is larger
than dve (see section “Electrical Mobility Diameter” above). For
particles of larger than standard density, da may be smaller or
larger than dve depending on the relative values of ρp and χ .

Aerodynamic sizing is illustrated in Figure 2b as it takes place
in an Aerodyne AMS (Jayne et al. 2000; Jimenez et al. 2003c).
Two spheres are shown, as is an irregularly shaped particle of
standard density with the same volume as the larger sphere,
and whose measured aerodynamic diameter would the same as
that of the smaller sphere. In summary, for irregular particles of
standard density, dm > dve > da .

Highly irregular particle populations, such as diesel soot, will
show significant differences in the size distributions measured
simultaneously by mobility and aerodynamic techniques. These
are not real discrepancies; instead, they merely capture the dif-
ferent dependence of both equivalent diameters on the funda-
mental particle properties, and can be used to yield information
about the particle population with the methods presented be-
low. This phenomenon has been observed in the measurement
of ambient aerosol (Chakrabarti et al. 2004; Zhang et al. 2004a)
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Figure 3. The ratio of da to dve as a function of Kn (with the as-
sumption χc ≈ χt ≈ χv). The figure illustrates the fact that there
are 2 asymptotic limits for values of da , one in the continuum
regime (dca), and the other in the free-molecular regime (dva).
Between these two limiting values, in the transition regime, the
ratio of da to dve transitions smoothly from one limit to the other.

and in laboratory-generated soot particles as described in the
companion article (Slowik et al. 2004).

Effects of Flow Regime on Aerodynamic Measurements. As
was stated above, for a given particle the value of da changes
with the flow regime (see Equations (28) and (29)). The depen-
dence of aerodynamic diameter on flow regime is illustrated in
Figure 3, which is a plot of the ratio da/dve as a function of
Kn. This figure is based on based on Equation (28), with the re-
striction/assumption that χ is the same in all flow regimes. Each
curve represents a unique particle (i.e., dve, ρp, and χ do not
change along a particular curve). Changes in the da/dve ratio for
each curve are due only to the changes in the flow regime where
the particle aerodynamic diameter is determined. Figure 3 shows
that an individual particle does not have a unique da . Rather, da

asymptotically approaches two unique values in the continuum
regime (dca) and the free-molecular regime (dva), but takes on
values between these limits in the transition regime. As shown in
Figure 3, dca may be smaller or larger than dva depending on the
value of ρp/(ρ0χ ). dve < da and dva > dca when ρp/(ρ0χ ) > 1.
dve > da and dva < dca when ρp/(ρ0χ ) < 1. In the following
two sections, expressions are derived for the asymptotic limits
of the aerodynamic diameter in the continuum regime (dca) and
the free-molecular regime (dva).

Continuum Regime Aerodynamic Diameter (dca). In the
limit of the continuum regime, the aerodynamic diameter is de-
noted as dca. As stated above, in the continuum regime, Cc(dca) =
Cc(dve) = 1. Using this relationship, Equation (28) can be ex-
pressed as

dca = dve

√
ρp

ρ0χc
. [30]

This diameter is measured by instruments such as an aerody-
namic particle sizer (APS), which accelerates particles in a gas
jet at ambient pressure and measures particle time of flight to size
the (mostly supermicron) particles. (Ananth and Wilson 1988;
Brockmann and Rader 1990). Some additional corrections ap-
ply in the APS for large particles with Reynolds number greater
than 0.5, because in this case the drag is non-Stokesian, i.e., it is
not represented by Equation (11) (Wang and John 1987; Ananth
and Wilson 1988; Tsai et al. 2004). Relative humidity variations
during sizing, as well as deformations of liquid droplets as they
are sized, may also change the particle size reported by the APS
(McMurry 2000). It is possible that similar effects may exist in
other aerodynamic sizing techniques.

Vacuum Aerodynamic Diameter (dva). In the free-molecular
regime, the aerodynamic diameter is called the vacuum aerody-
namic diameter (dva). Using Equation (13) for the slip correction
in the free molecular regime in Equation (28), we can show that
the vacuum aerodynamic diameter is related to dve by (Jimenez
et al. 2003a, b)

dva = ρp

ρ0

dve

χv

. [31]

The error in this equation with respect to the exact equation
(Equation (28), from using the simplification in Equation (13))
increases as χv increases, but for particles with dva = 1 µm,

χv = 3, and standard density, the error is only 1.6% at a pres-
sure of 1.5 Torr (200 Pa). Note that the calculation of dve from
a measurement of dva requires knowledge of both the particle
density and the dynamic shape factor.

The vacuum aerodynamic diameter (dva) is now frequently
measured in instruments that use low-pressure (∼1.5 Torr,
200 Pa) aerodynamic lens systems as inlets, such as many aerosol
mass spectrometers. In these devices, a series of axisymmetric
lenses collimate aerosol particles into a tightly focused beam
(Liu et al. 1995a, b; Zhang et al. 2002, 2004b). Several research
groups have reported measurements of dva (Zelenyuk et al. 1999;
Jayne et al. 2000; Buzorius et al. 2002). In addition, the electrical
low-pressure impactor (ELPI) measures dva for smaller particles
(dva < 33 nm). Other lens systems that size particles at higher
pressures (∼200 Torr, 26.6 kPa) have also been designed and
implemented (Schreiner et al. 2002; Cziczo et al. 2003). Most
submicron particles are in the transition regime in these lenses.

Sizing with an aerodynamic lens is accomplished by measur-
ing the size-dependent velocity that the particles acquire during
the mild supersonic expansion into vacuum that occurs at the end
of an aerodynamic lens. In the Liu et al. (1995a, b) design as
implemented in the AMS this expansion is from approximately
1.5 Torr (200 Pa, λ ∼ 27.5 µm, Kn ∼ 55 for 1 µm) in the lens to
about 2 × 10−2 Torr (2.6 Pa, Kn = 4000 for 1 µm) (Zhang et al.
2002, 2004b). In the AMS, about 1 cm after the end of the ex-
pansion the particles enter a differentially pumped high vacuum
region (10−5 Torr, 0.001 Pa; Kn = 8 × 106 for 1 µm particles,
and later 10−8 Torr or 10−6 Pa in the detection region). In this
region the particle velocity remains constant due to the lack of
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collisions with gas molecules. The effect of gravity is negligi-
ble since it produces a vertical velocity of only ∼0.03 m s−1

compared to a horizontal velocity of ∼150 m s−1. In the particle
time of flight, typically ∼3 ms, the vertical displacement is only
about 0.15 mm, which is much smaller than the vaporizer radius
of 1.65 mm.

The Jayne Shape Factor
A different definition of a shape factor was proposed by Jayne

et al. (2000) by comparing dva to dm :

S = dva

dm

ρ0

ρm
. [32]

S has become known as the Jayne shape factor (Note, ρ0 =
1.0 g cm−3). The advantage of S is that it can be easily determined
from tandem DMA–AMS measurements for particles of known
ρm , where a DMA is used to select particles with a given dm

and the AMS is used to measure their dva. Notice that S is not
the reciprocal of χv , as was erroneously stated in Jimenez et al.
(2003a) and corrected in Jimenez et al. (2003b). It can be shown
using Equations (25) and (31) that the relationship between S
and χ is given by

S = ρp

ρm

Cc(dve)

χt · χv · Cc(dm)
= Cc(dve)

δ3χt · χv · Cc(dm)
, [33]

where the slip correction factors are calculated at the DMA pres-
sure. When the particles are mildly nonspherical, the ratio of
the slip correction factors (Cc(dve)/Cc(dm)) near the continuum
regime limit is ∼1 and near the free molecular regime limit
∼χ

1/2
t . For particles in the transition regime there will be a

smooth transition between those values. Thus the Jayne shape
factor can be approximated towards the continuum regime limit
for particles in the DMA as

S ∼= 1

δ3χvχt
, [34]

and towards the free molecular limit in the DMA as

S ∼= 1

δ3χvχ
1/2
t

. [35]

If the particle does not have internal voids (i.e., δ = 1), then S
will be ∼1/χ2 in the continuum limit to ∼1/χ3/2 in the free-
molecular limit. This is a useful estimate for relating the Jayne
shape factor to the dynamic shape factor for particles that are
mildly nonspherical.

PREVIOUS STUDIES OF PARTICLE MORPHOLOGY

Particle Shape
Early studies of shape and density effects in aerosol sizing

used aerosol centrifuges and transmission electron microscopy
(TEM) in addition to theoretical calculations. The effect of shape

on sizing was investigated and the dynamic shape factor for ag-
gregate particles was determined with this technique (Stober
1972; Allen et al. 1979; Kasper 1982a, b). Mobility classifica-
tion with DMAs followed by TEM analysis has been used to test
the theoretical knowledge of shape effects and to study the shape
and sizing of agglomerate particles (Rogak et al. 1993). Brock-
mann and Rader (1990) used an APS and a cascade impactor in
parallel to experimentally determine the dynamic shape factor of
Bermuda grass spores, cerium oxide particles, and iron-alumina
particles. More recently, Park et al. (2003, 2004a, b) used tan-
dem DMA and aerosol particle mass analyzer (APM), and tan-
dem DMA–TEM measurements to determine the dynamic shape
factors and density of diesel soot as a function of mobility di-
ameter. Theoretical calculations of drag and shape factors have
also been performed for particles in the free molecular regime
(Dahneke 1973a, b, c; Cheng 1991; Baron et al. 2001b); how-
ever, until recently there has been little experimental data to test
the calculations.

Particle Density
Numerous methods of measuring particle density have been

discussed in the literature for both laboratory and field stud-
ies (Emets et al. 1992; Schleicher et al. 1995; Ehara and Shin
1998; Le Bronec et al. 1999; Morawska et al. 1999; McMurry
et al. 2002; Pitz et al. 2003). For nonspherical particles, stud-
ies generally rely on the assumption of spherical particles with a
physical diameter equal to the mobility diameter for volume and
density calculations. When particles are not spherical this tech-
nique yields an “effective” or “apparent” density, not necessarily
a true measure of particle density. The precise definition of such
an “effective” density varies with the measurement technique
(see section “Effective Density” below). Emets et al. (1992) and
Le Bronec et al. (1999) used the effect of gravity on mobility
transfer functions to determine particle mass. Assuming spheri-
cal particles and estimating particle volume using the measured
mobility diameter yielded a calculation of particle density with
10% error (Emets et al. 1992) and less than 5% error (Le Bronec
et al. 1999) for polystyrene latex spheres.

Kelly and McMurry (1992) and Schleicher et al. (1995) com-
bined DMA and impactor measurements to determine a rela-
tionship between mass and mobility for various particle types,
including aggregates. Assuming spherical particles, they calcu-
lated effective density based on the measured mass from the
impactor. For aggregates their calculated effective density was
much lower than the bulk density of the particle material. Ehara
and Shin (1998) developed an APM, which balances centrifugal
force and electrostatic force to determine particle mass/charge.
A tandem DMA–APM experiment allows the determination of
particle mass and electrical mobility of aerosol particles and sub-
sequent calculation of effective density. McMurry et al. (2002)
used the tandem DMA–APM setup to measure an effective den-
sity of ambient aerosol particles in Atlanta, GA. Results indi-
cated the presence of both a spherical component and a non-
spherical component in the ambient aerosol. The nonspherical
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component was hypothesized to be chain agglomerates of soot.
Morawska et al. (1999) and Pitz et al. (2003) determined PM2.5

mass using a tapered element oscillating microbalance (TEOM)
and used integrated number distributions from an SMPS and
laser aerosol spectrometer to determine bulk ambient particle
apparent density. In both studies a wide range of apparent den-
sities were reported, from less than 1 g cm−3 to greater than
3 g cm−3. Khlystov et al. (2004) used a similar technique in
Pittsburgh using an APS instead of the laser aerosol spectrom-
eter. Estimates of total PM2.5 using size integrated distributions
and an assumed density indicate an error of ±20% when com-
pared to TEOM measurements, likely due to both changes in
aerosol composition (density change) and aerosol shape. These
authors also note that the technique was specific for Pittsburgh
and that aerosol characteristics of shape and density are likely
different elsewhere.

Mobility and Vacuum Aerodynamic Diameter
On-line instruments that can measure the mobility diameter

of submicron particles have been available for some time (Flagan
2001). The development of aerodynamic lenses (Liu et al. 1995a,
b; Zhang et al. 2002, 2004b) has lead to the widespread on-
line measurement of the aerodynamic diameter of submicron
particles in the free-molecular regime, also known as vacuum
aerodynamic diameter (Jimenez et al. 2003a, b). The Aerodyne
AMS (Jayne et al. 2000) is one such instrument. In this article
we will refer to the AMS for simplicity, but all results also apply
to other instrument designs that use the same type of an inlet.
The development of an ELPI also allows the measurement of
aerodynamic diameter of particles over different regimes for
different particle sizes, including the free-molecular regime for
particles ∼33 nm and smaller (Maricq et al. 2000; Van Gulijk
et al. 2004; Virtanen et al. 2004).

INFORMATION FROM dm AND dva MEASUREMENTS
Since parallel or serial measurements of dm and dva are easily

obtainable, it is of interest to explore the information that can
be obtained by performing both measurements for a given par-
ticle population. In tandem (serial) DMA–AMS measurements
particles are first selected by mobility, and then sized aerody-
namically. In performing this type of study, it is important to dry
the particles before sizing them with the DMA, so that changes
in water content due to evaporation in the AMS lens do not
change the particles in between the dm and dva measurements
(see Appendix B).

Density and Shape Factor
By combining Equations (25) and (31) it can be shown that

dvaχvχtρ0

ρp

Cc

(
dvaχvρ0

ρp

) = dm

Cc(dm)
. [36]

Figure 4. Relationship between dvaρ0/ρp and dm as a function
of χ (with the assumption χt ∼ χv). Given measurements of dm

and dva and an estimate of ρp, the figure can be used to estimate
χ . Note that all values of dm in this paper are calculated assuming
1 atm pressure.

Equation (36) is the general expression for relating dva and dm

measurements. Jimenez et al. (2003a) showed that for particles
with a constant dve and standard density, dm and dva change in op-
posite directions as χt (Kn) and χv increase. In a similar fashion,
we show the relationship between dvaρ0/ρp and dm in Figure 4,
using Equation (36), for several values of χ with the assumption
χt ≈ χv . Note that ρp is the particle density defined in Equa-
tion (5), which in the absence of particle void spaces equals the
material density (ρm). Figure 4 is to be used as a “map” to esti-
mate a χ value from measurements of dva and dm , if ρp is known
or can be reasonably estimated. The dotted lines in Figure 4 il-
lustrate the effect of slip correction on this calculation. If the slip
correction is ignored in Equation (36) then the thin dotted lines
are obtained. As expected, the difference in the slip correction
factors is less important for large particles, where flow around
the particle in the DMA is closer to the continuum regime.

In a situation when only dm and dva can be determined, but
no other information on shape or density is available, there is a
considerable range of values for χ and ρp that yield the same
dm and dva measurements. These ranges can be estimated from
Figure 5. Figure 5 illustrates the range and combinations of ρp

and χ that will solve Equation (36) for a given pair of dm and dva

measurements (again assuming χt ≈ χv). For example, if dva =
100 nm and dm = 200 nm, then the possible ρp and χ values
are linked, ranging from ρp = 0.5 g cm−3 and χ = 1, to ρp =
3 g cm−3 and χ = 3 (and also higher values of both parameters).
The minimum particle density can be estimated by settingχ = 1.

Calculations of ρp and χ for Specific Particle Types
The simultaneous determination of dm and dva, together with

Equation (36) provides the basis for bringing together other
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Figure 5. This figure shows the combinations of χ and ρp that are possible given various combinations of dm and dva measurements
with the assumption χc ≈ χt ≈ χv). Each plot represents a particular value of dm , while the individual traces in the plot represent
particular values of dva.

measurements and assumptions about the particles in order to
self-consistently estimate important particle properties such as
density, volume, and mass. Table 1 applies the framework pre-
sented here to different types of particles. The particles are clas-
sified by their external and internal morphologies. The table
progresses from simple to more complex particle types. Valid re-
lations between parameters for each particle type are also listed.

Spherical Particles. In the simplest case of spherical parti-
cles (type A in Table 1), particle volume can be directly calcu-
lated because dve = dm . Particle density, ρp, is then determined
for type A particles from the measurements of dm and dva via
Equation (36), which simplifies to

ρp = dva

dm
ρ0. [37]

For a spherical particle consisting of multiple solid or liquid
phases, this analysis applies and ρp is then the average particle
density as determined by Equation (5).

The above analysis is also applicable for spherical particles
with internal void spaces (type B in Table 1). Note that particle
density will not be equal to material density for type B due to
the effect of the voids. If the material density, ρm , is known, the
void volume fraction of the particle (ω) and the particle volume
can be calculated with Equations (6–8).

Compact Aggregates. Particle volume can also be estimated
for compact aggregates (type C particles) solely from measure-

ments of dva and dm , but this requires the assumption of a spher-
ical shape. This has been shown to be a reasonable approx-
imation for some real aggregate particle types (Stober 1972;
Kasper 1982a). All relationships are the same as for type B
once we assume sphericity (i.e., dve ≈ dm). Without the as-
sumption of sphericity, the particles can be treated by the meth-
ods described in the next section for irregular and aggregate
particles.

Irregular Particles. For irregular particles (types D, E, F,
and G in Table 1), the spherical assumption is not a good ap-
proximation. Fractal aggregates are a special subset of irregular
particles and are discussed in more detail below. For irregular
particles neither χt (Kn) nor χv are equal to 1, and therefore there
are 2 additional unknowns in Equation (36). Two additional lin-
early independent measurements or approximations are needed
to solve the system and determine dve, ρp, χt , and χv . The void
volume fraction (ω) can then be determined if the material den-
sity (ρm) is known from the chemical composition.

Knowledge of particle composition can provide one addi-
tional constraint on the system by providing an estimate of ρp.
If the additional assumption of no internal voids is made (i.e.,
δ = 1), then ρp = ρm . In many laboratory experiments, the par-
ticle composition and material density are known because the
particle generation system is well defined.

A measurement of total particle mass (e.g., with an APM)
can provide a second independent measurement and constrain
the system via Equation (5). If the particles are known to consist
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Table 1
Summary of different particle types and associated relations of particle density, material density, and shape factor

Particle type Diameter relations ρ p and ρm relations χ and χ ′ relations

A dme = dve

dm = dve
dvaρ0

ρp
= dve

ρp = ρm χ = χ ′ = 1

B dme = dme ∗ δ

dm = dve
dvaρ0

ρp
= dve

ρp < ρm

δ3ρp = ρm

χ = 1
χ ′ = δ Cc(dme)

Cc(δ·dme)

C dme = dme ∗ δ

Assume:
dm ≈ dve

ρp < ρm

δ3ρp = ρm

χ ≈ 1
χ ′ = δ Cc(dme)

Cc(δ·dme)

D

dme = dve

dm > dve

ρp = ρm χ ′ = χ > 1

E

F

dme = dme ∗ δ

dm > dve

ρp < ρm

δ3ρp = ρm

χ ′ > χ > 1
χ ′ = χ · δ Cc(dme)

Cc(δ·dme)
G

Reasonable assumptions about particle properties are also included.
Aggregate particles are a special case of irregular particles.

of nonrefractory components, then quantitative measurements
of particle mass can be obtained using the AMS, also adding a
constraint to the system. Other methods are also available for
quantitatively measuring particle composition or mass.

An approximation that can be made to reduce the underdeter-
mination of the system is to assume χt (Kn) ≈ χv . Although it is

known that χ can change with flow regime, this assumption pro-
vides a starting point for the application of the theory in the ab-
sence of additional information. With this assumption the num-
ber of unknowns is reduced by 1, therefore only one additional
independent measurement or assumption is needed to solve
the system of equations. With the assumption χt (Kn) ≈ χv ,
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Equation (36) still provides only a relationship between ρp and
χ (such as is illustrated in Figures 4 and 5). As is shown be-
low, an additional constraint can be derived for fractal aggre-
gates (see below). Alternatively, if in addition to the assump-
tion that χt (Kn) ≈ χv particle density can be estimated either
from measurement or knowledge of particle material, then Equa-
tion (36) can be solved for χ. Thus dve can then be estimated
from Equation (31), and m p and Vp can be estimated as de-
scribed in section “Volume and Density.” An application of this
approach is presented in the companion article (Slowik et al.
2004).

Effective Density
Effective density (or apparent density) is a parameter often

defined in the literature from a combination of two aerosol mea-
surements (Baron et al. 2001b; Hand et al. 2002; McMurry
et al. 2002; Jimenez et al. 2003a). Various definitions of ef-
fective density are used, and different definitions may yield dif-
ferent values for a given particle. Comparing calculated effec-
tive densities from various measurements can be misleading if
the densities are not derived in a consistent manner. Thus, it
is important to understand how a particular effective density is
derived and what its proper uses are. In this section we review
and interpret four commonly used literature definitions of effec-
tive density within the analytical framework presented in this
article.

Particle Density (ρp). The particle density (ρp) as defined
in Equation (5) may be considered an effective density when
compared to bulk material density (ρm) of the particle in question
(Baron et al. 2001b). In this case ρp is different from the material
density ρm only when the particle contains internal void spaces.
The difference between ρm and ρp is then purely a function of
the volume fraction of internal void spaces in the particle (ω),
see Equations (3–9).

Effective Density from Mobility and Mass Measurements
(ρ I

eff). A common definition of effective density (ρ I
eff) is the

ratio of the measured particle mass (m p) to the particle vol-
ume calculated assuming a spherical particle with a diameter
equal to the measured dm . The volume defined with this as-
sumption is sometimes referred to as the apparent volume (Va).
The required parameters, m p and dm , are readily obtained from a
mass measurement in addition to a mobility measurement with
a DMA/SMPS system. For example, the tandem DMA–APM
setup as reported by McMurry et al. (2002) can be used to per-
form this measurement. A DMA selects particles of a certain
electrical mobility followed by downstream scanning of mass
with an APM. A parallel SMPS–TEOM system can also be
used to determine this effective density for the particle popula-
tion rather than for individual particles (Morawska et al. 1999;
Pitz et al. 2003). By definition, the particle mass can be written
in terms of ρ I

eff as

m p = ρ I
eff · π

6
dm

3 = ρ I
eff · Va . [38]

Substituting for m p (see Equation (5)), Equation (38) can be
rewritten as

π

6
· dve

3ρp = π

6
· dm

3ρ I
eff. [39]

Simplifying Equation (39), ρ I
eff can be expressed as

ρ I
eff = ρp

(
dve

dm

)3

. [40]

This effective density (ρ I
eff) is the particle density that a sphere

with diameter dm would need to have the same mass as the ac-
tual particle. For spheres ρ I

eff = ρp. Since for irregular parti-
cles an SMPS yields diameters larger than their volume equiv-
alent diameter, ρ I

eff ≤ ρp. Conceptually, the definition of ρ I
eff

uses the difference between dm and dve to estimate an external
pseudovoid fraction (ω′) of the particle volume referenced to
dm : ω′ = (1 − (dve/dm)3). The external pseudovoid fraction is
the fraction of unoccupied volume existing between the enve-
lope of the particle material and a spherical envelope of diameter
dm (see, e.g., Figure 5 in Van Gulijk et al. 2004). Note that this
external pseudovoid fraction is completely due to external phys-
ical morphology and is unrelated to the internal void fraction
(ω = 1 − 1/δ3, defined above).

By combining Equations (39) and (31), ρ I
eff can be expressed

in terms of parameters related to DMA and AMS measurements
(dm, dva, ρp, and χv) as

π

6
·
(

dva · χvρ0

ρp

)3

ρp = π

6
· dm

3ρ I
eff, [41]

or

ρ I
eff = ρ0

(
dva · χv

dm

)3(
ρ0

ρp

)2

. [42]

Effective Density as a Fitted Parameter (ρII
eff). Another defi-

nition of effective density (ρII
eff) is given by Hand et al. (2002) and

also used by Khlystov et al. (2004). Hand et al. (2002) combined
size distribution data from a DMA, an optical particle counter
(OPC), and an APS, and used overlap regions to estimate refrac-
tive index and (a third definition of) effective density:

ρII
eff = ρp

χ
. [43]

Note that this definition is different from that of McMurry et al.
(2002) (ρ I

eff). In addition, the above equation requires a deter-
mination of ρp and χ . In the above studies, ρII

eff was a fitted
parameter in the analysis algorithm, since neither the particle
density nor the dynamic shape factor were measured by the
instrumentation. For spheres, ρII

eff = ρp and for nonspherical
particles ρII

eff < ρp.
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Effective Density from Mobility and Aerodynamic Measure-
ments (ρIII

eff ). An alternative estimation of effective density can
be performed by comparing mobility and aerodynamic diame-
ter measurements (e.g., Kelly and McMurry 1992; Stein et al.
1994). The specific definition when dva is measured is presented
by Jimenez et al. (2003a) as

ρIII
eff = dva

dm
ρ0. [44]

Using Equations (32), (33), and (44), it can be shown that

ρIII
eff = ρm · S = ρp

Cc(dve)

χt · χv · Cc(dm)
. [45]

Again, this definition of effective density is different from the
three given above. The parameters required to calculate ρIII

eff can
be easily obtained experimentally with a tandem DMA–AMS
system. Note that for spheres ρIII

eff = ρp, and for nonspherical
particles ρIII

eff < ρp.
Figure 6 shows a numerical example of the effective density

calculated via the latter three definitions as a function of χ .
For ρIII

eff , it was assumed that χt ≈ χv . All of the definitions
successfully demonstrate that the more irregular the particle, the
lower the effective density. However, as is evident, the definitions
do not yield the same numerical values because they capture
slightly different particle properties.

Mass of Irregular Particles Estimated from
DMA–AMS Measurements

The mass of an irregular particle is difficult to estimate from
typical aerosol measurements. An APM is able to measure the

Figure 6. Comparison of different definitions of effective den-
sity as a function of χ for a particle with dve = 200 nm and
ρp = 1.0 g cm−3, and assuming χt ≈ χv . For each defini-
tion, the effective density decreases with increasing χ , however
the numerical values of the effective densities are significantly
different.

mass of individual particles directly; however, very few of these
instruments are available, and consequently their use is not
widespread. Other techniques would be useful to estimate the
mass of irregular particles. A dm measurement combined with an
effective density estimate (ρ I

eff) can be used to estimate particle
mass using Equation (38). However, ρ I

eff can only be determined
if particle mass is already known. Figure 6 shows that ρ I

eff is
not very different from ρIII

eff , which can be calculated from only
dm and dva measurements. In this section we estimate the error
in the particle mass estimate if the measured ρIII

eff is used to re-
place ρ I

eff in Equation (38). The usefulness of this approach is
that particle mass can be estimated from two readily available
measurements (dm and dva), without any information about ρp

or χ . The comparison of the two methods requires the assump-
tion χt (Kn) ≈ χv , which introduces some uncertainty into the
comparison.

To make this comparison we begin with the exact calculation
of m p, which can be obtained with knowledge of only dve and
ρp via Equation (5). Using the same dve and for any χ, dm can be
calculated using Equation (25). Making the additional assump-
tion χt ≈ χv , we can calculate dva. We can then calculate an
estimated m p by replacing ρ I

eff by ρIII
eff in Equation (38), where

ρIII
eff is found using the above calculations of dva and dm . Figure 7

shows the ratio of the estimated mass via ρIII
eff to the exact mass,

as calculated with dve and ρp, as a function of dm and χ . Note
that the estimated error does not depend on ρp because this de-
pendence cancels out. For nonspherical particles the estimated
mass is always larger than the actual mass. The estimated er-
ror increases with both dm and χ . For small (dm < 70 nm) or
mildly irregular (χ < 1.2) particles, the estimated error due to
using the approximate formula is remarkably small (<10%). For
large or highly irregular particles, this approximation allows the

Figure 7. Contour plot of the ratio of the exact mass of a par-
ticle to the estimated mass of a particle replacing ρIII

eff with ρ I
eff in

Equation (30) and assuming χt ≈ χv . The error in the estimate
increases as dm and χ increase, but it is remarkably small for
mildly irregular particles and for small particles.
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estimation of particle mass from only dm and dva measurements
within about a factor of two, without any knowledge of ρp or χ .

Note that although the AMS can only measure the nonrefrac-
tory mass in the particles due to its thermal vaporation at 600◦C,
the approximation presented here is also valid for particles with
refractory components that cannot be measured by the AMS,
or for components whose relative ionization efficiency is not
known, since only a size measurement of the particle is needed.

A further implication of this result is that the mass of the
NH4NO3 particles used on the ionization efficiency (IE) cali-
bration of the AMS (Jimenez et al. 2003c) may be slightly over-
estimated, leading to an underestimation of IE. This is because
the AMS data acquisition software (version 4.5 and earlier) es-
timates the mass of the calibration particles as ρIII

eff · Va , which as
we have shown in this section leads to a systematic overestima-
tion of the particle mass. Fortunately, the estimated error for the
typical AMS calibration particles (dm = 350 nm and S = 0.8) is
relatively small (∼6.7%). Further research in this area is needed
to increase to absolute accuracy of the mass concentrations re-
ported by the AMS.

FRACTAL AGGREGATES
Aggregate particles are produced in a variety of processes

such as combustion, pharmaceutical drug delivery, and in the
manufacture of carbon black or other materials (Friedlander and
Pui 2004). Typically these aggregates are composed of similarly
sized primary particles (spherules) attached together. There are
two common types of aggregate particles described in the liter-
ature.

The first type is a compact aggregate, whose external enve-
lope is not far from spherical shape (i.e., type C on Table 1). In
this case ρp is a function of the packing density of the spherules
(e.g., Stober 1972; Kasper 1982a). Calculations for type C parti-
cles were addressed above. We will focus here on a second type
of aggregate particles for which the external envelope is highly
nonspherical. Such particles are often termed fractal (Types E
and G in Table 1) and have been studied extensively, both the-
oretically and experimentally (e.g., Stober 1972; Baron et al.
2001b). Combustion emissions such as diesel soot are a large
source of fractal particles in the environment. These particles
are of particular interest since they are highly irregular in nature,
with dynamic shape factors often exceeding 2 (Stober 1972; Park
et al. 2004a).

Fractal Dimension
Fractal dimension (D f ) is a parameter that is often used to

describe aggregate particles. The parameter, D f , is defined from
a relationship between the number of primary particles in an
aggregate to a characteristic radius, R, typically the radius of
gyration, by the following power law (Friedlander 2000)

Npp ∼ RD f . [46]

Here Npp is the number of primary particles in the aggregate.

The fractal dimension can vary between 1 and 3. For spheres
D f = 3, compact agglomerates D f ≈ 3, and in the limit of
infinitely long straight chain agglomerates D f → 1. A range
of intermediate values have been reported both for laboratory-
generated combustion aerosol and also for ambient aerosol
(Koylu and Faeth 1992; Katrinak et al. 1993; Park et al. 2003,
2004a). The fractal dimension can be estimated via the mass-
mobility relationship (Park et al. 2003) based on the scaling laws
developed by Schmidt-Ott et al. (1990). In the mass-mobility re-
lationship, it is assumed that the number of the primary particles
is proportional to m p, which requires the primary particle size
distribution to be constant for all values of Npp as well as the
assumption that the primary particle density is constant (which
may not be strictly true if the aggregate is coated by a second
species). The mass-mobility relationship is expressed as

m p = C ′
(

dm

dpp

)D f

. [47]

Here C ′ is a constant and dpp is the diameter of the spherules
comprising the aggregate. Only the assumption of a constant
primary particle size distribution is required to state that Vp is
directly proportional to Npp. Equation (47) can then be rewritten
as

d3
ve = C ′′

(
dm

dpp

)D f

. [48]

Since dm can be measured and dve and can be estimated as a
function of Npp (for a given dpp) as described above, then Equa-
tion (48) can be used to estimate a fractal dimension based on the
mass-mobility relationship with known values of dpp and Npp.

Additional Constraint on Mass Calculation
Rogak et al. (1993) applied results of numerical calculations

from Dahneke (1973a, b, c) to fractal aggregates. Using these
calculations, they showed that dm is approximately equal to the
projected area diameter (dA) for fractal particles with a D f of
2.0 or higher and a primary particle size (dpp) of ∼33 nm, well
into the transition regime (up to Kn = 0.3 based on λ = 65 nm).
The projected area diameter is the diameter of a circle with the
same area as the particle silhouette (Hinds 1999). It is expected
that dm = dA for the free-molecular regime, but this relationship
breaks down in continuum regime flow. The fact that this rela-
tionship is conserved into the transition regime indicates that dm

is a conserved quantity (since the projected area of a particle is
conserved) for the range in which dm = dA. In this range we can
rewrite Equation (25) for dm in the free-molecular regime using
Equation (13).

d2
m = χvd2

ve. [49]

This provides one additional equation and reduces the under-
determination of the system of equations described in section
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“Density and Shape Factor” from 2 to 1. Further, we can write
dva as a function of dm for this case of agglomerate particles
using Equations (31) and (49):

dva = ρp

ρ0

dm

χ
3/2
v

. [50]

Combining Equations (5), (49), (31), and the ρIII
eff definition in

Equation (44), it can be shown that the mass of a fractal aggregate
under these conditions can be estimated as

m p = π

6
ρ0d2

mdva = π

6
ρIII

eff d
3
m . [51]

For aggregate particles with a fractal dimension of 2.0 or
larger, and mobility diameters up to 600 nm (for P = 1 atm
and λ = 65 nm), Equation (51) can be used to estimate particle
mass. Note that the assumption χt ≈ χv was not needed to derive
Equation (51) for fractal aggregates. Equation (51) is expected
to be a better estimate of particle mass for fractal aggregates
than is indicated by Figure 7 for general irregular particles. The
apparent discrepancy between Equation (51) and Figure 7 is
due to the additional constraint for fractal aggregates discussed
above. A study in which particle mass is directly measured in
conjunction with both dm and dva will allow a more complete
analysis of the relative accuracy of the two methods.

Dynamic Shape Factor
An important topic for the purposes of this article is the way in

which the dynamic shape factor varies for fractal aggregate par-
ticles as a function of aggregate size. Wang and Sorensen (1999)
determined the ratio of the mobility radius to the radius of gyra-
tion for a large range of Kn. Their results apply to particles with
characteristics of diffusion-limited cluster aggregates (typically
this means aggregates with a fractal dimension of D f ∼ 1.75).
Baron et al. (2001b) interpreted these results in terms of the dy-
namic shape factor. They show two distinct regimes in which χ

can be estimated from the number of primary particles, Npp, in
the aggregate:

χ = N 0.11
pp [52]

Npp ≤ 60,

χ = 0.6N 0.24
pp [53]

Npp ≥ 60

Chan and Dahneke (1981) performed numerical calculations
of the drag on straight chains of uniform spheres in the free-
molecular regime. This presents a limiting case as it corresponds
to a fractal aggregate with D f = 1. Their results can also be
written as a functional relationship between χv and Npp, as given
by Baron et al. (2001b).

χv =
√

0.802(Npp − 1) + 1

N 1/3
pp

. [54]

Figure 8. Relationship between dvaρ0/ρp and dm based on
theoretical calculations of χ as a function of Npp for Npp ≤ 60
(see Equation (52)), Npp ≥ 60 (see Equation (53)) and straight
chains of spherules in the free-molecular regime (see Equa-
tion (54)). As Npp increases, there is thought to be a smooth
transition from the Npp ≤ 60 curve to the Npp ≥ 60 curve
(marked by an arrow in the graph).

Given Npp and the primary particle diameter (dpp), dve can be
calculated by the following relation:

dve = dpp N 1/3
pp . [55]

If dpp is measured (typically by electron microscopy), dve can
also be estimated as a function of Npp from Equation (55). Equa-
tion (25) and (31) can then be used to estimate dm and dvaρ0/ρp.
Figure 8 shows calculated, dm and dvaρ0/ρp based on the above
empirical relations of Npp and χ . For this calculation, a dpp of
33 nm was used following the measured mean diameter for diesel
soot by Park et al. (2004a). In Figure 8, the dynamic shape factor
of particles in the transition and continuum regimes is thought
to transition smoothly from the small Npp limit curve to the large
Npp limit curve as the number of primary particles grows larger
than 60 (Baron et al. 2001b). The transition point is marked by
an arrow on the plot.

We can also estimate and plot χ, dm , and dvaρ0/ρp as a func-
tion of Npp, if we assume χt ≈ χv based on Equation (52),
for particles with Npp ≤ 60, and based on Equation (53) for
particles with Npp ≥ 60. This is a useful comparison to experi-
mental data for fractal aggregates. Figure 9 is a plot of predicted
values for dm, dvaρ0/ρp, and χ based on the above analysis of
fractal aggregates, assuming a primary particle diameter of 33
nm. Note that dm increases rapidly as the number of primary
particles increases due to the large increase in χ . Additionally,
dvaρ0/ρp (and also dva, if ρp is approximately constant) on the
other hand is nearly constant for Npp > 75. This plot is quali-
tatively consistent with the experimental results of Slowik et al.
(2004) shown in the companion article, and with the results of
Van Gulijk et al. (2004).
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Figure 9. Theoretical calculations of dvaρ0/ρp, dm andχ , with
the latter being estimated from Equations (52) and (53) for
primary particles having a diameter of 33 nm. This assumes
χ ≈ χt ≈ χv .

Dependence of the Fractal Dimension on Npp

The fractal dimension, as derived from the mass-mobility
relationship, can be estimated as a function of Npp using the re-
lationships between χ and Npp in Equations (52) and (53), and
assuming a dpp of 33 nm as reported by Park et al. (2004a). This
is shown in Figure 10 as a plot of particle volume (Vp) versus dm

on logarithmic axes. Based on the relationship in Equation (48),
D f is the slope of the curve. Two distinct values of D f are esti-
mated from this plot depending on the two Npp regimes used to
estimateχ (Equations (53) and (54)). For Npp ≤ 60, D f = 2.46,

while for Npp ≥ 60, D f = 1.79. The decrease in D f occurring

Figure 10. Particle volume versus mobility diameter for frac-
tal agglomerates, using χ values estimated from Equations (52)
and (53), assuming χ ≈ χt ≈ χv and dpp of 33 nm. The slope
of this log-log plot is the fractal dimension, assuming that ρp is
constant and that the mass-mobility relationship holds over the
whole range of conditions.

with the transition to the large Npp regime can be interpreted
as being due to fractal aggregates with fewer primary particles
filling a larger fraction of the volume around their center of mass
than aggregates with much larger Npp. However, note that this
analysis is combining the mass-mobility relationship with val-
ues of χ determined via light scattering, and both approaches
may not be fully consistent in their determination of the fractal
dimension (Wang and Sorensen 1999; Van Gulijk et al. 2004).
Thus this result has some uncertainty, and further research in
this area is needed.

Alternative Method of Estimating Df

An alternative method for estimating D f (for values of 2 or
larger) can be derived using the results of Rogak et al. (1993) and
Schmidt-Ott (1988). For D f ≥ 2.0, we can use Equations (47)
and (51) to write

dva = C ′′′

d D f
pp

d
D f −2
m . [56]

If we further assume that the primary particle diameter is a con-
stant value, then Equation (56) simplifies to

dva = D′d D f −2
m . [57]

Here D′ is a constant. This implies that for a D f of 2, dva is
a constant. Values of D f larger than 2 can be determined by
plotting dva versus dm on logarithmic axes (D f is the slope of
the resulting line). A recent paper by Van Gulijk et al. (2004)
reports a similar result. For D f less than 2, these authors state
that fractal dimension cannot be determined based on a dva and
dm measurement. They state that for fractal dimensions less than
2, the interior spherules are no longer shielded by spherules on
the exterior; consequently, drag and mass are simply functions
of the number of primary particles and scale together. If that
is the case, dva and dm measurements would not contain the
information needed to determine D f when this parameter is less
than 2. This point is addressed further in the interpretation of
the results from the companion article (Slowik et al. 2004).

CONCLUSIONS
Particle size measurements are expressed in terms of “equiv-

alent diameters” that are influenced by physical morphology
(shape) and density. In this work, these effective diameters are
related within an analytical framework, allowing constraints to
be placed on the relationships between the equivalent diameters,
density, and shape (in the form of the dynamic shape factor). This
framework allows important particle properties such as mass and
volume to be estimated from a combination of diameter mea-
surements.

Mobility and Aerodynamic Diameters
For irregular particles, the mobility diameter (dm) is always

larger than the volume equivalent diameter (dve). The aerody-
namic diameter (da) depends on particle density (ρp), while dm
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does not. For irregular particles of standard density, da is always
smaller than dve. For a given particle, the value of the aerody-
namic diameter is not unique (even for spheres), but asymptoti-
cally approaches the values of dca and dva in the continuum and
free-molecular regimes, respectively. The dynamic shape factor
also depends on flow regime. Also, dm depends on the pres-
sure at which the measurement is performed for nonspherical
particles.

Information from Measurement of dm and dv a

Measurement of both dm and dva allows constraints to be
placed on the relationships between the dynamic shape factor,
particle density, and particle mass. The particle density can be
derived from dm and dva for spherical particles. For nonspherical
particles, these properties remain undetermined in the absence
of additional measurements. When two additional independent
measurements are available (or assumptions are made), the equa-
tions can be solved to obtain dve, ρp, and the dynamic shape
factor in the transition and free-molecular regimes (χt and χv ,
respectively).

Effective Density and Particle Mass
Various definitions of effective density found in the litera-

ture have been discussed and shown to be numerically different.
Consequently, intercomparison of effective densities from dif-
ferent studies should only be done with values calculated in the
same manner. Using the relative closeness between the effective
densities, ρ I

eff and ρIII
eff , and the assumption χt ≈ χv , an expres-

sion is derived to estimate any submicron particle mass within
about a factor of 2 based solely on measurements of dva and dm .
This assumption will introduce some error, and further research
on this topic is needed.

Fractal Aggregates
An extension of theoretical calculations by Wang and

Sorensen (1999) for fractal aggregates is used to estimate dva

if density is known (or can be estimated) and the corresponding
dm as a function of Npp. These calculations predict two distinct
values of the fractal dimension based on the mass-mobility rela-
tionship and depending on the size of the aggregate. For an aggre-
gate with Npp ≤ 60, D f ∼2.46, while for Npp ≥ 60, D f ∼ 1.79.

These values of the fractal dimension are consistent with those
observed for some types of combustion-generated soot (Park
et al. 2003; Slowik et al. 2004). Using the results from Rogak
et al. (1993) allows for estimation of aggregate mass and frac-
tal dimension for aggregates with a D f ≥ 2.0 solely from the
measurement of dva and dm .
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APPENDIX A
This appendix gives the general method for calculating χc

and χv from the results of Dahneke (1973a, b). This allows the
comparison of the dynamic shape factor in the continuum and
free molecular regime presented in section “Relationship of χ

to Flow Regime” above.

Method for χc Calculation from Dahneke’s (1973a)
Formulation

The drag force in the continuum regime is described in
Dahneke (1973a) as

F = −c0µLcV, [A1]

where c0 is the resistance parameter, µ is the gas viscosity, Lc

is the characteristic length of the body, and V is the relative
velocity of the body with respect to the gas. The dynamic shape
factor is defined in Equation (15) and can be calculated from the
parameters of the Dahneke formulation as

χc = cparticle
0 · Lc

csphere
0 · rve

. [A2]

Here Lc is the characteristic length of the body and rve is the
radius of a volume equivalent sphere. Dahneke (1973a) reports
measured and calculated values of the orientation-averaged c0

for discs, cylinders, spheroids, and cubes. By determining rve as
a function of Lc for these simple geometric shapes, χc can be
calculated.

Method for χv Calculation from Dahneke’s (1973b)
Formulation

Calculated values of free molecular drag are given in
Dahneke (1973b) in terms of dimensionless drag, c∗:

c∗ = − F · Kn

µ · Lc · V
. [A3]

The dynamic shape factor can be calculated from the parameters
of the Dahneke formulation as

χv = c∗
particle · Lc · R

c∗
sphere · r2

ve

. [A4]

R is the equatorial radius or semiaxis, and rve is the radius of a
volume equivalent sphere. For a cube both Lc and R are equal to
the length of the side, s. Equation (A4) can be used to calculate
χv from results of c∗, if the radius of a volume equivalent sphere
can be expressed as function of Lc and R.

Dahneke (1973b) reports calculated values of the orientation-
averaged c∗ for discs, cylinders, spheroids, and cubes.

Calculation of rve for Different Regular Particle Shapes
Calculating rve for a Spheroid. In the Dahneke formula-

tion the fundamental dimensions of a spheroid for use in Equa-
tion (A4) are:

Lc = polar semiaxis (a),

R = equatorial semiaxis (b).

From these quantities the volume of the spheroid can be calcu-
lated in the following manner:

V = 4

3
πab2. [A5]

It follows that the radius of a volume equivalent sphere is given
by

rve = (ab2)1/3. [A6]

Calculating rve for a Cylinder. In the Dahneke formula-
tion, the fundamental dimensions of a cylinder for use in Equa-
tion (A4) are

R = radius of cylinder (rc),

Lc = half height of the cylinder (h/2).

The volume of a cylinder is calculated in the following manner:

V = πr2
c h. [A7]

Hence, rve is given by

rve =
(

3

4
r2

c h

)1/3

. [A8]

Calculating rve for a Cube. The fundamental dimensions of
a cube for use in Equation (A4) are

R = Lc = side of a cube(s),

V = s3. [A9]

It follows that rve is given by

rve = s

(
3

4π

)1/3

. [A10]
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APPENDIX B
The effect of water on particle size measurements is often

a concern. The AMS and similar instruments based on low-
pressure aerodynamic lenses are subject to significant losses
of water in the low-pressure inlet region. (However, losses of
semivolatile species such as ammonium nitrate are generally
very small). For this reason it is desirable to dry the particles
before they reach the lens, so that the particles do not change
between the DMA and AMS measurements. Here we present an
estimate of the effect of addition of water to a spherical particle
on the measured value of dva as a function of particle density.

Figure B1 shows estimates of “wet” dva calculated using
Equation (31) by continuously adding water to a spherical par-
ticle of a given density (assuming volume additivity). Figure
B1 illustrates that for typical ambient aerosol particle density
(∼1.5 g cm−3, e.g., Zhang et al. 2004a), or for ammonium sul-
fate or ammonium nitrate particles (with densities of 1.78 and
1.72 g cm−3, respectively); the addition of water to the particle
has only a ∼10% or lower effect on the measured dva for a par-
ticle where the mass of water is up to 3 times than the mass
of dry material. This phenomenon is explained by the increase
in particle volume being closely compensated by the decrease

Figure B1. Ratio of wet to dry vacuum aerodynamic diameters
for spherical particles, as a function of water uptake, and for
several initial particle densities.

in particle density in Equation (31) in this article. In essence,
this means that the measurement of dva for a sulfate or nitrate
dominated ambient aerosol particles is not highly sensitive to
the amount of water in the particle.




