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We consider the motion of a sphere or a slender body in the presence of a plane
fluid—fluid interface with an arbitrary viscosity ratio, when the fluids undergo a linear
undisturbed flow. First, the hydrodynamic relationships for the force and torque on
the particle at rest in the undisturbed flow field are determined, using the method
of reflections, from the spatial distribution of Stokeslets, rotlets and higher-order
singularities in Stokes flow. These fundamental relationships are then applied, in
combination with the corresponding solutions obtained in earlier publications for the
translation and rotation through a quiescent fluid, to determine the motion of a
neutrally buoyant particle freely suspended in the flow. The theory yields general
trajectory equations for an arbitrary viscosity ratio which are in good agreement with
both exact-solution results and experimental data for sphere motions near a rigid
plane wall. Among the most interesting results for motion of slender bodies is the
generalization of the Jeffrey orbit equations for linear simple shear flow.

1. Introduction

In this paper we consider the creeping motion of a sphere or a slender body in linear
shear and axisymmetric straining flows near a plane fluid—fluid interface. Previously,
we considered translation and rotation of a sphere when the fluids are at rest at
infinity (Lee, Chadwick & Leal 1979; Lee & Leal 1980), and, in Part I of the present
pair of papers, the same problem was solved for a rigid, straight slender body (Yang
& Leal 1983). Although the quiescent-fluid problem is of some intrinsic interest, and
is a logical starting point for investigation of particle motions near a fluid interface,
many problems of practical significance involve particle motions in a mean flow at
infinity (cf. Goldman, Cox & Brenner, 1967 a, b; Goren & O’Neill 1971 ; Spielman 1977 ;
and references therein). This is true of boundary effects in the rheology of dilute
suspensions, theories of Brownian motion near a phase boundary and the development
of trajectory equations to model the ‘collection’ of very small particles at the surface
of larger bubbles or drops in flotation processes (cf. Dukhin & Rulev 1977).

The majority of previous analyses of creeping particle motion near a flat wall or
interface were restricted to spherical particles, and utilized separation of variables
in bipolar coordinates; cf. Jeffery (1912), Brenner (1961) and Lee & Leal (1980) for
motion in a quiescent flow. Goren & O’Neill (1971) used the same approach to consider
the motion of a sphere in simple shear flow near a solid, plane wall, and, more recently,
Dukhin & Rulev (1977) considered a sphere on the axis of symmetry of a pure
straining flow near a gas—liquid interface. An alternative approach, which is essential
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if the particles are not spherical, is to construct solutions using spatial distributions
of fundamental singularities. This approach has been known since the pioneering work
of Lorentz (1907). Recently, fundamental solutions were developed for a point force
and higher-order singularities near a fluid-fluid interface by a generalization of the
Lorentz analysis, and used to solve for the creeping motion of a spherical particle
when the fluids are at rest at infinity (Lee et al. 1979). The same basic method has
also been applied, in a slender-body approximation, to investigate the translation and
rotation of a straight, rigid slender body through a quiescent fluid (Fulford & Blake
(1983) for translation with the particle axis either perpendicular or parallel to the
interface; Yang & Leal (1983) for translation and rotation with an arbitrary
orientation). ,

In this present work we use the singularity method to study the hydrodynamic
interactions between either a sphere or a straight, rigid slender body and a flat
fluid—fluid interface in linear flows that are compatible with the presence of a plane
interface. The solutions we obtain provide the hydrodynamic ‘resistance’ tensors that
define the relationships between the force and torque on the particle at rest in the
flow field, the undisturbed flow parameters such as strain rate or shear rate, and the
translational and angular velocities of the particle. These fundamental relationships
are then used to calculate the particle trajectories in simple shear and axisymmetric
straining flows.

2. Basic equations

We begin by considering the governing equations and boundary conditions for a
rigid particle (i.e. sphere or slender body) at rest near a flat fluid—fluid interface of
two immiscible fluids | and 2. The particle is assumed to be in fluid 2, and the
undisturbed velocity field is given in the form:

U, = E*x for pure straining flow (la)

or 01 = —jil"x, 02 =TI'x forsimple shear flow, (1b)

in which A(= g,/u,) is the viscosity ratio of the two fluids, U, is the undisturbed
velocity field in fluid (= 1,2), and x denotes a position vector measured from an
origin that is placed at the interface. These undisturbed flow fields are depicted in
figures 1(a, d), and are consistent with the existence of a flat interface at which the
normal components of velocities are identically zero (i.c. U+n=0). The linear
operator £ for an axisymmetric extensional flow takes the form

'E 0 0
E=|o0o E o |
0 0 —2E

while that for a linear simple shear flow parallel to the interface is

(0 0 I,
T=|0 0 TI,l

0 0 0

Here, £ and I';; (j = 1, 2) are usually denoted as the strain rate and shear rate
respectively.
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Fraure 1. Coordinate system with an interface in the (z,, z,)-plane and description of decomposed
problems: (a) a sphere in the pure straining flow 0; = £*x; (b) a uniform streaming flow 0, = £ Xp
past a stationary sphere at x,,; (c) a sphere at the stagnation point x,, of the pure straining flow
U,=E *(x—xg); (d) a sphere in the simple shear flow U, = (u,/u,) I'"x; (¢) & uniform streaming
flow 0, = I~ Xp past a stationary sphere; (f) a sphere at the stagnation point x, of the simple shear
flow U; = " [(;/pz) X —X,)-

In the present problem the Reynolds number is defined by

Re = Zle (Or 53_z2>

Vy Vo

where [, is a characteristic lengthscale of the particle (i.e. either the sphere radius
a or the half-length [ of the slender body), and v, represents the kinematic viscosity
of fluid 2. We assume that the Reynolds number is sufficiently small (i.e. Re < 1) that
the motion is quasi-steady and the creeping motion approximation applicable. The
equations of motion therefore reduce to steady Stokes equations in both fluids.
Further, the linearity of the Stokes equation enables us to decompose the undis-
turbed flow field U; = L;*x into a constant vector (i.e. a uniform streaming flow,
figures 15, e),

0,=L,x, 2a)
and a linear part with vanishing velocity at the body centre (i.e. figures 1¢, f),
O, =L x—Ly,x, (2b)

Here L; denotes either the strain-rate tensor £ in each fluid, or shear-rate tensors
(#4/ po) I for ¢ = 1 and 2. The Stokes’ problem for U, = L, x, of (2a), which is simply
a translation of the fluid system including the interface past a stationary particle, is
precisely equivalent to the problem of particle translation with velocity —L,x,
through a quiescent fluid with stationary interface (cf. figures 1b, e). A complete
detailed solution is available for this problem for both a sphere and a slender body
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from Lee et al. (1979) and Yang & Leal (1983), who determined the relationship
between the hydrodynamic foree F and torque T on the body and the translatioral

velocity F=—KyLyx, T=-—KgLx, (3a. b)

where K and K denote the translational and coupling tensors respectively.

It thus remains only to solve the problem for the linear undisturbed flow
U,=L; x-L, ‘X, with U, = 0 at the body centre (cf. figures 1¢, f). We define, for
convenience, a disturbance velocity field u as the difference between the actual
velocity @ in the presence of the particle and the undisturbed flow, i.e.

u; =0 —{L;x—L,x,} (t=1,2).

The equations of motion for the disturbance velocity field are

vp, =LV, Veu,=0 (i=1,2), (4a, b)

2
in which the variables may be considered to be non-dimensionalized with respect to
the characteristic variables I, = a (orl), t, = 1/KE (or 1/I;5) and p, = p, K (ot py I',).

Thus, for the following analysw the non -dimensionalized Variables such as the
hydrodynamic force F and torque T, and the translational and angular velocities
of the body, U and £, are based on the corresponding characteristic variables, i.e.
F, = p, BIE (or py Iy 12), T, = py BT (o1 gy Ty 3), U, = Bl (or I',1.) and Q, = E (or
I';;) respectively. The boundary conditions for u, and u, in this disturbance-flow
problem are u, u,>0 as|x|>o0, (5a)
u,=—L, (xg—x,) onxgeSs,, (6b)

plus the interface conditions (i.e. continuity of velocity and tangential stress and zero
normal velocity). In (5b) x5 denotes a point on the body surface S,. From the point
of view of (4) and (5), the problem is seen to be exactly the same as if a velocity field
u,(xg) = —L," (xg—x,) is generated at the surface of a body that is near a flat
fluid—fluid interface in a fluid at rest at infinity.

For a spherical particle we consider the asymptotic limit

8=§<L

in which d is a separation distance between the sphere centre and the interface. In
this case, the singularity method can be reduced to the superposition of fundamental
solutions for a point force a (i.e. Stokeslet), a potential dipole # and higher-order
singularities (e.g. a stresslet, a rotlet, a potential quadrupole, etc.) at the sphere
centre. Fundamental solutions of the creeping-motion equation for a point force (and
higher-order singularities) can be obtained easily from the corresponding solutions
in an unbounded fluid by following the prescription of Lee et al. (1979). The
fundamental solutions automatically satisfy the conditions of velocity and stress
continuity, as well as zero normal velocity at a flat fluid interface, plus the boundary
condition (5a) of vanishing velocity in the far field (cf. Lee et al. 1979). All that
remains is to determine the combination of these singularities at the sphere centre
x,, that satisfies the boundary condition (5b). In particular, we must determine the
densities and orientations of these singularities so that the disturbance velocity u,(x)
is at least approximately equal to —L,*(xp— X)) at all points of the sphere surface.

For a slender body the problem of particle motion near an interface (i.e. the
disturbance-flow problem) (4) and (5) can be solved using the slender-body theory
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of low-Reynolds-number flow (Batchelor 1970; Fulford & Blake 1983; Yang & Leal
1983; and others). In this approach, the disturbance flow produced by the body is
approximated by a line distribution of Stokeslets and potential dipoles along the body
centreline (rather than a superposition of higher-order singularities at one point x
or a surface distribution of Stokeslets), and the orientation and strength of these
singularities are determined in order to satisfy the boundary condition (5b) to an order
of approximation O(e?), where € = (In 2«¢) ! and « is the axis ratio of the slender body.

The complete solution for a particle located at arbitrary point x, in a linear flow
field U, = L,* x near a flat interface is obtained by superposition of the corresponding
solutlon for the linear flow U, = L,*x—L, ‘X, with U, = 0 at the body centre, and
the solution (i.e. (3a, b)) for the unlform streamlng flow U = L,"x,,. In the theoretical
analysis that follows, we consider the hydrodynamic force and torque acting on a
stationary particle (sphere or slender body) in the presence of both an axisymmetric
uniaxial extensional flow and a linear shear flow. These results are then used in §5
to calculate the trajectories of a freely suspended sphere or slender body in the same
flows near a fluid—fluid interface.

3. Solutions for a spherical particle
3.1. Pure straining flow

We begin with the creeping motion of a fluid in the vicinity of a stationary spherical
particle that is located at an arbitrary point x, = (x,, Z,,, —d) in fluid 2 when the
undisturbed motion is an axisymmetric uniaxial straining flow (1) with origin at
the particle centre. Here we utilize the disturbance-flow formulation defined by (4)
and (5), and consider only the limit § = a/d < 1.

Since & < 1, the most convenient solution technique is the method of reflections, as
was also used and explained in some detail by Lee et al. (1979) for the uniform-
streaming problem. The zeroth-order approximation in this procedure (u{,p{?)
is the single-fluid unbounded-domain solution which satisfies boundary conditions
exactly at the sphere surface. The problem of a spkere in an axisymmetric straining
flow, U = E-(x— x,,) for an unbounded single fluid was solved by Chwang & Wu (1975),
who showed that a potential quadrupole (&, v) and a stresslet (p, #) of the forms

St’reSSIEt (ps ﬂ) = (%83, e3) H
potential quadrupole (o6,v) = (le,, e,)
were required at the sphere centre to satisfy the boundary condition (5b) at the sphere

surface. Thus the zeroth-order (i.e. unbounded single-fluid) solution in the method-
of-reflections expansion can be written as

1] @
U (x) = 5[@"1)(-"»%? ;) +5ugg(x, X, 5 €5, es)] ; (6a)
3
P (x) = §pgs(x, X, €5, €5). (6b)

Here up(x, x,,; B), ugs(x, x,,; p, ) and pgg(x, x,; p, #t) denote the fundamental solutions
for a potential dipole # and a stresslet (p, #) located at x,, in an unbounded fluid, cf.
Chwang & Wu (1975).

Though u{¥;x(x) of (6a) exactly satisfies the boundary condition
uy(xg) = —E*(xg—x,)

at all points on the sphere surface, it does not satisfy the conditions at the flat
interface. However, Lee et al. (1979) have already shown that in the reflections method
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the first correction (u{"’, p{!’) for the presence of the interface can always be obtained
by simply utilizing the same form (6a,b) as in the zeroth-order solution, but with
the fundamental solutions uy), #gg and pgg (for an unbounded fluid) replaced by the
corresponding fundamental solutions in the presence of the flat interface, obtained
by the simple transformation rule of Lee et al. This yields (u{” +u, p{® + p{M). The
first ‘wall correction’ can then be obtained by subtracting the zeroth-order solution
), p):

1{ @
08) = 5|l . )~ Xy )

+5{u2 SS(x’ p7e3>e:3) uSS(x’xp;eIi’ea)}jI’ (7a)

17 0
POE) = 5 5, 0, 3 €a) + 5B, 5, K 00—l Xy e | (T)
3

where we have denoted the resulting fundamental solutions in the presence of
the interface as u, p and u, g5 respectively. Although the combined solution
(® +uld, p© + p{D) satisfies the interface boundary conditions, it now does not
satisfy the condition u,(xz) = —E*(x¥g—x,), and additional singularities are needed
at the centre of the sphere that cancel the ve]omty -field correction u{V(x) at the sphere
surface Xp; namely the interface ‘reflection’ of the potential quadrupole
(6,v) = (le,;,e,) and the stresslet (p,#t) = (3e,,e,), which is non-zero at the sphere
surface.

Since the detailed form of u{(xg) is highly complicated, it is not possible to
determine singularities at the sphere centre that precisely satisfy the boundary
condition (5b) at all points on the sphere surface. Instead, we choose singularities to
cancel only the first few terms of u{V (xy) at the sphere surface, with #{’ (x) expanded
in powers of & for § = a/d < 1. The leading terms of #{" near the sphere, for small
d, are in component form,

» D%, 1+2A 3%, 1427

1) = - (1 —
3 16 Toa OO, v =0T

A

w) = — g2 156 2113/\ — o3 21112; (@, +d) + O(89), (8¢)
where the subscript 2 denotes the velocity components in fluid 2. It can be seen from
(8a—c) that the presence of the interface will induce a steady streaming flow at O(d?)
normal to the interface, and an axisymmetric uniaxial extensional flow at 0(d%) with
a stagnation point at the sphere centre. The singularities required to cancel this
additional velocity field at the sphere surface can be readily evaluated, and the
resulting solution for a stationary sphere near a flat interface in the pure straining
flow, O, = E+(x—x,), is as follows:

0(8%), (8a,b)

5[32+3A 2+ 3A\2
uz(x,xp)—_-g[g 1‘:/\ 62 (g- IJ:L /1) 83+0(84)}u2‘5(x,xp;e3) (Stokeslet)
5 A 3243
+z [g 21_:_:); (8 1-:_ /\/\ ) 33+0(84)jl U, p(x,x,; —i€;) (potential dipole)
5 1
+—[1 +1_56 72—2%83+0( )Juzyss(x,xp;e_.,,es) (stresslet)

1, 5 142 4] d :
+2[1+16 1+/\ +0(8%) ax3u2’D(x’xp’ s)  (potential quadrupole). (9)
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Now let us turn to the original problem of caleulating the force and torque acting
on a stationary sphere that is located at arbitrary point x, in fluid 2 which is
undergoing the axisymmetric uniaxial extension flow U, = E*x with origin at the
interface (i.e. figure 1a). As we show in §2, the hydrodynamic force and torque exerted
in this case can be determined by a superposition of the force and torque for a uniform
streaming flow with translational velocity 0, = E*x_ and for a uniaxial straining flow
O, = E*(x—x,) with stagnation point at the sphere centre. The force and torque in
the latter case can be evaluated directly from the strength of the singularities in the
solution (9). The result is

F=—KT'E'xp—5n[§62

243 (. 2+3A
T+A (8 1+)l> 6]e3+0(34)’ (10a)

T=—KyE-x,+0(). (10b)

The components of the translation and coupling tensors Ky and K were determined
up to O(d%) by Lee et al. (1979) for motion of a sphere near a plane fluid—fluid interface.
The O(6%) terms in the components of the hydrodynamic tensors, K and K, which
are necessary to be compatible with the inclusion of O(8%) terms in (9), can be
evaluated by expanding the corresponding wall correction u{’(x) up to 0(6?) and
superimposing the fundamental solutions for singularities in order to cancel the
interface reflection at the sphere surface at the same level of approximation 0(83).
The resulting non-zero components of the hydrodynamic tensors Ky, K are given

by

Ky = 6n[1+2( 53— 2) 1+22

aﬁ}+0(s4), K=Ky, (lla,b)

T+ “16(1+A)
2+3A 14+4A
3 = 3
R GR[H,,Z ( 1+/\) 8(1+/\)8]+0(6\4)’ (11c)
3n 1 3A—2
2__ 2 " 1o _ 2
K = S0 | e T [fo0n, ana KR =K. (11d, )

Here the terms in the summed series,

3A—-2 . A ( 2+3/\) . 3
( 81+)\> in K3} and 81+)‘ in K33,

are the corresponding nth reflections to the terms O(d) in the first wall corrections
u{P(x), and the summed series continue beyond 0(6%). The terms of 0(8?),

1+22 o . N 1+4A o . .
_m(? anlT and —ma IDK%‘,
result from the correction terms of O(4%) in u{V(x), which represent a paraboloidal
velocity field with origin at the sphere centre and a steady streaming flow, both either
parallel or normal to the interface. The term O(d%) in K} or K% is associated with
the reflected simple shearing flow of either the O(d) term in u{V(x) for translation
parallel to the interface or the O(d?) term in u{*(x) for rotation with axis of rotation
parallel to the interface.

Dukhin & Rulev (1977) determined the drag force on a small solid sphere
located at the axis of symmetry in an axisymmetric uniaxial extensional flow
U, = E*x, near a gas-liquid interface (i.e. A >0), using the eigensolutions of Laplace’s
equation in bipolar coordinates. It is a simple matter to calculate the drag force F,
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Fioure 2. Drag ratio for axisymmetric extensional flow relative to Stokes drag in an unbounded
fluid as a function of the dimensionless distance d between the sphere centre and the interface;
02 =E'x: ,A=00;— 1, ———— , 0; O, corresponding exact-solution results (A = 0) of
Dukhin & Rulev (1977).

on the sphere from the present asymptotic solution (10a) with x, = (0,0, —d). The
drag ratio (the drag F, divided by the Stokes drag 12nu,adE) is simply given as
L 3 2430\ 1444 5 ¢ (3 2+3/\)”

dra,gra,tlo—1+nf‘;,l(%8 1+A) SA+ ) 12&3516 88—1_*_/\ +0(8%). (12)
In figure 2 the drag ratio (12) is plotted as a function of d, the distance between the
sphere and the stagnation point, for three values of A = 0, 1 and co. Also shown for
comparison is the corresponding exact solution of Dukhin & Rulev (1977). There is
very good agreement between the two solutions, except in the region near d = 1. As
expected, the difference between the two results becomes larger as the sphere
approaches the interface owing to the poor convergence of the asymptotic solution
(12) in powers of 8. However, a detailed comparison shows that the maximum error
in the asymptotic solution (12), compared with the exact solution of Dukhin & Rulev,
is only 2.729, for d = 1.001, which is the smallest value considered by Dukhin &
Rulev, while the error for d > 1.5 becomes less than 0.98 %,.

3.2. Simple shear flow

Let us turn now to the case of a sphere located at an arbitrary point x,, in a simple
shear flow O, = (u;/u,) T'* x, parallel to the interface as shown in figure 1(d) (the case
in which U, = C % 0 at the interface can be treated by superimposing a uniform
streaming flow past a sphere, U; = C, with the simple shear flow U, = (u;/p,) T * x).
Again, the problem can be decomposed into a simple translation of the fluid system
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including the interface with velocity U, = I'* x, past the stationary sphere (i.e.
figure 1e) together with a linear shear ﬁow U, = ,ul/,uz )P*x—T*x, with U,=0at
the sphere centre (i.e. figure 1f). In view of the linearity of the problem and the
symmetry of the sphere-interface geometry, we need only solve the case of U, =
(pe;/p2) I'y5° x5 €,, corresponding to

0 o0 I,
L=T=|0 0 0 |, shear rate tensor.
0O 0 O

In order to analyse the velocity field for a sphere in the undisturbed flow
U, = I',[(#;/ ;) x;+d] e,, which vanishes at the sphere centre, we follow the pro-
cedure of §3.1 and solve the equivalent problem in which a velocity field u,(x) is
viewed as being generated in a quiescent fluid by a non-zero velocity distribution

uy(xg) = —I'5((xp); +d) e, (13)

at the surface of the sphere. As in the preceding analysis, we use the method of
reflections, with the solution in an unbounded fluid taken from the work of Chwang
& Wu (1975), who showed that the condition (13) was satisfied by superposition of
a stresslet, a rotlet and a potential quadrupole at the centre of the sphere, i.e.

stresslet (p, ) = (—32,e,,¢,),
rotlet y=—1l",e€,,
potential quadrupole (6,v) = (—1il,,e,.¢e,).

As in the preceding example, the first correction for the presence of the interface
in the reflections expansion can now be obtained easily from Chwang & Wu’s solution
by simply replacing the fundamental solutions ug, ¥, and ugg (Which pertain to an
unbounded fluid) with the corresponding fundamental solutions u, g, u, 1, and 4, g
that satisfy boundary conditions on the flat interface (and are generated using the
procedure of Lee et al. 1979). The result is the first two terms in the reflections
expansion, i.e. (@ +ull, p® +p). Subtracting the zeroth-order (Chwang & Wu
1975) solution, we get

19
udP(x)=—"ry, [%"2, ss(X, Xy €, €3) +iu, g(x, X5 €,) +66};“2, p(X, Xp; el)] —u{?(x).
(14)
Although the combined solution (#{ +u{, p{® + p{V) satisfies the boundary con-
ditions at the interface, the boundary condition (13) on the sphere is not satisfied,
because the ‘reflected flow field’ u{V is non-zero at the sphere surface. Following §3.1,

we examine the leading terms of this reflected field at the sphere surface as a power
series in §:

5A—2 131—-1
W= g2 2077 3207 =
U 0 16(1_‘_/\)1’13+8 8(1+/\)F13(x3+d)+0(34)’ v 0(8%) (15a,d)
and
12+3A
() = 8=
w§ ) 3 (1+/\)r13x1+0(34) (15¢)

Thus, insofar as (15a—¢) are concerned, the presence of the interface is equivalent to
an induced steady simple shear flow at O(6%) either normal or parallel to the interface
and a steady streaming motion at O(4%) parallel to the flow field (i.e. e, direction).
In order to satisfy the condition (13), additional singularities are required at the
sphere centre. These can be determined following the procedures of Lee et al. (1979),

10 rLM 149
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as well as those of §3.1. The resulting solution, expressed in terms of the fundamental
solutions for a Stokeslet, potential dipole and higher-order singularities near an
interface (Lee et al. 1979), is

)[_3r A~ 232( —32—26>+0(64)} (Stokeslet)

ug(xaxp) = u2,S(x Xps e 13 A+1 16 1+A

svpo

-3, 5A—2 3 2-32
L1 13 2 2 4 ‘ . .
+uy p(x, Xp; 381)[ 64 1+A (1 TREYY 3>+0(6‘ )] (potential dipole)
5I 114+6A
+u, s5(x,x,5€, €,) 613[—1—-— A 83+0(34)} (stresslet)
AU 8%+ O 1

+u, (X, X,;€,) 5 > | “1tgTadt (84| (rotlet)

0 I, 13A— 0 I',2+3A

_— —_— 3 13
+ax3u2,D(x,xp,el) 6 { 1 S1ra 3] awluz’p(x,xp, e,)—= 18 T30 -
+0(8*) (potential quadrupole). (16)

From this solution and (3a, b), we can easily determine the hydrodynamie force
and torque exerted on a sphere located at an arbitrary point x, in the simple shear
flow U; = (u;/p,) T+ x, with U, = 0 at the interface. This result is

F=—KyTx,+Ksp'&,, T=-KTx,+Ksp&,, (17a, b)

in which & is defined by &, = (I3, 23,0), and the non-zero components of the
hydrodynamic tensors Ky and Ky are given by

3nHA—2 3 2-—-3A
k=302l 222800, K=Ky, (sab
Ky =—anf1—5 | vow, K=Ky (18¢. d)

The drag ratio (the drag divided by the Stokes drag —6nru, I}, da) is simply given
as

3 2—3A\* 1+42A
L _1\n{ 3 - 3
drag ratio 1+n2=1( 1) (163 1+/1) 16(1+,1)6
1 ,2- 5/1[ 02— 3/\}
+162% T 0Ty |06, (19)

where we have again adopted &, = ({73, 0,0) with no loss of generality.

For a simple shear flow parallel to a rigid plane boundary, Goren & O’Neill (1971)
calculated the hydrodynamic force and torque on a sphere, using the eigensolutions
of Laplace’s equation in bipolar coordinates developed by Jeffery (1912). In figure 3
the drag ratio (19) is plotted as a function of d, the distance between the sphere
and the interface, for three values of A = 0, 1 and co. Also shown for comparison are
the corresponding drag ratios determined by Goren & O’Neill. As mentioned
previously, we presume & < 1 in the derivation of (19). Thus for § € 1 (i.e. d » 1) the
asymptotic solution (19) coincides almost exactly with Goren & O’Neill’s result, which
is the exact solution for the simple shear flow parallel to a solid wall. Even ford ~ 1.5,
the approximate solution shows reasonably good agreement with the exact solution.
Indeed, the relative error is within 2.6 %, for d > 1.5. Wakiya (1957) considered the
case of a sphere in a linear shear flow between two rigid parallel flat planes (i.e. A - o0),
in which one plane is held stationary and the other is moved parallel to itself under
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F1aURE 3. Drag ratio relative to the drag in an unbounded fluid as a function of the dimensionless
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————— ,0; A, corresponding exact-solution results of Goren & O’Neill (197 1) Q, data of Waklya
(1957) for two parallel plates.

the assumption that the motion of the sphere is parallel to the walls. Wakiya
determined the drag and torque on the sphere located at a distance d from the
stationary plate and 3d away from the moving plate, using the general method
developed by Faxén (1921). The drag ratios calculated asymptotically by Wakiya
for the limit & <€ 1 are also shown in figure 3. As might be expected, Wakiya’s results
converge to the asymptotic solution, (19) with A > c0, as the distance d is increased,
since the effect of the moving plate becomes negligible compared with the effect of
the stationary plate with increase in the distance.

The hydrodynamic torque on a sphere in the flow U, = (4;/u,)T*x can be
evaluated from (175), and is equal to

1 2 3A

This is the negative of the torque that is required to keep the sphere from rotating.
It can be compared directly with the corresponding results from Goren & O’Neill’s
exact solution for a single rigid wall and from Wakiya’s asymptotic solution for two
parallel plates with the same sphere location (i.e. d away from one plate and 3d away
from the other). There is good agreement between the asymptotic solution (20) and
the exact solution of Goren & O’Neill (1971) in the region of § € 1, though it can be
noted from (20) that, when A — o0, the interface contribution to the torque T is zero
through 0(d%). Although the discrepancy between the two solutions becomes larger
as § 1, it still remains relatively small (e.g. the relative error at d = 1.01 is only
5.84 %, and the error is within 3%, for d > 1.5). As expected, Wakiya’s solution also
approaches the asymptotic solution for A — oo as the distance d is increased. However,

10-2



286 S.-M. Yang and L. G. Leal

for the two-parallel-plate case the torque is increased in magnitude by the presence
of plane boundaries in contradiction to the single-wall case.

In this section we have determined the solutions of Stokes’ equations for a sphere
at rest at an arbitrary point either in a pure straining flow or in a simple shear flow
near a fluid—fluid interface with an arbitrary viscosity ratio. We shall turn shortly
to the application of these solutions for trajectory calculations. First, however, we
consider corresponding solutions for a rod-like slender body.

4. Solutions for a slender body

Let us turn now to the case of a rod-like slender body whose centre is located at
an arbitrary point x, near an interface in the presence of a linear undisturbed flow
field (pure straining or simple shear), U, = L,*x with origin at the interface. The
slender body is assumed to be at rest and completely immersed in fluid 2 with an
arbitrary orientation which can be expressed in terms of Euler angles # and ¢ relative
to the interface. For present purposes, we define 6 as the oblique angle between the
body axis and the interface, while ¢ is a subtended angle between the (2, z;)-plane
and the plane defined by the body axis and vector e, normal to the interface (cf.
figure 4). At the outset, we assume that the body is oriented with arbitrary oblique
angle 6, but that ¢ = 0°. Thus, the projection of the body axis onto the interface
exactly coincides with the a; axis. The solution for an arbitrary ¢-orientation can
be simply obtained from the case of ¢ = 0°, by use of an orthogonal rotation tensor

Q defined by cos¢ sing 0
0=[—sin¢ cos¢ 0.
0 0 1

4.1. Pure straining flows

Now let us turn to the case of a slender body held with its centre fixed at an arbitrary
point x,, in a uniaxial axisymmetric extension flow U, = E- x with stagnation point
at the interface. The problem can be treated, as in the case of a sphere, by
decomposing the undisturbed flow into a simple translation U; = E*x, past the
slender body and a linear flow U, = E* (x — x,) with stagnation point at x,. The simple
translation problem was treated in Part 1 of this series. Here we solve the problem
with undisturbed flow U, = E- (x—x,). For this purpose, it is convenient to
consider the equivalent problem in which the body generates a velocity field
Uy(xp) = —E*(xg—x,) at the body surface, i.e. we solve

—Er(xp—xp) = | 1000~ }Bx) VI blxa, 5 dE, 21

in which §(xg, x;) denotes the Cartesian tensorial Green function for a unit point force
located at x (cf. Yang & Leal 1983).

The integral (21) cannot be solved exactly (except in a numerical sense), but can
be solved approximately by means of an asymptotic expansion for small 1 /k and R, /d,
where R, is the maximum radius of the body cross-section. By expanding (21) to
O(1/k, R,/d) with a(8) = (a,(£),0, () and () = (8,(£), 0, £,(2)), it can be shown
that the potential dipole strength f(x) and the Stokeslet strength a(z) must be related

according to
B(x) = —{ri(x) a(x) (22)

in order to satisfy the no-slip condition (56) at the body surface to O(e?).
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Fiaure 4. Orientation of a slender body in a simple shearing flow with the origin at the body
centre. The (x,, x,)-plane is parallel to the interface.

The simultaneous equations, which are obtained from (21) by substituting for f(x)
according to (22), can be solved by expansion of a(x) in powers of € for € € 1. The
use of an expansion in € to obtain an approximate solution of this type has been widely
reported (cf. Batchelor 1970) for motion of a slender body in a single unbounded fluid,
and was used by us in Part 1 for simple translation and rotation near an interface.
The resulting line distribution of Stokeslets, in component form, is

_ (1 +sin®#)cosd [ _gj( sin?f—3 _ >:|
a,(x) = B E—— 2S(x)+-———1+Sin26+U(x,/\,0,d)
and —1s8in?6 cosOx[e—Le2(28(x)+ 1+ X(x;A,0,d))] (23a)

oy(x) = 1 sind cos? Oxe—3e(28(x)+ 1+ Viz; A,0,d)))

cos2f—3

(14 cos?d) sind €2 )
+——-—2——x[6—§<28(.@)+m+ Y(z;A, 0,d))] . (23Db)
where 1
[/
Se) = lnl: ro(x)/ Ry :l

and 7y(x) is the radius of the body cross-section, which is a function of distance x along
the body centreline and has a maximum value of B;. Here U(x;A,8,d), X(x; A, 8,d),
V(z;A,0,d)and Y(x; A, 6,d) represent the effects of the interface on the slender body
and vanish as d > o0 (see Appendix} for specific formulae of these functions).

The net force and torque exerted on a slender body located at the stagnation point
in the undisturbed flow field U, = £ *(x—x,) can be evaluated simply from the
Stokeslet distribution and expressed in the following form:

F= —KPF.€p9 T= _KPT.ép! (240'» b)

t The Appendix is not reproduced here. A copy may be obtained gﬂ/}equest from either the
authors or the Editor of the Journal.
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where the vector £, = (1,1, —2), and the non-zero components of the hydrodynamic
resistance tensor Ky are

Kl = —e?n(1 +5sin? ) co:sé’J‘il xU(x; A, 6, d) dx + O(e?), (254a)
Ky = e2nsind cosﬂ?ﬁ_le(x; A, 8,d)dz+ O(e?), (25b)

1% = €*n cos @ sin? 6[1_1 xX(x; A, 0,d)dx+ O(e?), (25¢)
K35 = —e*n(l +cos?6) sinﬁfle(x; A, 6, d)dx+O(e?). (25d)

The tensor Kpy has the following non-zero components:
K¥, = edn sinf cos b [1 —e(ln2—%+g [(1+sin28) U(x;A,0,d)
-1
+cos?8 Vix; A, 0,d)] 22 dx)] +0(e®), (25¢)
K%, = —elnsinf cos [1 —-e:<1n2—lg‘=+gf1 [(1+cos?0) Y(x;A,8,d)
-1

+sin2¢9X(z;/\,e,d)]xzdx)]+0(es). (25f)

In figures 5 and 6 the force components F, and F, of (24a) are plotted as a function
of the orientation angle 8 for ¢ = 0.1883, which corresponds to k = 100, and d = 1.01
and 2.0. In each case we consider three values of A = 0, 1 and 0. In an unbounded
single fluid the net force on a particle at the stagnation point of a linear straining
flow would be zero. Obviously, in the case of a sphere, this parallel force component
is zero owing to the symmetry of the sphere. The existence of a non-zero force
component, F;, as shown in figure 6, was also found for the sphere. The force
component F, is always oriented away from the interface, and the magnitude is
increased as the viscosity ratio A becomes larger, which is exactly the same as for
the sphere (compare (10a) and figure 6). Thus a positive external force — ¥, would
have to be applied to the body to keep it from translating away from the stagnation
point x, of the flow regardless of the particle orientation and position, or the viscosity
ratio of the two fluids. It should be understood that, in this flow field U; = E* (x—x,)
of figure 1c¢, the interface translates with velocity — 2de, toward the stagnation point
x, at which the body centre is held fixed. This ‘interface motion’ can be viewed as
the source of both F] and F,.

The hydrodynamic torque, 7, of (24b), is non-zero even in an unbounded single
fluid, but is significantly modified in the presence of an interface. The torque 7, is
plotted in figure 7 as a function of the orientation angle #, for d = 1.01 and three values
of A =0,1 and o0. The corresponding result in an unbounded single fluid is almost
identical with the case A = 0. It is evident, since 7} &% 0, that a freely suspended
slender body (i.e. one with T = 0) would rotate in a direction that depends on A, and
on the orientation and position of the body relative to the interface (i.e. # and d).
For A = 0 and 1 there exist two possible equilibrium orientations, at which 7, = 0,
and this is also true in a single unbounded fluid. However, only one of these, 8 = 0°,
is stable, while the other, § = 90°, is unstable. When # = 0° the particle axis is parallel
to the interface. On the other hand, for A = co there exist two unstable equilibrium
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Ficurg 5. Dimensionless force, F|/e*u, EI* of (24a) as a function of the orientation angle 6;
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Ficure 6. Dimensionless force F;/e%u, EI* of (24a) as a function of the orientation angle 6;
U, =E"(x—x,), ¢ = 0.1887, S(z) = } In[1 —(z/1)?]: ,d =101 ——— 20.
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Froure 7. Dimensionless torque T,/eu, EI* of (24b) as a function of the orientation angle ;
02 = E'(x—xp), €= 0.1887, S(x) = In [t —(a/1)?],d = 1.01: LA=0;,——— 1;——— 0,
, unbounded-fluid case.

orientations corresponding to points 4 and B in figure 7, and two stable equilibrium
orientations with the particle axis either parallel or perpendicular to the solid wall.
The equilibrium orientation that would ultimately be attained in this case by a freely
suspended body depends on its initial orientation. It should be noted that the
qualitative features evident in figure 7 for A = oo (i.e. the existence of two stable and
two unstable equilibrium orientations) will occur whenever the viscosity ratio A is
larger than a critical value (e.g. A, = 3.273 for d = 1.01), for which the two unstable
equilibrium orientations overlap exactly at the perpendicular orientation (i.e. the
unique unstable equilibrium § = 90°). A detailed examination of (24b) shows that the
two unstable equilibrium angles, for a given viseosity ratio, are also shifted to 8 = 90°
as the separation distance d is increased. For example, for A - 00, the two equilibrium
angles 6, are 90° + 13.28° for d = 1.01 (which is the case illustrated in figure 7), but
become equal to 90° + 10° for d = 1.216, and eventually become coincident at 6 = 90°
for a critical distance d,. = 1.409, beyond which there exist only the two distinct
equilibrium orientations, § = 0° (stable) and 8 = 90° (unstable), independent of the
viscosity ratio A of the two fluids for a given ¢ = 0.1887.

In figure 8 the critical viscosity ratio A, is plotted as a function of the separation
distance for three values of the aspect ratio « = 20, 50 and 100, which correspond
toe = 0.2711,0.2171 and 0.1887 respectively. It can be seen that the eritical viscosity
ratio is increased, for any given distance d ( < d,), as the body becomes more slender,
while the critical distance d . is decreased (i.e. d_, = 1.876 for x = 20, 1.580 for « = 50,
and 1.409 for x = 100). Thus, for a given aspect ratio (or ¢), the condition for existence
of the two stable (¢ = 0° and 90°) and two unstable equilibrium orientationsis A > A,
for a distance d < d,. The implication of these somewhat complicated results for
trajectories of a slender body in an extensional flow will be considered later.
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Fieure 8. Critical viscosity ratio A,., as a function of the separation distance d for aspect ratios
& =20, 50 and 100; U, = E*(x—x,) and S(z) = §In [1 —(x/1)?].

The undisturbed straining flow U, = E*(x —x,) is axisymmetric around the x, axis
with origin at the body centre x,, and the magnitudes and directions of the total force
and torque therefore remain unchanged by rotation of the body around the x, axis
(i.e. they are independent of ¢-orientation). Indeed, the vector components of the
total force and torque for arbitrary ¢ can be obtained by simply using @K for
each tensor quantity K in (24a, b), which is the result for ¢ = 0° (i.e. the z, axis
coincides with the projection of the body axis onto the interface).

All of the preceding discussion is concerned with the force and torque on a body in
the flow U, =FE *(x—x,) with stagnation point at the body centre. In order to
determine the force and torque when the body is located at an arbitrary point x,
in the undisturbed flow U, = E*x, which is zero at the interface, the results of (24, b)
must be combined with the corresponding results from Part 1 for translation with
velocity —E-x,, i.e.

F=—KyEx,+Q " Kpe'€, and T=—KgE-x,+Q " Kpp'l, (26a,b)

The resistance matrices K and K were determined in Part 1 of this work (Yang
& Leal 1983). The hydrodynamic force and torque (26a, b) will be used to calculate
complete particle trajectories for the general flow U, = E*x in §5.

4.2. Simple shear flow

Finally we turn to the case of a slender body in the simple shear flow O, = (u,/u,) T* x.
A general solution for this problem can be obtained by superimposing the
results for a uniform translation with velocity U; = T*x, and a linear shear flow
with origin at the body centre, U, = I'*[(u,/ #y) x—x,]. Without loss of generality,
we assume that the particle is oriented either parallel to the plane of the flow (i.e.
¢ =0° U,=,[(n;/p;)x;+d]e,) or perpendicular to the plane (ie. ¢ =0°
U, = yyl(1,/ps) x;+ d] €,). The solution for an arbitrary ¢-orientation can then be
determined from the solutions for these two cases using the orthogonal rotation tensor
Q which transforms any arbitrary velocity components of U, parallel to the interface
to components parallel and perpendicular to the plane in which the particle is placed
(see figure 4).

First, we consider the case of a slender body with arbitrary @-orientation, but
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¢ = 0°, in the simple shear flow U, = I',[(#;/pt,) x5+ d] €,, which vanishes at the body
centre. The required Stokeslet and potential dipole distributions along the body
centreline to satisfy the boundary condition (5b) can be determined using the
approach outlined in §4.1. The result is

sin2f—3

€
=1 sin? i - il
a,(x) = —3(1 +sin?0) sin me[e 5 (2;5'(oc)+1 Ginif

+ U(z; A, 0, d)ﬂ +0(e?)
(27a)

and ag(x) = 1sin? 0 cos O I'j, x [e—3*(2S(x)+ 1+ V(x; A, 0,d)) |+ O(?). (27b)
From the Stokeslet distribution we can evaluate the hydrodynamic force and
torque on the body (i.e. figure 1f):

1
F,=—¢e'nsinf (14+sin*6) Flaj xU(x; A, 0,d) dx + O(e?), (28a)
-1

1
F, = e’m sin®6 cos b Flg‘f zV(x; A, 0,dydz+ O(e®) (28b)
~1
and

T,=¢€ln sinzﬁfw[l—-e(an—ls—l

1
+gf [(1+sin?28) U(x; A, 8, d)+ cos* 6 V(x;/\,(?,d)]xzdx)]+0(63). (28¢)
-1

In figures 9 and 10 the force components F, and F, of (28a, b) are plotted as
functions of the orientation angle 6 for d = 1.01 and 2. It can be noted from figure 9
that in the flow U, = I',,(x,+d)e,, with origin at the centre of the body axis, the
direction of the induced force F}, which is obviously zero in an unbounded single fluid,
depends on the viscosity ratio A with a degree of sensitivity that is a strong function
of the particle position and orientation relative to the interface.

The force component F,, which is very small compared with the parallel force F,
is a consequence of the asymmetry of particle-interface geometry for 6 =+ 0, 90°
(indeed, the force F, is zero for a sphere). The qualitative features of £, as a function
of the orientation angle & are, in fact, quite similar for all viscosity ratios A and
particle positions relative to the interface. Thus, for 0° < ¢ < 90°, the interface will
induce a translation away from the interface in the absence of an applied force — F,,
while the induced translation would be toward the interface for 90° < § < 180°.

Detailed calculation of the hydrodynamic torque 7, given by (28¢) shows that the
qualitative dependence of 7, on the orientation angle 6 is unchanged by the interface.
In fact, the effect of the interface becomes very weak when the orientation angle 6
of the body axis is in the range —30° < 8 < 30° (i.e. the effect of the interface on the
torque is significant only when one end of the body passes close to the interface).

We have already noted that the existence of the normal force F,, (285), implies that
a freely suspended slender body, in a simple shear flow O, = I'},(x, + d) e, with origin
at the body centre, would move in and out relative to the interface as it rotates around
the x, axis owing to the hydrodynamic torque 7, given by (28¢). However, the
trajectory is not periodic, since the torque vanishes in the slender-body approximation
at 8 = nr, and the body is predicted to experience a net outward displacement
relative to the interface from its initial position. Comparison with existing theoretical
results for a slender body in simple shear flow of a single unbounded fluid suggests
strongly that this non-periodicity in the particle motion is a consequence of the
slender-body approximation. In particular, Cox (1971) showed that the force and
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torque on an axisymmetric slender body that is at rest and oriented parallel to a
simple shear flow (6 = an) is O((1/«)?€), which is very small compared with the O(e?)
terms retained in (28a—c), but is definitely non-zero. According to Cox’s analysis, a
slender body will rotate very slowly through the aligned, or nearly aligned, state, but
will experience a periodic rotation for any large (but finite) x. Similar behaviour in
the present problem of particle motion near an interface would imply that any real
particle (with finite k) would both rotate and move in and out continuously. We shall
return shortly to the details of this motion, which is a generalization of the famous
Jeffery (1922) orbit for rotation in simple shear flow of a single unbounded fluid.

Now, let us turn to the hydrodynamic interface effects on a slender body in the
simple shear flow U, = I',3[(u;/p,) x5 +d] e,, which is perpendicular to the plane defined
by the body axis and normal vector e, to the interface. In this case, the boundary
condition at the body surface (5b) is

u,(xp) = — Iy, xsin e, + 0<£> (xp€8,)- (29)

It may be noted, however, that this boundary condition is exactly the same as for
particle rotation near a flat interface with angular velocity 2 = Q, e, through a fluid
at rest at infinity, with Q, = I',,. Equations for the hydrodynamie force and torque
in this latter case have already been derived by Yang & Leal (1983).

_We now have a complete solution for a slender body in a simple shcar flow
U; = T*{(ps/p,) X~ x,] with origin at the body centre and the undisturbed velocity
either parallel or perpendicular to the plane defined by the body centreline and normal
vector e, to the interface. From these results we can also evaluate the force and torque
on a slender body with an arbitrary orientation (6, ¢) located at an arbitrary position
X, in a simple shear flow U, = (u;/p1,) T'* x with origin at the interface. Combining the
results of the present section with those for uniform streaming flow, we obtain

F=—KpTx,+Q Kz Q& (30a)

and T=—KoTx,+Q Ky Q-E,. (30)
Here the non-zero components of hydrodynamic tensors Ky and Kgp are given by
K1l = —e®n(1 +sin%0) smﬁj xU(x; A, 6,d)dx+ O(e®), (31a)

K% =—¢2n smﬁj xB(x; A, 0,d)de+ O(e?), (31b)

K3l = e?n sin?d cosﬁf xV(x;A,0,d)dx+ O(e3), (31¢)

1
K = —ebn sin20[1 —e(ln2—%+§f

-1

sz(x;/\,H,d)dx)]+0(e3), (31d)

1
KL =¢€dn sin20[1 —e(ln2—%+%j ((1+sin26) U(x; A, 6,d)
-1
+cos?f V(x;/l,ﬁ,d))xzdx)]+0(e3) (31¢)
and
K3 = — K% cot 0. (31f)

Specific formulae for U(x; A, 0,d), V(x;A,0,d), K(x;A,0,d) and B(z; A, 8,d) are given
in the Appendix.
We now have a complete set of solutions either for a stationary sphere or slender
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body located at an arbitrary point x, with an arbitrary orientation relative to the
interface in either an axisymmetric pure extensional flow, or in a simple shearing flow
field. These solutions provide the necessary relationships between the flow parameters
(e.g. strain rate or shear rate) and the hydrodynamic force and torque for calculation
of particle trajectories, which we shall consider in §5.

5. Trajectories near a flat interface

Whenever the creeping-motion approximation is applicable, general relationships
can be written between the force and torque acting on a particle in a quiescent fluid
near a flat interface, and its translational and angular velocities in terms of

F,, =Ky U+K.-Q T, =K. U+Ky @, (32a, b)

the so-called hydrodynamic resistance tensors K, Ky and K. The components of
these tensors for a spherical particle were evaluated through terms O(8%) by Lee ef
al. (1979), and through terms 0(¢?%) in the present study (11a—e). For a slender body,
Yang & Leal (1983) obtained the various components of these tensors up to O(e?).
In the present paper we consider only the simplest case of a neutrally buoyant freely
suspended body. In this case, the translational and angular velocities of the particle
are given by

U= o Ky Ky K5 Koy (F— K Kgh T), (33a)
0 = (Ky—Ko Kt Kby 1 (T— Ko K5+ F). (335)

Here F and T are the hydrodynamic force and torque acting on a stationary particle
due to the existence of a pure straining or simple shearing flow at large distance from
the particle. Thus, given the initial position and orientation of the particle, these
equations provide its complete trajectory (i.e. its position and orientation as a
function of time). In the present work, we use a simple Runge-Kutta scheme
described by Yang & Leal (1983) to integrate (33a, b).

5.1. Trajectories of a sphere

First, we begin with the case of a neutrally buoyant sphere freely suspended in the
pure straining flow U, = £ x with stagnation point at the interface. The results for
the torque and force F and T in this case are given in (10a, b). Substituting for F
and T in (33), it is a simple matter to show that the translational and angular
velocities of the particle are

Gt
U=Ex,— 3 130" 144N e, and 2=0. (34a,b)
2 — 3
[H nz_l(sa 1+/\> 8(1+/\)6J

Thus the particle does not rotate at all, at the level of approximation represented
by (34a, b), and it is only the U, component of the translational velocity that is altered
from the undisturbed velocity of the fluid by the presence of an interface.

It can be noted from (34a) that the particle velocity U, is always decreased in
magnitude by the presence of an interface, independently of the viscosity ratio A.
Further, the difference between U, and the undisturbed velocity of the fluid £-x," e,
is monotonically increased as the separation between the interface and sphere is
decreased, but is independent of the distance from the axis of symmetry of the
undisturbed flow.
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Ficure 11. Dimensionless disturbed translational velocity (U,—TI;d)/I'j;a as a funection of
the dimensionless distance d between the sphere centre and the interface; U, = I';x,e;: ,
A= 00; , 1, , 0, , unbounded-fluid case; O, corresponding exact-
solution results of Goldman et al. (19670).

The motion of a sphere in a linear shear flow U; = — (u;/p,) I';; %, €,, parallel to the
interface can be resolved in a similar manner. Since the hydrodynamie force on the
sphere is oriented parallel to the undisturbed flow, i.e. F = F e, (cf. (17a)), the path
followed by the sphere in the (x,,x,)-plane is exactly coincident with a streamline
of the undisturbed flow. However, the translational velocity of the sphere is altered
considerably from the undisturbed velocity of the fluid by interaction with the
interface. This is illustrated in figure 11, where the difference between the velocity
of the sphere and the undisturbed velocity of the fluid (U, —1I,,d)/I},a is given
as a function of the separation distance d between the sphere and the interface for
three values of A = 0,1 and oo0. Also included for comparison are the corresponding
results of Goldman et al. (1967b), who obtained an exact solution of the Stokes
equations, using bipolar coordinates, for the translational and angular velocities of
a neutrally buoyant sphere moving in a linear shear flow in proximity to a single plane
wall (i.e. A—o00). It can be seen from figure 11 that the present asymptotic result
for the translational velocity is in reasonable agreement with the exact solution in
the entire region of d > 1. Indeed, the relative error associated with the asymptotic
solution is