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We consider the motion of a sphere or a slender body in the presence of a plane 

fluid-fluid interface with an arbitrary viscosity ratio, when the fluids undergo a linear 

undisturbed flow. First, the hydrodynamic relationships for the force and torque on 

the particle at rest in the undisturbed flow field are determined, using the method 

of reflections, from the spatial distribution of Stokeslets, rotlets and higher-order 

singularities in Stokes flow. These fundamental relationships are then applied, in 

combination with the corresponding solutions obtained in earlier publications for the 

translation and rotation through a quiescent fluid, to determine the motion of a 

neutrally buoyant particle freely suspended in the flow. The theory yields general 

trajectory equations for an arbitrary viscosity ratio which are in good agreement with 

both exact-solution results and experimental data for sphere motions near a rigid 

plane wall. Among the most interesting results for motion of slender bodies is the 

generalization of the Jeffrey orbit equations for linear simple shear flow. 

1. Introduction 

In this paper we consider the creeping motion of a sphere or a slender body in linear 

shear and axisymmetric straining flows near a plane fluid-fluid interface. Previously, 

we considered translation and rotation of a sphere when the fluids are at rest at 

infinity (Lee, Chadwick & Leal1979; Lee & Leal1980), and, in Part I of the present 

pair of papers, the same problem was solved for a rigid, straight slender body (Yang 

& Leal 1983). Although the quiescent-fluid problem is of some intrinsic interest, and 

is a logical starting point for investigation of particle motions near a fluid interface, 

many problems of practical significance involve particle motions in a mean flow at 

infinity (cf. Goldman, Cox & Brenner, 1967 a, b; Goren & O'Neill1971; Spielman 1977; 

and references therein). This is true of boundary effects in the rheology of dilute 

suspensions, theories of Brownian motion near a phase boundary and the development 

of trajectory equations to model the 'collection' of very small particles at the surface 

of larger bubbles or drops in flotation processes (cf. Dukhin & Rulev 1977). 

The majority of previous analyses of creeping particle motion near a flat wall or 

interface were restricted to spherical particles, and utilized separation of variables 

in bipolar coordinates; cf. Jeffery (1912), Brenner (1961) and Lee & Leal (1980) for 

motion in a quiescent flow. Goren & O'Neill (1971) used the same approach to consider 

the motion of a sphere in simple shear flow near a solid, plane wall, and, more recently, 

Dukhin & Rulev (1977) considered a sphere on the axis of symmetry of a pure 

straining flow near a gas-liquid interface. An alternative approach, which is essential 
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if the particles are not spherical, is to construct solutions using spatial distributions 

offundamental singularities. This approach has been known since the pioneering work 

of Lorentz (1907). Recently, fundamental solutions were developed for a point force 

and higher-order singularities near a fluid-fluid interface by a generalization of the 

Lorentz analysis, and used to solve for the creeping motion of a spherical particle 

when the fluids are at rest at infinity (Lee et al. 1979). The same basic method has 

also been applied, in a slender-body approximation, to investigate the translation and 

rotation of a straight, rigid slender body through a quiescent fluid (Fulford & Blake 

(1983) for translation with the particle axis either perpendicular or parallel to the 

interface; Yang & Leal (1983) for translation and rotation with an arbitrary 

orientation). 

In this present work we use the singularity method to study the hydrodynamic 

interactions between either a sphere or a straight, rigid slender body and a flat 

fluid-fluid interface in linear flows that are compatible with the presence of a plane 

interface. The solutions we obtain provide the hydrodynamic 'resistance' tensors that 

define the relationships between the force and torque on the particle at rest in the 

flow field, the undisturbed flow parameters such as strain rate or shear rate, and the 

translational and angular velocities of the particle. These fundamental relationships 

are then used to calculate the particle trajectories in simple shear and axisymmetric 

straining flows. 

2. Basic equations 

We begin by considering the governing equations and boundary conditions for a 

rigid particle (i.e. sphere or slender body) at rest near a flat fluid-fluid interface of 

two immiscible fluids 1 and 2. The particle is assumed to be in fluid 2, and the 

undisturbed velocity field is given in the form: 

oi = E. X for pure straining flow (1a) 

or 
1 

01 = xr·x, 02 = r·x for simple shear flow, {1b) 

in which A.(=#!/ #2) is the viscosity ratio of the two fluids, oi is the undisturbed 

velocity field in fluid i(= 1,2), and x denotes a position vector measured from an 

origin that is placed at the interface. These undisturbed flow fields are depicted in 

figures 1 (a, d), and are consistent with the existence of a flat interface at which the 

normal components of velocities are identically zero (i.e. O·n = 0). The linear 

operator E for an axisymmetric extensional flow takes the form 

[ 

E 0 

E= 0 E 
0 0 

0 l 0 ' 
-2E 

while that for a linear simple shear flow parallel to the interface is 

0 

0 

0 

Here, E and Fja (j = 1, 2) are usually denoted as the strain rate and shear rate 

respectively. 
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FIGURE 1. Coordinate system with an interface in the (x1 , x2)-plane and description of decomposed 
problems: (a) a sphere in the pure straining flow 0; = E·x; (b) a uniform streaming flow 0; = E·xP 
past a stationary sphere at xP; (c) a sphere at the stagnation point xP of the pure straining flow 

0; = E·(x-xp); (d) a sphere in the simple shear flow 0; = (p;/fl
2
)F·x; (e) a uniform streaming 

flow 0; = F• Xp past a stationary sphere; (f) a sphere at the stagnation point XP of the simple shear 
flow 0; = F·[(fl;/J.l2)x-xp]· 

In the present problem the Reynolds number is defined by 

R El~ ( Fi 3 l~) e=- or 
1'2 1'2 ' 

where lc is a characteristic lengthscale of the particle (i.e. either the sphere radius 

a or the half-length l of the slender body), and v
2 

represents the kinematic viscosity 

of fluid 2. We assume that the Reynolds number is sufficiently small (i.e. Re ~ 1) that 

the motion is quasi-steady and the creeping motion approximation applicable. The 

equations of motion therefore reduce to steady Stokes equations in both fluids. 

Further, the linearity of the Stokes equation enables us to decompose the undis

turbed flow field oi = Li. X into a constant vector (i.e. a uniform streaming flow' 
figures 1 b, e), 

and a linear part with vanishing velocity at the body centre (i.e. figures 1 c, f), 

Oi = Li·x-L 2 ·xP. 

(2a) 

(2b) 

Here Li denotes either the strain-rate tensor E in each fluid, or shear-rate tensors 

(pi/ p 2) F fori= 1 and 2. The Stokes' problem for Oi = L2 • xP of (2a), which is simply 

a translation of the fluid system including the interface past a stationary particle, is 

precisely equivalent to the problem of particle translation with velocity -L 2 • xP 

through a quiescent fluid with stationary interface (cf. figures 1b, e). A complete 

detailed solution is available for this problem for both a sphere and a slender body 
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from Lee et al. (1979) and Yang & Leal (1983), who determined the relationship 

between the hydrodynamic force F and torque Ton the body and the translational 

velocity _ . . _ . . 
F- -KT L 2 xP, T- -Kc L 2 xP, (3a, b) 

where KT and Kc denote the translational and coupling tensors respectively. 

It thus remains only to solve the problem for the linear undisturbed flow 

Oi = Li·x-L
2
·xP with 0

2 
= 0 at the body centre (cf. figures 1c,j). We define, for 

convenience, a disturbance velocity field u as the difference between the actual 

velocity u in the presence of the particle and the undisturbed flow, i.e. 

ui = ui-{Li·x-L 2 'xp} (i = 1, 2). 

The equations of motion for the disturbance velocity field are 

Vpi = ~: V 2ui, V·ui = 0 (i = 1, 2), (4a, b) 

in which the variables may be considered to be non-dimensionalized with respect to 

the characteristic variables lc =a (or l), tc = 1/ E (or 1/ F
13

) and Pc = p,2 E (or p,2 F13 ). 

Thus, for the following analysis, the non-dimensionalized variables such as the 

hydrodynamic force F and torque T, and the translational and angular velocities 

of the body, U and n, are based on the corresponding characteristic variables, i.e. 

Fe= ft2El~ (or p,2rj3l~), ~ = p,2El~ (or p,2rj3l~), uc = Elc (or rjalc) and DC= E (or 
F

13
) respectively. The boundary conditions for u1 and u2 in this disturbance-flow 

problem are I I u1 , u2 -+0 as x -+ oo, (5a) 

U 2 =-L 2 •(xB-Xp) onXBESP, (5b) 

plus the interface conditions (i.e. continuity of velocity and tangential stress and zero 

normal velocity). In (5b) XB denotes a point on the body surface SP. From the point 

of view of (4) and (5), the problem is seen to be exactly the same as if a velocity field 

u
2
(xB) = - L2 • (xB- xp) is generated at the surface of a body that is near a flat 

fluid-fluid interface in a fluid at rest at infinity. 

For a spherical particle we consider the asymptotic limit 

a 
8=-~1 d...., ' 

in which d is a separation distance between the sphere centre and the interface. In 

this case, the singularity method can be reduced to the superposition of fundamental 

solutions for a point force a (i.e. Stokeslet), a potential dipole p and higher-order 

singularities (e.g. a stresslet, a rotlet, a potential quadrupole, etc.) at the sphere 

centre. Fundamental solutions of the creeping-motion equation for a point force (and 

higher-order singularities) can be obtained easily from the corresponding solutions 

in an unbounded fluid by following the prescription of Lee et al. (1979). The 

fundamental solutions automatically satisfy the conditions of velocity and stress 

continuity, as well as zero normal velocity at a flat fluid interface, plus the boundary 

condition (5a) of vanishing velocity in the far field (cf. Lee et al. 1979). All that 

remains is to determine the combination of these singularities at the sphere centre 

xP that satisfies the boundary condition (5b). In particular, we must determine the 

densities and orientations of these singularities so that the disturbance velocity u
2
(x) 

is at least approximately equal to - L2 • (xB- xp) at all points of the sphere surface. 

For a slender body the problem of particle motion near an interface (i.e. the 

disturbance-flow problem) (4) and (5) can be solved using the slender-body theory 
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of low-Reynolds-number flow (Batchelor 1970; Fulford & Blake 1983; Yang & Leal 

1983; and others). In this approach, the disturbance flow produced by the body is 

approximated by a line distribution ofStokeslets and potential dipoles along the body 

centreline (rather than a superposition of higher-order singularities at one point xP 

or a surface distribution of Stokeslets), and the orientation and strength of these 

singularities are determined in order to satisfy the boundary condition ( 5 b) to an order 

of approximation O(e2
), where e = (In 2K)- 1 and K is the axis ratio of the slender body. 

The complete solution for a particle located at arbitrary point xP in a linear flow 

field oi = Li. X near a flat interface is obtained by superposition of the corresponding 

solution for the linear flow oi = Li. X- L2. xp, with 02 = 0 at the body centre, and 

the solution (i.e. (3a, b)) for the uniform streaming flow Oi = L2 • xP. In the theoretical 

analysis that follows, we consider the hydrodynamic force and torque acting on a 

stationary particle (sphere or slender body) in the presence of both an axisymmetric 

uniaxial extensional flow and a linear shear flow. These results are then used in §5 

to calculate the trajectories of a freely suspended sphere or slender body in the same 

flows near a fluid-fluid interface. 

3. Solutions for a spherical particle 

3.1. Pure straining flow 

We begin with the creeping motion of a fluid in the vicinity of a stationary spherical 

particle that is located at an arbitrary point xP = (xp1 , xP2 , -d) in fluid 2 when the 

undisturbed motion is an axisymmetric uniaxial straining flow (1 a) with origin at 

the particle centre. Here we utilize the disturbance-flow formulation defined by (4) 

and (5), and consider only the limit o = ajd ~ 1. 

Since o ~ 1, the most convenient solution technique is the method of reflections, as 

was also used and explained in some detail by Lee et al. (1979) for the uniform

streaming problem. The zeroth-order approximation in this procedure (u~o), p~ 0 l) 

is the single-fluid unbounded-domain solution which satisfies boundary conditions 

exactly at the sphere surface. The problem of a sphEre in an axisymmetric straining 

flow, 0 = E·(x-xp) for an unbounded single fluid was solved byChwang& Wu (1975), 

who showed that a potential quadrupole (u, v) and a stresslet (p, p) of the forms 

stresslet (p,p) = (~e 3 ,e 3 ), 

potential quadrupole (u, v) = (!e3 , e3 ) 

were required at the sphere centre to satisfy the boundary condition (5b) at the sphere 

surface. Thus the zeroth-order (i.e. unbounded single-fluid) solution in the method

of-reflections expansion can be written as 

u~~>Ex(x) = ~[ 0 ~ 3 un(x,xP;e3 )+5uss(x,xP;e3 ,e3)J, 
p~ 0 >(x) = ~ss(x,xP;e 3 ,e 3 ). 

(6a) 

(6b) 

Here Un(X, xP ;p), Uss(X, xP;p,p) andPss(x, xP ;p,p) denote the fundamental solutions 

for a potential dipole p and a stresslet (p, p) located at xP in an unbounded fluid, cf. 

Chwang & Wu (1975). 

Though u~o)Ex(x) of (6a) exactly satisfies the boundary condition 

U2(xB) = -E·(xB-xp) 

at all points on the sphere surface, it does not satisfy the conditions at the flat 

interface. However, Lee et al. (1979) have already shown that in the reflections method 
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the first correction (u~ 1 >, p~l)) for the presence of the interface can always be obtained 

by simply utilizing the same form (6a, b) as in the zeroth-order solution, but with 

the fundamental solutions "n· u88 and p 88 (for an unbounded fluid) replaced by the 

corresponding fundamental solutions in the presence of the fiat interface, obtained 

by the simple transformation rule of Lee et al. This yields (u~ol + u~ 1 l, p~ 0 > + p~ 1 >). The 

first 'wall correction' can then be obtained by subtracting the zeroth-order solution 

(u~O), p~O)): 

1 [ a u~ 1 >(x) = 2 ox
3 

{u2 .n(X,xP;e3)-un(x,xP;e3 )} 

+ 5{u2 , 88(x, xP; e3, e3) -us8 (x, xP; e3 , e3)} J, (7 a) 

p~ 1 >(x) = 4 [ 0 ~ 3 p 2 , n(x, xP; e3 ) + 5{p 2 , 88(x, xP; e3 , e3)- p88(x, xP; e3 , e3 )} J, (7 b) 

where we have denoted the resulting fundamental solutions in the presence of 

the interface as u
2

, D and u 2, 88 respectively. Although the combined solution 

(u~ 0 > + u~ 1 l, p~ 0 l + p~ll) satisfies the interface boundary conditions, it now does not 

satisfy the condition u2(xB) = -E· (xB -xp), and additional singularities are needed 

at the centre of the sphere that cancel the velocity-field correction u~ll(x) at the sphere 

surface xB; namely the interface 'reflection' of the potential quadrupole 

(tr, v) = (!e3 , e
3

) and the stresslet (p, p.) = (~ 3 , e 3 ), which is non-zero at the sphere 

surface. 

Since the detailed form of u~ 1 >(xB) is highly complicated, it is not possible to 

determine singularities at the sphere centre that precisely satisfy the boundary 

condition (5b) at all points on the sphere surface. Instead, we choose singularities to 

cancel only the first few terms ofu~ 1 >(xB) at the sphere surface, with u~ 1 >(xB) expanded 

in powers of o foro= ajd ~ 1. The leading terms of u~ 1 l near the sphere, for small 

o, are in component form, 

(Sa, b) 

(8c) 

where the subscript 2 denotes the velocity components in fluid 2. It can be seen from 

(Sa-c) that the presence of the interface will induce a steady streaming flow at 0(82
) 

normal to the interface, and an axisymmetric uniaxial extensional ~ow at 0(83
) with 

a stagnation point at the sphere centre. The singularities required to cancel this 

additional velocity field at the sphere surface can be readily evaluated, and the 

resulting solution for a stationary sphere near a flat interface in the pure straining 

flow, 0 2 = E·(x-xp), is as follows: 

_ 5[3 2+3A 2 (3 2+3A)
2 

3 J . 
U2(X,xp)-8 8 l+A 8+ 8 l+A 8+0(84) u2,s(X,XP,e3) (Stokeslet) 

5[3 2+3A 82 (3 2+3A)
2
83 O 84 J . 1 

+8 8 l+A + 8 l+A + ( ) u2,D(x,xP, -ae3) (potential dipole) 

( stresslet) 

(potential quadrupole). (9) 
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Now let us turn to the original problem of calculating the force and torque acting 

on a stationary sphere that is located at arbitrary point xP in fluid 2 which is 

undergoing the axisymmetric uniaxial extension flow 0
2 

= E· x with origin at the 

interface (i.e. figure 1 a). As we show in §2, the hydrodynamic force and torque exerted 

in this case can be determined by a superposition of the force and torque for a uniform 

streaming flow with translational velocity 01 = E· xP and for a uniaxial straining flow 

oi = E. (x- Xp) with stagnation point at the sphere centre. The force and torque in 

the latter case can be evaluated directly from the strength of the singularities in the 

solution (9). The result is 

F - K ·E· [~~2 2+3.-\ (~~2+3.-\)2 ~] 0 N 
-- T XP-5rr go l+A. +go l+A. o e3 + (o-), (lOa) 

(lOb) 

The components of the translation and coupling tensors KT and Kc were determined 

up to O(o2
) by Lee et al. (1979) for motion of a sphere near a plane fluid-fluid interface. 

The O(o3
) terms in the components of the hydrodynamic tensors, KT and Kc, which 

are necessary to be compatible with the inclusion of O(o3
) terms in (9), can be 

evaluated by expanding the corresponding wall correction u~ 1 >(x) up to O(o3
) and 

superimposing the fundamental solutions for singularities in order to cancel the 

interface reflection at the sphere surface at the same level of approximation O(o3
). 

The resulting non-zero components of the hydrodynamic tensors KT, Kc are given 

by 

[ 

3 ( 3A.-2)n JOr1 = 6rr 1 + I: -fso~ 
n-1 + 

1 +2.-\ a] 
16(1 +A.) 0 +O(O'i), 

Tna- 6 [ ~ (~~2+3.-\)n- 1 +4.-\ ~a] 0 N) 
n.T- 1t l+ n~1 go l+A. 8(1+.-\) 0 + (o-' 

Ja2_3rro2 1 [1 M3A.-2] O(o4 
c -2 l+A. +16 1+.-\ + ), and ~ 1 = -1Q;2 . 

Here the terms in the summed series, 

( _a_~ 3.-\- 2)n . KJ.l 
16o 1 +A In T 

d ( ~~ 2 + 3A.)n . Tna 
an 8o 

1 
+A m n.T , 

(lla, b) 

(11 c) 

(11d,e) 

are the corresponding nth reflections to the terms O(o) in the first wall corrections 

u~ll(x), and the summed series continue beyond O(o3
). The terms of O(o3

), 

1 + 2.-\ ~3 . KJ.1 d 
-16(1 +A.) o m T an 

1 +4A ~3 • T/33 

8(1+.-\)o m.n.T, 

result from the correction terms of O(o3
) in u~ll(x), which represent a paraboloidal 

velocity field with origin at the sphere centre and a steady streaming flow, both either 

parallel or normal to the interface. The term O(o3
) in IQ;2 or KF is associated with 

the reflected simple shearing flow of either the O(o) term in u~ 1 >(x) for translation 

parallel to the interface or the O(o2
) term in u~ll(x) for rotation with axis of rotation 

parallel to the interface. 

Dukhin & Rulev (1977) determined the drag force on a small solid sphere 

located at the axis of symmetry in an axisymmetric uniaxial extensional flow 

oi = E· X, near a gas-liquid interface (i.e. A.~O), using the eigensolutions of Laplace's 

equation in bipolar coordinates. It is a simple matter to calculate the drag force Fa 
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4.0·----------------~-., 
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·x 
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~ ... 2.5 
[ij' ... 
Q 
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1.5 

I.o+------.------;-----,-------.----1 
0 3 6 9 12 15 

Dimensionless distance d 

FIGURE 2. Drag ratio for axisymmetric extensional flow relative to Stokes drag in an unbounded 
fluid as a function of the dimensionless distance d between the sphere centre and the interface; 

02 = E· x: --,A= oo; ---, 1, -----, 0; Q, corresponding exact-solution results (A= 0) of 
Dukhin & Rulev (1977). 

on the sphere from the present asymptotic solution (lOa) with xP = (0, 0, -d). The 

drag ratio (the drag Fa divided by the Stokes drag 121Cf.t2 adE) is simply given as 

3 ( 2+3A)n 
drag ratio = 1 + I: iQ ~ 

n-1 + 
(12) 

In figure 2 the drag ratio (12) is plotted as a function of d, the distance between the 

sphere and the stagnation point, for three values of A = 0, 1 and oo. Also shown for 

comparison is the corresponding exact solution of Dukhin & Rulev (1977). There is 

very good agreement between the two solutions, except in the region near d = 1. As 

expected, the difference between the two results becomes larger as the sphere 

approaches the interface owing to the poor convergence of the asymptotic solution 

(12) in powers of 8. However, a detailed comparison shows that the maximum error 

in the asymptotic solution (12}, compared with the exact solution ofDukhin & Rulev, 

is only 2.72% for d = 1.001, which is the smallest value considered by Dukhin & 

Rulev, while the error ford> 1.5 becomes less than 0.98%. 

3.2. Simple shear flow 

Let us turn now to the case of a sphere located at an arbitrary point xP in a simple 

shear flow 0i = (J.td j.t2 ) r· X, parallel to the interface as shown in figure 1 (d) (the case 

in which oi = c =I= 0 at the interface can be treated by superimposing a uniform 

streaming flow past a sphere, Ot = C, with the simple shear flow Oi = (J.td J.t
2

} r · x). 

Again, the problem can be decomposed into a simple translation of the fluid system 
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including the interface with velocity oi = r· xp past the stationary sphere (i.e. 

figure le) together with a linear shear flow oi = (#d#z)r·x-r·xp with 02 = 0 at 

the sphere centre (i.e. figure lj). In view of the linearity of the problem and the 

symmetry of the sphere-interface geometry' we need only solve the case of oi = 

(f-ltf f-lz) F 13 • X 3 e 1 , corresponding to 

L~r~[~ 
0 

0 

0 

r1a] 
~ , shear rate tensor. 

In order to analyse the velocity field for a sphere in the undisturbed flow 

oi = r13[(/1Jfl2)xa+d]el, which vanishes at the sphere centre, we follow the pro

cedure of §3.1 and solve the equivalent problem in which a velocity field u2(x) is 

viewed as being generated in a quiescent fluid by a non-zero velocity distribution 

(13) 

at the surface of the sphere. As in the preceding analysis, we use the method of 

reflections, with the solution in an unbounded fluid taken from the work of Chwang 

& Wu (1975), who showed that the condition (13) was satisfied by superposition of 

a stresslet, a rotlet and a potential quadrupole at the centre of the sphere, i.e. 

stresslet (p, p) = (- iF13 e1, e3), 

rotlet r = -~F 13 e2 , 

potential quadrupole (11, v) = ( -lF13 e3 , e1 ). 

As in the preceding example, the first correction for the presence of the interface 

in the reflections expansion can now be obtained easily from Chwang & Wu's solution 

by simply replacing the fundamental solutions ua, u0 and Uss (which pertain to an 

unbounded fluid) with the corresponding fundamental solutions u 2 , R• u 2 , n and u 2 , ss 

that satisfy boundary conditions on the flat interface (and are generated using the 

procedure of Lee et al. 1979). The result is the first two terms in the reflections 

expansion, i.e. (u~ 0 >+u~ 1 >, p~ 0 >+p~l)). Subtracting the zeroth-order (Chwang & Wu 

1975) solution, we get 

u~ 1 >(x) = -F13 [iu2,ss(x, xP; e1, e3) +iu2,a(x, xP; e2) +~ 0 ~ 3 U2, 0 (x, xP; e 1 )J-u~ 0 >(x). 
(14) 

Although the combined solution (u~ 0 >+u~ 1 >,p~ 0 >+p~ 1 >) satisfies the boundary con

ditions at the interface, the boundary condition (13) on the sphere is not satisfied, 

because the 'reflected flow field' u~ 1 > is non-zero at the sphere surface. Following §3.1, 

we examine the leading terms of this reflected field at the sphere surface as a power 

series in 8: 

U(l)- ~2 5J\-
2 

F +83 ! 3
"-

1 
F (X +d)+0(84) V

2
(l) = 0(84) (15a, b) 

2 -f) 16(1+t\) 13 8 (1+t\) 13 3 ' 

and 

(15c) 

Thus, insofar as (15a---c) are concerned, the presence of the interface is equivalent to 

an induced steady simple shear flow at 0(83
) either normal or parallel to the interface 

and a steady streaming .motion at 0(82
) parallel to the flow field (i.e. e1 direction). 

In order to satisfy the condition (13), additional singularities are required at the 

sphere centre. These can be determined following the procedures of Lee et al. (1979), 

10 >"LM 149 
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as well as those of§ 3.1. The resulting solution, expressed in terms of the fundamental 

solutions for a Stokeslet, potential dipole and higher-order singularities near an 

interface (Lee et al. 1979), is 

( stresslet) 

+u2,R(x,xP;e2)i3
[ -1+~ 1 ~.i\J 3 +0(J4)J (rotlet) 

0 . rl3 [ 1 3.i\- 1 n] a . r13 2 + 3.i\ 3 
+ox3 u2,D(x,xp,el)6 -1-8 1+.i\ u -oxl u2,D(x,xP,e3)48 1+.i\ J 

+0(J4) (potential quadrupole). (16) 

From this solution and (3a, b), we can easily determine the hydrodynamic force 

and torque exerted on a sphere located at an arbitrary point xP, in the simple shear 

flow Oi = (pd p 2) r· x, with Oi = 0 at the interface. This result is 

F= -KT·r·xp+KsF·~s• T = -Kc·r·xp+KsT·~s• (17a, b) 

in which ~s is defined by ~s = (T13, T 23 , 0), and the non-zero components of the 

hydrodynamic tensors KsF and K8T are given by 

KP 3n5.i\-2 J2[1 3 2-3.i\o] 0 J4 1(22 - KP 
SF= S 1 +.i\ - 16 1 +.i\ + ( ), SF- SF• (18a,b) 

IGlr = -4n[ 1-~ 
1 

!.i\ o3]+0(o4
), K~j, = -Iq~. (18c, d) 

The drag ratio (the drag divided by the Stokes drag -61tp2 T 13 da) is simply given 

as . 3 ( 2-3.i\)n 1+2.i\ 
drag ratiO= 1 + n~ 1 ( -l)n fso 1 +.i\ -

16
(
1 

+.i\) 0
3 

1 2-5.i\[ 2-3.i\J 
+ 16do2 1 +.i\ 1-fso 1 +.i\ +O(J4), (19) 

where we have again adopted ~s = (T13, 0, 0) with no loss of generality. 

For a simple shear flow parallel to a rigid plane boundary, Goren & O'Neill (1971) 

calculated the hydrodynamic force and torque on a sphere, using the eigensolutions 

of Laplace's equation in bipolar coordinates developed by Jeffery (1912). In figure 3 

the drag ratio (19) is plotted as a function of d, the distance between the sphere 

and the interface, for three values of .i\ = 0, 1 and oo. Also shown for comparison are 

the corresponding drag ratios determined by Goren & O'Neill. As mentioned 

previously, we presume o ~ 1 in the derivation of (19). Thus foro~ 1 (i.e. d ~ 1) the 

asymptotic solution (19) coincides almost exactly with Goren & O'Neill's result, which 

is the exact solution for the simple shear flow parallel to a solid wall. Even ford ~ 1.5, 

the approximate solution shows reasonably good agreement with the exact solution. 

Indeed, the relative error is within 2.6% ford> 1.5. Wakiya (1957) considered the 

case of a sphere in a linear shear flow between two rigid parallel flat planes (i.e . .i\ ~ oo ), 

in which one plane is held stationary and the other is moved parallel to itself under 
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FIGURE 3. Drag ratio relative to the drag in an unbounded fluid as a function of the dimensionless 
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-----, 0; !:::., corresponding exact-solution results of Goren & O'Neill ( 1971); 0, data ofWakiya 
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the assumption that the motion of the sphere is parallel to the walls. Wakiya 

determined the drag and torque on the sphere located at a distance d from the 

stationary plate and 3d away from the moving plate, using the general method 

developed by Faxen (1921). The drag ratios calculated asymptotically by Wakiya 

for the limit 8 ~ 1 are also shown in figure 3. As might be expected, Wakiya's results 

converge to the asymptotic solution, (19) with A--+ oo, as the distanced is increased, 

since the effect of the moving plate becomes negligible compared with the effect of 

the stationary plate with increase in the distance. 

The hydrodynamic torque on a sphere in the flow oi = (fltf #2) r. X can be 

evaluated from (17b), and is equal to 

T = 4nF13 [ 1 +i8 
1 
!A ( 1--{s8

2

1 ~
3
AA -82

) J e2 +0(8"). (20) 

This is the negative of the torque that is required to keep the sphere from rotating. 

It can be compared directly with the corresponding results from Goren & O'Neill's 

exact solution for a single rigid wall and from Wakiya's asymptotic solution for two 

parallel plates with the same sphere location (i.e. d away from one plate and 3d away 

from the other). There is good agreement between the asymptotic solution (20) and 

the exact solution of Goren & O'Neill (1971) in the region of 8 ~ 1, though it can be 

noted from (20) that, when A--+ oo, the interface contribution to the torque Tis zero 

through 0(8"). Although the discrepancy between the two solutions becomes larger 

as 8--+ 1, it still remains relatively small (e.g. the relative error at d = 1.01 is only 

5.84% and the error is within 3% ford> 1.5). As expected, Wakiya's solution also 

approaches the asymptotic solution for A--+ oo as the distanced is increased. However, 

10-2 
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for the two-parallel-plate case the torque is increased in magnitude by the presence 

of plane boundaries in contradiction to the single-wall case. 

In this section we have determined the solutions of Stokes' equations for a sphere 

at rest at an arbitrary point either in a pure straining flow or in a simple shear flow 

near a fluid-fluid interface with an arbitrary viscosity ratio. We shall turn shortly 

to the application of these solutions for trajectory calculations. First, however, we 

consider corresponding solutions for a rod-like slender body. 

4. Solutions for a slender body 

Let us turn now to the case of a rod-like slender body whose centre is located at 

an arbitrary point xP near an interface in the presence of a linear undisturbed flow 

field (pure straining or simple shear}, ai = Li. X with origin at the interface. The 

slender body is assumed to be at rest and completely immersed in fluid 2 with an 

arbitrary orientation which can be expressed in terms of Euler angles() and¢> relative 

to the interface. For present purposes, we define () as the oblique angle between the 

body axis and the interface, while ¢> is a subtended angle between the (x1 , x 3}-plane 

and the plane defined by the body axis and vector e
3 

normal to the interface (cf. 

figure 4}. At the outset, we assume that the body is oriented with arbitrary oblique 

angle 0, but that¢= 0°. Thus, the projection of the body axis onto the interface 

exactly coincides with the x
1 

axis. The solution for an arbitrary ¢-orientation can 

be simply obtained from the case of¢ = 0°, by use of an orthogonal rotation tensor 

a defined by [ , . , 0] COS 'f' Sill 'f' 

a = -sin ¢> cos ¢ 0 . 

0 0 1 

4.1. Pure straining flows 

Now let us turn to the case of a slender body held with its centre fixed at an arbitrary 

point xp in a uniaxial axisymmetric extension flow ai = E· X with stagnation point 

at the interface. The problem can be treated, as in the case of a sphere, by 

decomposing the undisturbed flow into a simple translation Oi = E· xP past the 

slender body and a linear flow Oi = E· (x-xp) with stagnation point atxP. The simple 

translation problem was treated in Part 1 of this series. Here we solve the problem 

with undisturbed flow Oi = E·(x-xp}. For this purpose, it is convenient to 

consider the equivalent problem in which the body generates a velocity field 

u~(xB) = -E·(xB-xp) at the body surface, i.e. we solve 

-E· (xB -xp} = f
1 
[o(x8} -!P(x8) V2]' ..JI(xB, X 8) d~, (21) 

in which ..J#(xB, X8) denotes the Cartesian tensorial Green function for a unit point force 

located at X
8 

(cf. Yang & Leal 1983). 

The integral (21) cannot be solved exactly (except in a numerical sense), but can 

be solved approximately by means of an asymptotic expansion for small1 / K and R0/ d, 
where R0 is the maximum radius of the body cross-section. By expanding (21) to 

0(1/K,R0 jd) with o(~) = (a 1 (~),0,a 3 (s)) and P(~) = (fJ1(s),O,fJ3 (S)}, it can be shown 

that the potential dipole strength P(x) and the Stokeslet strength ot(x) must be related 

according to 
(22) 

in order to satisfy the no-slip condition (5b) at the body surface to O(e2
). 



Particle motion in Stokes flow near a plane fluid-fluid interface. Part 2 287 

() 
/ "'/' 

4[(k_/, 
..:II~)~ 

• .,..q] 
e~ 

FIGURE 4. Orientation of a slender body in a simple shearing flow with the origin at the body 
centre. The (x1 , x2)-plane is parallel to the interface. 

The simultaneous equations, which are obtained from (21) by substituting for ft(x) 

according to (22), can be solved by expansion of IX(x) in powers of e for e ~ 1. The 

use of an expansion in e to obtain an approximate solution of this type has been widely 

reported (cf. Batchelor 1970) for motion of a slender body in a single unbounded fluid, 

and was used by us in Part 1 for simple translation and rotation near an interface. 

The resulting line distribution of Stokeslets, in component form, is 

(1+sin
2
0)cos0 [ e

2
( sin

2
0-3 )] 

a 1(x) =-
4 

x e-2 2S(x)+ 
1

+sin2 0+U(x;A,O,d) 

and 
-! sin2 0 cos Ox [e-!e2(2S(x) + 1 + X(x; A, 0, d))l (23a) 

a
3
(x) =!sinO cos2 0x[e-it'2(2S(x)+ 1 + V(x; A,O,d))] 

(1+cos
2
0)sin0 [ _e

2
( 2s() cos

2
0-3 Y( .A 0 d))] 

+ 2 x e 2 x + 1 + cos2 0 + x' ' ' ' 
(23b) 

where 

and r
0
(x) is the radius ofthe body cross-section, which is a function of distance x along 

the body centreline and has a maximum value of R 0 • Here U(x; A, 0, d), X(x; A, 0, d), 

V(x; A, 0, d) and Y(x; A, 0, d) represent the effects of the interface on the slender body 

and vanish as d-+ oo (see Appendixt for specific formulae of these functions). 

The net force and torque exerted on a slender body located at the stagnation point 

in the undisturbed flow field Oi = E·(x-xp) can be evaluated simply from the 

Stokeslet distribution and expressed in the following form: 

(24a, b) 

t The Appendix is not reproduced here. A copy may be obtained gn/request from either the 

authors or the Editor of the Journal. 
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where the vector c;P = (1, 1, -2), and the non-zero components of the hydrodynamic 

resistance tensor K PF are 

R1\. = -e27t(1 +sin2 0) cosO f
1 

xU(x; A, 0, d) dx+O(e3
), (25a) 

Jq,1F = e2
1t sinO cos2 0 f

1 

xV(x;A,O,d)dx+O(e3
), (25b) 

Jq,3F = e21t cos 0 sin2 0 f
1 

xX(x; A, 0, d) dx+ O(e3
), (25c) 

Jq,3F = -e27t(1+cos2 0) sinO f
1 

xY(x;A,O,d)dx+O(e3
). (25d) 

The tensor KPT has the following non-zero components: 

JG.\. = el1t sinO cosO [ 1-e(ln2-l;f+~l 1 [(1 +sin2 0) U(x;A,O,d) 

+cos2 0 V(x;A,O,d)]x2 dx)]+O(e3
), (25e) 

1(2p"lT = -el1t sin 0 cosO [ 1-e(ln2-.l.J'+~ r
1 

[(1 + cos20) Y(x; A, 0, d) 

+sin2 0 X(x;A,O,d)]x 2 dx )]+O(e3
). (25f) 

In figures 5 and 6 the force components~ and Fa of (24a) are plotted as a function 

of the orientation angle 0 fore= 0.1883, which corresponds to K = 100, and d = 1.01 

and 2.0. In each case we consider three values of A = 0, 1 and oo. In an unbounded 

single fluid the net force on a particle at the stagnation point of a linear straining 

flow would be zero. Obviously, in the case of a sphere, this parallel force component 

is zero owing to the symmetry of the sphere. The existence of a non-zero force 

component, Fa, as shown in figure 6, was also found for the sphere. The force 

component F
3 

is always oriented away from the interface, and the magnitude is 

increased as the viscosity ratio A becomes larger, which is exactly the same as for 

the sphere (compare (lOa) and figure 6). Thus a positive external force -Fa would 

have to be applied to the body to keep it from translating away from the stagnation 

point xP of the flow regardless of the particle orientation and position, or the viscosity 

ratio of the two fluids. It should be understood that, in this flow field Oi = E· (x-xp) 

of figure 1 c, the interface translates with velocity - 2de3 toward the stagnation point 

xP at which the body centre is held fixed. This 'interface motion' can be viewed as 

the source of both ~ and Fa. 
The hydrodynamic torque, ~ of (24b), is non-zero even in an unbounded single 

fluid, but is significantly modified in the presence of an interface. The torque T
2 

is 

plotted in figure 7 as a function of the orientation angle 0, ford = 1.01 and three values 

of A = 0, 1 and oo. The corresponding result in an unbounded single fluid is almost 

identical with the case A= 0. It is evident, since ~ * 0, that a freely suspended 

slender body (i.e. one with T = 0) would rotate in a direction that depends on A, and 

on the orientation and position of the body relative to the interface (i.e. 0 and d). 

For A = 0 and 1 there exist two possible equilibrium orientations, at which ~ = 0, 

and this is also true in a single unbounded fluid. However, only one of these, 0 = 0°, 

is stable, while the other, 0 = 90°, is unstable. When 0 = 0° the particle axis is parallel 

to the interface. On the other hand, for A = oo there exist two unstable equilibrium 
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orientations corresponding to points A and B in figure 7, and two stable equilibrium 

orientations with the particle axis either parallel or perpendicular to the solid wall. 

The equilibrium orientation that would ultimately be attained in this case by a freely 

suspended body depends on its initial orientation. It should be noted that the 

qualitative features evident in figure 7 for A= 00 (i.e. the existence of two stable and 

two unstable equilibrium orientations) will occur whenever the viscosity ratio A is 

larger than a critical value (e.g. Acr = 3.273 ford= 1.01 ), for which the two unstable 

equilibrium orientations overlap exactly at the perpendicular orientation (i.e. the 

unique unstable equilibrium(}= goo). A detailed examination of (24b) shows that the 

two unstable equilibrium angles, for a given viscosity ratio, are also shifted to(}= goo 

as the separation distanced is increased. For example, for A---+ oo, the two equilibrium 

angles (}e are goo± 13.28° ford = 1.01 (which is the case illustrated in figure 7), but 

become equal to 90° ± 10° ford = 1.216, and eventually become coincident ate = goo 

for a critical distance dcr = 1.4og, beyond which there exist only the two distinct 

equilibrium orientations, e = 0° (stable) and(}= 90° (unstable), independent of the 

viscosity ratio A of the two fluids for a given € = 0.1887. 

In figure 8 the critical viscosity ratio Acr is plotted as a function of the separation 

distance for three values of the aspect ratio K = 20, 50 and 100, which correspond 

to € = 0.2711, 0.2171 and 0.1887 respectively. It can be seen that the critical viscosity 

ratio is increased, for any given distanced ( < dcr), as the body becomes more slender, 

while the critical distance dcr is decreased (i.e. dcr = 1.876 forK = 20, 1.580 forK = 50, 

and 1.409 forK= 100}. Thus, for a given aspect ratio (or e), the condition for existence 

of the two stable (0 = 0° and 90°) and two unstable equilibrium orientations is A > Acr 

for a distance d < dcr· The implication of these somewhat complicated results for 

trajectories of a slender body in an extensional flow will be considered later. 
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The undisturbed straining flow oi = E· (x-xp) is axisymmetric around the Xa axis 

with origin at the body centre xP, and the magnitudes and directions of the total force 

and torque therefore remain unchanged by rotation of the body around the x3 axis 

(i.e. they are independent of ¢-orientation). Indeed, the vector components of the 

total force and torque for arbitrary ¢ can be obtained by simply using Q-l. K for 

each tensor quantity Kin (24a, b), which is the result for ¢ = 0° (i.e. the x
1 

axis 

coincides with the projection of the body axis onto the interface). 

All of the preceding discussion is concerned with the force and torque on a body in 

the flow Oi = E · (x- xp) with stagnation point at the body centre. In order to 

determine the force and torque when the body is located at an arbitrary point xP 

in the undisturbed flow oi = E· X, which is zero at the interface, the results of (24a, b) 

must be combined with the corresponding results from Part 1 for translation with 

velocity -E·xP, i.e. 

F= -KT·E·xp+Q- 1 ·KPF.~p and T= -Kc·E·xp+0- 1 ·KPT.~p (26a, b) 

The resistance matrices K T and K c were determined in Part 1 of this work (Yang 

& Leal 1983). The hydrodynamic force and torque (26a, b) will be used to calculate 

complete particle trajectories for the general flow 0 2 = E· x in §5. 

4.2. Simple shear flow 

Finally we turn to the case of a slender body in the simple shear flow Oi = (ptf p 2 ) r · x. 
A general solution for this problem can be obtained by superimposing the 

results for a uniform translation with velocity oi = r. xp and a linear shear flow 

with origin at the body centre, Oi = r· [(ptf p 2 ) x-xP]. Without loss of generality, 

we assume that the particle is oriented either parallel to the plane of the flow (i.e. 

¢ = 0°, oi = rla[(ptfp2)xa+d]el) or perpendicular to the plane (i.e. ¢ = 0°, 
Oi = F

23
[(ptfp

2
)x

3
+d]e2). The solution for an arbitrary ¢-orientation can then be 

determined from the solutions for these two cases using the orthogonal rotation tensor 

0 which transforms any arbitrary velocity components of oi parallel to the interface 

to components parallel and perpendicular to the plane in which the particle is placed 

(see figure 4). 
First, we consider the case of a slender body with arbitrary &-orientation, but 
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¢ = 0°, in the simple shear flow (Ji = T13[(,ud p 2 ) x3 +d] e 1 , which vanishes at the body 

centre. The required Stokeslet and potential dipole distributions along the body 

centreline to satisfy the boundary condition (5b) can be determined using the 

approach outlined in §4.1. The result is 

a 1(x) = -t(1 +sin 2 8) sinO T 13 x[e- ~ ( 2S(x) + ~i:
2

s~~: + U(x; il., 8, d)) J +0(e
3

) 

(27 a) 

and 
(27b) 

From the Stokeslet distribution we can evaluate the hydrodynamic force and 

torque on the body (i.e. figure 1j): 

F
1 

= -£
21t sinO (1+sin2 8) T 1a f

1 

xU(x;i\.,8,d)dx+O(e3
), (28a) 

Fa= €
21t sin2 e cos e rl3fl X V(x; il., e, d) dx+O(ea) (28b) 

and 

T2 = ei1t sin2 0 T 13 [ 1-e(ln 2 -lj 

+~ [
1 

[(1 +sin2 8) U(x; il., 8, d)+ cos2 8 V(x; A, 8, d)] x2 dx) J +O(ea). (28c) 

In figures 9 and 10 the force components F;_ and Fa of (28a, b) are plotted as 

functions of the orientation angle 8 ford= 1.01 and 2. It can be noted from figure 9 

that in the flow 0 2 = T 13(x3 +d) e1 , with origin at the centre of the body axis, the 

direction of the induced force F;_, which is obviously zero in an unbounded single fluid, 

depends on the viscosity ratio il. with a degree of sensitivity that is a strong function 

of the particle position and orientation relative to the interface. 

The force component F
3

, which is very small compared with the parallel force F;_, 
is a consequence of the asymmetry of particle-interface geometry for 8 =!= 0, 90° 

(indeed, the force Fa is zero for a sphere). The qualitative features of Fa as a function 

of the orientation angle 8 are, in fact, quite similar for all viscosity ratios il. and 

particle positions relative to the interface. Thus, for 0° < 8 < 90°, the interface will 

induce a translation away from the interface in the absence of an applied force -Fa, 

while the induced translation would be toward the interface for 90° < e < 180°. 

Detailed calculation of the hydrodynamic torque Tz given by (28c) shows that the 

qualitative dependence of T
2 

on the orientation angle 8 is unchanged by the interface. 

In fact, the effect of the interface becomes very weak when the orientation angle 0 

of the body axis is in the range -30° ~ e ~ 30° (i.e. the effect of the interface on the 

torque is significant only when one end of the body passes close to the interface). 

We have already noted that the existence of the normal force J;, (28b), implies that 

a freely suspended slender body, in a simple shear flow 0 2 = Tdxa +d) e1 with origin 

at the body centre, would move in and out relative to the interface as it rotates around 

the x2 axis owing to the hydrodynamic torque Tz given by (28c). However, the 

trajectory is not periodic, since the torque vanishes in the slender-body approximation 

at e = n1t, and the body is predicted to experience a net outward displacement 

relative to the interface from its initial position. Comparison with existing theoretical 

results for a slender body in simple shear flow of a single unbounded fluid suggests 

strongly that this non-periodicity in the particle motion is a consequence of the 

slender-body approximation. In particular, Cox (1971) showed that the force and 
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torque on an axisymmetric slender body that is at rest and oriented parallel to a 

simple shear flow(()= n1t) is 0((1/K)2e), which is very small compared with the O(e2
) 

terms retained in (28a-c), but is definitely non-zero. According to Cox's analysis, a 

slender body will rotate very slowly through the aligned, or nearly aligned, state, but 

will experience a periodic rotation for any large (but finite) K. Similar behaviour in 

the present problem of particle motion near an interface would imply that any real 

particle (with finite K) would both rotate and move in and out continuously. We shall 

return shortly to the details of this motion, which is a generalization of the famous 

Jeffery (1922) orbit for rotation in simple shear flow of a single unbounded fluid. 

Now, let us turn to the hydrodynamic interface effects on a slender body in the 

simple shear flow oi = r23[(/LJ #2) x3 +d] e2, which is perpendicular to the plane defined 

by the body axis and normal vector e
3 

to the interface. In this case, the boundary 

condition at the body surface (5b) is 

u2(xB) =- r23 X sin ()e2 + 0 G) (xB E Sp)· (29) 

It may be noted, however, that this boundary condition is exactly the same as for 

particle rotation near a flat interface with angular velocity n = !2
1 

e
1 

through a fluid 

at rest at infinity, with !21 = F 23. Equations for the hydrodynamic force and torque 

in this latter case have already been derived by Yang & Leal (1983). 

_We now have a complete solution for a slender body in a simple shear flow 

Ui = r·[(#JfL2)x-xp] with origin at the body centre and the undisturbed velocity 

either parallel or perpendicular to the plane defined by the body centreline and normal 

vector e3 to the interface. From these results we can also evaluate the force and torque 

on a slender body with an arbitrary orientation((),¢) located at an arbitrary position 

xp in a simple shear flow oi = (tLJ #2) r· X with origin at the interface. Combining the 
results of the present section with those for uniform streaming flow, we obtain 

F=-K ·r·x +0-1 ·K ·Q·;: 
T p SF ~s 

and 
T= -K ·r·x +0-1·K ·Q·;: C p ST ~s· 

(30a) 

(30b) 

Here the non-zero components of hydrodynamic tensors KsF and KsT are given by 

and 

.K§lc =- e21t( 1 + sin2 
()) sin() [

1 

xU(x; i\, (),d) dx+ O(e3), 

K§} = -€
2 21t sin() [

1 

xB(x; i\, 0, d) dx+ O(e3
), 

Jqlc = €
21t sin2 () cos() rl X V(x; i\, (),d) dx + O(e3), 

(31a) 

(31 b) 

(31 c) 

Iq~ = -el1t sin2 e[ 1-e(ln2-Jt+~ [
1 

x 2K(x; i\, e, d) dx) J + O(e3), (31 d) 

K§~ = el1t sin2 
() [ 1-e(ln 2 -¥+~ [

1 

((1 + sin2 
()) U(x; i\, (),d) 

+cos2
() V(x;i\,O,d))x 2 dx)]+O(e3

) (31e) 

Iq~ = - K~~ cot e. (31f) 

Specific formulae for U(x; i\, (),d), V(x; i\, (),d), K(x; i\, 0, d) and B(x; i\, (),d) are given 

in the Appendix. 

We now have a complete set of solutions either for a stationary sphere or slender 
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body located at an arbitrary point xP with an arbitrary orientation relative to the 

interface in either an axisymmetric pure extensional flow, or in a simple shearing flow 

field. These solutions provide the necessary relationships between the flow parameters 

(e.g. strain rate or shear rate) and the hydrodynamic force and torque for calculation 

of particle trajectories, which we shall consider in §5. 

5. Trajectories near a flat interface 

Whenever the creeping-motion approximation is applicable, general relationships 

can be written between the force and torque acting on a particle in a quiescent fluid 

near a flat interface, and its translational and angular velocities in terms of 

(32a, b) 

the so-called hydrodynamic resistance tensors KT, KR and Kc. The components of 

these tensors for a spherical particle were evaluated through terms 0(82
) by Lee et 

al. (1979), and through terms O(J3) in the present study (11a-e). For a slender body, 

Yang & Leal (1983) obtained the various components of these tensors up to O(e2
). 

In the present paper we consider only the simplest case of a neutrally buoyant freely 

suspended body. In this case, the translational and angular velocities of the particle 

are given by 
dx 

U = =-:..~! = (K -J(t, ·K-1 • K )-1 • (F -J(t, ·K-1 • T) dt T CR C CR' 
(33a) 

(33b) 

Here F and Tare the hydrodynamic force and torque acting on a stationary particle 

due to the existence of a pure straining or simple shearing flow at large distance from 

the particle. Thus, given the initial position and orientation of the particle, these 

equations provide its complete trajectory (i.e. its position and orientation as a 

function of time). In the present work, we use a simple Runge-Kutta scheme 

described by Yang & Leal (1983) to integrate (33a, b). 

5.1. Trajectories of a sphere 

First, we begin with the case of a neutrally buoyant sphere freely suspended in the 

pure straining flow (Ji = E· x with stagnation point at the interface. The results for 

the torque and force F and Tin this case are given in (10a, b). Substituting for F 
and Tin (33), it is a simple matter to show that the translational and angular 

velocities of the particle are 

..5...822+3il.[1 .a82+3ii.J 
16 1 +il. + 8 1 +il. 

U=E·xP-[ 3 ( 2 + 3il.)n 1+ 4il. Je3 and D=O. (34a,b) 

1+ n~1 f8 l+il. -8(1+il.)83 

Thus the particle does not rotate at all, at the level of approximation represented 

by (34a, b), and it is only the U3 component of the translationa1 velocity that is altered 

from the undisturbed velocity of the fluid by the presence of an interface. 

It can be noted from (34a) that the particle velocity U3 is always decreased in 

magnitude by the presence of an interface, independently of the viscosity ratio il.. 

Further, the difference between U3 and the undisturbed velocity of the fluid E· Xp ·e3 

is monotonically increased as the separation between the interface and sphere is 

decreased, but is independent of the distance from the axis of symmetry of the 

undisturbed flow. 
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The motion of a sphere in a linear shear flow oi = - (pd P2) r13 X a e 1, parallel to the 

interface can be resolved in a similar manner. Since the hydrodynamic force on the 

sphere is oriented parallel to the undisturbed flow, i.e. F = }~ e1 (cf. (17 a)), the path 

followed by the sphere in the (x10 x3
)-plane is exactly coincident with a streamline 

of the undisturbed flow. However, the translational velocity of the sphere is altered 

considerably from the undisturbed velocity of the fluid by interaction with the 

interface. This is illustrated in figure 11, where the difference between the velocity 

of the sphere and the undisturbed velocity of the fluid ( U
1

- T
13 

d) 1 r
13 

a is given 

as a function of the separation distance d between the sphere and the interface for 

three values of it = 0, l and oo. Also included for comparison are the corresponding 

results of Goldman et al. (1967 b), who obtained an exact solution of the Stokes 

equations, using bipolar coordinates, for the translational and angular velocities of 

a neutrally buoyant sphere moving in a linear shear flow in proximity to a single plane 

wall (i.e. it--+ oo ). It can be seen from figure 11 that the present asymptotic result 

for the translational velocity is in reasonable agreement with the exact solution in 

the entire region of d > 1. Indeed, the relative error associated with the asymptotic 

solution is less than 2.0% for d > 1.54. 

The angular velocity -02 , (33b), for motion of a freely suspended sphere in the 

simple shearing flow is plotted in figure 12 as a function of d for three values of it = 0, 

1 and oo. Darabaner & Mason (1967) experimentally measured the angular velocity 

of a neutrally buoyant sphere in a Couette viscometer as a function of the separation 

distance between the sphere and the wall of the viscometer. Their results are included 

in the figure. In addition, the exact solution of Goldman et al. (1967 b) for it = oo is 

also compared with our approximate solution in this figure. The present asymptotic 
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solution is qualitatively consistent both with the experimental data and the exact 

solution over the whole range of d, and is quantitatively accurate except in the region 

d """' 1. Considering that the experimental data have neither been corrected for wall 

curvature nor for the presence of a second wall at a larger distance, and in view of 

the difficulties of maintaining and measuring the separation distance from the wall, 

the agreement is quite good. 

5.2. Trajectories of a slender body 

Let us turn now to the case of a slender body suspended freely in a linear flow field. 

Since eaoh hydrodynamic resistance tensor in (33a, b) is a function of the orientation 

of the body axis (8, ¢),in addition to the position of the body relative to the interface 

(i.e. d), it is convenient to relate the angular velocity U in (33b) to 0 and¢, the time 

rate of changes in e and ¢ ( cf. Yang & Leal 1983). 

We begin with the trajectory of a slender body in the pure straining flow oi = E· X. 

As we noted in §4.1, the hydrodynamic torque on the body in this flow is due primarily 

to the basic flow rather than the interaction between the particle and the interface. 

Only for A ;;<: 0( 1) with d -l ~ 0( 1) and 8 in the range 45°-135°, so that one end of 

the particle is relatively close to the interface, is there a significant contribution to 

the torque from the particle-interface interaction (cf. figures 7 and 8). We now thus 

consider a slender body initially located at x~ = (0, 0, - 2), which is relatively close 

to the interface, with initial oblique angles eo= 0°, 30°, 60°, 70°, 75°, 85° and 90° 

relative to the interface and ¢
0 

= 0°. In this case (¢
0 

= 0°), the axis of the particle 

is initially in the (x
1

, x
3
)-plane, and remains so as it travels along the flow field. 

In figure 13 the trajectories for a slender body with prescribed initial position and 
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orientations are represented in terms of the orientation angle () and the separation 

distanced for three values of A= 0, 1 and oo. We also include the corresponding 

results for trajectories in an unbounded fluid, which nearly coincide with those for 

the A = 0 case. A slender body initially oriented parallel or perpendicular to the 

interface will travel along the flow without rotation, and thus the trajectory (d versus 

B) in each case is a vertical straight line. Furthermore, for any initial orientation 00 , 

except the case of A = oo and 8
0 

= 85°, the particle always rotates towards an orienta

tion parallel to the interface independently of A. For the case of A= oo and 80 = 85°, 

on the other hand, the particle rotates towards the perpendicular orientation, which, 

as we have noted earlier, is a second stable equilibrium orientation for this case. The 

final orientation for A = oo is determined by the initial position and orientation of 

the particle. This rather curious result for A = oo will actually occur for any value 

of A> Acr• which is determined from figure 8. It may be noted that a slender body 
with initial orientation ()0 :::::; 70° achieves an orientation parallel to the interface 

before the particle reaches the interface (actually up to d/l-lsinOI = 0.01, which is 

the separation distance between the tip of the body and the interface). On the other 

hand, a particle with ()0 :::::; 75°, except the case of A= 0 and 80 = 75°, touches the 

interface before it arrives at the equilibrium orientation either parallel or perpendicular 

to the interface, depending on the viscosity ratio. The critical value of the initial 

orientation 80 , determining the final orientation, depends on the viscosity ratio A and 

the initial separation from the interface. However, a particle initially located at 

sufficiently large distance (i.e. d ~ oo) with arbitrary orientation (8 =t= 90°) will always 

rotate parallel to the interface before it reaches the interface. 

The trajectories for other initial positions x~ = (0.5, 0, - 2), ( 1, 0, - 2), (3, 0, - 2) 

and (5, 0, - 2), which are displaced from the axis of symmetry, were also examined. 
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The trajectories in the (x1 , x3 )-plane (i.e. d versus x) do not deviate significantly from 

the corresponding streamlines of the undisturbed flow field. Furthermore, the hydro

dynamic torque on the particle in the flow, i.e. T -Kc·K"T1
' Ffrom (33b) in combina

tion with (26a, b), equals Q-1 ·KPT./;p-Kc·K"T1 ·Q-1 ·KPF•I;P' which depends 

on the separation distance d from the interface and the particle orientation (0, ¢), 

but is independent of the particle position relative to the axis of symmetry. The terms 

Q-1
• K PT • /;p and Q-1

• K PF • /;p are the hydrodynamic torque and force on a particle 

in the pure straining flow that has its origin coincident with position of the particle 

centre, while Kc·K"T 1 ·Q-1 ·KPF·I;P is the torque acting on the same particle as a 

consequence of force Q-1 ·KpF'/;p and the reciprocity of Stokes flow with linear 

boundary conditions. Thus the angular velocity, (33b), of a slender body located at 

arbitrary point x~ is determined by the separation d from the interface, for a given 

orientation (0, ¢), and is independent of the particle position relative to the axis of 

symmetry. The general features ofthe particle trajectories in terms of the orientation 

()versus the separation distanced, which were described for x~ = (0,0, -2), are 

therefore preserved whether or not the initial location is on the axis of symmetry, 

at least for the special initial separation distance, i.e. d = 2, considered here. 

The other problem that we examine in this section is an undisturbed simple 

shearing flow, 0 2 = -x3 e1 , parallel to the interface into which a slender ellipsoid of 

revolution (i.e. S(x) = 0) is placed with an arbitrary orientation determined by 

spherical polar angles() and¢ based upon the plane of the interface (cf. figure 4). 

If the axis ratio for the ellipsoid is arbitrarily small, but non-zero, and the ellipsoid 

is suspended freely in simple shear flow of an unbounded single fluid, Jeffery (1922) 

showed that the motion of the axis of revolution of the particle is described, apart 

from a simple translation parallel to the flow, by periodic (Jeffery) orbit equations, 

relating iJ and¢ to K, ()and¢. The corresponding equations for slender-body rotation 

in an unbounded single fluid can be calculated readily for the present slender-body 

solution of O(e2
) by using (30) and (33): 

iJ =cos¢ sin2 0 (1-0.5e)+O(e2
), ¢=sin¢ tanO (1-0.5e)+O(e2)·. (35a, b) 

In the limit K~ oo (or e~O), the exact and slender-body results are identical except 

for()~ mt (where n is any non-negative integer), when the exact equations yield 

iJ ~ cosrpK- 2
, (36) 

while the slender-body approximation reduces to 0 = ¢ = 0. 

In an unbounded fluid, particles with an arbitrarily large but finite aspect ratio 

K thus rotate periodically through the aligned (or nearly aligned) orientation,() = n1t, 

owing to the small O(K- 2
) term of (36), while the slender-body theory predicts that 

the particles asymptotically approach the aligned position, but do not continue to 

rotate. Thus, althoughsuccessfulingiving the hydrodynamic resistance for non -aligned 

orientations (i.e. ()=I= n1t), the classical slender-body theory fails to give any results 

for the fully aligned state, and this is a critical failure for adequate description of 

the periodic orbital motion in simple shear flow. This problem was considered in detail 

for a slender body in a single unbounded fluid by Cox (1971). Cox determined the 

hydrodynamic torque acting on the slender body with aligned orientation, () = n1t, 

in a linear shearing flow of a single, unbounded fluid as an asymptotic expansion in 

terms of 1/K, i.e. 
T = 81t cos¢K-

2
e O( _3 ) (

37
) 

3 1-0.5e + K ' 

which is responsible for the slow rotation of a real particle through the aligned 
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orientations (} ~ n1t. From (37) and the hydrodynamic relationship between the 

torque and the angular velocity, we can readily evaluate the angular velocity iJ 
through the aligned orientation ({} = n1t). 

iJ = cos</JK- 2 (1 +0.25e2)+0(K- 3
£

3
), (38) 

which is consistent with the exact Jeffery-orbit equation with(} = n1t, i.e. (36). Leal 

(1975) has shown that a useful and uniformly valid first approximation to the orbit 

equation in an unbounded single-fluid case can be obtained simply by combining the 

first-order slender-body solutions O(e) with the expression (36) in the form 

iJ ~cos¢ (sin2 (}+K- 2
) and ¢~sin¢ tan e. (39a, b) 

and that the detailed orbit shapes corresponding to (39a, b) are nearly identical with 

the famous (and exact) Jeffery orbits. We now examine the trajectories of a slender 

body in simple shearing flow near a plane interface, using the same approximation 

(38) to describe rotation iJ of the body axis through the aligned orientations near 

(}- n1t. 

First, we begin with the motion of a particle from an initial ¢-orientation, ¢ 0 = 0°, 

in which the axis of the particle is in the (x1 , x3 )-plane defined by the flow direction 

and the normal to the interface. Thus the slender body remains always in the plane 

¢ = 0° and it is only (} and the position of the particle centre that change with time. 

In figure 14 the trajectories for a slender body located initially at x~ = (0, 0, -1.2) 

with initial {}-orientations (}0 = -30°, 0°, 10° and 50° are represented in terms of the 

increment {}-{}
0 

of the orientation angle and the separation distanced between the 

body centre and the interface for three values of A = 0, 1 and oo. For an unbounded 

fluid, thee
3 

component of the hydrodynamic force F -Kb·Krl' Tin (33a) is obviously 

zero (cf. figure 10), and thus the trajectory, d versus e, in that case is a horizontal 

line regardless of the initial {}-orientation. Here F denotes the hydrodynamic force 

acting on the slender body in the simple shearing flow without rotation, (30a), and 

Tis the hydrodynamic torque on the same particle without translation, (30b). The 

trajectories (d versus(}) represented in figure 14 show, however, somewhat-complicated 

features in the presence of an interface. The present theoretical results show that the 

hydrodynamic force, F- Kb · K}l' Tin (33 a), induced by the flow field yields not only 

translation of the body parallel to the interface but also translation towards or away 

from the interface with a simultaneous rotation in the direction of increasing (}, so 

that the leading edge turns towards the interface. Although the hydrodynamic force 

is at equilibrium in the x3-direction at each extremum point in figure 14, the particle 

orientation changes (i.e.(} is increased) owing to the non-zero torque T-Kc·KT1 •F 
in (33 b). Thus the equilibrium cannot be maintained, and the body continues to move 

in and out relative to the interface as it translates continuously parallel to the 

interface with a simultaneous rotation. When the particle becomes parallel ({} = 0° 

or 180°) to the interface (which corresponds to the steepest peak point in the 

trajectory for each initial (}0 orientation considered here), it begins to travel along 

the symmetrical trajectory with respect to(}= 0° (or 180°), as it rotates very slowly 

through alignment. It is worth pointing out that, owing to the symmetry of the 

system, the trajectories are exactly symmetrical with respect to(} = 0° (or 180°), as 

the particle rotates very slowly through the aligned state. The trajectories are also 

exactly symmetrical with respect to(}= ln1t (n; an integer), and thus the particle 

eventually reaches the initial separation distance from the interface (i.e. in this case 

d = 1.2) at the orientation angle (} = 1t +eo, beyond which the body passes along the 

same periodic trajectories as those shown in figure 14. 
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Finally, we consider the case of a slender body initially oriented with ¢ 0 =*' 0° and 

the same 00 considered in the foregoing case. In the case ¢ 0 =*' 0° the body axis is no 

longer in the plane of the flow defined by the flow direction e1 and the normal to the 

interface e3 , and the trajectories are different from those in figure 14, in which ¢ 0 = 0°. 

In figure 15 we compare the detailed particle rotation for ¢ 0 = 0°, -fs7t, ts7t, f41t and 

f27t, as indicated by the projection of the end of the particle onto the plane of the 

shear flow in a frame of reference fixed to the body centre. The various orbital 

trajectories for different values of ¢
0 

indicate that the precise projection is quite 

sensitive to the initial orientation (00 , ¢ 0 ). Most clearly evident, on comparing the 

calculated orbits, is the fact that the general features of trajectories in figure 15 are 

preserved whether or not the interface is introduced, and the orbital motion is 

periodic independently of the viscosity ratio A and the initial orientation of the body 

axis. Indeed, the orbital trajectories for A = 1 in figure 15 are almost identical with 

those in an unbounded single fluid. However, the origin of figure 15 (i.e. the body 

centre) in the presence of an interface periodically oscillates relative to the interface. 

Thus the trajectories in terms of the separation distanced from the interface and the 

orientation angle () are significantly different from the case of ¢ 0 = 0°, in which the 

angle () is continuously increased as the body rotates. In figure 16, the orbital 

trajectories for one period in the plane of d versus () are plotted for ¢ 0 = 30° and 

()
0 

= -30°, 0°, 10°, 50° and for three values of A = 0, 1 and oo to illustrate the effect 

of the initial ¢-orientation on the particle motion. Also shown for comparison are the 

results for an unbounded infinite fluid, in which the trajectory (d versus 0) is the 

horizontal line. In this case of ¢
0 

=*' 0° the body not only tumbles end-to-end but also 

twists relative to the plane of the flow (i.e. the ( x1 , x3 )-plane) owing to the hydrodynamic 
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force and torque, F-Kb· Krl' Tand T -Kc·K;/• Fin (33a, b). A detailed calculation 

shows that the twisting motion (i.e. rotation with¢) is enhanced by the presence of 

an interface, which tends to reduce the parallel translation of the nearest end to the 

interface and yields additional hydrodynamic torque on the body to increase¢. 

We have also examined the trajectories of a slender body with ifJ
0 

= 60° and 90°. 

However, the qualitative features of the trajectories (d versus 0) for these cases are 

quite similar to the case of ifJ
0 

= 30°, and illustrative figures are not necessary. 

This completes our illustrative trajectory calculations for a neutrally buoyant 

particle (i.e. sphere or slender body) freely suspended in a pure straining or in a simple 

shearing flow, using the basic solutions that were developed in §§3 and 4. In future 

research we plan to consider the application of the results of this paper to particle 

capture at the surface of a large bubble or drop (i.e. capture rates in flotation 

processes), and to the rheology of dilute suspensions. 

This work was supported by a grant from the National Science Foundation, Fluid 

Mechanics Program of the Engineering Directorate. The authors are grateful for this 

support. 
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