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The microscopic description of heavy-ion reactions at low beam energies is achieved within hadronic transport

approaches. In this article a new approach called “Simulating Many Accelerated Strongly interacting Hadrons”

(SMASH) is introduced and applied to study the production of nonstrange particles in heavy-ion reactions at

Ekin = 0.4A–2A GeV. First, the model is described including details about the collision criterion, the initial

conditions and the resonance formation and decays. To validate the approach, equilibrium properties such as

detailed balance are presented and the results are compared to experimental data for elementary cross sections.

Finally results for pion and proton production in C + C and Au + Au collisions is confronted with data from

the high-acceptance dielectron spectrometer (HADES) and FOPI. Predictions for particle production in π + A

collisions are made.
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I. INTRODUCTION

Heavy-ion collisions offer the opportunity to study hot and

dense strongly interacting matter under extreme conditions.

High-energy programs at the Large Hadron Collider (LHC)

and the Relativistic Heavy Ion Collider (RHIC) are delivering

a lot of detailed experimental data [1–3] relevant for the high-

temperature and low-net-baryo-chemical-potential part of the

phase diagram which corresponds to the situation shortly after

the Big Bang. Scanning the beam energies to lower values,

as is currently done at the CERN-Super Proton Synchrotron

(SPS) [4] and the RHIC beam energy scan [5–7] program

or in the future at the GSI Facility for Antiproton and Ion

Research (FAIR) and the Nuclotron-based Ion Collider Facility

(NICA), provides access to regions in the phase diagram where

a first-order transition to the quark-gluon plasma is expected

to take place. One of the goals of these programs is to search

for a critical endpoint in the QCD phase diagram [8].

Since there is no first-principles solution of the many-body

problem in quantum chromodynamics including a nonequi-

librium evolution through a phase transition up to date,

effective theoretical approaches are necessary to describe the

full dynamical evolution of heavy-ion reactions from the early

to the late stages. By comparison of the output of these

calculations with experimental data on particle distributions

and their correlations in the final state, it is possible to draw

conclusions about the properties of the hot and dense strongly

interacting matter that was created for a very short time and in

a very small volume.

Following the realization that the quark-gluon plasma

behaves like an almost perfect fluid in contrast to the ideal-gas

expectation, within recent years the community has converged

towards a standard model for the description of the evolution of

heavy-ion reactions at high beam energies. The early stage of

the collision is described by a nonequilibrium evolution likely

based on fluctuating color fields or strings until approximate

local equilibrium is reached [9,10]. The hot and dense stage

of the evolution is governed by relativistic dissipative hydro-

dynamics [11–14] incorporating the QCD equation of state

provided by lattice calculations [15–18]. The later dilute stages

are described by a hadron transport approach [19]. Even though

most of the dynamical features are captured within the hydro-

dynamic calculation, the hadronic rescattering stage becomes

necessary as soon as one wants to address identified particle

spectra or correlation and fluctuation observables that are

affected by resonance decays and baryon annihilation [20,21].

The other limit where the description of the dynamical

evolution of heavy-ion reactions is to some degree under

control is at very low beam energies that are dominated by

hadronic reactions and not yet affected by quark-gluon-plasma

formation. The region of intermediate beam energies that is of

great interest with respect to the discovery of features in the

QCD phase diagram poses a challenge to the current dynamical

approaches. There are attempts to adapt the above-described

hybrid approaches and extend them to finite baryon chemical

potential [22]. The other option is to start from a vacuum

hadronic transport approach that is extensible by including

effects of the hot and dense medium such as many-body

interactions. This second approach is the motivation for the

development of a new hadronic transport approach called

“Simulating Many Accelerated Strongly interacting Hadrons”

(SMASH).

Hadronic transport approaches have been developed for 20–

30 years and some models are still under active development
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[23–26]. The new experimental data that are available to

constrain the resonance properties at low beam energies [27]

and profiting from the experience of the existing transport

approaches is the reason for developing a modern flexible

open source code that can be adapted as a standard reference

for a purely hadronic system with vacuum properties. To

summarize, we have gained a lot of new experimental and

theoretical insights over the past two decades that make the

development of a new transport approach a timely endeavor.

This new transport approach will also be highly relevant to

provide a better understanding of the late-stage evolution of

hadronic rescattering at RHIC and LHC energies.

In this paper the newly developed approach is described in

detail. In Sec. II the ingredients of the approach are explained,

including the general setup, the collision criterion, the initial

conditions and treatment of potentials, Pauli blocking, and

resonance formation and decay. In Sec. III basic checks

of detailed balance and comparisons with elementary cross

sections are shown. In Sec. IV we present calculations of

observables in comparison with experimental data from the

high-acceptance dielectron spectrometer (HADES) and the 4 π

detector (FOPI) at Ekin = 0.4A–2A GeV and predictions for

π -A collisions.

II. MODEL DESCRIPTION

A. General setup

The main advantage of a microscopic transport approach

is that the full phase-space information of all particles is

available at all times. SMASH constitutes a solution of the

nonequilibrium dynamics of hadrons in the regime where the

inelastic interactions are treated by resonance excitations and

decays with vacuum properties. The underlying equation is the

relativistic Boltzmann equation

pμ∂μfi(x,p) + miF
α∂p

α fi(x,p) = Ci
coll, (1)

where Ci
coll is the collision term, F α is the force experienced

by individual particles, and mi is the particle mass. For

high-beam-energy collisions, F α = 0, while for low-beam-

energy collisions, F α = −∂αU (x) where U (x) is the mean-

field potential. The relativistic Boltzmann equation is an

integro-differential equation in 6 + 1 dimensions. fi(x,p)

is the single-particle distribution for each species i that is

represented by test particles. Along the lines of quantum

molecular dynamics each particle is in principle represented

by a Gaussian wave packet. In practice, all particles are treated

as point particles and the finite spatial extent is only invoked to

calculate thermodynamic properties such as particle density.

In our case, per default each real particle is represented by one

test particle, but more test particles can be created if necessary.

1. Collision criterion

One of the major challenges for solving the Boltzmann

equation in a relativistic situation is to define an appropriate

collision criterion. The Kodama criterion [28] is a fully

covariant collision criterion, but since it involves boosts of

several four-vectors it is rather inefficient. In the current

approach we have chosen to use the geometrical criterion

employed in the UrQMD (Ultra-relativistic Quantum Molecular

Dynamics) approach [23], which is defined as follows:

dtrans < dint =
√

σtot

π
, (2)

with

d2
trans = ( �ra − �rb)2 − [( �ra − �rb) · ( �pa − �pb)]2

( �pa − �pb)2
, (3)

where �r and �p are the coordinates and momenta of the two

particles a and b in the center of mass frame of the binary

collision. The time of the collision is determined as the time

of the closest approach in the computational frame:

tcoll = − ( �ra − �rb) · ( �pa/Ea − �pb/Eb)

( �pa/Ea − �pb/Eb)2
, (4)

where now all coordinate and momentum vectors have to be

taken in the computational frame. The computational frame

is usually chosen to be the equal-velocity frame of the two

nuclei which is the same as the center-of-mass frame in case of

symmetric systems. The computational system is the one that

carries the clock that is relevant for ordering of the collisions,

therefore it is crucial to transform the collision times to the

same frame to decide which collision happens first.

This geometrical criterion effectively encodes an instan-

taneous interaction over a finite distance and gives rise to

causality violations [29]. We have compared the UrQMD

criterion to the covariant Kodama criterion and found no

significant differences. Since the above explained criterion is

numerically more efficient, we stick to this definition in the

following.

A different option to include all relevant scatterings at high

density is to implement the solution of the Boltzmann equation

by stochastic rates [30–32]. This approach has the advantage

that multiparticle scatterings can be taken into account in a

straightforward way. On the hadronic level there are of course

a lot of different possibilities that one would need to take into

account in such an approach, therefore this is left for future

work. Also, the stochastic-rates approach relies on having a

large number of test particles in each cell, therefore it is not

clear how to model event-by-event fluctuations properly.

2. Test particles

Another method to circumvent the locality issues is the test-

particle method: all cross sections are scaled by a factor N−1
test ,

while the number of initially sampled particles is increased by

the same factor Ntest.

σ �→ σN−1
test, (5)

N �→ NNtest. (6)

Ntest is referred to as the “test-particle number”. After

substitution [Eqs. (5) and (6)] the scattering rate (number of

collisions per unit time per particle) remains unchanged, but

the cross sections become smaller and collisions are “more

local”. Locality is restored in the limit Ntest → ∞. As shown

in Ref. [29], experimental observables such as particle spectra

and flow obtained by using transport models depend on Ntest

and saturate when Ntest is sufficiently large (in the case of
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Ref. [29], Ntest = 16 was large enough for saturation). Another

important application of test particles is to provide statistics for

density or phase-space density estimates, which are required

for evaluating potentials accurately.

3. Time steps and propagation

To solve the Boltzmann equation numerically, time and

space need to be divided into cells. The granularity of the time

steps are crucial, since the time steps need to be small enough

to catch all collisions (when assuming a maximum of one

collision per particle in a time step) and as large as possible to

ensure a fast evaluation of the evolution. Therefore, SMASH

has two different options for the propagation. Either fixed time

steps are chosen or the time steps are dynamically determined

from the collision times. The first setup has the advantage

that calculations with nuclear potentials are feasible while the

second one adapts nicely to high- and low-density regions and

is more efficient.

In an algorithm with fixed time-step size the actions

are only determined for a short time dt in advance. In

addition to the time-step size dt a start tstart and an end time

tend have to be chosen. The search for collisions needs to

extrapolate the movement of the particles. The assumption in

SMASH is that the time-step size �t is small enough that the

effect of potentials on the trajectory of the particles can be

neglected during this time interval. Therefore, the movement

is extrapolated without taking potentials into account.

Any interaction of two particles is called an action. If the

criterion Eq. (2) is satisfied, then the collision is added to the

list of collisions and decays with a time stamp tcoll. After all

actions are found, they are sorted according to their associated

time. Iterating over the sorted list, all actions are first tested

whether they are still valid. We rely on the assumption that

each particle only interacts once during one time step. Valid

actions are performed which involves replacing the incoming

particles with the outgoing particles. The actions are performed

before the propagation, which means that the global time of

the particles is still the time of the beginning of the time step.

When all valid actions have been performed, all particles are

propagated taking potentials into account (if they are present).

When propagating without potentials or for the later dilute

stages of the collision, it is useful to abandon any fixed time

steps and rather switch to an algorithm that takes the actions

themselves to determine the next propagation step. The general

idea is that the program keeps a list of actions which is

constantly updated. Actions are removed from the list as they

are performed and added as they are newly discovered. At the

beginning of the simulation, the end time of the simulation

tend is specified. This is used to find all possible actions for all

particles until tend as described before. Next, there is a loop

over all actions that starts with the first action according to the

time of execution of the actions and checks if this action is

still valid. The check consists of verifying that the incoming

particles were not part of another action since this action was

found. If they were, the action is discarded.

If the action is valid, all particles are propagated to the point

in time where the action is supposed to happen. Then the action

is performed as described before. As a result, all actions that
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FIG. 1. The time between consecutive actions for a central Cu-Cu

collision at
√

sNN = 3 GeV, averaged over 100 events within the

algorithm without fixed time steps. This plot shows the averaged

time until the first, second, third,· · · , nth interaction, therefore, the

results are still scattered.

involved the incoming particles are implicitly rendered invalid,

since the state of these particles has changed. In the last step, all

possible actions of the outgoing particles are added to the list

of actions. This algorithm realizes all actions that are supposed

to happen, assuming the time ordering of the actions is correct

(which depends on the collision criterion).

Figure 1 shows the time difference between consecutive

interactions �t for a Cu-Cu collision, averaged over 100

events. Each data point corresponds to one action. The average

of this time between actions becomes as small as 0.01 fm/c

but the variance of �t is high and outliers can reach 0.0001

fm/c.

4. Mean-field potentials

To create a more realistic simulation at low beam energies,

a minimal version of mean-field potentials between nucleons

is included. The equations of motions have to be adjusted

according to the modified one-particle Hamiltonian Hi ,

Hi =
√

�p2
i + m2

eff + U (�ri), (7)

where meff is the mass for stable hadrons and the effective mass

for resonances in accordance with their mass distribution (e.g.,

Breit–Wigner). At this point, the potential depends only on the

coordinates, but not on the momentum of the particles. The

corresponding equations of motion are then

d�ri

dt
= ∂Hi

∂ �pi

= �pi
√

�p2
i + m2

eff

, (8)

d �pi

dt
= −∂Hi

∂�ri

= −∂U

∂�ri

. (9)

This formulation leads to the fact that momentum conser-

vation is fulfilled only on average. Event-by-event momen-

tum conservation requires that d �pi/dt = −∂Htot/∂�ri , where
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Htot = ∑

i Hi . The potential is calculated as a function of the

local density

U = a(ρ/ρ0) + b(ρ/ρ0)τ ± 2Spot

ρI3

ρ0

. (10)

Here, ρ is the Eckart rest frame baryon density and ρI3 is the

Eckart rest frame baryon isospin density of the relative isospin

projection I3/I . ρ0 = 0.168 fm−3 is the nuclear ground state

density. Parameters for the Skyrme potential are by default

set to a = −209.2 MeV, b = 156.4 MeV, and τ = 1.35, while

Spot = 18 MeV is the default value for the symmetry potential.

These parameters were agreed on for a recent transport-code

comparison [33] and correspond to a rather soft potential with

an incompressibility of K = 240 MeV. For the equations of

motion one does not need the potential itself, but its gradient,

∂U/∂�r . In the symmetry term the positive sign is applied for

the potential acting on neutrons and the minus sign is applied

for the potential acting on protons. Currently, the potential acts

only on baryons. The potentials are always calculated after the

actions are performed, right when the propagation happens.

We note that electromagnetic potentials (Coulomb and

Lorentz force) are currently being neglected in the model, since

they are typically much weaker than the hadronic mean fields

(even if they are more long ranged). The Coulomb potential

can only play a role for collisions of large nuclei at very low

energies and is completely negligible at higher energies (FAIR,

RHIC, LHC).

5. Nearest-neighbor search

To determine if two particles will scatter, their distance

needs to be compared to the total cross section. In principle,

every particle has to be paired with every other particle in the

system and the complexity of the search will scale with N2

where N is the number of particles, which is computationally

intensive. To reduce the combinatorics of this search, the space

can be divided into cells whose sizes are chosen such that,

accounting for the time-step size �t and the maximal possible

cross section σ max
tot , all collisions will happen within one cell or

among neighboring cells, but not beyond that. SMASH uses

such a grid structure with a minimal cell size of (2.5 fm)3. The

value of d = 2.5 fm corresponds to a maximum cross section

of σ max
tot = πd2 ≈ 200 mb that can be handled. This maximum

is reached in the � peak of the π+p cross section; see Fig. 13.

The only exception of physical cross sections going above

200 mb are the elastic NN cross sections, which diverge at the

threshold. Those are effectively being cut at 200 mb with our

minimal cell size (at least without test particles). When larger

numbers of test particles are used, the cross sections are scaled

down accordingly and this limitation is lifted.

In the actual algorithm for iterating over the cells, a

distinction is made between in-cell search and neighbor search.

The in-cell search is used to find decays and collisions within

a given cell.

The neighbor search looks for actions between the particles

in a given cell and its neighbors. To avoid finding duplicate

actions, not all neighboring cells are used in the neighbor

search. Consider the case depicted in Fig. 2: When starting the

neighbor search from the dark gray cell, the actions between

1

2
3

4

FIG. 2. Two-dimensional schematic representation of the grid

structure for finding collisions between particles. When searching

for collisions, particle 1 is checked with particles 2 and 3, but not

with particle 4.

particle 1 and particles 2 and 3 will be found. Afterwards,

when starting the search from a light gray cell, the dark gray

cell can be omitted from the search, because there would be no

new actions. After some analysis one comes to the conclusion

that each cell needs to check only half of its neighbors (except

for cells at the border which need to check even fewer).

The grid is also used to realize periodic boundary condi-

tions. With periodic boundaries, particles that are on opposite

sides of a fixed-sized box can interact. When this feature is

activated, the neighbor search for a cell at the border does

not only check the actual neighboring cells. Instead, so-called

ghost cells are added that contain the mirrored particles from

the opposite side of the grid. Note that in this case it is important

that no grid cell size at the boundaries be smaller than the

minimal cell size. Therefore, the cell size is scaled up to fit the

total volume with the minimal number of complete cells.

6. Elastic box test

To test the collision finding algorithm, we employ a simple

setup, which we further call “elastic box”. A box with periodic

boundary conditions is uniformly filled with N pions. The

momenta are distributed according to a Boltzmann distribution

dN

d3p
∼ exp(−

√

�p2 + m2/T ), (11)

where the temperature T is taken to be 0.13 GeV. The pions

are only allowed to scatter elastically with a constant isotropic

cross section σ . In this simple setup, the scattering rate s should

be s = nσ , where it is taken into account that the relative

velocity between particles is close to the speed of light (a

calculation using Eq. (52) of Ref. [34] gives vrel ≈ 0.98 for

our setup), and n is the particle density.

From Fig. 3 one can see that s = nσ is fulfilled for SMASH

regardless of cross section σ or test-particle number Ntest, but

only if the time step is sufficiently small. It is also interesting

to observe that the scattering rate s for all combinations of
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FIG. 3. “Elastic box” (pion box with constant isotropic cross

section). Upper panel shows scattering rate versus density for different

time steps. Lower panel shows universal curve: number of collisions

per time step s�t versus nσ�t for 48 possible combinations of time

step �t ∈ {0.1, 0.01, 0.001} fm, isotropic elastic cross section σ ∈
{1, 10, 30, 50} mb and test-particle numbers Ntest ∈ {1, 10, 50, 100}.

different σ , Ntest, and �t lies on one universal line

s�t = nσ�t

1 + nσ�t
. (12)

For small time steps nσ�t = �t/λ ≪ 1, one retrieves the

expected ideal-gas behavior, while in the limit of large time

steps there is one collision per particle per time step. This is

expected, because more than one collision per particle per time

TABLE I. This table summarizes the specific parameters used in

the Woods–Saxon initialization for some nuclei.

Nucleus A r0 [fm] d [fm]

U 238 6.86 0.556

Pb 208 6.67 0.54

Au 197 6.38 0.535

Cu 63 4.20641 0.597

step is prohibited by the SMASH algorithm. If one wants to

have the full collision rate, the propagation from collision to

collision without time steps can be used. The universality of

the curve can be explained in terms of dimensions. One can

construct only three dimensionless quantities from s, n, σ , and

�t . Let us choose s�t , nσ�t = �t/λ, and nσ 3/2, then

s�t = f (nσ�t,nσ 3/2). (13)

Assuming independence on the second argument one obtains

our universal curve. We have additionally checked that these

results depend only on the density n = N/V , but not on N or

V separately. In other words, one can vary number of particles

N , box volume V , or both, but the results are identical if

n = N/V is the same.

B. Initial conditions

1. Nuclear collisions

a. Nucleon distribution in coordinate space. To generate

initial conditions for heavy-ion collisions, the whole phase-

space distribution of the initial nucleons needs to be sampled.

In coordinate space, “round” nuclei such as gold or lead can

be described by Woods–Saxon distributions

dN

d3r
= ρ0

exp
(

r−r0

d

)

+ 1
, (14)

where d is the diffusiveness of the nucleus which controls

the quick falloff of the distribution. For d → 0, the nucleus

is a hard sphere. ρ0 = 0.168 fm−3 and r0 are, in this limit,

the nuclear ground-state density and the nuclear radius. The

default value for the diffusiveness is d = 0.545 fm, where more

specific values are used for Au, Pb, Cu, and U (see Table I).

Other values can be provided via the corresponding pa-

rameters in the configuration input file if necessary. Within

the sampling procedure, the finite size of the nucleons and

nucleon-nucleon correlations are neglected for simplicity [35].

In Fig. 4 it is shown that the sampling in coordinate space for

a lead nucleus works as expected.

The initial positions of nuclei and the time of initialization

are chosen as shown in Fig. 5. We use Cartesian coordinates,

where the z direction corresponds to the beam direction and

x is the impact-parameter direction. At the initialization, the

projectile center is at xz coordinates (b/2,−�z − γ −1
P (RP +

dP )) and the target center is at (−b/2, vT

vP
�z + γ −1

T (RT + dT )).

Here RP and RT are the projectile and target radii and dP and

dT are the corresponding diffusiveness parameters from the

Woods–Saxon distribution. By vP and vT we denote absolute

values of the velocities, while γP = (1 − v2
P )−1/2 and γT =
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FIG. 4. Coordinate-space distribution of 208 nucleons compared

to the Woods–Saxon distribution with the parameters for a lead

nucleus.

(1 − v2
T )−1/2 are the associated γ factors. The separation of

the centers of the nuclei in the x direction equals the impact

parameter b. For deformed nuclei, an additional rotation along

all three angles is applied. In this way, the simulation is started

at such an initial separation that the potential of one nucleus

does not influence the other one yet, otherwise initialization in

the ground state would not be justified. The initial coordinates

and time are chosen in such a way that Lorentz-contracted

spheres of radii (RP + dP ) and (RT + dT ) will touch at t =
0 in a central collision. An alternative definition would be

that t = 0 fm corresponds to the maximal overlap of the two

nuclei. The additional distance �z = 2 fm is added to avoid

missing any nucleon-nucleon collisions. Since the nucleons

are distributed according to Woods–Saxon distributions, there

is a small but nonzero probability to position a nucleon at a

large distance from the nucleus center. The initial separation

distance �z is chosen such that all collisions are taken into

account. The initial time is t0 = �z/vP , which implies that

the projectile is always moving, vP > 0, while the target can

be at rest depending on the reference frame for the calculation.

b. Fermi motion. In momentum-space nucleons optionally

get Fermi momenta; then the target and projectile are boosted

(RP+dP)/ P

RP

dP

z

x

- z

+b/2
vP

-b/2 (RT+dT)/ T

RT

dT
vT/vP· z 

vT

t = - z/vP

FIG. 5. Initial positions of nuclei such that contracted spheres

of radii (RP + dP ) and (RT + dT ) will touch at t = 0 in a central

collision.

in z direction according to the chosen energy of the reaction and

computational frame. The γ factor of the boost is γ = EA/MA,

where EA is the energy of the nucleus and MA is its mass. The

velocity of the boost is β = pA/EA. Note that, in EA and MA,

one has to account for the binding energy of the nucleus. For

this we adopt an approximation used in the JAM transport code

[24], which assumes that all nucleons are equally bound. Thus,

the energy of each nucleon in the rest frame of the nucleus is

Ei = MA/A, where A is the number of nucleons. With this

assumption the boost of the longitudinal momenta p′
iz to the

computational frame becomes

p′
iz = γ (piz + βEi) = γpiz + pA

MA

MA

A
= pbeam + γpiz,

(15)

where pbeam is the beam momentum per nucleon and piz are

the momenta of nucleons in the rest frame of the nucleus.

In our implementation pbeam and γ themselves are computed

without accounting for binding energy. We note that there

is no well-established procedure of boosting nuclei with the

account of their binding energy. Codes like UrQMD [23], JAM

[24] and GiBUU [26] apply different methods. Although the

typical binding energy per nucleon is much smaller than

the nucleon mass (≃8 MeV/938 MeV ≈ 1%), we found that

the different methods of accounting for the binding energy

produce small but noticeable differences in pion multiplicities

and mean transverse momentum at low collision energies of

Ekin = 0.4A–2A GeV.

The momentum distribution of nucleons in the ground-

state nucleus is a uniformly filled sphere in momentum space,

known as the Fermi sphere. The radius of the Fermi sphere is

given by the formula

pF (�r ) = �c[3π2ρ(�r)]1/3, (16)

where ρ(�r ) is the density of nucleons at the point �r . A more

detailed description of the density calculation is given in

Sec. III D. A typical value of pF ≈ 300 MeV corresponds

to an energy of p2
F /(2mN ) ≈ 45 MeV.

To make sure that Fermi momenta are generated correctly,

in Fig. 6 we plot the momentum distribution of the neutrons

in a lead nucleus from SMASH and compare it to theoretical

expectation computed as follows: In the central part of the

nucleus, where the density is uniform, the expected normal-

ized distribution 1/NdN/d(p/p0
F )3 = 1, where p0

F ≡ pF (0),

while the analogous momentum distribution integrated over

the whole nucleus with ρ(r) ∼ 1/(1 + e(r−R)/d ) is

1

N

dN

dx3
= [1 + π2α2]−1[1 + α ln(x−3 − 1)]3θ

(

p0
F − p

)

,

(17)

where x = p/p0
F and α = d/R.

Including the Fermi motion is only sensible if potentials are

turned on simultaneously. Otherwise, the nucleus will fly apart

due to the finite transverse momenta of the nucleons that need

to be compensated by the attractive mean-field interaction.

Alternatively, one may employ the so-called frozen Fermi

approximation: Fermi momenta are used for collisions, but

not for propagation. This option is currently not implemented,

but will be considered in the future.

054905-6



PARTICLE PRODUCTION AND EQUILIBRIUM . . . PHYSICAL REVIEW C 94, 054905 (2016)

82
Pb nucleus

neutrons

r < 3.5 fm, SMASH

full nucleus, SMASH

r < 3.5 fm, expected

full nucleus, expectedN1
 d

(p
/p

F
)3

d
N

0

1

2

(p/pF)
3

0 0.5 1 1.5 2

FIG. 6. Momentum-space distribution of neutrons compared to

the analytical expectation for a lead nucleus.

Figure 7 shows the nuclear stability over a large time

range, much larger than what is actually relevant for a

nucleus-nucleus collision. The nucleons fly apart as expected,

if only Fermi motion without potentials to stabilize the nucleus

are included. With potentials there is the expected oscillatory

behavior: The nucleons drift apart due to Fermi motion and

the potentials counteract and push them closer together again.

Computations with potentials require that time step is small

enough—the energy change per time step should be much

smaller than the energy of the particle:

�E

E
≃ |∂U/∂r|�t

E
≪ 1. (18)

As an estimate for the maximal |∂U/∂r|max let us take

two nucleons at the same point and consider |∂U/∂r|max =
2mN/σ , where σ is the width of the Gaussian smearing [as

defined in Eq. 68],

�t ≪ σ/2. (19)

Assuming the default value of σ = 1 fm, a time-step size of

�t = 0.1 fm is reasonable for physically relevant cases. Since

(a)

FM, no potentials
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no FM, Skyrme + Symmetry
FM, Skyrme + Symmetry

r x
y
 [

fm
]
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no FM, no potentials
no FM, Skyrme + Symmetry
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FIG. 7. Evolution of an average transverse radius rxy =
(〈x2 + y2〉)1/2 of a nucleus over 200 fm/c with different combinations

of Fermi motion (FM) and potentials, (a) 29Cu nucleus and (b) 79Au

nucleus.

the potential becomes smoother with higher number Ntest of

test particles, the estimate becomes in this case

�t ≪ σ
√

Ntest /2. (20)

c. Deformed nuclei. Despite the rather symmetric nuclei

that are most often used for heavy-ion collisions, sometimes

it is of interest to study deformed nuclei as well. For example,

uranium has a prolate shape according to its nuclear many-

body wave function. At RHIC, U + U collisions at
√

sNN =
193 GeV have been studied to evaluate the multiplicities and

anisotropic flow as a function of geometry. Especially the case

of tip-tip collisions, where the multiplicity is very high but

the elliptic flow is close to zero, and the case of body-body

collisions, where the elliptic flow is maximal, are of great

interest. To differentiate between the different geometries,

Monte Carlo event generators that yield the correct trends

for the observables are needed that take into account the more

involved geometry of deformed nuclei [36].

In SMASH, the Woods–Saxon distribution is enhanced with

an angular-dependent radius r(θ,ϕ),

ρ(r,θ,ϕ) = ρ0

1 + exp
(

r−r(θ,ϕ)

d

) . (21)

The deformation-dependent nuclear radius r(θ,ϕ) can be

described by using the β parametrization [37]:

r(θ,ϕ) = r0

(

1 +
∞

∑

l=1

l
∑

m=−l

βlmYm
l

)

. (22)

Here r0 is the initial nuclear radius and the coefficients

in front of the spherical harmonics Ym
l are called the β

shape parameters (or deformation parameters). Note that our

deformed nuclei are azimuthally symmetric and hence all

terms with nonzero magnetic quantum number will vanish.

In SMASH, the deformed Woods–Saxon has been imple-

mented by a rejection sampling routine. For the deformation

we use the β shape parameters up to angular-momentum

quantum number l = 4 from Ref. [37]. For the initial nuclear

radius r0, we use values from Ref. [38] (see two-parameter

Fermi model, abbreviated 2pF). We also have a default

initial radius that uses the empirical relation 1.2A1/3. The

diffusiveness parameter d is on average given by 0.54 fm

[39]. Adjustments for specific nuclei come from Ref. [38]. We

sample a polar angle from the uniform solid angle distribution,

and for the radius we set our maximum sampled value

to be rmax = r0/d + r0d. Finally, the saturation density ρ0

represents our normalization condition:

2π

∫ ∞

0

∫ π

0

ρ(r,θ )r2drdθ = 1. (23)

A deformed nucleus is no longer invariant to rotation. We

therefore need to rotate the nucleus during the initialization

phase. To do so, we treat the system of nucleons like a

rigid body. A set of Euler angles is uniformly sampled that

determines the rotation of the specific nucleus, for which we

use the notation convention (ϕ,θ,ψ).

To visualize the differences between collisions of sym-

metric and deformed nuclei in Fig. 8, the ratio between

total transverse energy of charged particles and the beam
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FIG. 8. Distribution of the ratio of transverse energy of charged

particles and the beam energy scaled with the number of nucleons in

minimum bias Au + Au and U + U collisions
√

sNN = 3 GeV.

energy scaled with the number of nucleons (which is used

to determine the centrality classes in low-energy collisions),

is compared for Au + Au and U + U collisions at
√

sNN =
3 GeV. It can be seen that there are fewer high-multiplicity

events and more intermediate-multiplicity events in U + U

than Au + Au collisions. The difference comes from the fact

that many tip-body and nonoverlapped body-body collisions

(with impact parameter b = 0 fm) do not produce as many

new particles as in Au + Au most-central collisions. Those

events are selected as semicentral collisions at experiments

but provide much smaller elliptic flow. For most-peripheral

collisions, there are more nonempty events in U + U than

Au + Au collisions, because the uranium can touch each other

with much larger impact parameter along their long axes.

d. Frame invariance. To define the kinematics of the

heavy-ion collision, different variables are commonly used.

At lower beam energies often the kinetic energy per nucleon

Ekin or the momentum per nucleon plab is given. Up to

moderate beam energies of around 160A GeV per nucleon,

most experiments are fixed-target experiments to increase

the luminosity. Only if all the available energy out of the

accelerated bunches is needed to reach higher energies for the

collision will the center-of-velocity frame of the two nuclei

equal the laboratory frame in a collider setup. In this case, the

center-of-mass energy for binary nucleon-nucleon collisions

is usually specified
√

sNN to characterize the collision energy.

This frame is the standard computational frame for SMASH

calculations, which is equal to the center-of-mass frame for

symmetric systems.

To give an estimate on how much the Lorentz invariance

is violated by the nonlocal collision criterion, the number

of interactions in one physically identical heavy-ion reaction

is counted for calculations in different reference frames (see

Fig. 9). The calculations have been performed as a function

of beam energy. All interactions above a cutoff of
√

s =
2 GeV per binary collision are counted until the particles

freeze-out, therefore no Lorentz transformation of the runtime

is necessary. The cutoff is necessary to exclude collisions

FIG. 9. Comparison of the number of interactions in the same

heavy-ion reaction (60 central Au + Au collisions at different beam

energies) calculated in the center-of-mass and the fixed-target frame.

The upper plot (a) shows the absolute numbers of interactions above

a cutoff of
√

s = 2 GeV per binary collision, while the lower plot (b)

indicates the relative difference.

within the nuclei at low momenta that are not relevant for

the actual heavy-ion collision. These calculations do not

assume specific time steps, but all particles are propagated

to the next interaction. Apart from the general trend that

there are more collisions at higher beam energies, the relative

difference between the reference frames is very small at

all beam energies. The two calculations coincide within the

statistical error bars at all energies.

2. Infinite-matter calculations

To simulate infinite hadronic matter or other simple systems

like an ideal massless or massive gas and investigate its

thermodynamic properties, box calculations are performed.

This section describes the initialization of N particles of

species i in such a box. In general, every particle j is

characterized by coordinates (xj ,yj ,zj ), the four-momentum

(Ej , �pj ), and a spectral function, therefore the particle mass

is given as m = (E2 − p2)1/2 and is not necessarily equal to

its pole mass. The coordinates of the N particles (xj , yj , zj )

are sampled uniformly in the box: xj = U (0,L), yj = U (0,L),

zj = U (0,L), where U denotes the uniform distribution and

L is the length of the box. The momenta of the particles are

sampled by using the thermal Boltzmann distribution with

temperature T :

w( �p) = N exp(−
√

�p2 + m2/T )p2dp sin θdθdϕ, (24)

where w(p) is a probability to generate momentum �p, θ

and ϕ are angles in spherical coordinates, and N is a

normalization factor. In other words, momentum directions are
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sampled uniformly in the solid angle d� = sin θdθdϕ. Let us

denote the total momentum of N particles sampled from this

distribution ptot. One can see that the ensemble average of ptot

is zero,

∫

exp(−
√

�p 2 + m2/T )d3ppx,y,z = 0, (25)

because it involves an integral over an odd function. However,

in each single event ptot �= 0, which is corrected by changing

the momentum of every particle pj → pj − ptot/N . After this

procedure the thermal distribution is slightly spoiled, the total

energy is changed, and angle uniformity is disturbed. This is

a small effect for large numbers of particles, N ≫ 1. After

letting the system thermalize, the temperature differs by 1%–

2% from the initialization temperature. One also has to note

that the total energy is not the same from event to event, it

is fluctuating, even without this momentum shift. Fixed are

the volume V , the number of particles N , and the temperature

T . This picture corresponds to the canonical ensemble (CE)

with the temperature and the particle number as independent

parameters.

After initialization, particles propagate along straight lines

with velocities �vi = �pi/Ei and collide with each other. The

simulation is time-step based and uses a grid to increase

the performance of the collision finder as described above

in Sec. II A 5. The box has per default periodic boundary

conditions: at the end of each time step, particles outside

of the box with coordinates �r are returned to the coordinate

�r mod(L,L,L).

3. Expanding sphere

A simplified scenario including expansion can be initialized

by using a three-dimensional sphere. For this purpose, N

particles of different species i are uniformly distributed in a

sphere with radius R. The momenta are sampled from a thermal

distribution analogously to the box initialization. Then, the

system expands freely. This setup provides the opportunity to

analyze the numerical stability of the code by comparing with

analytic solutions like Ref. [40], which is left for future work.

4. Afterburner for hydrodynamic simulations

The fourth method for initializing SMASH is to provide

an externally generated particle list based on which the

calculation is started. In heavy-ion collisions at high beam

energies the hydrodynamic hot and dense stage is followed

by a dilute phase that is dominated by hadronic rescattering

and resonance decays. To include this late stage dynamically,

a hadron transport approach like SMASH needs to be run

for each particle configuration that is provided by sampling

on the Cooper–Frye hypersurface. The hadronic transport

calculation can be coupled in a similar way to other approaches

than hydrodynamics, if necessary. Note that input particles

in the list are not required to be at the same time t in

the computational frame; successive appearance of particles

are implemented by setting nonzero formation times. These

particles are propagated back to the earliest time in the list and

free stream before their formation time.

C. Particle properties

1. Particle species

We implement the most-well-established hadronic states

from the Review of Particle Properties [41] with their corre-

sponding decays and cross sections as detailed below. These

particles and their properties are summarized in Table II.

To simplify the extrapolation of cross sections and particle

properties, full isospin symmetry is assumed. Therefore, small

differences in the masses between isospin partners have been

neglected. However, it should be noted that the cross sections

for certain processes can indeed depend on isospin (thus

breaking isospin symmetry; e.g., in channels like NN →
NN∗; see Sec. II D).

We treat as stable all particles that have a width below

10 keV (such as the π , η, K , N, �, �, �, �). All unstable

particles (“resonances”) are assumed to have a Breit–Wigner

shape. We note that this approximation is known to be

questionable for the σ meson; our parameters are adjusted

to reproduce the ππ elastic cross section.

2. Spectral functions

In general, the spectral function encodes the dispersion

relation for a particle and can depend on the temperature and

the density of the system. Medium modifications are currently

neglected in SMASH and all spectral functions are described

by relativistic Breit–Wigner distributions:

A(m) = 2N

π

m2Ŵ(m)
(

m2 − M2
0

)2 + m2Ŵ(m)2
. (26)

Here, m is the actual off-shell mass of the resonance and M0

is the pole mass (i.e., a constant given in Table II). However, the

total width Ŵ is not constant, but given by the mass-dependent

width function Ŵ(m). Each resonance has a minimum mass

mmin (corresponding to the sum of masses of the lightest decay

channels), below which the width, and thus also the spectral

function, vanishes. The total width is computed as the sum of

all partial widths:

Ŵ(m) =
∑

i

Ŵi(m). (27)

Note that the width given in Table II is the total on-shell

width, i.e., Ŵ0 = Ŵ(M0). The spectral function in relativistic

Breit–Wigner form is normalized to unity when integrated

from zero to infinity:

∫ ∞

0

A(m)dm =
∫ ∞

mmin

A(m)dm = 1. (28)

In practice the integration can start from mmin, since

the spectral function vanishes below that value. Under the

assumption of a constant width Ŵ, the normalization factor is

exactly N = 1. As soon as the width becomes mass dependent

(as it is the case in SMASH), the normalization factor N can

deviate from one and needs to be determined numerically.

Practically all the normalization constants in SMASH are still

rather close to unity (within 25%).
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TABLE II. All particles implemented in SMASH with their

properties and Particle Data Group codes (see Ref. [41] for the

definition). The corresponding antiparticles carry a minus sign and

have identical properties.

Type Mass Width PDG codes

[GeV] [GeV]

π 0.138 0 211,111, −211

ρ 0.776 0.149 213,113, −213

η 0.548 1.3 × 10−6 221

ω 0.783 0.0085 223

η′ 0.958 0.198 331

φ 1.019 0.0043 333

σ 0.800 0.400 9000221

f2 1.275 0.185 225

K 0.494 0 321, 311

K∗(892) 0.892 0.0508 323, 313

K∗(1410) 1.414 0.232 100323, 100313

N 0.938 0 2212, 2112

N (1440) 1.462 0.350 202212, 202112

N (1520) 1.515 0.115 102214, 102114

N (1535) 1.535 0.150 102212, 102112

N (1650) 1.655 0.140 122212, 122112

N (1675) 1.675 0.150 102216, 102116

N (1680) 1.685 0.130 202216, 202116

N (1700) 1.700 0.150 112214, 112114

N (1710) 1.710 0.100 212212, 212112

N (1720) 1.720 0.250 212214, 212114

N (1875) 1.875 0.250 9002214, 9002114

N (1900) 1.900 0.200 9012214, 9012114

N (1990) 1.990 0.500 9002218, 9002118

N (2080) 2.000 0.350 9022214, 9022114

N (2190) 2.150 0.500 9012218, 9012118

N (2220) 2.220 0.400 9022218, 9022118

N (2250) 2.250 0.470 9032218, 9032118

� 1.232 0.117 2224, 2214, 2114, 1114

�(1620) 1.630 0.140 112222, 112212, 112112, 111112

�(1700) 1.700 0.300 122224, 122214, 122114, 121114

�(1905) 1.880 0.330 212226, 212216, 212116, 211116

�(1910) 1.890 0.280 222222, 222212, 222112, 221112

�(1920) 1.920 0.260 222224, 222214, 222114, 221114

�(1930) 1.950 0.350 9002226,9002216,9002116,9001116

�(1950) 1.930 0.285 202228, 202218, 202118, 201118

� 1.116 0 3122

�(1405) 1.405 0.0505 13122

�(1520) 1.520 0.0156 3124

�(1670) 1.670 0.0350 33122

�(1690) 1.690 0.0600 13124

�(1820) 1.820 0.0800 3126

�(1830) 1.830 0.0950 13126

�(1890) 1.890 0.1000 23124

� 1.189 0 3222, 3212, 3112

�(1385) 1.385 0.036 3224, 3214, 3114

�(1670) 1.670 0.060 13224, 13214, 13114

�(1775) 1.775 0.120 3226, 3216, 3116

�(1915) 1.915 0.120 13226, 13216, 13116

� 1.321 0 3322, 3312

�(1530) 1.532 0.009 3324, 3314

� 1.672 0 3334

e 0.000511 0 11, −11

μ 0.105 0 13, −13

γ 0 0 22

3. Decay widths

All the decay widths in SMASH are currently calculated

following the treatment of Manley et al. [42], where in general

the width of a two-body decay R → ab is written as

ŴR→ab = Ŵ0
R→ab

ρab(m)

ρab(M0)
. (29)

Here, m is the actual off-shell mass of the resonance R, M0

is its pole mass, Ŵ0
R→ab = ŴR→ab(M0) is the partial width at

the pole mass and the function ρab is defined as

ρab(m) =
∫

dmadmbAa(ma)Ab(mb)

× | �pf |
m

B2
L(| �pf |R)F2

ab(m). (30)

In this formula, ma and mb denote the (off-shell) masses of

the particles a and b (which are being integrated over), Aa and

Ab are their spectral functions and | �pf | is the absolute value

of the final-state momentum of a and b in the center-of-mass

frame, which is given by

�p2
f = �p2

cm(m,ma,mb)

= [m2 − (ma + mb)2][m2 − (ma − mb)2]

4m2
. (31)

Finally, L is the orbital angular momentum of a and b in

the final state and BL are the so-called “Blatt–Weisskopf

functions” [43]. The parameter R is usually called the

“interaction radius” and is assumed to have a universal value

of R = 1 fm for all processes. The form factor Fab is only

relevant for unstable decay products and will be discussed

later.

The simplest case is that of a resonance R decaying into

two stable daughter particles. Popular examples are � → πN

or ρ → ππ . In this case, the daughters have fixed masses

(i.e., their spectral functions are just δ functions), so that the

integrals collapse:

ρab(m) = | �pf |
m

B2
L(| �pf |R). (32)

As an example, the width for the p wave (L = 1) decays of

the ρ and � (mentioned above) becomes

Ŵ(m) = Ŵ0

M0

m

∣

∣

∣

∣

�pf

�pf,0

∣

∣

∣

∣

3 �p2
f,0 + �2

�p2
f + �2

, (33)

using B2
1 (x) = x2/(1 + x2). Here, m and M0 are the off-shell

and pole mass, respectively, while �pf and �pf,0 denote the

final-state momenta in the center-of-mass frame for masses

m and M0, respectively. � = 1/R can be viewed as a cutoff

parameter. For an s-wave (L = 0) decay such as σ → ππ , the

width simply becomes

Ŵ(m) = Ŵ0

M0

m

∣

∣

∣

∣

�pf

�pf,0

∣

∣

∣

∣

, (34)

since B2
0 = 1.

In the case where one of the daughter particles is itself

a resonance, the width calculation becomes more difficult,

because the mass of this daughter resonance is not fixed
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TABLE III. Cutoff parameter λ for form factor in resonance decay

widths.

Decay λ [GeV]

πρ 0.8

Unstable mesons (e.g., ρN , σN ) 1.6

Unstable baryons (e.g., π�) 2.0

Two unstable daughters (e.g., ρρ) 0.6

and needs to be integrated over. Examples for this case are

N∗(1440) → π� or ω → πρ. As one of the daughters is

stable, at least one of the two integrals collapses:

ρab(m) =
∫ m−mb

mmin
a

dmaAa(ma)
| �pf |
m

B2
L(| �pf |R)F2

ab(m). (35)

The remaining integral runs from the minimum allowed

mass of particle a (i.e., the threshold of its lightest decay

channel) up to the maximum possible mass of a in the decay

process (given by m − mb). The form factor Fab (by Post

[44]) is used only if unstable decay products are involved and

is defined as

Fab(m) = λ4 + 1/4
(

s0 − M2
0

)2

λ4 +
[

m2 − 1/2
(

s0 + M2
0

)]2
, (36)

where the cutoff factors given in Table III are used.

It is easy to see that Fab(M0) = Fab(
√

s0) = 1. Note that

this form factor was not used by Manley originally, but was

added only later in the GiBUU implementation. The effect of

the form factor is that it suppresses the high-mass tail (m >

M0) and slightly enhances the low-mass tail (m < M0). Both

of these effects get stronger with decreasing λ (Fab → 1 for

λ → ∞). We have decided to follow the GiBUU framework

for the width parametrization of resonances, since it has been

proven to give a good description of experimental data [26].

All the formulas described above are for the case of reso-

nance decays. For the inverse process, i.e., resonance formation

via ab → R, the Breit–Wigner cross section involves the

so-called in-width Ŵab→R . For stable particles a and b it is

identical to the “out-width” ŴR→ab. However, the two differ if

a or b are unstable. In the Manley formalism, the in-width for

unstable particles becomes

Ŵab→R(m) = Ŵ0
R→ab

| �pab|B2
L(| �pab|R)Fab(m)

mρab(M0)
, (37)

where m is the off-shell mass of the produced resonance

R (i.e., the
√

s in the process) and �pab = �pcm(m,ma,mb) is

the momentum of a and b in the center-of-mass frame. The

difference between the in- and the out-width is essentially due

to the fact that, for the out-width, one integrates over the mass

of the unstable particle, while for the in-width this mass is

fixed.

In Fig. 10 the theoretical decay width of the N∗(1440)

resonance is shown as a function of mass. The total width

is given as the sum of all partial widths. Each partial width

has a threshold that is given by the sum of the minimal

masses of the decay products. The branching ratios are fixed

at the pole mass. One can see that all partial widths increase

FIG. 10. Total and partial decay widths of the N∗(1440)+ reso-

nance as a function of mass. The vertical and horizontal dashed lines

mark the pole mass and width.

as a function of mass, since more phase space is available

for heavier resonances. The lifetime correspondingly has an

opposite trend and heavy particles decay faster than low-mass

resonances. Since the width also enters in the production cross

section [Eq. (39)], the production of such low-mass resonances

becomes more unlikely.

D. Collision term

The collision term includes all different processes (decays

and collisions) that can happen to particles within this hadronic

transport approach. At this point, unstable particles can

decay, 2 particles scatter inelastically or elastically or excite

a resonance. Weak decays are neglected since they have

significantly longer lifetimes than processes associated with

the strong interaction. Electromagnetic processes are treated

perturbatively and will be discussed in detail in a forthcoming

publication [45].

We note that the current implementation is limited to the

energy regime of a few GeV, where all hadronic cross sections

are expected to be dominated by the excitation and decay

of resonances. Since the model at present is lacking a string

fragmentation mechanism, the cross sections are not sufficient

at higher energies. In the following, a detailed description of

all implemented processes is given.

1. Decays

The lifetime of a resonance is defined as τ = 1/Ŵ(m),

where Ŵ(m) is the mass-dependent total decay width. The

probability to decay in a sufficiently small time interval �t is

P (decay at �t) = �t

τ
= Ŵ(m)�t. (38)

This leads to exponential decay, because the survival proba-

bility after n time steps is

P (alive after n steps) = [1 − Ŵ(m)�t]n

= [1 − Ŵ(m)�t]t/�t

→ exp [−Ŵ(m)t],

054905-11



J. WEIL et al. PHYSICAL REVIEW C 94, 054905 (2016)

when �t → 0. As noted above, the total width Ŵ(m) is

computed as the sum of all partial widths.

When a resonance decays in SMASH, the decay channel

is randomly chosen from the list of allowed channels for this

particle, based on the off-shell branching ratios Ŵi(m)/Ŵ(m).

The decay channels and their on-shell ratios Ŵi(M0)/Ŵ(M0)

are listed in an input file and can be turned on and off

separately.

2. 2 → 1 processes

The cross-section formula for 2 → 1 resonance production

is based on Eq. (176) in Ref. [26]:

σab→R(s) = 2JR + 1

(2Ja + 1)(2Jb + 1)
Sab

2π2

�p2
i

Ŵab→R(s)AR(
√

s),

(39)

where

(i) J is the spin of the particle;

(ii) Ŵab→R is the partial in-width for the process;

(iii) AR is the spectral function of the resonance;

(iv) Sab is a symmetry factor, which is 2 if a and b are

identical, and 1 otherwise;

(v) �pi = �pcm(
√

s,ma,mb) is the center-of-mass momen-

tum of the initial state.

Note that, in the above, Ŵab→R(s) refers to the isospin-

specific channel instead of the isospin-generic channel. Hence

there is no need for isospin factors in the cross-section formula.

The so-called “in-width” Ŵab→R simply equals the usual

decay width ŴR→ab for the case of stable particles a and b,

see Sec. II C 3. For unstable particles, however, it is given by

Eq. (37), which differs from the decay width.

3. Elastic collisions

There are different cases of elastic collisions in SMASH.

For the meson-baryon and meson-meson collisions, one

assumes that the elastic cross sections are fully determined

by resonance excitation and decay, e.g., πN → � → πN

or ππ → ρ → ππ . For baryon-baryon collisions on the

other hand, one typically uses parametrized cross sections.

The parametrizations of the elastic pp and pn cross sec-

tions in particular are taken from Ref. [46], Eqs. (44)

and (45).

4. 2 → 2 processes with one resonance in final state

When there is another particle in the final state, the

resonance mass must be integrated over the allowed range:

σab→Rc(s) = (2JR + 1)(2Jc + 1)

s| �pi |

×
∑

I

(

CI
abC

I
Rc

)2 |M|2ab↔Rc(s,I )

16π

×
∫

√
s−mc

mmin
R

dmAR(m)| �pf |(√s,m,mc), (40)

where �pi and �pf are the center-of-mass momenta of the initial

and the final state and AR is the spectral function of the

TABLE IV. Parameters for matrix elements in baryonic 2 → 2

processes (in units of mb GeV4).

Process AI=1 AI=0

NN → NN∗ 7 14

NN → N�∗ 15

NN → �� 45 120

NN → �N∗ 7

NN → ��∗ 15 25

resonance R. The symbol C refers to isospin Clebsch–Gordan

factors, which couple the initial and final state to a total isospin

I . Here it is assumed that the matrix element |M|2 is a constant

(or only depends on s) without angular dependence, resulting

in the factor 4π from the trivial angle integration. If the matrix

element does depend on the angle, the factor 4π must be

replaced with the proper integration of |M|2 over the phase

space. The lower mass limit for the resonance, mmin
R , is defined

as the sum of the particle masses in the lightest decay channel.

This is the lowest mass the resonance can have and still be able

to decay into one of the implemented channels.

For the process NN → N�, the parametrized energy

dependence

|M|2(s)

16π
= A

(
√

s − b)c
(41)

(with the parameters A = 68, b = 1.104 GeV, and c = 1.951)

is based on a fit to the Dmitriev one-boson-exchange (OBE)

model [47]. For other resonance production processes (i.e.,

NN → NR and NN → �R, with R = N∗,�∗), the matrix

element is assumed to be a constant (independent of s), but

can depend on the total isospin and the pole masses ma and

mb of the outgoing particles. It is parametrized as

|M|2
16π

= AI

2
(

m2
a + m2

b

) , (42)

with parameters AI as given in Table IV.

5. 2 → 2 processes with two resonances in final state

Analogously to Eq. (40), one can write down the cross

section for a process with two resonances in the final state. In

this case both their masses must be integrated over the allowed

range:

σab→R1R2
(s) =

(

2JR1
+ 1

)(

2JR2
+ 1

)

s| �pi |

×
∑

I

(

CI
abC

I
R1R2

)2 |M|2ab↔R1R2
(s,I )

16π

×
∫

√
s−mmin

2

mmin
1

dm1A1(m1)

×
∫

√
s−mmin

1

mmin
2

dm2A2(m2)| �pf |(√s,m1,m2).

(43)
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The double-resonance production processes that are currently

implemented in SMASH are NN → ��, �N∗, and ��∗.

The matrix elements are parametrized in the same way as for

single-resonance production; see Eq. (42) and Table IV.

6. Detailed balance

The cross sections for the inverse resonance-absorption

processes are derived from the production cross section by

imposing the principle of detailed balance [see Eqs. (B.6),

(B.9) and (181) in Ref. [26]]:

σcd→ab(s) = (2Ja + 1)(2Jb + 1)
Scd

Sab

∣

∣

∣

∣

�pf

�pi

∣

∣

∣

∣

1

s

×
∑

I

(

CI
abC

I
cd

)2 |M|2ab↔cd (s,I )

16π
. (44)

This equation holds for both single- and double-resonance

absorption, i.e., c and d can be either two resonances or a

resonance and a stable particle. The symmetry factors Sxy

here are defined such that they are 2 if x and y are in the same

isospin multiplet and 1 otherwise. In SMASH all processes are

following explicit detailed balance in the whole phase space,

as will be demonstrated in Sec. III C below.

7. Mass sampling

In any process where a resonance is produced in the final

state, its mass needs to be sampled according to the spectral

function and the available phase space. The simplest case

is that a single resonance is produced in a 2 → 2 collision

together with a stable particle. Then the mass of the resonance

is sampled from the integrand of Eq. (40):

F (m) = A(m)| �pf |(√s,m,mstable). (45)

The allowed mass range is from mmin
R to

√
s − mstable, where

s is the Mandelstam s of the process and mstable is the mass of

the stable final-state particle.

The mass sampling is slightly more complicated for the

case of a resonance decay (1 → 2) with one resonance and

one stable particle in the final state. In this case an additional

Blatt–Weisskopf factor appears, which takes into account the

angular momentum in the decay, cf. Eq. (35):

F (m) = A(m)| �pf |(√s,m,mstable)B2
L(| �pf |R). (46)

For a scattering process with two resonances in the final

state, the masses of both resonances have to be chosen

according to the function

F (m1,m2) = A1(m1)A2(m2)| �pf |(√s,m1,m2), (47)

which is the integrand of Eq. (43). It is important to note that

both masses cannot be determined independently, but have to

be chosen simultaneously according to a common sampling

function.

Analogously to the single-resonance case, a decay into two

resonances also includes an additional Blatt–Weisskopf factor:

F (m1,m2) = A1(m1)A2(m2)| �pf |(√s,m1,m2)B2
L(| �pf |R).

(48)

Drawing random numbers from these distribution functions

is numerically nontrivial. We first draw from a Cauchy

distribution which approximates the spectral function and

handle the remaining factors by rejection sampling (where

the unknown maximum value is determined adaptively).

8. Angular distributions

We currently have anisotropic angular distributions imple-

mented for NN → NN , NN → N�, and NN → NR (with

R = N∗,�∗). For elastic nucleon-nucleon collisions we follow

the prescription by Cugnon et al. [48] by using an exponential

ansatz dσ/dt ∝ e−bt , with an energy-dependent parameter b

which is fit to the data. In the second case we also follow

Cugnon et al. [48] by using the same ansatz as for elastic

NN collisions. For the last case of NN → NR we use the

ansatz dσ/dt ∝ t−a , with parameters a which have been fit to

HADES data [27]. In Sec. III B a comparison to elementary

data is shown. We note that, in the present implementation, all

resonances decay isotropically in SMASH.

9. Pauli blocking

Pauli blocking is an effective way to obtain the solution of

the quantum Boltzmann–Uehling–Uhlenbeck (BUU) equation

from classical molecular dynamics. To understand the way

this is achieved one has to compare the classical Boltzmann

equation

pμ ∂f

∂xμ
= 1

2

∫

d3p2

E2

d3p′
1

E1

d3p′
2

E′
2

W (p1,p2 → p′
1,p

′
2)

× (f ′
1f

′
2 − ff2) (49)

and the BUU equation—its quantum analog:

pμ ∂f

∂xμ
= 1

2

∫

d3p2

E2

d3p′
1

E1

d3p′
2

E′
2

W (p1,p2 → p′
1,p

′
2)

× [f ′
1f

′
2(1 ± f )(1 ± f2) − ff2(1 ± f ′

1)(1 ± f ′
2)].

(50)

Here the plus sign is for bosons and the minus sign for

fermions. One can see that quantum BUU equation differs

from the classical Boltzmann only in the Uehling–Uhlenbeck

factors in the collision term. One can interpret these factors as

a multiplication of the cross sections by
∏

i(1 ± fi), where

the product is taken over all final states in the reaction

and fi ≡ f (ri,pi,t) is the phase-space density of final-state

particle i. This means that, for bosons, cross sections are

effectively increased and, for fermions, cross sections are

effectively decreased. This is called Bose enhancement and

Pauli blocking, respectively. While Bose enhancement has

been attempted to implement recently in a parton cascade

[49], Pauli blocking is taken into account in many transport

approaches. Since Pauli blocking is important in the energy

range under consideration in this work, we describe in the

following how it is taken into account in a Monte Carlo model.

The implementation of Pauli blocking consists of two parts:

the calculation of the phase-space density and the rejection

of reactions with probability 1 − ∏

i(1 − fi). For the latter,

SMASH loops over all baryons in the final state after a

collision has taken place and returns “true” for blocking, if a
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uniformly distributed random number r > fi . This means that

the reaction is not blocked with probability
∏

i(1 − fi). In this

way, no fermion can be produced or scatter into a phase-space

bin that is already occupied by another fermion.

The implementation of the phase-space density calculation

basically follows the method used in the GiBUU model; see

section D.4.3 in Ref. [26]. By definition, N (�Vr ,�Vp) =
gf (r,p)�Vr�Vp, where N is the number of (test) particles

in a given phase-space volume �Vr�Vp and g is the

degeneracy. Theoretically, the size of the phase space goes

to zero, �Vr ,�Vp → 0. In practice �Vr , �Vp and the way of

averaging are chosen to balance between the smoothness of the

obtained distribution function and the resolution of coordinate

and momentum space. This implementation relies on a large

number of test particles (Ntest � 20).

The phase-space density is calculated according to the

following equations:

fi(rj ,p) =
∑

j :pj ∈Vp

1

κ(2πσ 2)3/2

∫

�Vr ,|r−rj |<rc

d3r

× exp

(

− (r − rj )2

2σ 2

)

, (51)

with κ given as

κ = 2�Vr�VpN

(2π )3

4π

(2πσ 2)3/2

∫ rc

0

drr2 exp

(

− r2

2σ 2

)

. (52)

Here, �rj is a vector connecting the point where f is

calculated and the position of the j th particle. All these
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FIG. 11. Ratio of Pauli-blocked to total found actions in Cu + Cu

and Au + Au collisions at different beam energies. For reference, the

total number of found actions per event (both blocked and performed)

in an Au + Au collision at Ekin = 0.5A GeV is 0.99 × 105, for Ekin =
5A GeV it constitutes 1.32 × 105. The number of test particles used

in the simulation is Ntest = 50.

expressions can be analytically further evaluated for rc > rr .

This is a reasonable assumption, because the Gaussian cutoff

rc has to be large enough, so that the results do not depend on

it. If rc < rr the whole method is hardly applicable. In GiBUU

these integrals are computed numerically, but we have found

analytical expressions for them (see Appendix A). For Vp, a

sphere of radius 80 MeV is taken.

In Fig. 11 the number of collisions that is blocked due

to prior phase-space occupation has been calculated in central

Cu + Cu and Au + Au collisions as a function of beam energy.

One can see that, at very low energies, there are as many

blocked collisions as collisions taking place. The ratio drops

rather fast and around Ekin = 2A GeV only a quarter of the

collisions are blocked. It then saturates around 10% for higher

beam energies.

Figure 12 demonstrates the need for a decent number of

test particles to obtain stable results. If the number of test

particles is low the phase-space volume cannot be calculated

with enough precision and, therefore, there are too many

collisions allowed. Saturation sets in around Ntest = 20 and

is very similar for Au + Au and Cu + Cu collisions.

III. VALIDATION

A. Elementary cross sections

The elementary hadron-hadron scattering cross sections are

among the most important ingredients of a transport model.

The production mechanisms and cross-section formulas were

discussed in detail in Sec. II D.

Since nucleons and pions are clearly the most abundant

particles in a heavy-ion collision; we show in Figs. 13 to 15

the cross sections for NN , πN , and ππ collisions at energies

Au+Au   Cu+Cu

EKin = 0.5 GeV

EKin = 1.0 GeV

EKin = 5.0 GeV

EKin = 0.5 GeV

EKin = 1.0 GeV

EKin = 5.0 GeV
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FIG. 12. Ratio of Pauli-blocked to total found actions in Cu + Cu

(filled symbols) and Au + Au (open symbols) collisions for different

numbers of test particles.
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FIG. 13. (a) π−-proton and (b) π+-proton cross sections com-

pared to data from Ref. [41].

of a few GeV, where the cross sections are expected to be

dominated by the excitation of hadronic resonances.

In particular, the π−p cross section in the upper panel

of Fig. 13 shows some very clear resonance structures. The

lowest excitation here is �(1232), followed by several N∗

resonances in the second and third resonance regions at around

1.5 and 1.7 GeV, respectively. �∗ states only play a significant

role at higher energies of around 1.9 GeV. In fact SMASH

exclusively produces s-channel resonances in this case, which

then decay into different final states. In this way, we can

saturate the total cross section up to about 2 GeV with only

minor deviations, which may be caused by the negligence

of nonresonant backgrounds and/or uncertainties regarding

resonance parameters.

Also the elastic cross section only involves contributions

from s-channel resonances, which then decay back into π−p,

and is reasonably well described over most of the displayed

energy range. Only above energies of 2 GeV does SMASH

start to underestimate the total and elastic cross section. Here,

further production mechanisms, such as string fragmentation,

will be necessary to achieve agreement with the data.

FIG. 14. Pion-pion cross section compared to data from

Refs. [50,51].

The π+p cross section in the bottom panel of Fig. 13, shows

a similar dominance of s-channel resonances. However, it is

limited to �-type excitations due to isospin arguments. The

resonance contributions in π−p and π+p are related by simple

Clebsch–Gordan factors.

The purely mesonic case of the π+π− cross section in

Fig. 14 exhibits a similar resonance pattern. Here the dominant

resonances are the ρ and f2 states. There is also a contribution

from the scalar σ (or f0) meson. However, it should be noted

that the parameters (mass and width) of the σ in SMASH

differ significantly from the Particle Data Group values [41],

in order to achieve a reasonable agreement with the ππ data.

Presumably this discrepancy is due to our use of the Breit–

Wigner approximation, which is known to be questionable for

a state like the σ meson, for which the width is comparable to

the mass.

For the nucleon-nucleon cross sections in Fig. 15, the

resonance contributions are less apparent simply because the

resonances do not occur in the s channel. Instead the prevalent

physical picture in this case is a t-channel meson exchange,

which may excite one or both of the scattered nucleons into a

resonance state that subsequently decays. Both the pp and

pn cross sections include a significant elastic contribution

that rises towards the threshold. We simply parametrize the√
s dependence in this case; cf. Sec. II D. The first inelastic

channel that opens up is the excitation of a single � resonance.

At higher energies it is followed by the excitation of heavier

resonance states (N∗ and �∗) as well as double-resonance

excitations. For the nucleon-nucleon case, the resonance-based

mechanisms are able to saturate the total cross section up

to energies of 4 to 4.5 GeV, above which they need to

be supplemented by additional production mechanisms (e.g.,

string fragmentation). Furthermore, it should be noted that

the
√

s dependence of the total cross section is not described

perfectly well here, which may be caused by assuming matrix

elements which are independent of s, e.g., in Eq. (40).

The exclusive cross section for single-pion production in

proton-proton collisions in Fig. 16 shows an overall good
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FIG. 15. (a) Proton-proton and (b) proton-neutron cross sections

compared with data from Ref. [41].

FIG. 16. Cross sections for single-pion production from (left)

proton-proton and (right) proton-neutron collisions compared with

data from Ref. [52].

FIG. 17. Angular distributions for elastic and inelastic pp colli-

sions at two different energies, compared with data from Refs. [53,54].

agreement with the data. The dominant contribution for

single-pion production in nucleon-nucleon collisions is the

� resonance (compare Fig. 15). Above 2.5 GeV, additional

contributions from excited resonance states (N∗ and �∗)

also occur. A slight undershoot for the π0 production at

low energies in proton-proton collisions might come from

nonresonant background terms that are not included in the

model. Figure 16 also reveals a systematic undershooting for

the single-pion production in proton-neutron collisions, which

could be due to an underestimation of the contributions with

total isospin I = 0; see Sec. II D 4.

B. Angular distributions

In Fig. 17 we show two examples of angular distributions

dσ/dt in pp collisions, t being the Mandelstam variable. The

upper plot shows a collision at a relatively low energy, where

essentially only the elastic and single-�-production channels

are open. The angular distribution of the elastic channel is

of course symmetric in the allowed t range and matches the

data points rather well, even though the slope at this particular

energy appears to be slightly too flat. The distribution for
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single-� production is not symmetric and is restricted to a

smaller range in t due to the larger mass of the � in the final

state. Unfortunately, there is no inelastic data to compare with

at this energy.

The lower plot in Fig. 17 shows a pp collision at a some-

what higher energy, where additional resonance production

channels are open. In principle, the distributions for all these

channels are forward and backward peaked (either exponential

or power-law shaped), as mentioned in Sec. II D 8. This

forward or backward peaking is clearly visible for the NN

and N� final states at least, while those final states with

heavier resonances exhibit a more plateau-like structure, due

to the limited phase space and the mass distributions of the

resonances. Here the sum of all inelastic channels is compared

with data and indeed shows a reasonable agreement, again

with a slight tendency of being too flat.

C. Detailed balance

The strong interaction is invariant under time reversal,

which implies that, for any scattering or decay process, the

probability of transition w(Ŵi,Ŵf ) from the point in phase

space dŴi to dŴf is equal to the probability of the reverse

process,

w(Ŵi,Ŵf ) = w(Ŵf ,Ŵi). (53)

Equation (53) is embodied in SMASH via the equality of

matrix elements of the forward and backward reactions,

|M→|2 = |M←|2 = |M|2. (54)

With this formula one can connect cross sections of the forward

and backward 2 → 2 reaction, or the width of the 1 → 2 decay

to the backward 2 → 1 reaction. For example, for 12 → 1′2′

scatterings

dσ = (2π )−2δ(4)(Pi − Pf )|M|2 1

4I

d3p′
1

2E′
1

d3p′
2

2E′
2

1

1 + δ1′2′
,

(55)

where I = [(P1 · P2)2 − m2
1m

2
2]1/2 and the term 1/(1 + δ1′2′ )

accounts for identical particles in the final state. Integrating

this over momenta one arrives at Eq. (40). For resonances in

the final state, the transformation from Ref. [55] is applied.

The corresponding Eq. (39) for decays is derived analogously.

Substituting Eq. (53) back into the Boltzmann equation

equation (1) leads to the principle of detailed balance: In

equilibrium the rate of forward reactions dŴi → dŴf is equal

to the rate of backward reactions [56].

To test, if detailed balance actually holds in our calculations,

a periodic box is initialized with multiple particle species.

After the matter reaches equilibrium, we check that the

numbers of forward and backward reactions are identical.

The fact that the box should reach equilibrium is granted

by the H theorem, which is derived assuming Eq. (53) and

the hypothesis of molecular chaos [two-particle distribution

function f2(Ŵ1,Ŵ2) = f (Ŵ1)f (Ŵ2) or, in other words, partic-

ipants of the reaction are uncorrelated]. Strictly speaking,

in a transport code both assumptions are valid only in the

limit Ntest → ∞. At finite Ntest the interactions are nonlocal

due to the geometrical cross sections. In addition, while two

particles with space coordinates �r1 and �r2 form a resonance at

(�r1 + �r2)/2, the products of resonance decay gain the same

position as the decaying resonance. This breaks Eq. (53),

where, for nonlocal interactions, the phase space Ŵ includes

coordinate space. This leads to a small violation of detailed

balance, which vanishes at large Ntest as we show in the

following.

For the test we are using two configurations: a ρ-π -σ box

and a N -π -� box. The first one is initialized with a 100π+,

100π−, and 100π0 in a volume of V = (10 fm)3. The reactions

ππ ↔ ρ and ππ ↔ σ are allowed, while all the other possible

reactions are switched off. From Fig. 18 one observes that

the system reaches chemical equilibrium, since the particle

multiplicities in the box saturate after around t = 20 fm/c.

count reactions

π
0

π
+

π
-

ρ
+

ρ
0

ρ
-

σ

m
u
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(a)

FIG. 18. Detailed balance for the π -ρ-σ system in a box

with periodic boundary conditions. (a) Multiplicities versus time,

(c) scaled numbers of forward and backward reactions for t > 20

fm/c, and (b) the same differentially versus the invariant mass of the

reaction, which is equal to the resonance mass in this case.
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FIG. 19. Multiplicities versus time for a π -N -� system in a box.

Starting from this time, forward and backward reactions

are counted. The matrix elements of reactions in the same

isospin group differ only by Clebsch–Gordan coefficients.

Thus one expects, for example, that the number of reactions

N (σ ↔ π+π−) = 2N (σ ↔ π0π0). Therefore, the reaction

numbers in Fig. 18 are scaled by the isospin and symmetry

factors appropriately to make sure that this expectation is

fulfilled. Detailed balance is valid not only for the total number

of reactions, but it also has to be fulfilled differentially in

momentum space. We show in Fig. 18 that detailed balance is

indeed fulfilled differentially in each invariant mass bin of the

reaction. Let us note that, for the ρ-π -σ box detailed balance

for the total (but not differential) number of reactions follows

trivially from the multiplicity saturation. Indeed, denoting

forward and backward reaction rates by r→ and r←, one arrives

at

dNρ

dt
= −r→

ρππ + r←
ρππ = 0, (56)

dNσ

dt
= −r→

σππ + r←
σππ = 0. (57)

For the N -π -� box, similar relations become less trivial.

We initialize the N -π -� box with 100 neutrons and 100

FIG. 20. Scaled numbers of forward (triangles right) and backward (triangles left) reactions for (b) t > 80 fm/c π -N -� and (a) the same

differentially in the invariant mass of reaction.
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TABLE V. Expected isospin and symmetry factors for number

of reactions within isospin groups at equilibrium. The first numeric

column is a Clebsch–Gordan factor, the second column is a symmetry

factor, and the third one is their product.

Reaction Clebsch Symmetry Total

ρ+ → π+π 0 1/2 1 1/2

ρ− → π−π 0 1/2 1 1/2

ρ0 → π 0π 0 0 1/2 0

ρ0 → π+π− 1/2 1 1/2

σ → π+π− 1/3 1 2/6

σ → π 0π 0 1/3 1/2 1/6

pπ+ → �++ 1 1 3/3

pπ 0 → �+ 2/3 1 2/3

pπ− → �0 1/3 1 1/3

nπ+ → �+ 1/3 1 1/3

nπ 0 → �0 2/3 1 2/3

nπ− → �− 1 1 3/3

pp → p�+ 1/4 1/2 1/8

pp → n�++ 3/4 1/2 3/8

pn → n�+ 1/4 1 2/8

pn → p�0 1/4 1 2/8

nn → p�− 3/4 1/2 3/8

nn → n�0 1/4 1/2 1/8

pp → �0�++ 6/20 1/2 18/120

pp → �+�+ 8/20 1/4 12/120

pn → �−�++ 67/120 1 67/120

pn → �+�0 43/120 1 43/120

nn → �+�− 6/20 1/2 18/120

nn → �0�0 8/20 1/4 12/120

protons and allow reactions (1) � ↔ Nπ , (2) NN ↔ N�,

and (3) NN ↔ ��, with all the other reactions being

forbidden. In chemical equilibrium the following equations

are fulfilled:
dNπ

dt
= r→

1 − r←
1 = 0, (58)

dNN

dt
= −r→

2 + r←
2 − 2(r→

3 − r←
3 ) = 0, (59)

dN�

dt
= r→

2 − r←
2 + 2(r→

3 − r←
3 ) = 0. (60)

It can be observed that the equality of forward and backward

rates for NN ↔ N� and NN ↔ �� does not necessarily

follow from multiplicities being saturated (see Fig. 19). As

one can see from Fig. 20, with Ntest = 100 detailed balance is

violated at maximum by 2%. For Ntest = 1 this violation can

reach 10% because of the nonlocality effect described above.

To see if the numbers of reactions within one isospin

group relate as expected from Clebsch–Gordan factors, we

multiply every number of reactions Ni by a factor αi that

compensates for the isospin factors of this reaction. Let us

denote 〈Nisospin group〉 = 1
k

∑k
i=1 αiNi , where k is amount of

reactions in the isospin group (forward + backward). If the

SMASH result corresponds to the theoretical expectation, then

Ni/〈Nisospin group〉 should be strictly 1 for every reaction. One

can make sure from Figs. 18 and 20 that SMASH matches

this expectation. Table V shows the origin of compensating

nucleon density

Woods-Saxon for Pb

SMASH, σ = 0.5 fm

SMASH, σ = 1 fm

ρ
 [

fm
-3
]

0

0.1

0.2

r [fm]
0 2 4 6 8 10

FIG. 21. Baryon density estimated in SMASH simulation with

smearing σ = 0.5 fm (dashed line) and 1.0 fm (dotted line) is

compared with the true density profile (solid line). Large Ntest = 1000

for σ = 1 fm and Ntest = 10 000 for σ = 0.5 fm is taken to diminish

fluctuations.
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FIG. 22. Eckart rest frame net baryon density ρB at the target

center in central Au + Au collision at Ekin = 0.8A GeV in units of

the ground-state nuclear density ρ0. Time dependence ρB (t) of the full

SMASH simulation (full line) is compared to ρB (t) of the SMASH

simulation with all interactions off (dashed line).
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FIG. 23. Landau rest-frame hadron density ǫ at the target center in

central Au + Au collision at Ekin = 0.8A GeV in units of the ground-

state nuclear energy density ǫ0 = 0.150 GeV/fm 3. Time dependence

ǫ(t) of the full SMASH simulation (solid line) is compared to ǫ(t) of

the SMASH simulation with all interactions off (dashed line).

coefficients αi . While most of the Clebsch–Gordan factors are

simple, for pn ↔ �� reactions they are less intuitive. The

matrix element for NN ↔ �� reaction is isospin dependent;

namely |M(I = 0)|2 = κ|M(I = 1)|2, where κ = 8
3
. Here is

one explicit example illustrating the calculation (where states

beyond I = 1 have been omitted since they drop out):

|pn〉 =
√

1

2
|I = 1〉 +

√

1

2
|I = 0〉, (61)

|�−�++〉 = · · · +
√

9

20
|I = 1〉 −

√

1

4
|I = 0〉, (62)

〈pn|�−�++〉2 = 9

40
|M(I = 1)|2 + 5

40
|M(I = 0)|2, (63)

〈pn|�−�++〉2 = 5κ + 9

40
|M(I = 1)|2. (64)

Thus, we have shown that the detailed balance in SMASH

for a mesonic system and a more complex situation involving

baryons and mesons is fulfilled.

D. Thermodynamics

To investigate the thermodynamic properties of the hadron

gas, the energy-momentum tensor T μν(�r ) and four-currents

jμ(�r ) can be calculated from the particle distribution func-

tions. These two quantities provide access to the energy density

and particle number density in the corresponding rest frames.

Assuming that the potential energies of particles are small

compared with their kinetic energies and taking into account

that collisions happen instantaneously, the corresponding

equations for noninteracting particles are applied:

T μν(�r) =
∫

pμpν

p0
f (�r, �p )d3p, (65)

jμ(�r) =
∫

pμ

p0
f (�r, �p)d3p, (66)

where f (�r, �p ) is the single-particle distribution function. For a

discrete set of particles it reads

f (�r, �p) =
∑

part

δ3( �p − �ppart)δ
3(�r − �rpart). (67)

For numerical calculations we substitute the δ function by the

smearing kernel

K(��r) = γ

(2πσ 2)3/2
exp

(

−��r2 + γ 2(��r · �β)2

2σ 2

)

, (68)

where ��r = �r − �rpart, �β = �ppart/Epart is the three-velocity of

the particle and γ = (1 − �β2)−1/2. It is shown in Ref. [57]

that this kernel has proper Lorentz-transformation properties,

is normalized to 1, and represents a simple three-dimensional

FIG. 24. Landau rest-frame energy density T 00
L (background color) and velocity of Landau frame (arrows), both for baryons. Au + Au

collision at Ekin = 0.8A GeV with impact parameter b = 3 fm, Ntest = 20. Color legend is given above. Velocity is proportional to the arrow

length, maximal arrow length corresponds to velocity of 0.55c.
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(3D) Gaussian in the rest frame of the particle. The equations

for the numerical evaluation of thermodynamic quantities are

then

T μν(�r) = 1

NevNtest

∑

events

∑

i

p
μ

i pν
i

p0
i

K(�r − �ri,pi), (69)

jμ(�r) = 1

NevNtest

∑

events

∑

i

p
μ

i

p0
i

K(�r − �ri,pi), (70)

where Nev is the number of events and Ntest is the test-

particle number. In the limit of the smearing width σ → 0

and NevNtest → ∞, the full smooth quantities are obtained.

This limit is numerically challenging because, when reducing

the smearing width σ , one has to increase the statistics,

keeping σ 3NevNtest = const. Therefore, we take reasonably

small σ = 1 fm and keep in mind the smearing effect, which

is demonstrated in Fig. 21 for the density calculation of a Pb

nucleus comparing σ = 0.5 fm and 1 fm.
The Eckart rest frame density is obtained as ρEck =

√

jμjμ.
For net baryon (charge, isospin projection) density a naive
weighting of particles in Eq. (70) with their baryon numbers
can give rise to jμjμ < 0. Therefore, we compute ρ = ρ+ −
ρ−, where + corresponds to positive baryon number (charge,
isospin projection) and − corresponds to negative ones. In
Fig. 22 the dependence of the net baryon density versus time
in the middle of the target in the central Au + Au collision
at Ekin = 0.8A GeV in the fixed-target frame is shown. The
energy density in the Landau frame is depicted in Fig. 23.
Both figures show that the ground state baryon and energy
density values are reproduced, when the collision term is
disabled. Including interactions, both baryon and energy den-
sity rises to about 4 times the respective nuclear ground state
value.

In many applications (e.g., connecting nonequilibrium

initial states to relativistic hydrodynamics) the Landau rest

frame (LRF) quantities are needed. By definition, T 0i
LRF = 0,

the energy flow in the LRF is zero. To find the LRF we solve the

generalized eigenvalue problem (T μν − λgμν)hν = 0, where

gμν is the metric tensor. The eigenvector corresponding to

the largest eigenvalue is proportional to the four-velocity of

the LRF and the proportionality constant is fixed by the

constraint that
√

uμuμ = 1. To demonstrate the result of

this transformation the LRF energy density and collective

velocities uμ are plotted in the x-z plane in Fig. 24 for a

Au + Au collision. One can observe the onset of radial flow

after the initial collision of the two nuclei. We note that the LRF

energy density before collision reproduces again the nuclear

ground-state energy density.

IV. RESULTS FOR HEAVY-ION COLLISIONS

In this section we compare particle yields and spectra in

heavy-ion collisions calculated with SMASH with experimen-

tal data from the HADES and FOPI collaborations. The focus

for the current analysis lies on pions, because they contribute

the majority of the newly produced particles; and on protons,

because they are part of the initial system before the collision.

Some time after the collision, the particles do not interact

anymore and thus their momenta are frozen. Therefore, the

FIG. 25. Pion production in Au + Au collisions at kinetic ener-

gies ranging from 0.4A GeV to 1.6A GeV, as measured by FOPI [58]

(markers), in comparison with SMASH (lines). The upper plot (a)

shows the excitation function of π+ and π− multiplicities, the plot in

the middle (b) shows the ratio. The lower plot (c) shows the average

transverse momentum of the pions. The impact parameter was set to

b = 1.33 fm. The results of the SMASH simulation are shown for the

cascade with the following features successively switched on: 20 test

particles per real particle, Skyrme and symmetry potentials, Fermi

motion, Pauli blocking.

basic bulk observables to quantify the dynamics of the collision

are rapidity and transverse momentum spectra. To obtain

Lorentz-invariant spectra, the longitudinal rapidity y and the
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FIG. 26. Rapidity spectra for pions measured by FOPI in Au +
Au collisions at 1.5A GeV [58]. The experimental data (markers)

are compared with the corresponding SMASH results (lines). N

is the total number of pions obtained by integrating the spectrum.

The normalized rapidity y0 = (y − ycm)/ycm was used. The impact

parameter for the simulated events was sampled from the distribution

given by the ERAT cuts corresponding to the experimental data

(see Appendix C). The SMASH simulations were performed with

potentials, Pauli blocking, and Fermi motion.

transverse mass mT are used as momentum coordinates:

y := atanh

(

pz

E

)

, mT :=
√

m2 + p2
x + p2

y . (71)

Usually the rapidity y is rescaled to y0 such that the nuclei are

located at y0 = ±1 before the collision:

y0 := y − ycm

ycm

, (72)

where ycm is the rapidity in the center-of-mass frame.

To obtain sensible comparisons between our calculation

and experimental data the procedure to select centrality classes

needs to be the same. See Apendix C for how this is done for

the FOPI data.

2 1 0 1 2

y0

0

20

40

60

80

100

d
N

/d
y 0

SMASH p (N =116.3)

SMASH n (N =144.4)

FOPI p (N =110.7)

FIG. 27. Rapidity spectra for protons measured by FOPI in Au +
Au collisions at 1.5A GeV [58]. The experimental data (markers)

is compared with the corresponding SMASH results (lines). See

Fig. 26 for more details. N is the total number of particles obtained

by integrating the spectrum. Spectators (particles only interacting

elastically) have been ignored. To distinguish between unbound

protons and deuteron or other nuclei, a coalescence afterburner

with parameters p0 = 0.3 GeV, r0 = 0.9 fm was used to model the

clustering (see Appendix D).

First, let us have a look at the total pion multiplicities and

their averaged transverse momentum over a broad range of

energies. In Fig. 25 the total multiplicities of charged pions in

central Au + Au collisions at kinetic energies from 0.4A GeV

to 1.6A GeV are compared with FOPI measurements [58].

The upper plot shows the total pion multiplicity, the one in

the middle shows the ratio of negative pions to positive pions

to indicate the isospin asymmetry. The lower plot shows the

average transverse momentum of the pions. The impact param-

eter b for the SMASH events was sampled from a minimum

bias distribution with b < 2 fm onto which the corresponding

ERAT cuts have been applied. The simulations were run

successively with and without potentials [see Eq. (10)], Fermi

motion (see Sec. II B 1) and Pauli blocking (see Sec. II D 9).

Potentials and Pauli blocking require a sufficient number of

test particles to function properly. When any of these features

was enabled, 20 test particles were used instead of one.

Without potentials (and Fermi motion and Pauli blocking)

the SMASH results agree well with the data, except for the

lowest energy at 0.4A GeV. A deviation at low energies is

expected, because potentials should have a strong effect there.

Running the cascade with 20 instead of one test particle per real

particle, there is a slight increase in multiplicity. This effect

should be considered a systematic error of the model, since

changing the test-particle number is not supposed to affect the

physics. Additionally enabling the potentials (which are soft,

see Sec. II B 1) decreases the pion multiplicities by a large

amount. Adding Fermi motion to the simulation yields the

strongest effect and increases the multiplicities. Pauli blocking

causes a small decrease in multiplicity. For the more physical

scenario with all features enabled there is an overestimation

of the number of pions at all energies. Such an overestimation

and a decrease of the multiplicities due to soft potentials and
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FIG. 28. Transverse mass spectra for pions measured by HADES in carbon-carbon collisions at 1A and 2A GeV [62]. The experimental

data (markers) is shown for different longitudinal rapidity bins and compared to the corresponding SMASH results (lines). For readability, the

data corresponding to each bin was multiplied with a different power of 10. The impact parameter distribution provided by HADES was used

for sampling the events with SMASH.

Pauli blocking has been observed with one of the first transport

models as well [59].

The pion ratios look similar with and without potentials.

Only for the lowest energy are the results with potentials

a bit closer to the experimental values. Please note that

no Coulomb potentials are included in this calculation. In

an earlier comparison with the FOPI data for Au + Au

collisions at 1.5A GeV, it has been suggested that Coulomb

potentials “almost exclusively” account for the difference

in the momentum spectra of the charged-pion species [58].

The results here do not support this claim, because the total

relative multiplicities of the pions are reproduced without any

Coulomb potentials.

The transverse momenta do not vary significantly among

the different pion species or with and without potentials. It

is difficult to pin down the reason for the overestimation of

the pion multiplicity. At this energy a lot of implementation

details can influence the multiplicity significantly: Fermi

momenta, potentials and the N� cross sections (which have

not been measured) introduce some uncertainties. The cross

sections can be reduced by in-medium effects [60,61], which is

unaccounted for in SMASH. These in-medium effects would

reduce the number of produced pions. More work is needed to

understand the exact reasons for the discrepancy. On the other

hand, SMASH is primarily designed for FAIR energies, where

potentials will be less important, and the results are similar to

those of other approaches.

Since the multiplicities agree rather well, let us move on to

more differential observables. Figure 26 shows charged-pion

multiplicities as a function of the scaled rapidity y0, comparing

the spectra obtained from SMASH to the experimental results

of the FOPI collaboration, for Au + Au collisions at a

kinetic energy of 1.5A GeV. SMASH reproduces the shape

of the rapidity spectra fairly well, overestimating the total

multiplicities by a few percent as seen before.

In Fig. 27 the proton rapidity spectrum yielded by SMASH

is compared with FOPI measurements. The parameters are the

same as just discussed. To get rid of spectators, all nucleons that

interact only elastically have been ignored. SMASH does not

model the production of nuclei formed by clustered nucleons.

To be able to compare with the experimental data, a simple

coalescence afterburner described in Appendix D has been
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FIG. 29. Transverse mass and rapidity spectra for charged pions and nucleons in π−-carbon collisions at Ekin = 1.7 GeV. They were

obtained from a SMASH simulation with 20 test particles per real particle, including potentials, Fermi motion, and Pauli blocking. Spectators

(particles only interacting elastically) were ignored. Data for this scenario have been measured by HADES, but are not yet published. The

legend shows the total multiplicity N obtained from integrating the rapidity spectrum.

employed. Any pairs of nucleons with momentum distance

�p < 0.3 GeV and spatial distance �x < 0.9 fm have been

ignored. These parameters were chosen to fit the data. The

shape is very well reproduced at the tails, but the number of

protons is overestimated at midrapidity.

In Fig. 28, the multiplicity of charged pions is shown as

a function of the transverse mass mT for different windows

of normalized rapidity y0, for C + C collisions at energies

Ekin ∈ {1,2}A GeV as measured by the HADES Collaboration

[62]. For a purely thermal spectrum one would expect a straight

line in the logarithmic plot, with the slope corresponding

to the effective temperature. The events were generated

with SMASH by sampling the impact-parameter distribution

provided by HADES (which was reconstructed by using an-

other transport model [62]). The calculations were performed

with Skyrme and symmetry potentials, Fermi motion, and

Pauli blocking. It can be seen that SMASH describes the

experimental data reasonably well. There are some deviations

for large rapidities at A GeV and for small transverse mass at

2A GeV. In comparison to the UrQMD transport model [62],

SMASH gives a similarly good agreement with the HADES

data.

In Fig. 29, the multiplicity of nucleons and charged pions

is shown as a function of transverse mass mT and rapidity y,

for π− + C collisions at 1.7 GeV. The impact parameter was

sampled from a minimum-bias distribution over the full range

b ∈ [0,3] fm. Like before, the SMASH simulation included

potentials, Fermi motion, and Pauli blocking. 20 test particles

were used per real particle. Spectators (particles that only

interact elastically) have been ignored. This scenario has been

experimentally studied by the HADES collaboration; however,

the results are not yet public. The spike in the nucleonic rapid-

ity spectrum corresponds to slow participants in the nucleus.

Unlike in experiment or in a simple thermal model, we

can look at the whole time evolution in a transport code. This

enables us to study the different reaction rates. In Fig. 30

various forward (right) and backward (left) reaction rates are

shown, as a function of time and as a total per event. Elastic

nucleon-nucleon interactions are dominating and are divided

by 10 in the plot. These are mostly due to the combination of

Fermi motion and potentials, causing the nucleons in the target

to interact with each other.

The first inelastic reactions are excitations of N∗ and �∗

resonances. Production of � resonances or elastic nucleon-
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FIG. 30. Number of reactions in a π−-carbon collision at Ekin =
1.7 GeV, averaged over 25 000 events. The upper plot (a) shows

the forward rates (right arrows, solid lines) and backward rates (left

arrows, dashed lines) per event for the most important reactions as

a function of time. The lower plot (b) shows the total number of

forward and backward reactions per event for various reactions. The

same SMASH simulation results as in Fig. 29 were used.

nucleon collisions happen at later times. Producing N∗ and

�∗ consumes more pions than it directly yields, but these

excitations decay mostly into � and ρ, which finally produce

pions again. It is remarkable that this system is far from

chemical equilibrium, unlike symmetric collisions of heavy

nuclei such as gold or lead.

All in all, the transport approach presented here matches the

experimental data on pion and proton production reasonably

well, passes equilibrium and detailed-balance tests, and com-

pares well to elementary particle production cross sections.

V. SUMMARY AND OUTLOOK

To summarize, a new hadronic transport approach

(SMASH) has been introduced. It is aimed at providing a

dynamical description of heavy-ion reactions in the low-

and intermediate-beam-energy range. The relativistic Boltz-

mann equation with hadronic degrees of freedom is solved

including a basic version of nuclear mean-field potentials.

Interactions proceed via resonance excitation and decay,

where all resonances have vacuum properties only. The initial

conditions are demonstrated explicitly and it is shown that

the approach maintains detailed balance. The elementary

cross sections and angular distributions are in agreement with

experimental data. The comparison of proton and pion spectra

to experimental data from EKin = A–2A GeV hints at missing

medium modifications of the cross sections, but there is still

reasonable agreement in the current approach. Predictions for

particle production in π -A collisions are made. In this case the

meson-baryon interactions play a more dominant role than in

heavy-ion reactions.
In the future, the approach will be enhanced to include the

full strangeness production and the cross sections are going to
be extended to higher energies by including string excitation
and fragmentation. In addition, photon and dilepton production
[63] is going to be studied in detail. Here it is of special
interest to compare the nonequilibrium hadronic production
with the one from thermal rates as currently employed in
hydrodynamic approaches. In general, this approach will be
very useful to study the effects of hadronic rescattering on
flow and correlation observables at RHIC and LHC energies.
Infinite-matter calculations are going to be employed to study
transport coefficients of hadronic matter as a function of
temperature and baryon chemical potential. The effects of
kinematic cuts and baryon diffusion on higher moments will
also be investigated [64]. Overall, this approach constitutes a
very flexible hadronic transport approach that is going to shed
light on the properties of hot and dense strongly interacting
matter as created in heavy-ion reactions over a large range of
beam energies.
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APPENDIX A: INTEGRALS USED IN PAULI BLOCKING

Determining if the reaction is Pauli-blocked requires

calculation of the phase-space density at a given point (�r, �p ).

While in momentum space we just count momenta in the

sphere around �p, in coordinate space we take advantage of the

function that was suggested in the GiBUU model; see section

D.4.3 in Ref. [26]. In GiBUU, however, the integrals in the

smearing function are computed numerically. We have found

the following analytical expressions for them:

1

2π

∫

�Vr ,|�r−�rj |<rc

d3r exp

(

− (�r − �rj )2

2σ 2

)

=
{

α, rc > rr , rj = 0
β, rc > rr + rj

γ, rc < rr + rj ,
α = −2rrσ

2 exp

(

− r2
r

2σ 2

)

+
√

2πσ 3 erf

(

rr√
2σ

)

,
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β = σ 4

rj

(

e
− (rj +rr )2

2σ2 − e
− (rj −rr )2

2σ2
)

+
√

π

2
σ 3

[

erf

(

rj + rr√
2σ

)

− erf

(

rj − rr√
2σ

)]

,

γ = σ 2

rj

{

1

2
e
− r2

c

2σ2
[

(rc−rj )2−r2
r +2σ 2

]

−σ 2e
− (rj −rr )2

2σ2

}

+
√

π

2
σ 3

[

erf

(

rc√
2σ

)

− erf

(

rj−rr√
2σ

)]

,

κ = 2�Vr�VpN

(2π�c)3

[

erf

(

rc√
2σ

)

− rc

σ

√

2

π
e
− r2

c

2σ2

]

.

APPENDIX B: INFRASTRUCTURE AND TECHNOLOGY

A hadronic transport code needs to be maintainable and well

documented. SMASH is written in object-oriented modular

C++11 and under Git version control [65]. The code repos-

itory is linked to the project management platform Redmine

[66] which allows for easy collaborative work on the project

and issue tracking. The whole documentation (internal and

external) is generated with Doxygen [67]. As output formats,

the well-established OSCAR 1997 [68] and 2013 [69] formats

are supported for particle lists and collision history output in

ASCII text and binary format. In addition, ROOT trees [70]

can be generated and VTK output [71] can be used to visualize

the simulation.

APPENDIX C: CENTRALITY SELECTION

FOR FOPI DATA

The FOPI collaboration introduces an ERAT cut determined

by the b0 < 0.15 bin, where

b0 := b

bmax

, bmax := (1.15 fm)
(

A
1
3

P + A
1
3

T

)

, (C1)

for an impact parameter b and a given number of nucleons in

the projectile (AP ) and in the target (AT ). ERAT is defined

as a ratio of the transverse kinetic energy to the longitudinal

kinetic energy [72], which can be directly calculated from the

momenta:

ERAT := ET

EL

:=
∑

i p
2
T i/(mi + Ei)

∑

i p
2
Li/(mi + Ei)

. (C2)

It has been shown that this quantity is monotonic in the impact

parameter b and can thus be used for constraining the centrality,

while being much easier to access experimentally. The ERAT

cut corresponding to the desired b cut can be obtained in the

following way:

(1) Sample events using a minimum bias distribution with

b ∈ [0,bmax], for a sufficiently large bmax.

(2) Calculate the ERAT histogram from the events.

(3) Renormalize the histogram to the maximal cross

section πb2
max.

(4) Calculate the cross section corresponding to the cut:

σ := πb2
cut.

(5) Find the largest ERAT corresponding to σ .

(6) Ignore all events beyond that ERAT value.

After this procedure, the remaining events should belong to

the same centrality class as the experimental events.

Note that ERAT is frame dependent. For the purpose of this

paper, it has been calculated in the fixed-target frame.

APPENDIX D: NUCLEON CLUSTERING

A hadronic transport code does not have a concept of

nuclei because it considers only hadronic degrees of freedom.

However, when comparing with experiment, it is important

to know which nucleons are bound in a cluster, because only

unbound protons are considered as protons by the detector.

To model clustering we use a simple coalescence after-

burner inspired by the work of Ref. [73], which considers the

pairwise distance in position and momentum space. Any pair

of nucleons with a relative distance �r < r0 and a relative

momentum �p < p0 is considered to be part of a cluster

and will be ignored when calculating the nucleon spectra. To

make this procedure Lorentz invariant, before calculating the

distances, the particles are boosted to the center-of-momentum

frame and their position is extrapolated so the boosted four-

vectors correspond to the same time.

It is usually experimentally known how many protons are

bound in a cluster, so the parameters (r0,p0) can be chosen such

that the correct multiplicities are obtained. Care has to be taken

that the simulation runs long enough, otherwise r0 strongly

depends on the time at which the simulation is stopped.
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