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Monoclonal antibodies are used in numerous therapeutic and
diagnostic applications; however, their efficacy is contingent on
specificity and avidity. Here, we show that presentation of anti-
bodies on the surface of nonspherical particles enhances antibody
specificity as well as avidity toward their targets. Using spherical,
rod-, and disk-shaped polystyrene nano- and microparticles and
trastuzumab as the targeting antibody, we studied specific and
nonspecific uptake in three breast cancer cell lines: BT-474, SK-BR-3,
and MDA-MB-231. Rods exhibited higher specific uptake and lower
nonspecific uptake in all cells compared with spheres. This surpris-
ing interplay between particle shape and antibodies originates from
the unique role of shape in determining binding and unbinding of
particles to cell surface. In addition to exhibiting higher binding and
internalization, trastuzumab-coated rods also exhibited greater in-
hibition of BT-474 breast cancer cell growth in vitro to a level that
could not be attained by soluble forms of the antibody. The effect
of trastuzumab-coated rods on cells was enhanced further by re-
placing polystyrene particles with pure chemotherapeutic drug
nanoparticles of comparable dimensions made from camptothecin.
Trastuzumab-coated camptothecin nanoparticles inhibited cell
growth at a dose 1,000-fold lower than that required for compa-
rable inhibition of growth using soluble trastuzumab and 10-fold
lower than that using BSA-coated camptothecin. These results open
unique opportunities for particulate forms of antibodies in thera-
peutics and diagnostics.

morphology | nanomedicine | nanotechnology | drug delivery

Antibodies are used routinely in various analytical, diagnostic,
and therapeutic applications, including cell and protein sort-

ing (1), in vitro assays (2), in vivo imaging (3), and targeted de-
livery of therapeutics for the treatment of various diseases,
including cancer (4), arthritis (5), and allergies (6). Significant
attention has been given to understanding the molecular basis
of antibody–antigen interactions (7) as well as to molecular en-
gineering of antibodies to enhance their functions (8). An in-
creasingly larger number of emerging applications of antibodies,
however, are based on particulate systems in which antibodies
are chemically or physically immobilized on the surface of micro-
or nanoparticles (9–11). Such particulate antibodies are being
pursued for targeted drug delivery or imaging. Although the
benefits of antibodies in delivering therapeutic carriers to tissues
have long been recognized, the effect of carriers themselves on
antibody function has been relatively less studied. The function
of antibodies that are immobilized on particles depends on the
physicochemical properties of underlying particles, including the
choice of material, size, surface modification, and shape. Com-
monly used nanoparticles for immobilizing antibodies include
gold (9), iron oxide (12), quantum dots (13, 14), silica (15), poly-
mers including poly(lactide-coglycolic acid) (PLGA) (11, 16) and
polystyrene (17, 18), liposomes (19), and albumin (20). Antibodies
have been immobilized on these particles through physisorption as
well as chemical conjugation (21), and it is known that particle
size affects the interactions of immobilized antibodies with their
targets (22, 23). However, the effect of particle shape, a key pa-
rameter of such interactions, is not known.
Here, we study the effect of shape using trastuzumab, a HER2

(human epidermal growth factor receptor 2)-targeting monoclonal

antibody with proven therapeutic benefit (24) as a model anti-
body, polystyrene particles of two sizes (200 nm and 1 μm) and
three shapes (spheres, rods, and disks) as model particles, and
three breast cancer cell lines. We report a surprising finding:
particle shape enhances avidity as well as specificity of inter-
actions of antibodies with their targets. We further report, based
on in vitro studies, that the shape-induced enhancement of
specificity and avidity translates to large enhancements of thera-
peutic effect as judged by growth inhibition of HER2+ breast
cancer cells, BT-474.

Results
Preparation of Protein-Coated Particles with Three Different Shapes.
Two sets of particles were prepared (Fig. 1A). The first set was
prepared using 200-nm spheres. These spheres were stretched to
prepare nanorods (367 ± 33 nm in length and 126 ± 8 nm in
width) and nanodisks (236 ± 26 nm in diameter and 88 ± 21 nm
in thickness). The second set of particles was prepared using
microspheres (1 μm in diameter). These particles were stretched
to prepare microrods (2.5 ± 0.28 μm in length and 0.68 ± 0.05
in width) and microdisks (1.39 ± 0.12 μm in diameter and 0.3 ±
0.06 μm in thickness). The surface of the particles was modified
to elicit specific (trastuzumab) and nonspecific (BSA) interac-
tions with cells. Trastuzumab and BSA were immobilized on the
particle surface by adsorption, and the amounts adsorbed on
their surface were quantified (Table S1). Detailed studies were
performed using 200-nm spheres and corresponding rods. De-
sorption kinetics of trastuzumab and BSA from the surfaces of
nanospheres and nanorods were studied in PBS buffer at pH 7.4
(Fig. S1 A, i and ii), and in 10% FBS containing PBS (Fig. S1 B, i
and ii). A small fraction of protein desorbed from particles in 2 h
(trastuzumab: 5–10% in PBS and 7–12% in FBS-PBS; BSA: 3–
6% in PBS and 2–5% in FBS-PBS). The surface charge of
nanospheres and nanorods (uncoated, trastuzumab-coated, and
BSA-coated) was measured (Table S2). The mean zeta poten-
tials of uncoated nanospheres and nanorods were approximately
−20 mV in water, whereas the values increased to −9.5 and −9.3
mV, respectively, in 10% FBS containing cell culture medium.
Adsorption of trastuzumab or BSA on nanoparticles further in-
creased the zeta potential up to −5.3 mV.

Uptake of Nanoparticles by Breast Cancer Cells. We first compared
intracellular uptake of three different shapes of particles (sphere,
rod, and disk) in HER2+ human breast cancer cells, BT-474,
using confocal microscopy. The uptake of both uncoated and
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trastuzumab-coated nano/microparticles was evaluated after 2 h
incubation with BT-474 cells at 37 °C (Fig. 1B, Left: uncoated
particles; Fig. 1B, Right: trastuzumab-modified particles). Un-
coated nanospheres exhibited higher uptake in BT-474 cells
compared with that exhibited by nanorods and nanodisks, im-
plying that sphere is a favorable shape for cellular entry. When
nanoparticles were coated with trastuzumab, uptake of all par-
ticles was increased. Interestingly, however, uptake of trastuzu-
mab-coated nanoparticles exhibited different dependence on
shape compared with that exhibited by uncoated nanoparticles.
Nanorods and nanodisks, both of which exhibited lower uptake
in BT-474 in the absence of trastuzumab, showed significantly
higher uptake compared with spheres after trastuzumab coating.
High-magnification confocal images confirmed that trastuzumab-
coated nanorods and nanospheres are internalized by BT-474
cells (Fig. S2). Cell viability measurements evaluated using ethi-
dium homodimer stain indicated that a 2-h exposure of BT-474,
SK-BR-3, or MDA-MB-231 to trastuzumab-coated rods or spheres
did not induce significant toxicity (Fig. S3).
Uptake of nanoparticles in BT-474 cells was quantified by re-

covering the nanoparticles from cells and measuring their fluo-
rescence per milligram of total cellular protein contents (Fig. 2A).
Consistent with the microscopic images, trastuzumab coating in-
duced a higher enhancement of uptake of rods and disks compared
with their spherical counterparts (black bar). Overall, trastuzumab-
coated nanorods exhibited the highest uptake in BT-474 cells.
Uptake of trastuzumab-coated nanoparticles in BT-474 cells was
reduced when the cells were preincubated with excess trastuzumab
before addition of nanoparticles (hatched bar), thus confirming
the specific nature of nanoparticle uptake. BSA-coated nano-
particles exhibited low uptake (crossed bar), further confirming
the role of trastuzumab in nanoparticle uptake.

To assess the role of trastuzumab–cell interactions in nano-
particle uptake, nanoparticle internalization was evaluated in
two additional cell lines: SK-BR-3, a HER2+ cell line, and MDA-
MB-231, a HER2− cell line. The extent of uptake in SK-BR-3
cells was lower than that seen in BT-474 cells for all nanoparticles
(Fig. 2B). However, nanorods exhibited significantly higher up-
take compared with spheres. In addition, preincubation of cells
with trastuzumab (hatched bar) once again reduced the uptake of
trastuzumab-coated nanorods (black bar) to the same level as that
exhibited by uncoated nanorods (open bar). HER2−MDA-MB-231
cells did not exhibit trastuzumab-mediated enhancement of cellular
uptake of nanoparticles, regardless of particle shape (Fig. 2C).
The dependence of trastuzumab-induced nanoparticle uptake

on shape and cell type is summarized in Fig. 3A. Spheres exhibited
the least enhancement of nanoparticle uptake in the presence of
trastuzumab. The highest enhancement for spheres, about two-
fold, was observed for BT-474 cells, whereas no enhancement
was observed for MDA-MB-231 cells. Rods exhibited the highest
enhancement in the presence of trastuzumab: about sixfold for
BT-474, 2.5-fold for SK-BR-3, and none for MDA-MB-231. Disks
also exhibited high enhancement due to trastuzumab: about five-
fold for BT-474, twofold for SK-BR-3, and none for MDA-MB-231.
Results of similar measurements performed for microparticles are
shown in Fig. 3B. The dependence of trastuzumab-mediated
enhancement on particle shape was much more prominent for
microparticles than that for 200-nm nanoparticles. A high en-
hancement of 15-fold was observed for microrod uptake by SK-
BR-3 cells.

Particle Shape Affects Specific and Nonspecific Uptake. Particle
shape exhibits unique interdependence with target specificity.
Fig. 3C depicts the ratio of rods and spheres internalized by BT-
474, SK-BR-3, or MDA-MB-231 cells under various conditions,
including four specific conditions (trastuzumab in BT-474 and
SK-BR-3 for 200 nm and 1 μm) and various nonspecific con-
ditions (uncoated particles in BT-474, SK-BR-3, and MDA-MB-
231 cells for 200 nm and 1 μm; BSA-coated particles in BT-474,
SK-BR-3, and MDA-MB-231 cells for 200 nm; trastuzumab-
coated particles in MDA-MB-231 cells for 200 nm and 1 μm; and
trastuzumab-coated particles in BT-474, SK-BR-3, and MDA-
MB-231 cells for 200 nm when blocked with excess trastuzumab).
Remarkably, for all specific cases, rods exhibited higher uptake
compared with spheres. The mean ratio for specific uptake of
rods to spheres was 1.6. Conversely, for all nonspecific cases, rods
exhibited lower uptake compared with spheres, with a mean ratio
of 0.68. A similar observation was made for disks, although the
magnitude of this effect was lower compared with rods (Fig. 3D).

Shape-Specific Enhancement of Nanoparticle Uptake: Role of
Attachment. We hypothesized that the enhancement in intracel-
lular uptake of trastuzumab-coated nano/microrods over their
spherical counterparts originated from enhanced binding of
trastuzumab-coated rods to the cell membrane compared with
spheres. To test this hypothesis, concentration-dependent cell-
surface binding of trastuzumab-coated nanorods, trastuzumab-
coated nanospheres, uncoated rods, and uncoated spheres was
assessed in BT-474 cells at 4 °C. This temperature was chosen to

Fig. 1. Scanning electron micrographs of particles used in this study and
images of their uptake in BT-474 cells. (A, Left) Microspheres, rods, and disks
(scale: 2 μm). (Right) Nanospheres, rods, and disks. (Scale bar: 500 nm.) (B)
Confocal micrographs of nanoparticle uptake in BT-474 cells. (Left) Nano-
particles without trastuzumab. (Right) Nanoparticles with trastuzumab.

Fig. 2. Nanoparticle uptake in BT-474 (A), SK-BR-3
(B), and MDA-MB-231 (C) cells. Open bars, nano-
particles with no trastuzumab on the surface; black
bars, nanoparticles with trastuzumab on the surface;
hatched bars, trastuzumab-coated nanoparticles ex-
posed to cells after preincubation with trastuzumab;
crossed bars, BSA-coated particles. Nanoparticle di-
mensions are as shown in Fig 1A, Right. Cells were
incubated with a nanoparticle concentration of
300 μg/mL in all experiments. Data expressed as
mean ± SD (n = 4).
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prevent cellular internalization of nanoparticles. Trastuzumab-
coated nanorods exhibited a higher degree of binding than
coated nanospheres, uncoated nanospheres, and uncoated
nanorods (Fig. 4A). The mean fluorescence intensity of bound
nanorods increased with nanorod concentration and reached
a saturation point after which addition of more particles did
not increase further binding. A similar behavior was observed
for trastuzumab-coated nanospheres. The uncoated nanorods
and nanospheres showed minimal attachment at concen-
trations ≤5 μg/mL. At higher concentrations, binding of un-
coated nanoparticles to the cell membrane increased slightly
and reached saturation, although the magnitude was signifi-
cantly lower than that for trastuzumab-coated particles. A
further increase in particle concentration to 300 μg/mL did not
induce an additional drop in binding (Table S4).
Fig. 4B shows the area-under-the-curve (AUC) values of fluo-

rescence intensity vs. concentration from Fig. 4A. The secondary y
axis of Fig. 4B is redrawn from Fig. 2A and represents the number
of nanoparticle uptakes by BT-474 cells following 2 h incubation.
The close resemblance between binding AUC values and in-
ternalization suggests that the peculiar interplay between shape
and specificity may have originated from binding to cell surface.

Significance of Rod-Shaped Nanoparticles to Optimize Therapeutic
Effect. Because trastuzumab is a therapeutic antibody, enhanced
binding of trastuzumab-coated nanoparticles is expected to provide
direct therapeutic benefits. To assess this possibility, we measured
the ability of trastuzumab-coated nanorods and nanospheres to
inhibit growth of BT-474 cells (Fig. 5A). Trastuzumab-coated
nanorods (Fig. 5A, black bars) induced significantly higher in-
hibition of growth compared with that induced by the same
amount of trastuzumab delivered in the soluble form (Fig. 5A,
gray bars). Enhanced growth inhibition was seen in a dose-de-
pendent manner at nanorod concentrations from 0.1 to 10 μg/mL
(corresponding to trastuzumab concentrations from 0.016 to
1.25 μg/mL). The inhibitory effect of trastuzumab-coated nano-
rods on BT-474 cells cannot be attributed to rods themselves,
because the same dose of polystyrene nanorods, when coated
with BSA, did not induce a detectable effect on growth inhibition
(Fig. 5A, hatched bars). Trastuzumab-coated nanospheres (crossed
bars) failed to induce appreciable growth inhibition and produced
a result comparable to that of BSA-coated nanospheres (open
bars). This limited growth inhibition induced by BSA-coated
nanospheres might have originated from nonspecific internal-
ization. Such minor effects of polystyrene nanoparticles are con-
sistent with literature reports (25, 26).
The model polymer, polystyrene, may be replaced by bio-

compatible polymer poly-l-lactide co-glycolide (PLGA). PLGA
particles with dimensions comparable to those of polystyrene
particles reported in Fig. 1A may be prepared (Fig. S4 and SI
Text, section 4). The ability of trastuzumab-coated nanorods to
induce growth inhibition may be enhanced further by encapsu-
lating a chemotherapeutic drug in PLGA nanorods or entirely
replacing the polymer with the drug. Here, we demonstrate the
feasibility of this approach by preparing nanorods of comparable
dimensions using a chemotherapeutic drug, camptothecin (Fig.
5B, see SI Text, sections 1, 2, and 3, and Table S3 for preparation,
trastuzumab coating, and characterization). Trastuzumab-coated
camptothecin nanorods (Fig. 5C, black bars) exhibited higher
growth inhibitory effects in BT-474 cells than trastuzumab-
coated polystyrene nanorods (Fig. 5A, black bars) and BSA-
coated camptothecin (Fig. 5C, hatched bars). For example, 50%
inhibition of growth required 1.25 μg/mL trastuzumab on 10
μg/mL polystyrene nanorods or 10 μg/mL BSA-coated campto-
thecin. In contrast, the same inhibition was obtained using only
0.16 μg/mL trastuzumab coated on 1 μg/mL camptothecin. Simi-
larly, 30% growth inhibition was observed using only 0.016 μg/mL
trastuzumab coated on 0.1 μg/mL camptothecin; this number was
10-fold lower than the required dose of BSA-coated camptothecin
(1 μg/mL). Exposure to trastuzumab alone at the concentrations
comparable to those exposed from the nanorods (Fig. 5C, gray
bars) did not induce inhibition comparable to that induced by
trastuzumab-coated camptothecin. The effect of trastuzumab-coated
camptothecin was cell-line dependent; comparable inhibition
was found in HER2+ cell lines, BT-474 and SK-BR-3, but no
enhanced cell growth inhibition was found in a HER2− cell line,
MDA-MB-231 (Fig. S5).

Discussion
Studies reported here show that binding and subsequent cellular
uptake of antibody- coated nanoparticles is shape dependent.
Nanoparticle uptake without trastuzumab coating may be a re-
sult of nonspecific binding interactions, e.g., hydrophobic binding
of polystyrene nanoparticles at the cell membrane (27). In case
of specific interactions, trastuzumab-coated nanorods showed
the highest uptake and surface binding to HER2+ cells, that is,
BT-474 and SK-BR-3, and negligible binding to HER2− MDA-
MB-231 cells (Fig. 3). HER2 expression is expected to be higher
in BT-474 cells than in other breast cancer cell lines (28), which
may explain the highest uptake of trastuzumab-coated nano-
particles in these cells. The magnitude of trastuzumab-coated
particle uptake and cellular internalization generally was highest
for rods, followed by disks, followed by spheres. The enhanced
uptake of rods is consistent with the results reported by Gratton

Fig. 3. Trastuzumab-induced enhancement of nano- and microparticle up-
take by various cell lines used in this study. The y axis corresponds to uptake
of trastuzumab-coated particles divided by uptake of uncoated particles of
same size/shape in the same cells. (A) Uptake of nanoparticles for BT-474
(white bars), SK-BR-3 (hatched bars), and MDA-MB-231 (black bars). Particle
concentration in all experiments was 300 μg/mL. (B) Similar data for micro-
particles. Particle concentration in all experiments in Bwas 300 μg/mL. (C and
D) Ratio of rod/sphere (C) and disk/sphere (D) uptake ratio for various par-
ticles and cell conditions used in this study. The conditions are classified as
specific or nonspecific. The specific conditions include trastuzumab-coated
nano- and microparticles in BT-474 and SK-BR-3 (a total of four conditions).
The nonspecific conditions include uncoated nano- and microparticles in
BT-474, SK-BR-3, and MDA-MB-231 (a total of six conditions); BSA-coated
nanoparticles in BT-474, SK-BR-3, and MDA-MB-231 (three conditions);
trastuzumab-coated nano- and microparticles in MDA-MB-231 cells (two
conditions); and trastuzumab-coated nanoparticles in BT-474, SK-BR-3, and
MDA-MB-231 cells, when blocked with excess trastuzumab (three conditions).
Altogether, a total of fourteen nonspecific conditions are included. The
same conditions are used for rods and disks.
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et al. (29), which showed that poly(ethylene glycol) hydrogel rods
of 150 × 450 nm exhibit higher uptake compared with cylindrical
particles of 200 × 200 nm. In their study, the interaction between
the particles and the membrane was mediated by the positive
charge of the particle. Elimination of the positive charge elimi-
nated enhanced uptake. In our study, particle–membrane inter-
actions were mediated by trastuzumab. Trastuzumab-coated
nanorods exhibited about sixfold higher uptake compared with
uncoated nanorods in BT-474 cells. The enhancement was even
higher for microrods, in which a 15-fold enhancement was ob-
served in the uptake of microrods in SK-BR-3 cells. Corre-
sponding enhancement for spherical particles was about twofold
and fivefold, respectively, thus confirming the role of shape in
increased uptake. The most unexpected conclusion of the stud-
ies, however, is that particle shape enhances specificity of binding
and uptake. Compared with spheres, rods exhibited, on average,
1.6-fold higher uptake when the uptake was specific and about
1.5-fold lower uptake when the uptake was nonspecific. Col-
lectively, these results show that the specificity of trastuzumab-
mediated binding and uptake was enhanced by about 2.3-fold. This
simultaneous enhancement in affinity and specificity is a highly
unique contribution of particle morphology.
Trastuzumab attachment previously was shown to increase in-

ternalization of nanoparticles by HER2+ cells. For example, about
1.4 to 4-fold enhancement in internalization of 100 nm iron oxide
nanoparticles has been reported in SK-BR-3 cells (30, 31). Other
studies have reported a 1.4-fold improvement in cytotoxicity of
chitosan nanoparticles in an ovarian carcinoma continuous cell
line, SKOV-3 (32); 1.2–1.3-fold enhancement in uptake of pol-
ylactic acid (PLA) or PLGA nanoparticles by SK-BR-3 cells (11,
33, 34); and 2–3-fold increase in uptake of albumin nanoparticles
by BT-474 and SK-BR-3 cells (20). The enhancements in uptake
reported here, 6-fold for nanorods and 15-fold for microrods,
compare favorably with these numbers.
High uptake of trastuzumab-coated rods may have originated

from multivalent interactions of trastuzumab with HER2, which

also may explain their highest attachment to cell surface (Fig.
4A). Rods offer higher surface area per unit volume compared
with spheres and therefore can adsorb higher amounts of trastu-
zumab. Theoretically, the surface area/volume ratio of a nanorod
(126 × 367 nm), calculated using standard equations for de-
termining areas and volumes of prolate ellipsoids, is about 31%
higher than that for a sphere (200-nm diameter). The amount of
trastuzumab adsorbed on rods was about 24% higher than that
on spheres (Table S1), indicating that the surface density of
trastuzumab on rods and spheres was comparable. The magnitude
of membrane binding, on the other hand, differed by ∼300%
(Fig. 4B).The bell-shaped curve for trastuzumab-coated nano-
rods might be a result of multivalent binding and consequent
cross-linking of HER2. Such effects previously were reported
based on experiments and theory (35, 36). Multivalent gold
nanoparticles coated with dinitrophenyl have shown a similar
bell-shaped dose–response curve due to cross-linking of IgE-
FceRI receptor complexes in RBL-2H3 mast cells (37). Although
the studies presented here suggest that enhanced uptake of
nanorods can be explained by enhanced surface binding, addi-
tional factors associated with multivalent interactions and pen-
etration through the glycocalyx also are likely explanations for
the experimental observations (SI Text, section 5).
The enhanced specificity might have originated from the in-

terplay between binding interactions of particles with cell surface
and the forces of their detachment, both of which likely depend
on shape. The probability of adhesion of a particle on a surface,
P, is given by the following expression (38, 39):

P ≅ m1m2K0
mAcexp

�
−
λ  f
kBT

�
; [1]

where K0
m is the equilibrium binding constant for the antibody–

receptor bond; m1 and m2 are surface densities of receptors and
antibodies, respectively; Ac is the contact area of the particle; λ is

Fig. 4. (A) Concentration-dependent binding of
nanoparticles to BT-474 at 4 °C after incubation
for 30 min.●, Trastuzumab-coated nanorods (Trast-
Rod); ○, uncoated nanorods (Uncoat-Rod); ■, tras-
tuzumab-coated nanospheres (Trast-Sph); □, un-
coated nanospheres (Uncoat-Sph). Data were
expressed as mean ± SD (n = 4). (B) AUC of nano-
particles attached to BT-474 (black bars) and the
number of nanoparticles taken up by BT-474 (hatched
bars) taken from Fig. 2 are shown in the primary and
secondary y axes, respectively.

Fig. 5. Effect of trastuzumab-coated nanoparticles
on cell growth inhibition. (A) BT-474 cells exposed
to three different concentrations of trastuzumab-
coated nanorods or nanospheres (black bars and
crossed bars, respectively), BSA-coated nanorods or
nanospheres (hatched and open bars, respectively),
or trastuzumab solution alone (gray bars). Percent-
age growth inhibition assay was performed using
a live/dead assay kit (Invitrogen) and expressed as a
percentage of control cells incubated with PBS. Av-
erage values and SDs of four replicates are reported.
Results show that trastuzumab-coated nanorods sig-
nificantly enhance the growth inhibition, whereas
trastuzumab alone fails to improve the growth inhibition. (B) SEM images of camptothecin nanoparticles as prepared by the solvent diffusion method. The mean
length of the nanoparticles is 509.5 ± 202.6 nm. (C) Comparison of inhibition in cell growth following treatment with trastuzumab-coated camptothecin (black
bars), BSA-coated camptothecin (hatched bars), or trastuzumab alone (gray bars) in BT-474 cells. The data represent mean ± SD (n = 4).
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the bond interaction parameter and may be represented as the
distance at which the adhesion force reduces to zero; f is the
external force experienced by each of the individual bonds dur-
ing detachment; and kB and T are Bolzmann’s constant and
temperature in kelvins, respectively. A semiquantitative analysis
of Eq. 1 yields the equations for relative probability of adhesion
for rods and spheres, Prod

Psph
, as follows (see SI Text, section 6

for details):
For specific interactions, that is, λ → 0,

Prod

Psph
≅ αm: [2]

For nonspecific interactions, that is, λ → ∞,

Prod

Psph
≅ 0: [3]

This simple analysis provides a possible explanation for the
observed behavior. In the presence of specific antibodies (Eq. 2),
rods exhibit higher adhesion, primarily owing to their increased
contact area with the surface, which increases with increasing α.
Multivalent interactions also affected biological effects of

trastuzumab-coated polystyrene or camptothecin nanorods in
terms of their ability to inhibit the growth of breast cancer cells
(39). Exposure to the same amount of trastuzumab from solution
and nanorods produced significantly different effects on cell
growth (Fig. 5A). More importantly, the effect of trastuzumab-
coated nanorods on growth inhibition could not be matched by
trastuzumab solution, even at higher doses. Specifically, trastu-
zumab-coated polystyrene nanorods induced ∼50% inhibition at
a trastuzumab concentration of 1.25 μg/mL, whereas soluble
trastuzumab alone produced only a 31.9 ± 4.2% inhibition, even
at a 20-fold higher concentration (25 μg/mL), a concentration
within the therapeutic range (40). Use of pure chemotherapeutic
drug nanoparticles further enhanced the effect of trastuzumab;
0.016 and 0.16 μg/mL trastuzumab on 0.1 and 1 μg/mL camp-
tothecin, respectively, inhibited 30% and 50% growth, respec-
tively. The same levels of growth inhibition require 10-fold
higher concentrations of BSA-coated camptothecin. Such effects
may enhance the efficacy of existing applications or may open
new opportunities for antibodies. Particle shape may affect ad-
ditional properties of antibodies on the surface, including their
desorption and substitution by immunoglobulins in the body, and
this likelihood needs further evaluation (41).
The combination of reduced nonspecific binding and enhanced

specific binding has several applications. For drug delivery appli-
cations, this observation provides a direct benefit for enhanced
targeting. This report describes in vitro studies, and confirmation
of these results in vivo is required before applications in drug
delivery can be considered further. However, the behavior of
nanoparticles in vivo is dictated by several factors, including cir-
culation, immune clearance, flow, and extravasation, which makes
it difficult to interpret the contribution of specific and nonspecific
binding of nanoparticles to target cells (42). This makes the
present study especially significant because it provides a detailed
quantitative analysis of interplay between shape and specificity,
which offers principles for drug carrier design. Enhancement of
specific binding also may open applications in imaging, in which
antibody-coated nanoparticles are used in vitro for imaging
cancer cells using antibody-coated fluorescent nanoprobes (14).
Antibody-coated nano/microrods also may be used for the devel-
opment of bioaffinity assays for in vitro diagnostic applications.
Rod-shaped nanoparticles may potentially improve the sensitiv-
ity of traditional nanoparticle-based agglutination and lateral
flow assays that suffer from weak antigen–antibody attachment
and nonspecific binding (43). Overall, it is envisioned that the
shape-specific nanoparticles will have versatile implications in
the field of therapeutics and diagnostics.

Methods
Materials. Fluorescent polystyrene particles (Fluoresbrite) with diameter of
200 nm and 1 μmwere purchased from Polysciences, Inc. RPMI medium 1640,
McCoy’s 5A medium, and FBS were purchased from ATCC. DMEM, L-gluta-
mine, and insulin were purchased from Invitrogen. Trastuzumab was pro-
vided by Genentech, Inc. BSA was purchased from Sigma-Aldrich. All other
reagents were the highest possible commercial grade available.

Preparation and Characterization of Protein-Coated Particles. Polystyrene rod-
and disk-shaped particles were prepared from polystyrene spherical particles
using thefilm-stretching procedure described by our previous reports (44, 45).
The mean zeta potentials of uncoated and protein-coated polystyrene nano-
particles were determined by dynamic light scattering using a Malvern Zeta-
sizer Nanoseries. Samples of 50 μg/mL were prepared in 1 mL of filter sterile
PBS or cell culture medium and placed in a capillary cell. Zeta potential mea-
surement of each sample consisted of at least 15 runs. The results of two in-
dependent sets of each sample were expressed as mean zeta potential ± SD.

Cell Culture. BT-474 cells were cultured in RPMI 1640 medium supplemented
with 10% FBS, 1% penicillin–streptomycin, and 10 μg/mL insulin. SK-BR-3 cells
were cultivated in McCoy’s 5A medium supplemented with 10% FBS, 1%
penicillin–streptomycin, and 2 mM L-glutamine. MDA-MB-231 cells were
grown in complete growth medium containing DMEM, 10% FBS, and 1%
penicillin–streptomycin. All the cell lines were incubated at 37 °C in a hu-
midified chamber with 5% CO2 and cultured in exponential growth phase
by subcultivation.

Confocal Microscopy. For confocal microscopy, BT-474 cells were seeded on
cover glasses and cultured in RPMI 1640 medium as above until reading 80%
confluency. Cells were incubated with 0.1 mg of nanoparticles for 2 h at 37 °C
and were washed several times with cold HBSS, followed by cell boundary
staining using CellMask Deep Red membrane dye (Invitrogen) at 5 μg/mL for
5 min at 37 °C, five washings, and fixing with 4% paraformaldehyde at room
temperature for 10 min. The cells were washed with PBS three times and
incubated with 0.2% Triton X-100 for 5 min. The nucleus was stained with
DAPI (2 μg/mL) for 5 min. The cover glasses were placed on a slide glass using
Permount mounting medium (Fisher Scientific). The samples were imaged
on a confocal microscope (Leica and Olympus FluoView 500).

Cellular Uptake Study. Cells were seeded in 24-well plates. When cells reached
80% confluency, they were gently washed three times using HBSS buffer and
incubated with 0.3 mLmedium; 0.1 mg of nanoparticles or microparticles was
added to the wells. Cells were incubated for 2 h at 37 °C. Cells were washed
using cold HBSS to stop the uptake and washed three more times to remove
unbound and surface-bound particles. After lysis with Triton X-100 (1% in
0.1 M NaOH), protein was analyzed using a Pierce Micro BCA protein kit
(Thermo Scientific) and the amount of particles internalized was calculated
using a Tecan Infinite microplate reader at excitation and emission wave-
lengths of 425 nm and 465 nm, respectively.

Cell Viability. To evaluate the cytotoxicity of the nanoparticles, BT-474, SK-BR-3,
andMDA-MB-231 cells were grown overnight at a density of 10,000 cells per
0.2 mL in 96-well plates. Cells were incubated for 2 h at 37 °C with 300 μg/mL
trastuzumab-coated nanospheres, trastuzumab-coated nanorods, uncoated
nanospheres, or uncoated nanorods. Dead cells were stained with 2 μM ethi-
dium homodimer-1 (EthD-1; Invitrogen) by incubating the cells for 30 min at
room temperature. The fluorescence intensity of EthD-1 was measured using
495/645 excitation/emission filters of a microplate reader (Tecan). Back-
ground fluorescence of the cells treated with PBS was subtracted from the
samples. The percentage cell viability was calculated by subtracting the dead
cells from 100% live cells.

Binding of Trastuzumab-Coated Nanospheres and Nanorods with BT-474. BT-
474 cells were seeded in 96-well plates at a concentration of 8,400 cells per well
and allowed to growovernight. The cells were incubated at 4 °C for 30minwith
various concentrations of trastuzumab-coated nanorods and nanospheres in
a range of 0–20 μg/mL and at 300 μg/mL. Cells were washed using PBS after
removal of the nanoparticles, fixed using 4% paraformaldehyde for 15 min
at room temperature (∼22 °C), washed using PBS, and kept in 150 μL PBS per
well. Fluorescence intensities of the nanoparticles from each well were
measured using a Tecan Infinite microplate reader at excitation and emis-
sion wavelengths of 425 nm and 465 nm, respectively. The half-maximum
particle-binding concentration was calculated from the dose–response curve
of fluorescence intensity vs. particle concentration where 50% of the
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maximum fluorescence intensity was found. The data were obtained for two
independent sets of experiments with four replicates of each concentration.

Inhibition in Cancer Cell Growth Using Trastuzumab-Coated Polystyrene
Nanoparticles. The therapeutic efficiency of trastuzumab was examined in
BT-474 cells in vitro using trastuzumab-coated nanorods and trastuzumab-
coated nanospheres. BSA-coated nanoparticles and trastuzumab alone were
used as controls. BT-474 cells were grown in 24-well plates and treated with
nanoparticles (0.13, 1, and 10 μg/mL polystyrene rods or spheres) or controls
(trastuzumab concentrations on rods were 0.016, 0.125, and 1.25 μg/mL, re-
spectively, and on spheres were 0.013, 0.1, and 1 μg/mL, respectively) for 2 h.
Cells then were incubated with fresh serum containing medium and allowed
to grow for an additional 94 h. After the treatments, live and dead cells were
quantified using calcein-AM and EthD-1 (live/dead assay, Invitrogen), re-
spectively. Fluorescence intensities of calcein-AM [excitation/emission

(Ex/Em): 495/530] and EthD-1 (Ex/Em: 495/645) were measured using a plate
reader (Tecan). Fluorescence background of medium was subtracted from
each well. Total numbers of live and dead cells were calculated from stan-
dard curves of fluorescence intensities vs. number of live/dead cells. The data
were expressed as percentage inhibition in cell proliferation (or number of
live cells) compared with PBS-treated controls.
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