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One of the main underlying principles of morphogenesis for biological systems at

di®erent scales in space and time is the interaction between components that have a

certain potential to interact. The key concepts of biological morphogenesis as

described by Davies43 are molecular mechanisms that initiate and control shape, the

principle of emergence of complex structures and behaviors from the interactions of

comparatively simpler components, the use of feedback, self-assembly and adaptive

self-organization. One can readily recognize that many of the concepts that are

critical to morphogenesis are also relevant to other natural processes and to humans

creations. They have been the subject of intense investigations in physics, chemistry

and engineering. Examples range from (biomorphic) crystals,60 to sand-dunes15 and

cities.74

The study of morphogenesis by physicists and mathematicians is often subjected

to simpli¯cations, as scientists wish to identify its key components so that they can in

turn be analyzed and understood. This idealization and simpli¯cation appears at

times to not be commensurate with the complexity of biological systems but it is a

well-established method of scienti¯c inquiry. The pioneering work of D'Arcy

Thompson on Growth and Form,152 proposed a mathematical formalism for the

description of biological forms and proposed a number of mechanisms for growth.

Among those, spatially dependent chemical reactions and di®usive processes ¯gure

prominently as one of the mechanisms that determine the growth and structural

characteristics of several organisms. A few years later, Turing154 proposed reac-

tion�di®usion models that depend on local autocatalysis and long-range inhibition to

explain a wide range of phenomena related to biological pattern formation. The work

of Turing has been the starting point for mathematical and computational studies of

morphogenesis with a marked increase in attention to the subject in the last two

decades. Among the various mathematical models of morphogenesis,151,112 there has

been particular emphasis on the reaction�di®usion process that lead to pattern-

ing85,96,157 as the distribution of chemicals on a surface may have an in°uence on its

subsequent evolution, with examples ranging from tumor48,35,127,95,58,109 to animal

and plant growth.77,82,16 Simulations of reaction�di®usion processes have often

implemented techniques such as ¯nite elements that rely on a proper triangulation of

the geometry72 a procedure that may become cumbersome when the surface topology

exhibits large variations and break-ups. The development of level sets110 has opened

new frontiers in simulating evolving surfaces as they can accommodate large defor-

mations and break-ups. The extension of level sets to solving partial di®erential

equations on surfaces29 has led the development of methods to handle the transport

of surface bound substances on deforming surfaces.160,5,133 Reaction�di®usion

models are usually formulated either in terms of deterministic rate equations or

by using stochastic descriptions of the underlying molecular processes. The stochastic

description provides detailed information about the dynamics of the reac-

tion�di®usion process, albeit at a signi¯cant computational cost over deterministic

simulations. The Stochastic Simulation Algorithm, Sec. 5, (SSA)64,65 has been

used extensively in biochemical modeling (Refs. 153, 88 and references therein) of
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reactions that assume a homogeneous spatial distribution of the species involved. A

number of algorithms66,63,13 have been presented for the acceleration of the SSA for

homogeneous systems. In recent years, the SSA has been extended to simulations

involving spatially inhomogeneous molecular distributions undergoing di®usion and

reaction processes.51,73,126 The algorithm presented in Refs. 51 and 73 scales almost

linearly with the number of events, but requires them to be scheduled thus prohi-

biting parallel execution. In Ref. 126 the computational time is reduced by splitting

the reaction�di®usion phenomena into two distinct di®usion and reaction phases.

This splitting may introduce numerical artifacts for systems close to a microscopic

level as the reaction and di®usion processes happen concurrently, in particular for

systems that involve too few particles to be insensitive to this kind of splitting.

Recent works have examined the qualitative behavior of stochastic systems and have

provided extensions for the deterministic systems to include leading order corrections

for molecular noise,140,147 hence losing some of the descriptive bene¯ts of a completely

stochastic simulation but with the advantage of a relative reduction in computational

cost. A number of issues remain open in spatial SSA, such as the modeling of

the di®usion rates in complex geometries, algorithms of increased computational

e±ciency and accuracy, and the enforcement of the homogeneity assumption.88

Besides reaction�di®usion models, there has been an ever increasing interest in

constructing models of morphogenesis that are multiscale thus re°ecting the very

essence of this process (see Refs. 23, 24 and references therein). It is evident52 that

di®erential signaling alone is not su±cient to help us model the plethora of forms and

functions. Computational models that take into account as well mechanical,70 and

genetic processes and their interactions are necessary. The e®ective simulation

Morphogenesis requires a multiscale and multi-disciplinary approach. The phenom-

ena that are involved in Morphogenesis (as well as in many other biological processes)

can be found in a number of other problems and a number of e®ective computational

techniques have been proposed in order for example to simulate mechanics, °uids or

biochemistry. What is di®erent here is that these di®erent processes interact in a

truly multiscale fashion and it is necessary to take these interactions into account

when devising computational methods to study morphogenesis. Recent e®orts in

developing a framework for the simulation of morphogenesis38 have provided us with

e®ective tools to address a multitude of biological problems. These tools rely on the

simplicity of the individual components and rely on developing modeling assumptions

that can be translated into interactions of the individual components.

This description matches very well, the topic of this paper, which is the use of

particle methods for Computational Morphogenesis. Particle methods rely on

tracking their locations (r) and the evolution of their properties (QðtÞ) based on

interaction rules that re°ect the physics that is being simulated. Particle methods

may be broadly described as solving Newtons equations

d 2ri
dt 2

¼ Fðri; rj ;Qi;Qj ; . . .Þ; ð1:1Þ
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where the force ¯eld F can be obtained either by a divergence of stress�tensor or as

the gradient of a potential. Hence all modeling aspects of particle methods are con-

centrated on the right-hand side while a common computational framework can be

constructed to account e±ciently for particle tracking and their interactions. Particle

methods were the ¯rst method used to describe the simulation of physical processes

(in the 1930's hand made calculations by Rosenhead of the evolution of a vortex

sheet128) and they have been advocated for e±cient simulations of multiphysics

phenomena in complex deforming computational domains in several ¯elds of science

ranging from astrophysics to °uid and solid mechanics (see the review papers93,86,103

and references therein). Particle simulations of morphogenesis have been ¯rst

reported in the graphics community and were in fact among the ¯rst methods used to

simulate phenomena such as plant growth.83,144 Particle methods are unique, in that

they can be used to simulate phenomena ranging from the atomistic scale (as in

Molecular Dynamics) to the mesoscale (as in kinetic models of complex physics) and

the macroscale (as in °uid, solid mechanics and astrophysics). In addition, they can

be readily formulated to describe discrete and continuous processes as well as

deterministic and stochastic models. In recent years starting from the development of

particle methods for the simulation of three-dimensional vortical °ows,90 these

techniques have been extending to the simulation of continuous processes biological

systems, such as di®usion in cell organelles137,136 to more recent work in simulations

of angiogenesis101 and on reaction�di®usion equations on deforming surfaces.27 The

various types of models of angiogenesis, are representative of the models used in

morphogenesis and they can be classi¯ed in three broad categories:

(1) Discrete, cell-based models that aim to capture the behavior of individual

biological cells,17

(2) Continuum models that describe the large scale, averaged behavior of cell

populations10,91

(3) Discrete models that model explicitly vascular networks determined by the

migration of tip cells.34,148

Besides angiogenesis, a number of computational models capturing cell�cell inter-

actions for the simulation of tissue formation have been introduced over the

years.11,108,79 Cell-based models de¯ne single cells as distinct entities and are well-

suited to model small populations of heterogenous cellular systems. The cellular

granularity of the models allows for the integration of cell�cell interactions such as

cell�cell signaling, cell�cell adhesion and the cell cycle. Limitations of these models

are associated with the high computational cost for simulating systems of large

number of cells. In the realm of cell-based modeling, we can distinguish grid-based

and particle-based models. Grid-based models include the Cellular Automata (CA)9

where each cell is represented by a single grid element. An extension to this model is

the Cellular Potts model (CPM) where single cells are discretized as a collection of

grid elements.67 Finite Element Models (FEM) have been considered to model the
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mechanical properties of single cells98 and of plant cell walls under pressure.145 A

hybrid Mass-Spring/FEM model for plant tissues has been proposed in Ref. 62.

In particle-based models, cells are modeled as soft spherical objects that interact

via potential forces49 and are governed by interparticle deterministic and stochastic

dynamics. Cell shape changes are induced by cell adhesion and compression. To

account for the cell shape changes during mitosis, Byrne and Drasdo31 introduced

dumb-bell shaped cells and Palsson et al.113 introduced an elliptical model to account

for elongated cell shapes during migration. The Subcellular Element Model (SEM)

was proposed8,107,135 to describe tissues with individually deformable cells rep-

resented by a collection of particles. These subcellular elements interact with each

other through soft breakable-bond potentials. Model simulations are governed by

Brownian dynamics. Christley et al. have presented a GPU implementation of the

SEM and provided general guidelines to follow when considering a GPU accelerated

implementation of cell-based computational models.37 Jamali et al. introduced a

subcellular viscoelastic model that de¯nes cell-internal, cell�cell and cell-environment

interactions via bound Kelvin�Voigt subunits. A cell is composed of subcellular

elements representing the plasma membrane, the cytoskeleton and the nucleus.79

Liedekerke et al. proposed a hybrid method that combines smoothed particle

hydrodynamics (SPH) to model the liquid phase inside a cell with a discrete element

method (DEM) to model the solid, elastic phase of the cell walls. The model further

considers the transport of water through the semipermeable cell wall.156 Dissipative

Particle Dynamics (DPD) are another class of particle based models and have been

used to model red blood cells118 and recently to explain the stress distribution in cell

tissue experiencing cell division and apoptosis.122 The Immersed Boundary Method

(IBM) for cells presented by Rejniak et al.124,125 combines an elastic representation of

the cell membrane modeled as a collection of massless springs, with a viscous

incompressible °uid as described by the Navier�Stokes equation, to represent the cell

cytoplasm and the extracellular matrix.

We wish to emphasize that the papers listed here pertain to morphogenesis and

they do not constitute an exhaustive (or even representative) list of the vast litera-

ture on the subject of particle methods.

The present paper is organized as follows: In Sec. 2, we present the fundamentals

of particle methods for the solution of convection-di®usion reaction equations. We

remain in the continuum realm in Sec. 3 to describe the evolution of surfaces and

along with the solution of partial di®erential equations on them. In Sec. 4, we present

applications of these methodologies as they pertain to pattern formation, avascular

tumor growth and angiogenesis. The details of the components of the biological

models are presented so as to provide a comparatively complete description of the

capabilities of particle methods. In Sec. 5, we present stochastic particle methods for

the solution of reaction di®usion equations with applications on pattern formation

and glioma growth. The last Sec. 6 outlines particle models for cells that carry

the potential for a bottom up description of morphogenesis. We conclude with a

summary of our ¯ndings and with directions for future work.

Particle Simulations of Morphogenesis 5

March 15, 2011 6:53:56pm WSPC/103-M3AS 00543 ISSN: 0218-2025 1st Reading

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41



2. Particle Methods

Particle methods can be used to simulate systems ranging from water transport in

nanotubes to galaxy formation. This unique property of particle methods relies on the

formulation of physical systems as interactions between evolving particles. This

common algorithmic framework can be used to describe discrete and continuum

systems. Particle methods for continuum systems, such as Smoothed Particle

Hydrodynamics, Vortex Methods, and Lagrangian Level Sets, are based on the

Lagrangian formulation of the governing equations, the formulation of the governing

equations as integral equations and in turn the use of particles as quadrature points

for their discretization. Particles interact and adapt according to a convection vel-

ocity ¯eld but the non-uniform distortion of the computational elements prevents the

convergence of the method. Hence particles evolve while conserving moments of the

¯eld they aim to discretize, albeit inconsistently with the equations that govern their

evolution. This observation is often overlooked in simulations using particles but we

consider that particle distortion and the ensuing inaccuracy of the method are

inherently linked to the Lagrangian description of particle methods. In order to

correct for this inaccuracy of continuous particle methods, a number of regularization

procedures have been proposed, that can be distinguished as weight or location

processing. Here we discuss the process of particle regularization by remeshing the

particles periodically on grid nodes. Remeshing detracts from the grid free character

of particles but enables advances such as multiresolution, the coupling continuum

and atomistic descriptions and last but not least the development of software that

seamlessly simulates systems across several scales.

2.1. Functions described by smooth particles

Point particle approximations were the ¯rst to attract attention in solving °uid

mechanics problems because their evolution can be formulated in terms of con-

servation laws. An approximation of a smooth function f in the sense of measures123

can be formulated as:

f hðx̂Þ ¼
X

p

wp�ðx� xpÞ;

where wp denotes the weights of the particles and depends on the quadrature applied

to discretize on Eq. (2.1). The point particle approximations need to be enhanced in

order to recover continuous ¯elds (see Ref. 40 and references therein). Continuous

¯elds can be recovered from point samples by regularizing their support, replacing �

by a smooth cuto® function that obeys the partition of unity and has a compact

support:

�ðxÞ ’ ��ðxÞ ¼ ��d�
x

�

� �

; ð2:1Þ

where d is the dimension of the computational space and � � 1 is the range of the

cuto®.
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Smooth function approximations can be constructed by using a molli¯cation

kernel ��ðx̂Þ:

f�ðx̂Þ ¼ f H � ¼
Z

f ðyÞ��ðx̂ � yÞ dy:

The particle approximation of the regularized function is de¯ned as

f h� ðx̂Þ ¼ f h H �� ¼
X

p

wp��ðx̂ � x̂pÞ: ð2:2Þ

The error introduced by the quadrature of the molli¯ed approximation f h� for the

function f can be distinguished in two parts as:

f � f h� ¼ ðf � f H ��Þ þ ðf � f hÞH ��: ð2:3Þ
The ¯rst term in Eq. (2.3) denotes the molli¯cation error that can be controlled by

appropriately selecting the kernel properties. The second term denotes the quad-

rature error due to the approximation of the integral on the particle locations. Since

the early 1980s, molli¯er kernels have been developed in VMs with an emphasis on

the property of moment conservation to comply with vorticity moments conserved by

the Euler equations. The accuracy of these methods is related to the moments that

are being conserved, and a method is of order r when:
Z

�ðx̂Þdx̂ ¼ 1;
Z

x i�ðx̂Þdx̂ ¼ 0 if jij � r � 1
Z

jx̂jr ; j�ðxÞjdx < 1:

8

>

>

>

>

>

<

>

>

>

>

>

:

The overall accuracy of the method is then, for smooth functions f :

jjf � f h� jj0;p � Oð�rÞ þ O
hm

�m

� �

:

For equidistant particle locations at spaces h in a d-dimensional space, the weights

can be chosen as: wp ¼ hdf ðx̂pÞ with m ¼ 1 for certain kernels and for positive

kernels such as the Gaussian, r ¼ 2. Higher order representations can be constructed

by allowing for negativity of the molli¯er.20,40

These error estimates reveal an important, albeit often overlooked, fact for smooth

particle approximations: to obtain accurate approximations, the distance between

particles must be smaller than the size of the molli¯er (h=� < 1), i.e. smooth particles

must overlap.

2.1.1. Particle derivative approximations

Particle approximations of the derivative operators can be constructed through their

integral approximations. For unbounded or periodic domains, this can be easily

achieved by taking the derivatives of Eq. (2.1) as convolution and derivative operators
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commute in this case. An alternative formulation involves the development of integral

operators that are equivalent to di®erential operators such as the Laplacian for which

Mas-Gallic introduced the method of Particle-Strength Exchange (PSE)45:

�"f ðx̂Þ ¼ "�2

Z

ðf ðyÞ � f ðx̂ÞÞ�"ðy� x̂Þ dy;

where �"f ðx̂Þ denotes the molli¯ed approximation of the Laplacian operator. High

order approximations can be obtained by choosing suitable functions ��. The method

can be extended to anisotropic di®usion operators (a very useful operator when con-

sidering di®usion on surfaces as we will see in later sections).46 Starting from the PSE

formulation, in Ref. 50 a general integral representation for derivatives of arbitrary

order is presented. The error analyzis of particle derivative approximations strengthens

the requirement for particle overlap. Analogous to the function approximation using

particles, the integral 2.1.1 can be approximated with particle locations as quadrature

points and particle strengths as quadrature weights:

ð�";hqÞðxp 0Þ ¼ "�2
X

p

Qp �Qp 0
vp
vp 0

� �

� "ðxp 0 � xpÞ; ð2:4Þ

where vp is the volume associated with the particle p. We note here that the PSE

particle approximation of di®usion is equivalent to various ¯nite di®erence schemes for

di®erent kernels when the particles ¯nd themselves in distributed regularly on a grid. In

particle methods the precise connectivity of the computational elements (as for

example in ¯nite di®erencemethods) is not required in order to discretize the governing

equations, but neighboring elements need to overlap in order to provide consistent

approximations.

2.2. Particle methods for advection-di®usion-reaction equations

Advection-di®usion-reaction equations are one of the key models for pattern

formation and morphogenesis. These equations can be expressed as

@Q

@t
þ divðUQÞ ¼ FðQ;rQ; . . .Þ; ð2:5Þ

where Q is a scalar °ow property (e.g. concentration) or a vector (e.g. momentum)

advected by the velocity vector ¯eld U. Equation (2.5) is an advection equation in

conservation form and the right-hand side F can take various forms involving

derivatives of u and depends on the physics of the °ow systems that is being simu-

lated. An example for F is the di®usion-reaction term as for example in Fisher's

equation (F ¼ r2QþQð1�QÞ). The velocity vector ¯eld (U) can itself be a

function of Q, which leads to nonlinear transport equations.

We ¯rst consider the case F � 0. The conservative form of the model can be

translated in a Lagrangian framework by sampling the mass of u on individual

points, or point particles whose locations can be de¯ned with the help of Dirac

�-functions. Hence when u is initialized on a set of point particles it maintains this
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description, with particle locations obtained by following the trajectories of the °ow

¯eld:

Qðx; tÞ ¼
X

p

�p�ðx� xpðtÞÞ; ð2:6Þ

where

dxp

dt
¼ Uðxp; tÞ ð2:7Þ

and �p denote the particle weights. Typically, if particles are initialized on a regular

lattice with grid size �x, one will set x0
p ¼ ðp1�x; . . . ; pn�xÞ and �p ¼ ð�xÞd

Qðxp; t ¼ 0Þ. One may also write the weight of the particles as the product of the

particle strength and particle volume that are updated separately: �p ¼ vpup.

The set of equations can be solved by numerical quadrature, while recent e®orts

place particular emphasis on numerical integrators that preserve the geometric

characteristics of this set of equations. Using smooth particles to solve (2.5) in the

general case (F 6¼ 0), one further needs to increment the particle strength by the

amount that is dictated from the right-hand side F. For that purpose, local values of

F at particle locations multiplied by local volumes around particles are required. The

local values of F can always be obtained from regularization formulas (2.1).

The volumes v of the particles are updated using the transport equation

@v

@t
þ div ðUvÞ ¼ �v divU: ð2:8Þ

The particle representation of the solution is therefore given by (2.6), (2.7)

complemented by the di®erential equations

dvp
dt

¼ � divUðxp; tÞvp ¼ 0;

d�p

dt
¼ vpFp:

ð2:9Þ

2.3. The Lagrangian frame, particle distortion and remeshing

Particle methods are well suited to the solution of the convection equation, as the

nonlinear PDE is cast into a Lagrangian frame leading to a set of ODEs for the

particle trajectories. It may seem that particle methods then have an advantage over

their Eulerian counterparts, as they do not need to discretize the nonlinear advection

term. This advantage is valid, albeit only when the velocity ¯eld is equivalent to a

solid body translation or rotation. In more general cases, as particles follow the °ow

¯eld, the locations of the particles can become distorted and the overlapping con-

dition, necessary for the convergence of the particle approximation of the transported

¯eld, can be violated. The reconstruction (2.2) breaks down as �" is not well-sampled

anymore and the method fails to converge.
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There are several approaches that address this problem of Lagrangian distortion

(see Ref. 41 and references therein). We advocate an approach that has been shown

to be e®ective in simulating viscous vortical °ows, that amounts to \remeshing" the

particles by interpolating particle strengths onto a set of regular grid points that

become subsequently the active particles:

~Qp ¼
X

l

QlMð~xp � xlÞ; ð2:10Þ

where the subscript l denotes the old particles that are remeshed and p the grid points

that become the new particles. The interpolation kernel M is chosen, such that it

conserves the discrete moments of Ql :
X

p

~Qp~x
�
p ¼

X

l

Qlx
�
l ; for 0 � � < ~r : ð2:11Þ

Note that the number of particle is not necessarily the same for the new and old set

of particles. In multidimensions M is usually chosen as a tensor product of one-

dimensional kernels. Replacing (2.10) into (2.11), for the 1D case, and ~x p ¼ ih we

obtain
X

i

X

p

QpMðih � xpÞðihÞ� ¼
X

p

Qpx
�
p : ð2:12Þ

For simplicity we consider Qp ¼ �0p, so that (2.12) becomes
X

i

Mðih � x0ÞðihÞ� ¼ x �
0 ; ð2:13Þ

in other words: the requirement for polynomial reproduction.

The remeshing kernel should be chosen based on the nature of the problem that we

want to solve. For example when we wish to have minimal numerical dissipation, it is

crucial to employ a kernel which is interpolating while when considering problems

that feature discontinuities a smoothing remeshing kernels should be used to avoid

spurious oscillations. We present here a kernel that presents a compromise of the

above two requirements, namely the M �
6 kernels that is nominally fourth-order

accurate and has a support of 6:

M �
6 ðxÞ ¼

� 1

12
ðjxj � 1Þð25jxj4 � 38jxj3 � 3jxj2 þ 12jxj þ 12Þ jxj < 1;

1

24
ðjxj � 1Þðjxj � 2Þð25jxj3 � 114jxj2 þ 153jxj � 48Þ 1 � jxj < 2;

� 1

24
ðjxj � 2Þðjxj � 3Þ3ð5jxj � 8Þ 2 � jxj < 3;

0 3 � jxj:

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

ð2:14Þ
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This kernel was derived by requiring:M �
6 2 C 2ðR3Þ, interpolation (or delta-Kronecker

property), polynomial reproduction up to fourth order, even parity, and vanishing ¯rst

and second derivatives at the end points ðx ¼ �3Þ.

3. Particles and Shapes

Particle methods o®er a °exible way of discretizing and complex, deforming shapes

(volumes and surfaces). Thinking particles, the ¯rst approach that comes to mind is

to represent the surface of the geometry as a set of points in space. This surface can be

deformed by simply moving these points with a given velocity. A simple query

however, such as deciding whether we are within the geometry or outside calls for a

notion of connectivity between the points, requiring that we perform a triangulation

of this point set. When the geometry is subject to large deformations, one needs to

resort to remeshing techniques, introducing new points in expansion zones, and

removing points in compression zones.92 When the geometries undergo topological

changes, however, one needs to resort to heuristics. Methods that follow this line are

called interface tracking or front tracking methods, they have been successfully

applied to problems as diverse as multiphase °ow,155 drop breakup dynamics,42 or

solidi¯cation.81 Particle methods can be combined with level sets in order to provide

an implicit representation of surfaces and by distributing particles inside a surface we

can discretize any function that is de¯ned in the volume enclosed by the surface.

3.1. Particles and level sets

We begin by describing particle-level sets as introduced in Ref. 75. The level set

method110,143 is an interface capturing approach, where the geometry � is described

implicitly as the zero isosurface of a level set function ’, i.e.

� ¼ fx j’ðxÞ ¼ 0g: ð3:1Þ
This level set function is chosen such that it represents a signed-distance function,

de¯ned by

jr’j ¼ 1: ð3:2Þ
The interface � can be moved and deformed by making it subject to a simple

advection equation, which is often called the \level set equation":

@’

@t
þ u � r’ ¼ 0: ð3:3Þ

Surface properties can be retrieved directly from ’, e.g. the surface normal is given by

n ¼ r’j�; and the mean curvature by � ¼ r � nj� ¼ �’j�:
Level set methods have been successfully applied to a wide range of problems

(see the textbook111 and references therein). Most level set methods solve Eq. (3.3)

in a Eulerian frame using ¯nite-di®erence discretizations. A drawback of this

approach is the inherent numerical di®usion associated with the discretization of
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the convection term in Eq. (3.3). This numerical di®usion leads to the loss of small

scale features in the geometry or interface that is represented by the level set.

Several remedies have been proposed, most prominently the so-called \Particle

Level Set Method" introduced by Enright et al.53 This formulation employs a

Eulerian representation of the level set function on a grid, and additionally uses

marker particles, which are scattered around the interface and carry subgrid-scale

information to maintain and reconstruct the interface. In Ref. 75 a truly Lagran-

gian particle level set method was introduced by Hieber and Koumoutsakos, which

enjoys the characteristically small numerical di®usion errors of the Lagrangian

particle approach.

Equation (3.3) can be discretized using a particle scheme:

d’p

dt
¼ 0;

dxp

dt
¼ uðxp; tÞ;

dvp
dt

¼ ðvpr � uÞðxp; tÞ;

ð3:4Þ

and the function can always be reconstructed as

’ðx; tÞ ¼
X

p

vp’pM ðx� xpðtÞÞ; ð3:5Þ

where vp denote the particle volumes. In principle, we would have to evolve the

particle volumes as well in order to reconstruct ’, this however, is unnecessary if we

perform renormalizations of the kernel M as described in Ref. 25, because the

renormalization factor is equal to the particle volume:
P

p hM ðx � xpÞ ¼ vðxÞ:
The signed-distance property (3.2) of the level set has the following advantages:

the distance to the interface can always be assessed in Oð1Þ operations, which can be

crucial for immersed interface applications (e.g. Sec. 4.2). The property (3.2) is also a

condition on the regularity of the gradient, which can be crucial for stable compu-

tation of curvature and other higher-order surface properties.

The equation for the evolution of the signed-distance property, M � 1
2jr’j2 can

be derived using (3.3) and results in

@M

@t
þ u � rM ¼ �2Mn � ðr 	 uÞn; ð3:6Þ

so as soon as there is some deformation in the °ow in normal direction, M derails

exponentially from unity. Reinitialization is the periodically applied process of

healing this divergence from the signed-distance property. There are many di®erent

approaches to this, they can however be classi¯ed into two broad categories: fast

marching type methods (see Ref. 142 for a comprehensive review), and PDE-based

methods.149 Our experience with these techniques indicates that PDE based methods
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provide more accurate reinitialization procedures over fast marching methods at the

expense of computational cost.

In the context of morphogenesis, as described by reaction�di®usion equations on

moving surfaces a novel scheme of reinitialization has been proposed in Ref. 25

@’

@�
þ ’ð1� jr’j�1Þjr’j ¼ 0:

What is hidden in this Hamilton�Jacobi form is the following equivalent \advection"

form:

@’

@�
þ ð’� jr’j�1’Þn � r’ ¼ 0:

There are no \reaction" terms in this formulation anymore, and the convection

velocity is given as

unew ¼ ð’� jr’j�1’Þn:

This formulation enables a higher accuracy of the WENO discretization and it may

also serve as a good \preconditioner" for PDE based methods.

3.2. Reaction di®usion systems on complex deforming geometries

Bertalmio et al.29 introduced a method to perform di®usion calculations on geome-

tries that are represented by level sets in three dimensions. Xu and Zhao,160 and

Adalsteinsson and Sethian5 later independently proposed a level set method for the

transport of surface-bound substances on a deforming interface. Both works

employed a non-conservative formulation based on level set interface capturing and

showed results of passive advection of an interface with an associated surfactant.

We consider a reaction�di®usion system evolving on a smooth surface and for

simplicity of presentation we will only consider homogeneous isotropic di®usion, with

a coe±cient Ds

@cs
@t

¼ FsðcÞ þDs��cs; ð3:7Þ

where �� denotes the Laplace�Beltrami operator on �. We are interested in solving

this equation on surfaces that evolve with time, �ðtÞ ¼ fx�ðtÞg with

dx�

dt
¼ unðx; c;�Þ: ð3:8Þ

Following Ref. 146, using Eq. (3.8) we rewrite Eq. (3.7) as

@cs
@t

þ ðð1� n	 nÞrÞðcuÞ ¼ FsðcÞ þDsr � ðð1� n	 nÞrcsÞ: ð3:9Þ
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In order to solve this problem with particle methods we write Eq. (3.9) as a con-

servation law:

@cs
@t

þr � ðcsuÞ ¼ ðu � nÞ @cs
@n

þ csn � ðn � rÞu

þ FsðcÞ þ Dsr � ðð1� n	 nÞrcsÞ: ð3:10Þ
The reformulation from (3.9) to (3.10) necessitates the extension of both cs and u

from � to �. The primary requirement on this extension is that it be di®erentiable.

However, inspecting the ¯rst two terms on the right-hand side of Eq. (3.10), we

realize that if we extend cs and u such that

@cs
@n

¼ 0 and
@ðn � uÞ

@n
¼ 0; ð3:11Þ

we can simplify Eq. (3.10) to

@cs
@t

þr � ðcsuÞ ¼ FsðcÞ þ Dsr � ðð1� n	 nÞrcsÞ: ð3:12Þ

Hence, ignoring the reaction terms, an extension satisfying (3.11), allows us to cast a

conservation law on a deforming geometry as a conservation law in the embedding

space �. This enables us to use known techniques to solve the equations in the (higher

dimensional) embedding domain albeit at the expense of solving a nonlinear di®usion

equation instead of the original linear equation.

Given that the surface itself is advanced by the level set Eq. (3.3), the particle

discretization of Eq. (3.12) leads to the following system of ordinary di®erential

equations:

dxp

dt
¼ uðxp; tÞ;

dCp

dt
¼ vpFðcÞ þ vpDrh � ðð1� n	 nÞrhcÞ;

dvp
dt

¼ vpr � u:

ð3:13Þ

As we are solving the conservation law formulation (3.12), we need to extend both the

concentrations c and the velocities u o® the interface �, in a way that satis¯es the

requirements (3.11). As we are only interested in the concentrations on �, it su±ces to

extend the quantities into a narrow band around the level set (see Fig. 1), which we

de¯ne as

�e ¼ fx j j’ðxÞj � �g: ð3:14Þ
All calculations are restricted to this narrow band. The narrow-band thickness �

depends on the discretization of spatial operators, and is in general � < 10h, where h is

the spacing of the discretization. We periodically extend the concentrations by solving

the following PDE36,116:

@cs
@�

þ signð’Þr’ � rcs ¼ 0; ð3:15Þ
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which leads to @cs
@n ¼ 0. We note that any other redistancing and extension scheme can

be used instead, e.g. the Fast Marching Method.142,111 In general, the same procedure

also has to be applied to the velocityu. In the case where the velocity only depends on c,

it su±ces, however, to compute u from the extended c.

4. Pattern Formation, Tumor Growth and Angiogenesis

We present here results from the application of the particle based framework to

problems of reaction�di®usion on deforming surfaces, avascular tumor growth and

angiogenesis.

4.1. Reaction�di®usion systems on deforming geometries

Initiated by the pioneering work of Turing,154 a vast body of work has been devoted to

the theoretical and computational aspects of pattern-formation in reaction�di®usion

systems focusing mainly on local autocatalysis and long-range inhibition. The gener-

ation of stripe and spot patterns established by activator-inhibitor and activator-

substrate systems was addressed in the review.85 Reaction�di®usion systems on a

sphere were investigated by Varea et al.157 and Chaplain et al.35 The former work

considered a linearized Brusselator systemwhereas in Ref. 35 the Schnakenberg system

was investigated in the context of tumor growth patterning through the distribution of

growth factors along the tumor interface. Coupling of a pattern forming reaction dif-

fusion systems to growth algorithms was presented in Refs. 71 and 77. The methods

were used to simulate algal growth in two space dimensions and later coupled to a

Fig. 1. Extension of the geometry � into �. Both the level-set function ’ and the concentrations cs are

de¯ned in the extended geometry �e.

Fig. 2. Growth of the stripe pattern of system (4.1). Iterations 0, 50,000, 127,000 and 150,000.
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triangulated representation of the geometry in order to extend to 3D.72 In this system,

however, only short simulations with small deformations were presented.

In the following, we consider a linearized version of the Brusselator157 and the

Koch�Meinhardt activator-substrate system85 given by:

@c1
@t

¼ 	1
c 2
1c2

1þ �c 2
1

� 
1c1 þ �1 þ D1��c1;

@c2
@t

¼ �	2
c 2
1c2

1þ �c 2
1

þ �2 þ D2��c2:

ð4:1Þ

The deformation of the evolving geometry is determined by the reaction�di®usion

system via the local velocity u given as u ¼ nc1: An outward direction of the de-

formation is implied by c1 
 0, that leads to an increase in surface area, in turn

a®ecting the e®ective�di®usion constant in the reaction di®usion�system. We note

that the only direct e®ect of growth on the reactions is a decrease of the concentration

level that can be linked to a decay term that depends on the growth velocity. We

present results that depict the evolution of these coupled simulations (2, 4) and

illustrate the robustness of the method with respect to large changes in the geometry

(3) (see also Ref. 27).

4.2. Avascular tumor growth

Mathematical modeling in the ¯eld of biology and medicine has traditionally been

exploited to investigate the driving mechanisms in cancer growth. The ability to

correctly model and predict the growth dynamics of cancer cell populations in silico

could open new doors in understanding, diagnosing and treating the disease. While

the biophysical processes that regulate and drive tumor progression are slowly being

identi¯ed and understood, we start to model the problem of cancer growth by inte-

grating a reduced set of identi¯ed key processes to gain insight on their explanatory

power of the disease. Albeit the simpli¯cation of the underlying assumptions taken

here, the presented framework may serve as a basis for model studies and extensions.

We note here that the modeling work presented follows up on the work of Macklin

and Lowengrub,94 and Bearer et al.21

The model is based on a continuum formulation of a sharp interface separating

cancerous from healthy tissue where the tumor tissue is modeled as an incompressible

°uid. The tumor interface is implicitly modeled by a level set function, separating

the computational domain into two distinct regions. Cell�cell adhesion is accounted

Fig. 3. Spot pattern generated by solving Eq. (4.1) on a dumbbell shrinking under mean curvature °ow.
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for by surface tension acting at the tumor boundary, mass sources and sinks are

introduced inside the tumor interface to account for proliferation and cell death.

Tumor cell faith is modeled to depend on the local nutrient level, inducing cell death

(necrosis), rendering them quiescent or leading to cell growth (proliferation)

depending on the local nutrient concentration. Nutrient concentration is assumed to

be saturated inside the tissue surrounding the tumor and is transported into the

tumor by means of di®usion where it is consumed by the tumor cells. In this work, we

only consider one non-speci¯c nutrient required by the tumor cells for viability and

proliferation. Extensions of the work reported herein over the work presented in

Ref. 94 lie in the extension of a 2D simulation to a 3D particle simulation and the

adaption of the formulation that allows for the application of fast Poisson solvers that

allow for large scale, parallel simulations. By introducing far-¯eld boundary conditions,

the presented implementation furthermore enables the investigation of e®ects of the

tumor environment.

The reaction�di®usion system governing the evolution of the non-dimensionalized

concentration c of nutrient satis¯es:

@c

@t
¼ r2c � c in �;

cj� ¼ 1;

c ¼ 1 outside �;

ð4:2Þ

A necrotic core of dead cancer cell is formed in response to a drop of the nutrient

concentration below the critical value N necessary for cell viability. The necrotic

region is denoted by �N ¼ fxjcðxÞ <g separated from the viable tumor tissue by its

boundary �N . The solution of (4.2) does not depend on the position of the necrotic core

and can be calculated solely on the position of the interface � of the living tumor cells.

The healthy tissue surrounding the tumor is modeled as an in¯nite reservoir of

nutrient by de¯ning the boundary condition cl� ¼ 1.

Fig. 4. The Brusselator reaction�di®usion system was proposed in (Holloway et al.) as a patterning

mechanism for plant growth. The system de¯nes the dynamics of two species X and Y di®using along a

surface and reacting with each other and is known to produce stable patterns on a static surface. The

snapshots show a realization of the model applied on a hemisphere. The color of the surface shows the
species X (black is high, white is low) and the speed of deformation of the surface is proportional to X .

While the surface deforms the reaction�di®usion system continuously changes the pattern which can lead

to signi¯cantly di®erent shapes.
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Proliferation The tumor mass is modeled as an incompressible °uid retained by an

implicit boundary exhibiting surface tension. In this model, we account for cell

proliferation and cell death by adding and removing mass to the °uid, altering the

non-dimensionalized pressure p inside the tumor. The solution of p depends on the

solution of the nutrient concentration equation (4.2) and the tumor curvature � at

the interface �, satisfying

r2p ¼ �Gðc �AÞ in � if c 
 N ;

GGN in � if c < N ;

�

½p�j� ¼ ��;

r2p ¼ 0 outside �;

ð4:3Þ

with the rate of apoptosis (cell death) A, the rate of proliferation (cell growth) G, the

rate of volume loss due to necrosis (cell degradation) GN and the nutrient threshold

level N . The surface tension coe±cient is further given by �. The equation governing

the outward normal velocity of the interface � is given by Darcy's law

U j� ¼ �n � rpj� ¼ � @p

@n

�

�

�

�

�

ð4:4Þ

with the pressure gradient rp at the interface location �. To initialize and track the

interface � of the tumor, a level set function ’ is introduced.

4.2.1. Computational details

We employ ¯nite di®erences to solve for the reaction di®usion system (4.2), the reini-

tialization of the level set, the solution to the Poisson equation inside the computational

domainD and the quantities n ¼ r’ and � ¼ r � n inside the narrowband around the

interface �. In order to solve the pressure Eq. (4.3), we have to explicitly take into

account the jump condition at � and provide appropriate boundary conditions. We

enforce the jump condition at the tumor interface � by adding a correction term to all

the grid points adjacent to the interface to account for the Laplace�Young jump

condition given by

½p�� ¼ ��:

We enforce free space boundary conditions on D via the application of a far ¯eld

Poisson solver76,69 solving for the pressure without jump correction for particles located

on the boundary of D . We then take the solution at the domain boundary as Dirichlet

boundary conditions for a ¯nite di®erences based Poisson solver including the jump

corrections and solve the system for all particles in D .

We interpolaterp onto�, in order to evaluateEq. (4.4) at the interpolationpoints and

then extend it into a narrow band de¯ned around � using the Hamilton�Jacobi-based

extension method.80,149 We apply a Gauss ¯lter in order to attenuate the high-frequency

errors in the pressure and curvature approximations.94

In a ¯nal integration step, particles that carry ’ are created at grid locations

inside the narrow band and then convected with U . The advanced level set location
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of the next time step is recovered by remeshing the level set particles onto the

computational grid. The signed distance property of the level set function inside the

narrow band is reestablished via level set reinitialization.

4.2.2. Avascular tumor growth with necrosis

We illustrate results for a simulation of tumor growth with an amorphous initial

condition subject to apoptosis in Fig. 5. The interface of the tumor is shown in beige

whereas the red region inside the tumor marks the necrotic region at the core of the

tumor. The parameters that determine the growth rate and necrosis in this simu-

lation are set to A ¼ 0:5;G ¼ 20;GN ¼ 1 and N ¼ 0:5. Although necrosis does slow

down over-all tumor growth over time, it does not lead to complete growth inhibition.

The model presented here together with the methods implementing it can be seen

as a ¯rst step towards macroscopic 3D tumor growth simulation. Furthermore, we

found that albeit the implicit interface formulation using level sets, achieving level set

joining is not inherent to the method proposed (see Ref. 25). A fact that has largely

been neglected in simulations of tumor growth today is the appropriate modeling of

Fig. 5. (Color online) Tumor growth with amorphous initial condition and necrosis (N ¼ 0:5). Pictures

are taken at t ¼ 0; 1; 2; 3; 4; 5; 5:5; 6 and 6:5.
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the tumor microenvironment capturing the healthy tissue surrounding the tumor.

We have addressed this issue in Ref. 25 (results not shown here) where we compare

p ¼ 0 boundary conditions on the tumor to the free-space formulation employed

herein.

4.3. Simulating sprouting angiogenesis

Growth and formation of vascular networks in the human body can be observed

under various conditions and is always linked to coordinated growth and migration of

the endothelial cells constituting the blood vessel walls. The process where capillaries

grow from a preexisting vasculature is referred to as sprouting angiogenesis, as opposed

to the process of vasculogenesis, addressing the process of spontaneous network for-

mationmainly observed during embryogenesis and intussusceptive angiogenesis, where

existing vessels split in order to extend the vascular network structure. We note that

sprouting angiogenesis can be observed in the human body under various conditions.

In the work presented here, we focus on the process of tumor-induced angiogenesis

initiated by a tumor in hypoxic conditions, secreting growth factors in order to

establish means of nutrient and oxygen transport into the tumor.57

A tumor can assume a size of roughly 1mm3,56 satisfying nutrient support to the

tumor cells by the sole means of di®usion from the surrounding tissue. Tumor pro-

gression at this stage leads to the formation of a necrotic region at the core of

the tumor. As a result, apoptosis and necrosis inside and proliferation at the rim of

the tumor are in balance, retaining the tumor from growing in size.56 However, this

condition of hypoxia can trigger the release of angiogenic growth factors such as

Vascular Endothelial Growth Factors (VEGF) to name the most prominent amongst

several.55 Upon release, VEGF di®uses through the extracellular matrix (ECM)

occupying the space in between the vasculature and the tumor, establishing a

chemical gradient that triggers a directed angiogenic response at the nearby vascu-

lature. Resulting in capillary growth towards the source of VEGF.

Receptor mediated VEGF signaling at the endothelial cells (ECs) triggers the

release of proteases that degrade the basal lamina, the supporting sca®old around

the vessel walls. This enables the ECs to leave their position in the vessel wall. In the

following, coordinated proliferation and migration towards regions of higher VEGF

concentration (chemotaxis) at the sprouting front leads to sprout extension of the

vascular sprouts. The ¯brous structure of the ECM composed of collagen ¯bers and

matrix molecules such as Fibronectin has a guiding e®ect on the migrating endo-

thelial cells, a contact and adhesion mediated cell guidance referred to as haptotaxis.

Shortly after the initiation of this process, branching and loop formation, a process

referred to as anastomosis, can be observed. In combination with lumen formation

within the strands of endothelial cells, the established network allows for the circu-

lation of blood. The process is completed by the rebuilding of a basal lamina and the

recruitment of pericytes and smooth muscle cells stabilizing the vessel wall. However,

in tumor induced angiogenesis, the vast amount of VEGF released by the tumor cells
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leads to a disorganized and leaky vasculature resulting in ine±cient blood supply. In

combination with a growing tumor exerting pressure on the newly formed capillary

network, even new regions of hypoxia arise, setting o® the process of angiogenesis anew.

Therefore, maturation is impaired leading to a sustained condition of angiogenesis.

As a consequence of the leaky vasculature the capillaries enable hematogenous

spread of cancer cells that can lead to metastasis. Inhibition of angiogenesis restrains

nutrient supply, and has been reported to reduce tumor growth and hinders mi-

grating cells to metastasis in the tumor associated vasulature.56 On the other hand, a

complete inhibition promoting hypoxia could increase the occurrence of aggressive

migrating tumor cell phenotypes.14,117

When addressing tumor-induced angiogenesis in a computational model, we

refrain from including many biological processes involved, only addressing a limited

number of processes dictated by the availability of biological data and the under-

standing of the key processes underlying the phenomena under investigation. Here we

consider the migrative cell response as induced by the VEGF gradient, haptotaxis

and the in°uence of the structural components of the ECM. VEGF is considered to

appear in soluble and matrix bound isoforms. We explicitly consider the cleaving

mechanism of matrix bound growth factors by EC released Matrix Metalloprotei-

nases MMPs (see Fig. 6). For existing models of sprouting angiogenesis considering

chemotaxis in response to soluble VEGF isoforms we refer to Refs. 17, 10, 34 and 148.

Matrix bound isoforms of VEGF have been implicitly accounted for in the work by

Bauer et al.17 We note that the present model, to the best of our knowledge, is the ¯rst

to include a cleaving mechanism in the presence of both VEGF isoforms. Haptotactic

gradients are considered to be established by the release of Fibronectin.10,34,148,17

In addition, we consider the binding of ¯bronectin to the ECM which localizes the

haptotactic cues to the matrix ¯bers. We introduce an explicit model of the ECM

endothelial

tip cells

secrete

MMPs

ECM

soluble

VEGF

matrix-bound

VEGF

cleaved

VEGF

sprout

Fig. 6. Conceptual sketch of the di®erent VEGF isoforms present in the ECM. Soluble and cleaved VEGF

isoforms freely di®use through the ECM, Matrix-bound VEGF isoforms stick to the ¯brous structures

composing the ECM and can be cleaved by MMPs secreted by the sprout tips.
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consisting of ¯ber bundles modulating cell migration and growth factor distribution.

Other modeling approaches explicitly considering the ECM have been proposed in

Refs. 17 and 148.

We note that there exist a vast body of computational models in the ¯eld of

sprouting angiogenesis. For an extensive overview of existing discrete, continuum and

cell-based models of angiogenesis put in context to the work presented here, we refer to

Ref. 101.

4.3.1. A continuum modeling approach for mesenchymal cell motions

We present model of sprouting angiogenesis based on a pure continuum description,

which in contrast to prior models (with the exception of Ref. 17 does not rely on

heuristic rules to obtain branching vessel morphologies. In this model, we hope to

capture the core aspects governing mesenchymal motion including: (a) the structure

of the extracellular matrix, (b) cell�matrix adhesion, (d) cell�cell adhesion, and (e)

in addition to the e®ect of soluble growth factors the e®ect of matrix-bound growth

factors on the chemotactic cell response using a subgrid-scale approach. We would

like to motivate that the presented formalism can be applied to simulate mesench-

ymal cell migration in a more general context. Migration of invasive tumor cells into

the healthy surrounding tissue and cell cluster migration as observed during gas-

trulation are just a few examples of where this model might be employed (see Fig. 7).

Representation of endothelial cells We choose to represent the endothelial cells by a

density by function 	. Evolution of the cell density in time is given by:

@	

@t
þr � ða	Þ ¼ d�	þ Rð	Þ: ð4:5Þ

(a) (b)

Fig. 7. (a) A glioblastoma tumor spheroid, with invasive cells shed at its boundary (image from (TODO)

[Habib:2003]). (b) Computer simulation of the shedding of invasive cells (see Sec. 4.3).
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a denotes the cumulative e®ect of cell�cell adhesion ac=c, cell pressure ap and aecm;�

the migration cues induced by chemotaxis and the ECM. The right-hand side in (4.5)

accounts for random cell migration and includes a reactive term to account for

proliferation and cell death. In the presence of more than one cell concentrations, one

density is used per cell line ð	iÞ#CellTypes
i¼1 . We note that in a continuum framework we

could have chosen a level set approach to capture the interface of the cell density.

However, when simulating highly elongated vessel like structures, the level set

formulation is less favorable as it requires a narrow band of several grid spacing

around each vessel, rendering the requirements for the resolution much higher than

for the density based approach.

The Extracellular Matrix (ECM) The ECM occupies the space in between cells and

is composed of ¯brous structural components such as collagen, elastin and

laminin.44,84 The structural components serve as an adhesive sca®olding for

migrating cells, enabling the cells to propel themselves along these structures. Most

continuum models so far do not account for the guiding e®ects of matrix ¯bers on cell

migration explicitly.

In this work, we propose to model the extracellular matrix as a collection of

randomly distributed ¯ber bundles. The ¯ber bundles facilitate but also bias cell

migration. The matrix is constructed by randomly distributing Nf ¯ber bundles of

prede¯ned length and width throughout the computational domain. We rasterize

these bundles onto the ECM grid e and ¯lter this ¯eld with a second-order B-spline

kernel in order to attain a smooth, di®erentiable matrix representation.

Cell�cell adhesion Cell adhesion, a fundamental biophysical mechanism regulating

tissue formation, stability, rearrangement and breakdown, is established by speci¯c

adhesion receptors of the cell. Integrin receptors located on the cell membrane may

bind to ¯bronectin and collagen in the ECM, enhancing cell�matrix adhesion,

whereas cell�cell adhesion is established via intercellular adhesion molecules such as

cadherins. This transmembrane receptor mediated reaction is very local, as it

happens upon contact. Our modeling approach is motivated by a set of requirements

that aim to capture the main characteristics of cell adhesion: (a) cell adhesion

happens locally over a short range. (b) adhesion induces movement of the cells

towards the entity they adhere to. (c) cell movement in response to adhesion will

decrease as the local cell density increases, ultimately coming to a complete stop when

the local cell density reaches the close-packing density. Following these guidelines we

model cell adhesion as an autocrine (in the case of one-cell population), or paracrine

signaling fi released by the cell population i

a
c=c
i ¼

X

#CellTypes

j

�ijLðfi; dfiÞrfi;

@fi
@t

¼ �
fi þ � 1� fi
fmax

� �

	i þ D�fi;

ð4:6Þ
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Lðf ; df Þ is a cuto® function to keep the magnitude of the gradient bounded by df :

Lðf ; df Þ ¼ df ðmaxðdf ; jrf jÞÞ�1: ð4:7Þ
Slow di®usion (D) in combination with a high decay coe±cient (
) keeps this

arti¯cial adhesion signal local. The release rate of fi is given by � and kij describes the

homotypic ði ¼ jÞ and heterotypic ði 6¼ jÞ adhesion strength. So far, the model does

not incorporate any repulsive e®ects a densely crowded cell population might excert.

We incorporate these e®ects by adding a pressure-like term to the velocity:

ap ¼ ��pHð	� �	Þr	jr	j�1; ð4:8Þ

where 	 �Pi 	i, �p is constant, �	 is the close-packing density and H the Heaviside

function.We note that compared to existing continuummodels of cell�cell adhesion,12

the present model is less intuitive however more e±cient and easier to implement.

The ECM, chemo- and haptotaxis We complete our model for mesenchymal cell

migration by adding a formalism to account for chemotaxis, the main driving force in

directed cell migration. The model for chemotaxis presented here is based on the most

simple approach, where cells follow the gradient of a chemoattractant � established

via release at a tumor source subject to decay and di®usion. We bear in mind that

this chemotactic response is but the most simple one, ignoring many e®ects such as

membrane receptor saturation. This basic model of chemotaxis is extended to

account for cell�matrix guidance, implementing the following assumptions: A cell

will crawl along ¯bers that align with the guiding chemotactic gradient (r�) leading

to an increase in the cell migration speed. In addition, migrating cells rely on the

presence of a ¯brous sca®old to propel themselves. If there are no ¯bers (e ¼ 0), a cell

cannot migrate e±ciently (eo � 1). On the other hand, a very dense matrix (e � e1)

blocks cell migration and has to be degraded by the migrating cells, slowing down the

e®ective migration speed. These assumptions are formulated as

aecm;� ¼ 1� re

jrej �
r�

jr�j

�

�

�

�

�

�

�

�

� �

reþr�

� �

ðeþ eoÞðe1 � eÞ; ð4:9Þ

and illustrated in Fig. 8.

Matrix-bound growth factors Vascular Endothelial Growth Factors exist in several

di®erent isoforms, some that are soluble and some that express binding domains to

heparin binding sites inside the ECM.120 These isoforms can bind to the matrix,

retaining them form di®using freely. Endothelial cells can release these matrix bound

VEGF isoforms via the secretion of matrix metalloproteinases (MMPs) cleaving a

shorter VEGF residue from the matrix bound molecule,87 while conserving the cell

signaling domain on the cleaved VEGF isoform. Once cleaved, the VEF becomes

di®usible again and adds to the established VEGF gradient.

Although we do observe the formation of localized chemotactic cues around

the pockets of matrix bound VEGF during simulation of the afore mentioned system
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(see Fig. 9(a)), we do not observe an increase in the branching morphologies of the

growing vasculature as suggested by in vitro and in vivo models of angiogenesis.132,87

Taking a closer look at the matrix-bound VEGF distribution, we must realize that

the modeled pocket size is too large to capture realistic distributions of bound VEGF

in nature, where we expect the focus points of matrix-bound VEGF to be slightly

Fig. 8. A cell will move \onto" a ¯ber if the ¯ber direction is not transverse to the chemotactic gradient,

i.e. the gradient of adhesion is not aligned with the chemotactic direction.

(a) (b)

Fig. 9. (a) Simulation with matrix-bound growth factors using pockets of matrix-bound VEGF dis-

tributed in the matrix. The endothelial cells release MMPs that cleave the bound growth-factors and make

them soluble (di®use blue cues) (b) Simulation with matrix-bound growth factors by the \di®usion" model.

Within the white circle there are only soluble growth factors present, outside of the circle a constant
concentration of growth factors is bound to the matrix. As apparent from the network structure, the

matrix-bound growth factors lead to distinctively increased branching.
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smaller than the cell scale. However, in a mesoscale continuum description, the

incorporation of truly microscopic structures is not possible. For these reasons, we

resort to a subgrid-scale modeling approach. We expect the cumulative e®ect of

microscopic chemotactic queues on migrating cells to manifest itself at the meso-

scopic level as an increase in random motion. We therefore model the presence of

matrix-bound VEGF via the introduction of a spatially varying di®usion term d in

Eq. (4.5). In the presence of only soluble VEGF isoforms, the di®usion term is zero. In

the presence of matrix-bound VEGF isoforms, the di®usion term is increased locally

depending on the matrix-bound VEGF concentration. This way, the release of MMPs

along with the cleaving of matrix bound VEGF can be accounted for implicitly via a

local modulation of the EC di®usion. We show that this system does lead to an

increase in the observed branching frequency during simulation (see Fig. 9(b)). We

like to point out that the branching behavior observed by this model is an output of

the simulation, not relying on any formulation of heuristic branching rules.

4.3.2. A hybrid model of sprouting angiogenesis

To complement the purely continuum modeling approach presented in the previous

section, we now present a deterministic, hybrid model of sprouting angiogenesis. The

hybrid model description combines a continuum approximation of the molecular

quantities such as VEGF, MMPs and ¯bronectin in addition to the endothelial stalk

cell density with an agent-based particle representation for the actively migrating tip

cells at the sprouting front. The particle based tip cell approach has been initially

proposed inRef. 119. Themodel has been introduced inRef. 101 andwe refer the reader

to this original article for a more detailed description. As motivated in the previous

section, also the hybrid model considers the presence of matrix bound VEGF isoforms

and its cleaving by MMPs in the presence of an explicitly modeled ECM. Cell�cell

adhesion and cell proliferation are accounted for implicitly via the migration speed of

the tip cell particles and the underlying assumption that endothelial cells cannot break

free from the existing vasculature.We introduce a set of rules that determine branching

at the tip cells in response to divergence in the directional cues promoted by the VEGF

and ¯bronectin gradients in combination with the ECM structure and considers the cell

cycle to prevent branching events from happening right after branching has hap-

pened.10,34,119Themodel explicitly considers the extension of ¯lopodia at the sprouting

tips in order to probe the vicinity of the tip cells formigration cues. Although branching

rules are formulated, the proposed model does not rely on branching prob-

abilities.10,34,119 In the following, we would like to direct the focus towards themodeling

of the endothelial tip cell dynamics considered in cell migration, branching and ana-

stomosis. For a detailed formulation of the reaction�di®usion system governing the

VEGF, MMP and ¯bronectin evolution, we refer the reader to Ref. 101.

Extracellular Matrix Much like in the previous section, the ECM is modeled as a

collection of ¯ber bundles randomly distributed throughout the computational
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domain. In the context of the hybrid model, the ECM is given by a threefold

representation: (a) a vector ¯eld K describing the ¯ber orientations, (b) an indicator

function E and (c) the ¯ber density ¯led E	 introduced in the previous section used

to regulate the migration speed.

Tip Cell Migration Tip cell particle positions are given by xp. The tip cells migrate

by updating the particle locations according to:

@xp

@t
¼ up;

@up

@t
¼ ap � �up; ð4:10Þ

with up and ap, the velocity and acceleration given at the particle location and the

drag coe±cient �.

In this formulation, tip cell migration is guided by the gradients of VEGF and

¯bronectin gradients that establish the chemotactic and haptotactic migration cues.

a ¼ �ðE	ÞTðW ð½VEGF�Þr½VEGF� þ wFr½bFIB�Þ: ð4:11Þ

We account for VEGF receptor saturation on the endothelial cells by introducing the

response function

W ð½VEGF�Þ ¼ wV

1þ wV2½VEGF� ; ð4:12Þ

with model parameters wV and wV2, attenuating the sensibility of the ECs to the

VEFG gradient.

The presence of matrix ¯bers (E	) is modeled to directly in°uence the cell

migration speed, favoring a intermediate matrix density over a very dense or very

sparse ECM.59,44 This e®ect is captured in the function

�ðE	Þ ¼ ðE0 þ E	ÞðE1 � E	ÞC1: ð4:13Þ

A threshold E0 is introduced to de¯ne the migration factor in the absence of ¯bers.

The maximal threshold density completely blocking migration is de¯ned by E1 where

as C1 denotes the ECM migration constant.

The directional cues that the ¯ber bundles exert on a migrating cells are captured

by the tensor T acting on the migration velocity

fTgij ¼ ð1� �ðEÞÞf1gij þ �ðEÞKiKj ; ð4:14Þ

with

�ðEÞ ¼ �KE: ð4:15Þ

The ECM guidance strength is given by �K and K denotes the vector ¯eld the tensor

is applied on.

Branching and Anastomosis Migrating tip cells probe their environment for chemo-

and haptotactic cues by extension of ¯lopodia equipped with cell surface receptors.61

Branching can be observed as a result of diverging migration cues detected by the
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endothelial tip cells.132 We introduce a curvature measure k in order to locate such

regions of high anisotropy in the migration velocity ¯eld V. In this model, we locate

regions of high anisotropy in the migration acceleration direction ¯eld V by a

curvature measure k.

kðxÞ ¼ jjL
:
ðxÞ  L

::
ðxÞjj

jjL
:
jj3

; ð4:16Þ

with V ¼ ðu; v;wÞ, L
:
ðxÞ ¼ VðxÞ and L

::
¼ uVx þ vVy þ wVz .

158

A branching event is triggered at tip cells where the local curvature k exceeds the

prede¯ned threshold level aith.

We introduce a model of ¯lopodia extension in order to determine the preferred

branching direction in 3D. To do so, for each tip cell sensing a high anisotropy k, six

satellite particles are placed in a plane perpendicular to the current migration

direction, radially distributed around the tip cell (Fig. 10). For each satellite particle,

we measure the local velocity direction and calculate the angle between opposing

satellite positions. The ¯nal branching direction is then determined by the satellite

positions associated with the largest of these angles. In the following, a new tip cell is

created and the tips are guided to sprout away from each other by modifying the

velocity up on the right-hand side of (4.10) to u 0
p

u
0
p ¼

jupj
1þ �

as

jasj
þ �

xs � xp

jxs � xpj

� �

; ð4:17Þ

where us denotes the velocity at satellite position xs and � ¼ 0:8. This results in a

short acceleration towards the satellite position. To account for the e®ect that ECs are

insensitive to branching cues immediately after a branching event has occurred,114

Fig. 10. The ¯gure shows satellite particles placed in the plane perpendicular to the sprout migration

direction. u1 through u6 describe the local migration cues at sprout particle location fB1g.
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a sprout threshold age sath is introduced. Sprouts do not branch again until they have

reached the threshold age sath.

The formation of loops (anastomosis) occurs when tip cells fuse with either

existing sprouts or with other tip cells.114 In the event of a tip-sprout fusion,

migration stops for the sprouting tip whereas after tip-tip fusion, one of the sprouts

will continue to growth.

4.3.3. Results

In Ref. 101, we report results on the vessel morphology, branching frequencies and

probabilities of anastomosis as in°uenced by large scale parametric studies of the

structure of the ECM, the distribution of matrix-bound VEGF and the ¯bronectin

mediated cell�cell and cell�matrix adhesion. The set of results along with the

presented statistics provide a quantitative, comparative analyzis that may guide

future experiments and simulations. The simulations successfully show that the

extracellular matrix structure and density have a direct e®ect on endothelial cell

migration and the number of observed branches corresponding to experimental

observations made by Refs. 59, 44 and 141. In Fig. 11, we show the time course of one

representative simulation of sprouting angiogenesis inside the explicitly modeled

extracellular matrix. Furthermore, simulation results for tumor induced angiogenesis

in the presence of matrix-bound growth factors show an increase in the number of

observed branching structure and greatly in°uence vessel morphology. These results

are in agreement with the ¯ndings made by Refs. 87 and 132 on vascular growth in

the presence of matrix-bound VEGF. The fact that the statistical quantities we

monitor do not depend on any probabilistic parameter may render the model easier to

tune against experiments compared to most individual-based methods relying on

such a parameter.

The novelty of this work lies in the consideration of both soluble and matrix bound

growth factor isoforms and the explicit consideration of a ¯brous ECM structure

o®ering binding sites to molecular quantities such as ¯bronectin and VEGF while

promoting guiding cues to the migrating cells. The grid free particle representation of

the tip cells directly leads to the generation of smooth vessel networks. Grid based

Fig. 11. Evolution of angiogenesis (red) along the ¯bers of the extracellular matrix (beige).
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quantities and the particle based tip cell representation can be coupled via Particle to

Mesh and Mesdh to Particle interpolation in a straightforward manner.

5. Stochastic Simulations

In this section, two algorithms for the simulation of reaction�di®usion processes ���
which were originally presented in Ref. 131 ��� are described, namely: (1) an accel-

erated spatially-dependent �-leaping algorithm (called S�-leaping), and (2) a hybrid

method (called H�-leaping) that combining a deterministic simulation of di®usion

with a �-leaping simulation of the chemical reactions. Fisher's equation is used to

validate both algorithms. Furthermore, the role of the number of molecules in the

system is explored in the pattern forming Gray�Scott equations.115

5.1. Stochastic modeling of reaction�di®usion processes

Reaction�di®usion phenomena in nature can be described by stochastic processes,

where particles in a domain are subject to molecular collisions and movement via

Brownian motion. In the present formulation, the domain is decomposed into

equally-sized cells. Furthermore, it is assumed that a reactant molecule can react only

with other reactants in its own cell, and di®usion events are modeled as unimolecular

transitions to neighboring cells.

Consider a total of N species and a domain that has been discretized into a set of

uniform cells denoted by C, which subject to the same set of reactions, R. Let

arðucÞ; r 2 R; c 2 C, denote the propensity of the reaction r in the cell c and let

� c
r ¼ ð�1r ; . . . ; �NrÞ be the corresponding stoichiometric vector. The set of di®usion

transitions is denoted by D, and �
ði;cÞ
d is the stoichiometric vector of the di®usion

transition d 2 D for the species i in the cell c. The reaction�di®usion process can be

written in terms of of generic (chemical) transitions:

X

N

i¼1

� j
iA

j
i !

X

N

i¼1

� j
iB

j
i ; j ¼ 1; . . . ;M ; ð5:1Þ

where j denotes the index of the transition, M is the number transitions, Ai is the

species undergoing a transition, Bi is the species in the resulting transition, and �i

and �i are the stoichiometric values. For example, the transitions for the pattern

forming Gray�Scott115 model can be expressed as:

U x;y;z
0 þ 2U x;y;z

1 ! 3U x;y;z
1 ; ð5:2Þ

U x;y;z
1 ! U x;y;z

2 : ð5:3Þ
Di®usion is recast as a set of transitions to neighboring cells, viz.:

U x;y;z
i !

di
dl 2

U x�1;y;z
i ; U x;y;z

i !
di
dl 2

U xþ1;y;z
i ; ð5:4Þ

U x;y;z
i !

di
dl 2

U x;y�1;z
i ; U x;y;z

i !
di
dl 2

U x;yþ1;z
i ; ð5:5Þ

U x;y;z
i !

di
dl 2

U x;y;z�1
i ; U x;y;z

i !
di
dl 2

U x;y;zþ1
i ; ð5:6Þ
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where U x;y;z
i is the number of molecules of species i inside the cell indexed by ðx; y; zÞ,

di is the macroscopic di®usion coe±cient of species i, and dl is the cell size.

5.1.1. Spatial �-leaping

Computationally e±cient method for calculating the time-step for the �-leaping

method without the need for evaluating derivatives has been provided by Cao et al. in

Ref. 32. Following Ref. 32, a bound is created for the molecular population in each cell:

� reaction ¼ min
c2C

f� reaction
c g; ð5:7Þ

and for each cell we have

� reaction
c ¼ min

i 2 I

maxf�u c
i =gi; 1g

j
̂ reaction
i;c ðuÞj ;

maxf�u c
i =gi; 1g

ð�̂ reaction
i;c ðuÞÞ2

( )

; ð5:8Þ

where � is an error control parameter where 0 < � � 1, gi is the highest order

of reaction, I is the set of di®erent species and 
̂ reaction
i;c ðuÞ and ð�̂ reaction

i;c ðuÞÞ2 are

de¯ned as:


̂ reaction
i;c ðuÞ ¼

X

r 2R

� c
irarðucÞ; ð5:9Þ

ð�̂ reaction
i;c ðuÞÞ2 ¼

X

r 2R

ð� c
irÞ2arðucÞ: ð5:10Þ

The simple structure of the di®usion transitions can be used to accelerate the

computation of � diffusion

� diffusion ¼ min
c2C

f� diffusion
c g; ð5:11Þ

� diffusion
c ¼ min

i 2 I

maxf�u c
i ; 1g

j
̂ diffusion
i;c ðuÞj ;

maxf�u c
i ; 1g

ð�̂ diffusion
i;c ðuÞÞ2

( )

: ð5:12Þ

The denominators can be computed as


̂ diffusion
i;c ðuÞ ¼ 1

dl 2

X

c 0 2NðcÞ
u c 0
i � u c

i ; ð5:13Þ

ð�̂ diffusion
i;c ðuÞÞ2 ¼ 1

dl 2

X

c 0 2NðcÞ
u c 0
i þ u c

i ; ð5:14Þ

where NðcÞ is the set of neighboring cells of c. As Eq. (5.14) will always be greater

than Eq. (5.13), the formula for � diffusion
c can be simpli¯ed to:

� diffusion
c ¼ min

i 2 I

maxf�u c
i ; 1g

ð�̂ diffusion
i;c ðuÞÞ2

( )

: ð5:15Þ
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The time-step, � , is chosen as the minimum of the two time-steps,

� ¼ minf� reaction; � diffusiong: ð5:16Þ
We perform the transitions on the entire solution, u ¼ fucgc2C, according to the

following formula:

uðt þ �Þ ¼ uðtÞ þ
X

c2C

X

r 2R

� c
rPðarðucÞ; �Þ

þ
X

c2C

X

i 2 I

X

d 2D

�
ði;cÞ
d P

diu
c
i

dl 2
; �

� �

; ð5:17Þ

where Pð:Þ is a sample from a Poisson distribution.

5.1.2. Hybrid �-leaping

In order to further accelerate the spatial modeling of reaction�di®usion systems, we

proposed a hybrid scheme where the reactions are simulated stochastically while

di®usion is simulated deterministically. This approximation is suitable since the

di®usion process is typically two orders of magnitude faster than the reaction pro-

cess.28 We consider a system where the particles, ui ¼ uiðx; tÞ, evolve according to the
following equation:

uiðx; t þ �Þ ¼ uiðx; tÞ þM 1ðdi�dM 2ðuiðx; tÞÞÞ þ f ðiÞs ðuðx; tÞÞ; ð5:18Þ
where f

ðiÞ
s represents the stochastically simulated reactions, �d represents a deter-

ministic di®usion operator, and M 1 and M 2 are mapping functions such that M 1:

R
N
þ ! NN and M 2 : N

N ! R
N
þ .

M 1 and M 2 convert from between discrete and continuum representations of the

¯eld.M 2 is trivial since in this mapping we have all the information that we need, i.e.

converting from a discrete to a continuum model. This can be done by dividing the

number of particles by the value P, the number of particles per unit of concentration.

Care, however, needs to be taken with M 1 since we need to ensure both a fair

mapping and also a conservation of mass within our system.

The procedure for M 1 is as follows: suppose we have a single species on a one-

dimensional spatial domain where we denote xi as the cell discretization of the

domain, for i ¼ 1; . . . ;N , �ðxiÞ :¼ �dM 2ðuðxi; tÞÞ, i.e. �ðxiÞ is a concentration, and P

the number of particles per unit of concentration. First, we lift the value of �ðxiÞ,

�̂ðxiÞ ¼ �ðxiÞP: ð5:19Þ
�̂ðxiÞ can now be decomposed into a natural number part and a real part

�̂ðxiÞ ¼ �̂NðxiÞ þ �̂RðxiÞ; ð5:20Þ
where �̂NðxiÞ 2 N, �̂RðxiÞ 2 Rþ, and more speci¯cally �̂RðxiÞ 2 ½0; 1Þ. If we crop the

values of �̂ðxiÞ such that

�̂ðxiÞ ¼ �̂NðxiÞ; ð5:21Þ
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then we can distribute the \extra molecules" L, where

L ¼
X

N

i¼1

�̂RðxiÞ; ð5:22Þ

where L 2 N. The objective now is to distribute these extra molecules by sampling

from a probability density function where the probability of each cell is its fractional

value �̂RðxiÞ. Therefore, we normalize all of the fractional values such that

pðxiÞ ¼ �̂RðxiÞ
L . We denote the number of molecules gained for each cell i as ki which is

a realization of a random variable Ki, for i ¼ 1; . . . ;N . We recall that a Binomial

distribution, BðR;PÞ, is a discrete probability density distribution giving the

number of successes in a sequence of R independent Bernoulli trials having a success

probability of P. We consider the fractional values as Bernoulli trials where the

probability of success is pðxiÞ, the probability of failure is 1� pðxiÞ, and the number

of trials is L. Therefore, the distribution of K1 is k1 ¼ BðL; pðxiÞÞ, and all of the

following variables m 2 f2; . . . ;Ng, denoted as Km, are conditionally distributed on

the previous events, i.e. on fk1; . . . ; km�1g ¼ fK1; . . . ;Km�1g. Therefore, for these

variables we need to scale their probabilities of success based on the previous events,

and decrease the amount of trials based on the previous events. Hence, we can sample

from the following distribution:

km ¼ B L�
X

m�1

j¼1

kj ;
pðxmÞ

1�Pm�1
j¼1 pðxjÞ

 !

; ð5:23Þ

�̂ðxiÞ ¼ �̂NðxiÞ þ ki; for i ¼ 1; . . . ;N : ð5:24Þ
We note that at most N � 1 random numbers are needed and that the distribution of

the molecules may terminate early if all L molecules have been distributed. It is also

possible to distribute the Lmolecules in a pointwise manner instead of sampling from

a Binomial distribution, but we have found that both L and the number of cells are

large so that the method shown above is computationally more e±cient.

The above equations trivially generalize to n dimensions where one has an

n-dimensional space to distribute molecules instead of the one-dimensional example

given above. For example, in three-dimensions where xi;j;k is the discretization of the

domain, for i ¼ 1; . . . ;Ni, j ¼ 1; . . . ;Nj , and k ¼ 1; . . . ;Nk , then Eq. (5.23) becomes

ka;b;c ¼ B L�
X

a

�¼1

X

b

�¼1

X

c�1

�¼1

k�;�;�;
pðxa;b;cÞ

1�Pa
�¼1

P b
�¼1

P c�1
�¼1 pðx�;�;�Þ

 !

; ð5:25Þ

and Eq. (5.24) becomes

�̂ðxi;j;kÞ ¼ �̂Nðxi;j;kÞ þ ki;j;k ; for i ¼ 1; . . . ;Ni; j ¼ 1; . . . ;Nj ; and

k ¼ 1; . . . ;Nk :
ð5:26Þ
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The function f s performs an independent �-leaping procedure at the points x at

time t with a time step of � . Prescribing � is performed by binding the changes in

molecular populations, as described in the previous section, at each cell. The ¯nal � is

chosen as the minimum of all of these independent evaluations, and this � is used as

the time step for all of the �-leaping procedures at each discretized volume.

The algorithm for the hybrid method is straightforward at this point. We choose a

value for � and simulate the reactions in our volume. Then, using this � , we may

simulate the di®usion process. This procedure is performed iteratively until the ¯nal

integration time is reached.

Note that the speed-up of this hybrid approximation lies not only in that deter-

ministic di®usion is more e±cient than sampling random numbers (either by a ran-

dom walk or �-leaping), but also because we only need to di®use such that our

numerical stability criterion for our deterministic di®usion scheme is satis¯ed. In

other words, we do not necessarily need to di®use after every reaction process.

Pattern-formation equations have been proposed as models for morphogenesis.154

It has been postulated that these simple reaction�di®usion systems are su±cient for

describing the imperative characteristics of biological processes. Depending on how

the parameters are chosen, and the size of the domain, one can obtain a multitude of

patterns that may mimic natural phenomena. The Gray�Scott model is an example

of self-organization in non-equilibrium, chemically reacting systems.115 The partial

di®erential equations for this model are

@u ð1Þ

@t
� D ð1Þ�u ð1Þ ¼ � 	 u ð1Þu ð2Þ 2 þ Fð1� u ð1ÞÞ; ð5:27Þ

@u ð2Þ

@t
� D ð2Þ�u ð2Þ ¼ 	 u ð1Þu ð2Þ 2 � ðF þ �Þu ð2Þ; ð5:28Þ

where u ðsÞ denotes the sth species, and D ðsÞ the di®usion coe±cient for the sth

species. The following chemical reactions represent the discrete model:

U
ð1Þ
i þ 2U

ð2Þ
i !	 3U

ð2Þ
i ; ð5:29Þ

;!F U
ð1Þ
i ; ð5:30Þ

U
ð1Þ
i !F ;; ð5:31Þ

U
ð2Þ
i !Fþ� ;; ð5:32Þ

where U
ðsÞ
i is the number of molecules of species s in volume element i ¼ ðix ; iy; izÞ.

The values of F , 	, �, the di®usion coe±cients, as well as the size of the domain

determine what kind of pattern will appear.

Numerical simulations of the Gray�Scott equations in two and three-dimensions

were performed with periodic boundary conditions using deterministic, H�-leaping

(Sec. 5.1.2), and S�-leaping approaches (Sec. 5.1.1) with varying levels of particles
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in order to determine whether one can obtain qualitatively di®erent patterns.

Two-dimensional simulations of the Gray�Scott equations are shown in Fig. 12. The

number of particles in each cell were varied whilst keeping F ¼ 0:04; � ¼ 0:06 and

	 ¼ 1. Integration was performed from t ¼ 0 to t ¼ 1000. Notable di®erences in the

solutions can be observed, namely the stochastic simulations converge to the pattern

observed by purely deterministic simulations of reactions and di®usion as the number

of particles increases.

The Gray�Scott equations in three-dimensions were also simulated using a dis-

cretization of 128 128 128 with F ¼ 0:04; � ¼ 0:06 and 	 ¼ 1, and integrated from

t ¼ 0 to t ¼ 1000 (Fig. 13). In three-dimensions, the noise from the low numbers of

particles makes itself evident and the solution notably di®ers from the deterministic

solution.

Fig. 12. Analyzis of the role of the number of particles for the Gray�Scott equations solved with a

300 300 discretization with F ¼ 0:04; � ¼ 0:06; t ¼ 1000. From left to right the number of particles per

unit of concentration is increased from 100; 1000; 1000; 5000; 10000, continuum, respectively. The methods

used to solve the equations were the following (from left to right): S�-leaping, S�-leaping, H�-leaping,
S�-leaping, H�-leaping, deterministic.

Fig. 13. Three-dimensional solutions of the Gray�Scott equations using (left) deterministic solver and

H�-leaping solver (right) on a 128 128 128 discretization with F ¼ 0:04; � ¼ 0:06; 	 ¼ 1; t ¼ 1000. The

H�-leaping method was performed with 1000 particles per unit of concentration.
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5.2. Stochastic simulations of glioblastomas

The type of tumor considered here is the glioblastoma (glioma), which is the most

malignant and most common brain tumor. The tumor is known to disseminate

quickly throughout the brain and for this reason they are tumors with, as J. D.

Murray states,105 \a depressingly dismal prognosis for recovery". Indeed, if a glioma

is left untreated, the median survival time is roughly 6 to 12 months.105 Surgical

removal of the tumor is presently the most e®ective treatment, thereby increasing the

median survival time by 2.5 months.3

The human brain consists of grey and white matter, the former of which is

composed of neuronal and glial cell bodies that are responsible for controlling brain

activity, while the latter is composed of ¯ber tracts of neuronal axon bundles. Since

white and grey matter are fundamentally di®erent, it is not surprising that the rate of

dissemination is di®erent in the white matter than in the grey matter.105

In order to model the dissemination and proliferation of tumor cells in the brain,

we begin by modeling the dissemination of cells with a di®usive term and will deal

with the proliferation of cells later. The di®usion process is modeled by the following

partial di®erential equation:

@u

@t
¼ @

@x
DðxÞ @u

@x

� �

; x 2 D ; ð5:33Þ

@u

@x
¼ 0; x on @D ; ð5:34Þ

where D ¼ ½0; 1�. At the moment we shall con¯ne ourselves to the 1D situation. The

di®usion coe±cient depends on x since it has been shown that proliferation is faster in

the white matter than the grey matter, viz:

DðxÞ ¼ Dg if x 2 Dgrey;

Dw if x 2 Dwhite;

�

ð5:35Þ

where D ¼ Dgrey [Dwhite, and where Dg and Dw are constants.

5.2.1. Inhomogeneous di®usion

Let uiðtÞ,uðxi; tÞ where i is the index of a node. Using an explicit Euler method for

the time-integration, the numerical method becomes

uiðt þ�tÞ ¼ �t

h2

X

fj : j 2NðiÞg
Di;jðujðtÞ � uiðtÞÞ; ð5:36Þ

where NðiÞ denotes the set of indices that are neighbors of cell i. The di®usion

coe±cient across the interface of cells i and j, denoted by Di;j , needs to be de¯ned.

Following Ref. 102, a harmonic mean can be used, namely

Di;j ¼
1

jxi � xj j

Z xj

xi

1

DðsÞ ds; ð5:37Þ
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which, if the mesh is uniform, can be integrated analytically and becomes:

D
ðharmonicÞ
i;j ¼ 2

1

Di

þ 1

Dj

� ��1

: ð5:38Þ

5.2.2. Boundary conditions

To handle the Neumann boundary conditions, we use a ghost-point method.

Consider the stencil at the left boundary:

u0ðt þ�tÞ ¼ �t

h2
ðD0;1u1ðtÞ � 2D0;0u0ðtÞ þ D0;�1u�1ðtÞÞ þ Oðh 2Þ; ð5:39Þ

where there is a ghost point at x�1 ¼ �h. The derivative across the boundary needs to

be zero, in which case we may use a central ¯nite di®erence scheme for the gradient

across the boundary:

u1ðtÞ � u�1ðtÞ
2h

þ Oðh 2Þ ¼ 0; ð5:40Þ

or simply u1ðtÞ ¼ u�1ðtÞ. Substituting this into the stencil yields the scheme at the

boundary:

u0ðt þ�tÞ ¼ 2�t

h2
ðD0;1u1ðtÞ � D0;0u0ðtÞÞ þ Oðh2Þ: ð5:41Þ

5.2.3. 3D simulations using MRAG

We consider the same inhomogeneous Fisher�Kolmogorov reaction�di®usion

equation that Swanson et al. considered in Ref. 150:

@u

@t
¼ r � ðDðxÞruÞ þ 	uð1� uÞ; ð5:42Þ

where u ¼ uðx; tÞ, x 2 D , the term 	uð1� uÞ represents the proliferation of cells, and

DðxÞ ¼
Dg if x 2 Dgrey;

Dw if x 2 Dwhite;

0 if x 62 Dgrey [Dwhite:

8

>

<

>

:

ð5:43Þ

Equation (5.42) will be solved inside a realistic model of the human brain. The

anatomy of the human brain comes from the biological databaseBrainWeb.1TheBrain

Web database was created using a Magnetic Resonance Imaging (MRI) simulator and

de¯nes the distributions and locations of various elements of the brain on a 3D grid. At

each voxel a concentration of grey andwhite matter is provided (alongwith fat, muscle/

skin, skull, etc.), which will be used to de¯ne the geometry of a human brain.

The value of the di®usion coe±cients at each voxel are

Di , p
ðwÞ
i D

ðwÞ
i þ p

ðgÞ
i D

ðgÞ
i ; ð5:44Þ
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where p
ðwÞ
i and p

ðgÞ
i are the relative fractions of white and grey matter, respectively,

from the BrainWeb database such that inside of the brain p
ðwÞ
i þ p

ðgÞ
i ¼ 1. The values

of D
ðgÞ
i ¼ 1:3 � 10�3 cm2=day, D

ðwÞ
i ¼ 5D

ðgÞ
i , and 	 ¼ 1:2 � 10�2=day were taken from

Ref. 105. These rates are used to model highly invasive tumor cells.

In order to de¯ne a stochastic process, we must de¯ne the drift process and

multiplicative factor for the °uctuations. Moreover, we will use a multiresolution

wavelet based framework (MultiResolution Adaptive Grids, MRAG,130) to solve the

3D equations that we will formulate in this section. The MRAG framework operates

on blocks of meshes that locally have uniform resolutions and exploits parallel

computing architectures. The equations must therefore be formulated independent of

neighboring cells. With this in mind, we will formulate a non-conservative and local

stochastic di®erential equation to model the dissemination and proliferation of a

highly invasive brain tumor.

The drift of the stochastic process, 
, is de¯ned as


ðuiÞ ¼
h�2

X

fj : j 2NðiÞg
D

ðharmonicÞ
i;j ðuj � uiÞ þ 	uið1� uiÞ;

�þ þ�� þ 	uið1� uiÞ;

8

>

<

>

:

ð5:45Þ

where the Laplace operator has been split into positive �þ and negative components

��, i.e. the incoming and outgoing °uxes. Equation (5.45) can be written as

dui ¼ 
ðuiÞdt: ð5:46Þ
A Brownian motion term is added to construct a stochastic di®erential equation

dui ¼ 
ðuiÞdt þ �ðuiÞdBt ; ð5:47Þ
where we must now de¯ne the multiplicative factor �ðuiÞ for the °uctuations. The

di®usion process is modeled as transitions to neighboring cells, where the °uctuations

are transitions from or into a cell. Here we formulate the °uctuations as being

proportional to the incoming transitions, namely �1ðuiðtÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi

��þ
p

: The numerical

method is

uiðt þ�tÞ ¼ uiðtÞ þ�t 
ðuiðtÞÞ
þ F ½��1

ffiffiffiffiffiffi

�t
p

�1ðuiðtÞÞ� þ ��1
ffiffiffiffiffiffi

�t
p

�2ðuiðtÞÞ��; ð5:48Þ

where � and � are random variates from a standard normal distribution and

�2ðuiðtÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�uiðtÞð1� uiðtÞÞ
p

. Because of the instability of Fisher's equation, we

have used F ½�� which is a rounding operator that rounds to the nearest n=�, where

n 2 Z, i.e. the °uctuations are on the order of particles in the system so as to not

spuriously heat up the leading edge of the front. In principle, � should be the number

of tumor cells, where the number of tumor cells in a real tumor is 1011.105 The value of

� was set to 107 per unit of concentration per node which is, however, lower than a

total of 1011. We note that the °uctuations are on the order of 10�3 or 10�4 (i.e.

��1=2). A simulation over a time period of two years is shown in Fig. 14. The initial

condition was a point source at an arbitrary position in the brain.
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It can be seen that the growth pattern of the tumor is nontrivial and is highly

dependent on the anatomy of the brain and initial position of the tumor. Speci¯cally,

the location of the white and grey matter tissues dictates the growth process. The

results presented here used the same model as the one considered in Ref. 150, how-

ever, here a di®erent numerical method as used. Here the harmonic average is used for

the discontinuous di®usion coe±cient and a stochastic numerical integration scheme

as used. Moreover, both models make signi¯cant assumptions about the growth of

tumors. The fundamental assumptions are (1) exponential or logistic proliferation of

tumor cells for growth and (2) di®usion as an approximation for cell motility.

6. Particle Models for Discrete Systems

Many particle systems (Potts Models, Dissipative Particle Dynamics, Stochastic

Simulation Algorithms) model complex system behavior through the formulation of

deterministic or stochastic discrete rules between interacting particles. The particles

are characterized by their geometrical shape and transported quantities such as

density, chemical composition etc. These systems represent a synthetic compu-

tational approach identifying biological cells with individual particles and they can

accommodate cell properties of adhesion, growth rate and elasticity. Many particle

systems are well suited to simulations in complex deforming domains and they can be

extended to incorporate reaction�di®usion processes involved in gradient formation

as well as signaling pathways. We note that recently a vertex model, accommodating

cells of di®erent shapes, was implemented in order to study the physical basis of

epithelial cell packing in the third instar larval wing disk of Drosophila.6

Fig. 14. (Color online) Virtual glioma at time t ¼ 720 days: tumor density (red), gray matter, and white

matter.
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Particle models amount to tracking the locations ri; i ¼ 1; . . . ;N , of N particles by

solving numerically Newton's equations of motion:

mi

d 2ri
dt 2

¼ Fðri; rj ;mi;mj ; . . .Þ; ð6:1Þ

where F denotes the force ¯eld that can be derived as the gradient of a potential

energy U . It is important to note here that the approximate integration of these

equations makes the trajectories sensitive to perturbations in the initial conditions.

Particle trajectories should not be viewed as exact representations of the trajectories

of the systems they aim to model, but rather as their statistical representations. The

more reliable diagnostics that can be gleaned from these trajectories are those

obtained by suitable spatial and temporal averages. The potential energy function

(U) whose gradient provides us with the force ¯eld (F) give a description of the

relative energy or forces of the ensemble for any geometric arrangement of its con-

stituent particles. This description may include energy for bending, stretching and

vibrations of the particles, and interaction energies between the molecules. Classical

force ¯elds are usually built up as composite potentials, i.e. as sums over many rather

simple potential energy expressions. Mostly pair potentials V ðrijÞ are used, but in the

case of systems where bonds are determining the structure, multi-body contributions

V ðrij ; rikÞ, and V ðrij ; rik ; rilÞ may also enter the expression, thus

U ¼
X

i;j

V ðrijÞ þ
X

i;j;k

V ðrij ; rikÞ þ
X

i;j;k;l

V ðrij ; rik ; ri;lÞ; ð6:2Þ

where rij ¼ jri � rj j is the distance between ith and jth atoms. The contribution to

the interaction potential can be ordered in two classes: intramolecular and inter-

molecular contributions. While the former describe interactions which arise in bon-

ded systems, the latter are usually pair terms between distant atoms. Various

intramolecular potentials are used to described the dynamics of chemical bonds and

their interactions. The potential

V ðrijÞ ¼
1

2
Khðrij � r0Þ2; ð6:3Þ

is developed from a consideration of simple harmonic oscillators,54 where rij and r0
denote the bond length and the equilibrium bond distance, respectively. The force

constant of the bond is given by Kh. Alternatively, the Morse potential104

V ðrijÞ ¼ KM ðe��ðrij�r0Þ � 1Þ2; ð6:4Þ

is used, allowing for bond breaking. Here KM and � are the strength and distance

related parameters of the potential.

For coordination centers, i.e. atoms where several bonds come together, usually

bond angle terms are applied including harmonic bending via

V ð�ijkÞ ¼
1

2
K�ð�ijk � �cÞ2; ð6:5Þ
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or the harmonic cosine bending via

V ð�ijkÞ ¼
1

2
K�ðcos �ijk � cos �cÞ2; ð6:6Þ

where �ijk is the angle formed by the bonds extending between the ith, jth, and kth

atoms, and �c is the equilibrium angle. Dihedral bond potentials are often employed

for systems involving chains of bonded atoms, to ensure a consistent representation

over several centers97,134

V ð�ijklÞ ¼
1

2

X

n

m¼0

Km cosðm�ijklÞ; ð6:7Þ

where the sum can contain up to 12 terms.

Commonly applied intermolecular forces terms are van der Waals forces described

through a Lennard�Jones 12-6 potential89

V ðrijÞ ¼ 4�
�

rij

� �

12

� �

rij

� �

6
� �

; ð6:8Þ

where � is the depth of the potential well, and � is related to the equilibrium distance

between the atoms. The parameters are usually obtained through ¯tting to exper-

imental data and/or theoretical considerations.

6.1. Subcellular element model

In the subcellular element model (SEM),108,8,135 each cell is modeled using a collection

of soft particles. These subcellular elements (SCE) can be seen as a coarse-grained

representation of a cell's cytoskeleton.

Following Sandersius et al.,135 we employ a variation of the empirical morse

potential which has been used before for bonds in polymers.121,33 The interaction

potential between two SCEs i and j is given by:

�ðrijÞ ¼ u0e
2	 1� r 2

r 2eq

� �

� 2u0e
	 1� r 2

r 2eq

� �

; ð6:9Þ

where u0 is the potential well depth, 	 is a scaling factor, and req is the equilibrium

distance between two SCEs.

In the original formulation of the SEM,108 Newman suggests to solve the equations

of motion for the SCEs using the Brownian dynamics formulation which is a

simpli¯ed version of Langevin dynamics. The Langevin formulation for the motion of

a SCE i is:

mr
::
i ¼ � � �r

:
i �
X

i 6¼j

F C ðrijÞ; ð6:10Þ

where � represent thermal °uctuations and random polymerization and depolymer-

ization events, � is the viscous drag coe±cient and F C ðrijÞ the pairwise force on a
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single SCE from neighboring ones. Since the environment of a cell is highly viscous,

we can assume overdamped motion. There, we have mr
::
i � �ri

:
and we get Brownian

dynamics by rearranging (6.10) and setting mr
::
i ¼ 0:

�ri
: ¼ � �

X

i 6¼j

F C ðrijÞ: ð6:11Þ

The resulting Eq. (6.11) is then solved using a stochastic integration scheme.

Sandersius et al.135 conducted Brownian dynamics simulations to measure the

viscoelasticity of the cell under axial compression between parallel plates, showing

good qualitative agreement with experiments.18,100,47,159 They also measured the

shear storage and loss moduli (G 0, G 00) in order to quantify the microrheology of their

setup.

The SEM can be extended to model preferential cell adhesion and di®erent

cell compartments by changing the parameters of the potential in Eq. (6.9). Cell

adhesion for instance is modeled by changing the relative strength of the inter- and

intra-cellular potential wells, that is specifying di®erent u inter
0 and u intra

0 . The boundary

elements of a cell can be recognized and handled di®erently to model e®ects of surface

tension or sti®er materials like the cell walls surrounding plant cells. Figure 16 shows a

proliferating plant tissue where wall elements are automatically recognized and treated

as a sti®er and stickier material. Wall elements can be connected to a neighboring cell

such that the cells do not slide past each other. The boundary of the tissue grows with

the enclosed cells and is modeled to have the same e®ect as if there were elements of a

di®erent cell all around it. Cells grow by adding new particles and thus mass in the

center. As soon as a cell reaches a certain mass, it will divide with a division plane

given by empirical rules. In Fig. 15 we show an extension of the SEM for cell migration

where elements are added and removed to explicitly model polymerization and

depolymerization events. The SEM also allows us to determine neighborhood

relationships between cells and the size of their contact area. This can in turn be used to

model juxtacrine signaling like in the Delta�Notch system39 and provide a patterning

mechanism while the cells evolve (see Fig. 17).

Fig. 15. Elements can be added and removed to model polymerization and depolymerization during cell

migration.
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7. Conclusions

We have reviewed our recent e®orts in developing particle methods for the simulation

of morphogenesis, with examples in applications ranging from pattern formation to

avascular tumor growth and sprouting angiogenesis. We have demonstrated that

particle methods provide a °exible computational tool that can handle deterministic

as well as stochastic models and the spatial and temporal complexity involved in

morphogenesis. Current e®orts focus on developing multiresolution stochastic19 and

deterministic26 particle methods and their implementation in modern computer

architectures.129,138

We wish to emphasize that the methods presented in this review are only a subset

of the wealth available in particle based simulations for biological systems and

morphogenesis. Notable omissions, include Potts models68 and Cellular Autiomata7

Fig. 17. Juxtacrine signaling can be applied on cells represented by SCEs while they evolve. The circle in

the center of each cell represents the Notch-concentration (black is high, cyan is low) which determines the

cell fate.

Fig. 16. A proliferating plant tissue with wall elements displayed as slightly larger spheres. The boundary

of the tissue is shown as a gray box.
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that have been used extensively in studies related to developmental biology and

morphogenesis (see Ref. 99 and references therein) and Dissipative Particle

Dynamics.78 In addition we wish to highlight the value and e®orts of colleagues of the

open source software for biological morphogenesis that is largely based on particle

based methods: two examples are CompuCell 3D2,139 and the Virtual Cell4,67 (a non-

exhaustive list of related software can be found at http://systems-biology.org/soft-

ware). Last but not least we wish to mention the ongoing development of multiscale

computational methods that mirror the very essence of morphogenesis by deriving

systematically models in a hierarchical fashion starting from particle based descrip-

tions (see Refs. 22, 30, 106 and references therein).

We close by emphasizing that the tools presented herein present only a ¯rst step in

the direction of developing computational tools that will model e®ectively (i.e. with

predictive capability) morphogenesis. Morphogenesis involves multiscale phenom-

ena52 and it is important to develop algorithms that can couple models ranging from

the cellular (such as subcellular elements) to the tissue level such as particle level sets

and their hierarchical interactions as well as their interactions with their micro-

environment. We need to integrate mechanics with chemistry, feedback control and

regulation mechanisms active across multiple temporal and spatial scales, signaling

and tissue dynamics while taking advantage of developments in imaging and bioin-

formatics that continue to provide us with insight into the workings of the biological

systems. We believe that these phenomena require models that go beyond the

reaction�di®usion paradigm and require that experimental knowledge be translated

into models for which we may not even have the necessary computational tools.

While this provides an excellent arena for developing the next generation of

computational methods, it also suggests the need of enhancing the dialog between

biologists and computational scientists. This dialog is necessary so that the compu-

tational tools that are being developed are e®ective in answering biological problems

and at the same time developing common scienti¯c frontiers between modelers and

experimentalists that can be e®ectively reached by joining forces.
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