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Segregation and mixing of dissimilar grains is a problem in many industrial and
pharmaceutical processes, as well as in hazardous geophysical flows, where the size-
distribution can have a major impact on the local rheology and the overall run-out. In
this paper, a simple binary mixture theory is used to formulate a model for particle-
size segregation and diffusive remixing of large and small particles in shallow gravity-
driven free-surface flows. This builds on a recent theory for the process of kinetic
sieving, which is the dominant mechanism for segregation in granular avalanches
provided the density-ratio and the size-ratio of the particles are not too large. The
resulting nonlinear parabolic segregation–remixing equation reduces to a quasi-linear
hyperbolic equation in the no-remixing limit. It assumes that the bulk velocity is
incompressible and that the bulk pressure is lithostatic, making it compatible with
most theories used to compute the motion of shallow granular free-surface flows. In
steady-state, the segregation–remixing equation reduces to a logistic type equation and
the ‘S’-shaped solutions are in very good agreement with existing particle dynamics
simulations for both size and density segregation. Laterally uniform time-dependent
solutions are constructed by mapping the segregation–remixing equation to Burgers
equation and using the Cole–Hopf transformation to linearize the problem. It is
then shown how solutions for arbitrary initial conditions can be constructed using
standard methods. Three examples are investigated in which the initial concentration
is (i) homogeneous, (ii) reverse graded with the coarse grains above the fines, and,
(iii) normally graded with the fines above the coarse grains. Time-dependent two-
dimensional solutions are also constructed for plug-flow in a semi-infinite chute.

1. Introduction

Segregation of dissimilar grains is of great importance in the pharmaceutical, bulk
chemical, food and agricultural industries. In some processes it is a desired and
useful effect that can be used to separate particles from one another (e.g. Wills 1979).
While in others it is undesired and it can be difficult to control (Johanson 1978).
Ultimately this can significantly degrade the quality of the resulting products and in
some circumstances it can have serious safety implications. There are a number of
mechanisms for segregation of dissimilar grains including particle size (Bridgwater
1976), particle density (Drahun & Bridgwater 1983), convection (Ehrichs et al.
1995), differential fluid drag (Zhang & Reese 2000), inertia (Thomas 2000; Mobius
et al. 2001) and collisional condensation (Jenkins 1998). This paper focuses on the
competition between gravity-driven size-segregation by kinetic sieving (Bridgwater
1976; Savage & Lun 1988) and diffusive remixing (e.g. Hsiau & Hunt 1993;
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Figure 1. Patterns formed in a thin rotating drum partially filled with large (white) and
small (grey) particles. All the segregation takes place in a very thin dynamic layer close
to the free surface, which can be described as a granular avalanche. At low rotation rates,
intermittent avalanches are released at the free surface (top). Segregation within the avalanche
rapidly generates inversely graded layers that expand and are frozen into the deposit by the
upslope propagation of a shock wave. The two-layer stripes laid down near the surface are
then rotated and buried to create the patterns. At higher rotation rates (bottom) there is a
steady-state avalanche near the free surface that is maintained by continuous erosion and
deposition with the underlying solid rotating body of grains. In this higher energy flow, the
diffusive remixing is considerably stronger, which is reflected in the distributed grading in the
rotating deposit.

Savage & Dai 1993; Dolgunin & Ukolov 1995), which are the dominant processes in
dense granular avalanches provided the density-ratio and the size-ratio of the particles
are not too large (Drahun & Bridgwater 1983; Thomas 2000).

The kinetic sieving mechanism is simple. As the grains avalanche downslope, there
are fluctuations in the void space and the smaller particles are more likely to fall,
under gravity, into gaps that open up beneath them, because they are more likely
to fit into the available space than the coarse grains. The fine particles therefore
percolate towards the bottom of the flow, and force imbalances squeeze the large
particles towards the surface. Competing against this is diffusive remixing, which
is caused by random motions of the particles as they collide and shear over one
another. Dependent on the relative strengths of these two effects the particle size
distribution can be either strongly or weakly reverse (or inversely) graded (Bagnold
1954; Middleton & Hampton 1976) with the large particles above the fines. Figure 1
shows an example of this in a thin rotating drum that is partially filled with large
white and small grey particles (Gray & Hutter 1997; 1998). All the segregation takes
place within a thin dynamic layer of grains close to the free surface, which can be
described as a granular avalanche. At low rotation rates, avalanches are intermittently
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released close to the free surface and flow downslope. Kinetic sieving rapidly generates
reverse graded layers within the avalanche with very high concentrations of coarse
grains above very high concentrations of fines. When these are brought to rest by the
upslope propagation of a granular bore (Gray & Tai 1998; Gray, Tai & Noelle 2003)
the layers expand and are frozen into the deposit to create a two-layer reverse graded
stripe at the free surface. These are subsequently buried and rotated with the solid
body of material underneath to create the stripy patterns in the top panels of figure 1.
At higher rotation rates both the nature of the flow and the strength of the diffusive
remixing change as shown in the lower panels of figure 1. The avalanche is now
in a steady state maintained by continuous erosion and deposition at its base (e.g.
Gray 2001) and the diffusion is considerably stronger in this higher-energy flow. The
reverse grading within the flowing avalanche is therefore weaker and this is reflected
in the radial grading in the underlying rotating material. The sharp transitions at low
rotation rates are now replaced by a much weaker distributed grading, which appears
to be much darker than before. This is because the large white particles only show up
clearly when they are close to being in a pure phase. The images therefore show that
the grading is weak and the large particles are concentrated close to the drum wall,
which is consistent with them being deposited out of the avalanche last. The small
particles, which were at the bottom of the avalanche, are the first to be deposited and
therefore lie closer to the centre of the drum.

There is now a considerable body of work on particle size segregation in kinetic
binary mixtures (e.g. Jenkins & Mancini 1987; Jenkins 1998; Khakhar, McCarthy &
Ottino 1999; Jenkins & Yoon 2001; Xu, Louge & Reeves 2003) with low solids volume
fractions. These theories assume that the particles interact through binary collisions,
and comparisons with particle dynamics simulations and microgravity experiments
show that the theory works well for solids volume fractions ν < 0.2 (Khakhar et al.
1999; Xu et al. 2003). At higher volume fractions kinetic theory can make reasonable
predictions, but only when the effective granular temperature is used as a fitting
parameter (Khakhar et al. 1999). However, Campbell (2006) points out that if the
assumptions for kinetic theory break down for determining the granular temperature
in dense flows, it is difficult to argue that the same assumptions work well in predicting
segregation in the same flow.

A different theory is therefore required for segregation in granular avalanches, where
the solids volume fractions are much higher (ν =0.49−0.64) and there are prolonged
sliding and rolling contacts between the grains. There has been very little theoretical
work in this area. Savage & Lun (1988) developed the first theory using information
entropy ideas to derive explicit formulae for the net percolation velocity of small
particles. When this was substituted into the small particle mass balance, the theory
was able to predict the formation of three steady-state concentration shocks that
evolved and intersected with one another with increasing downstream distance. They
observed similar shocks through the sidewall of their laboratory chute experiments
and two photographs of them are reproduced by Thornton, Gray & Hogg (2006).
Savage & Lun (1988) and Vallance & Savage (2000) used a splitter-plate assembly
to collect samples from different heights in the flow and at different downstream
distances and were thus able to build up a detailed picture of the spatial particle
size distribution. While this approach is not able to resolve the shocks, and there is
some remixing close to the splitter plates, both Savage & Lun (1988) and Vallance &
Savage (2000) found that their dilute theory was able to make accurate predictions
of the particle-size distributions collected in the bins and this provides reasonable
confirmation of the theory given their side–wall observations.
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Gray & Thornton (2005) revisited Savage & Lun’s (1988) paper and used binary
mixture theory to derive a simplified model. Assuming slow percolation, a linear
drag between particles and that the fines carry less of the overburden pressure as
they fall through the grain matrix, they used mass and momentum conservation
to derive simple expressions for the large and small particle percolation velocities
that satisfied a series of constraints. The simplest leading-order model that satisfied
these constraints yielded a segregation flux that is dependent on the small particle
concentration φ and is proportional to φ(1 − φ). If Savage & Lun’s (1988) model for
the dilute small-particle concentration limit is rewritten in terms of the concentration
φ, rather than number density ratio η and the particle diameter ratio σ , the two models
have the same underlying φ(1 − φ) structure (Gray & Thornton 2005). Furthermore,
this structure still dominates in the non-dilute small-particle concentration limit. The
experimental data of Savage & Lun (1988) and Vallance & Savage (2000) therefore
provides considerable evidence for a segregation flux of this form. The key advantages
of Gray & Thornton’s (2005) theory over that of Savage & Lun (1988) is that: (i)
the use of particle concentrations, rather than η and σ , significantly simplifies the
theory and (ii) gravity naturally enters into the segregation velocities through the
normal momentum balance. The theory has been extended by Thornton et al. (2006)
to include buoyancy effects through the introduction of an interstitial fluid and Gray
& Thornton (2005) and Thornton et al. (2006) have developed robust shock-capturing
numerical methods to solve general time-dependent problems without the need to
explicitly track the position of the shocks. The insights that these have given have
allowed exact solutions to be constructed for more general steady-state (Thornton
et al. 2006) and fully time-dependent problems (Gray et al. 2006) in the absence of
diffusive remixing effects.

Several authors have looked at the case when diffusive remixing effects are included
in segregation models of this type. Dolgunin & Ukolov (1995) and Dolgunin, Kudy
& Ukolov (1998) proposed a model for the segregation of different size and different
density particles based on the observation that there could be no segregation when
either of the constituents were in their pure phase, so that to leading order the
segregation flux must be proportional to φ(1−φ). The effect of remixing was modelled
by the ad hoc introduction of a diffusion term and the associated diffusion coefficient
was determined using considerations from kinetic theory. While using such a diffusion
coefficient in the high solids volume fraction limit is itself debatable, Dolgunin &
Ukolov (1995) have confused the issue further by applying their theory to problems in
which there is both a dense basal avalanche and a rarefied saltation layer. This seems
to be pushing the model too far and we believe that the fundamental physical driving
mechanisms for segregation are different in the dense and rarefied regimes. This
has been recognized for some time in the geological literature where inverse-grading
in pyroclastic flows is associated with dense basal grain flows (e.g. Middleton &
Hampton 1976) and normal-grading with sedimentation out of low-density turbulent
suspension (e.g Branney & Kokelaar 1992). A combination of these two effects can
lead to double-segregation where the large particles are concentrated in the centre of
a deposit.

For solids volume fractions ν < 0.2, Khakhar et al. (1999) and Xu et al. 2003 have
shown that kinetic theory is perfectly good, which implicitly implies that Dolgunin &
Ukolov’s (1995) model is too simple in this limit. However, Savage & Lun’s (1988)
and Vallance & Savage’s (2000) data imply that the φ(1 − φ) flux model is a good
one for particle-size segregation at high solids fractions, and Khakhar, McCarthy
& Ottino (1997) have also shown that Dolgunin & Ukolov (1995) approach is very
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good at predicting density segregation at high solids volume fractions. The models
of Savage & Lun (1988), Dolgunin & Ukolov’s (1995) and Gray & Thornton (2005)
all have the same underlying φ(1 − φ) structure and appear to be good at predicting
segregation in dense granular avalanches where there are multiple enduring frictional
contacts between the grains. This paper extends Gray & Thornton’s (2005) rational
derivation of the segregation equation to the case of segregation and remixing and
investigates some elementary solutions.

2. Governing equations

2.1. Mixture framework and conservation laws

A simple binary mixture theory will be used to formulate a model for gravity-driven
particle-size segregation and diffusive remixing in a granular material composed of
‘large’ and ‘small’ particles. This approach implicitly assumes that the interstitial pore
space remains constant, on average, and that it can be subsumed into the volume
fractions, φl and φs , of large and small particles per unit mixture volume, respectively.
The sum of these volume fractions is equal to unity

φl + φs = 1. (2.1)

The superscripts l and s will be used throughout this paper to denote quantities
relating to the large and small particles. The fundamental mixture postulate (e.g.
Truesdell 1984; Morland 1992) states that every point in the mixture is simultaneously
occupied by all of the constituents, so that overlapping partial densities, ρµ, partial
velocities, uµ, and partial pressures, pµ, can be defined for each of the constituents
µ = l, s per unit mixture volume. Each of the constituents satisfies individual mass and
momentum conservation laws (e.g. Truesdell 1984; Morland 1992; Gray & Svendsen
1997)

∂ρµ

∂t
+ ∇ · (ρνuν) = 0 (µ = l, s), (2.2)

∂

∂t
(ρµuµ) + ∇ · (ρµuµ ⊗ uµ) = −∇pµ + ρµ g + βµ (µ = l, s), (2.3)

where ⊗ is the dyadic product, ρµ g is the gravitational force and βµ, is the force
exerted on phase ν by the other constituent. Newton’s third law implies that the
interaction forces in a binary mixture are equal and opposite to one another, i.e.
β l = −βs , and cancel out in the bulk mass and momentum balances, which are
obtained by summing the conservation laws (2.2) and (2.3) over all constituents. It is
useful to define the bulk density ρ, bulk velocity u and bulk pressure p as

ρ = ρ l + ρs, ρu = ρ lul + ρsus, p = pl + ps . (2.4a–c)

A key feature of mixture theory is how partial quantities, defined per unit mixture
volume, are related to measurable intrinsic quantities, defined per unit constituent
volume. Morland (1992) showed that the partial and intrinsic densities are related
by a linear volume fraction scaling, while the partial and intrinsic velocity fields are
identical, i.e.

ρµ = φµρµ∗, uµ = uµ∗, (2.5)

where the superscript ∗ denotes an intrinsic variable. The partial and intrinsic pressures
can, however, be related by any functional form provided (2.4c) is not violated.
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Figure 2. A sketch of the coordinate system Oxz and the particle size-distribution within an
avalanche. The large arrows indicate that velocity shear leads to recirculation.

2.2. Compatibility with existing avalanche models

Following Gray & Thornton (2005), a coordinate system Oxyz is defined, with the
x-axis pointing down a chute inclined at an angle ζ to the horizontal, the y-axis
across the chute and the z-axis as the upward pointing normal as shown in figure 2.
The constituent velocity uµ and the bulk velocity u have components (uµ, vµ, wµ)
and (u, v, w) in each of these directions, respectively. The intrinsic densities of the
large and small particles, ρ l∗ and ρs∗, are assumed to be equal to the same constant
value. It follows from (2.1) and (2.4a), that the bulk density is also constant

ρ = ρ l∗ = ρs∗ = const, (2.6)

and, using (2.4b), that the bulk mass balance reduces to ∇ · u = 0, which implies that
the bulk velocity is incompressible. Note, that in this two-constituent formulation
these densities are actually equal to the mean solids fraction multiplied by the bulk
solid density. Assuming that the normal acceleration terms are negligible in (2.3), the
sum of the normal components of the large and small particle momentum balances
implies that the normal component of the bulk momentum balance is

∂p

∂z
= −ρg cos ζ, (2.7)

where g is the coefficient of acceleration due to gravity. As ρ is constant and the
free-surface is traction free, this can be integrated through the avalanche depth h to
show that the bulk pressure is lithostatic

p = ρg(h − z) cos ζ. (2.8)

The segregation–remixing theory is therefore consistent with the two key assumptions
made by most current avalanche models (e.g. Grigorian, Eglit & Iakimov 1967;
Kulikovskii & Eglit 1973; Eglit 1983; Savage & Hutter 1989; Iverson 1997; Gray,
Wieland & Hutter 1999; Iverson & Denlinger 2001; Gray 2001; Gray et al. 2003)
that the bulk velocity u is incompressible and the overburden pressure p is lithostatic.

2.3. The particle-size segregation and diffusive remixing model

One of the key ideas behind Gray & Thornton’s (2005) particle-size segregation
model was that as the small particles percolate downwards through the grain matrix,
they carry less of the overburden pressure, and so, the large particles must carry
proportionately more of the load. Gray & Thornton (2005) introduced a new pressure
scaling, in which the partial pressure was linearly related to the bulk pressure by a
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factor f µ

pµ = f µp (µ = l, s). (2.9)

The factors f µ determine how much of the overburden pressure is carried by each of
the constituents. Often f µ is assumed to be equal to φµ in standard mixture theories,
but here it is the perturbations away from φµ that are crucial for the segregation. The
functions f µ satisfy three constraints; from the definition of the bulk pressure (2.4c)
the factors f µ must sum to unity

f l + f s = 1, (2.10)

and when either one of the constituents is in a pure phase they must carry all of the
load

f µ = 1 when φµ = 1 for µ = l, s. (2.11)

A wide class of functions satisfy these constraints, but this paper focuses on the model
suggested by Gray & Thornton (2005), where

f l = φl + bφsφl, f s = φs − bφsφl, (2.12)

and b is the magnitude of the non-dimensional perturbation away from φµ. Not
only are these the simplest non-trivial functions that satisfy the constraints (2.10) and
(2.11), but, as will be shown in § 2.4, they lead to the same segregation flux function
as used by Savage & Lun (1988) and Dolgunin & Ukolov (1995).

The second key assumption in Gray & Thornton’s (2005) size-segregation model
was the form of the interaction drag βµ. It consisted of a linear velocity-dependent
drag and a grain–grain surface interaction force p∇f µ that combined with the partial
pressure gradient −∇(f µp) to leave a net contribution of −f µ

∇p in the constituent
momentum balances. These terms are retained in the current model and an additional
remixing force −ρd∇φµ (e.g. Bear 1972; Morland 1992) is added, that seeks to drive
grains of phase ν towards areas of lower concentration. The interaction drag is
therefore

βµ = p∇f µ − ρµc(uµ − u) − ρd∇φµ (µ = l, s), (2.13)

where c is the linear drag coefficient and d determines the strength of the diffusive
forces. Note, that the definitions (2.4) imply that (2.13) satisfies the constraint that
β l + βs = 0, so they cancel out in the bulk momentum balance.

Assuming that the acceleration terms are negligible in the normal component of
the constituent momentum balances (2.3), and substituting the pressure scaling (2.9),
the lithostatic pressure gradient (2.7) and the interaction drag (2.13), implies that the
normal flux of particles µ is

φµwµ = φµw + (f µ − φµ)(g/c) cos ζ − (d/c)∂φµ/∂z (µ = l, s). (2.14)

The first term on the right-hand side transports the concentration φµ with the bulk
normal velocity w, the second term is responsible for segregation and the third term
for remixing. Since (2.12) implies that f l − φl is positive and f s − φs is negative,
the segregation terms drives an upward flux of large particles and a corresponding
downward flux of fines. The remixing term, on the other hand, drives fluxes of large
and small particles towards regions of lower concentration. Substituting (2.12) and
dividing through by the volume fraction φµ implies that the normal velocities are

wl = w + qφs − D
∂

∂z
(lnφl), ws = w − qφl − D

∂

∂z
(lnφs), (2.15)
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where the mean segregation velocity q and the diffusivity D are

q = (b/c) g cos ζ, D = d/c. (2.16)

Although the theory introduces a pressure perturbation coefficient b, a linear drag
coefficient c and a diffusive force coefficient d , equation (2.16) shows that they appear
as ratios, so there are in fact only two independent coefficients q and D in the
theory. Physically, q determines the maximum percolation velocity of the grains,
while the diffusivity D determines the strength of the remixing. The segregation
velocity increases with the particle-size ratio, the strength of gravity and the degree
of dilation/agitation, which is itself dependent on the local shear rate in these
fluid-like high-density flows, while the diffusivity increases with agitation/shear-rate.
Experiments suggest that the dependencies are non-trivial. For instance, Hajra &
Khakhar (2004) used rotating drum experiments, such as those illustrated in figure 1,
to infer that even small size differences are sufficient to cause segregation, but once
the size ratio reaches a critical value the driving force for segregation saturates.
This is consistent with the notion that once sufficient dilatation has occurred for
the grains to percolate freely, there is no further increase in the segregation velocity.
One of the benefits of our theory is that it provides a natural way of introducing
gravity into the segregation velocity. As opposed to the phenomenological theory
of Dolgunin & Ukolov (1995) and the statistical mechanics/information entropy
approach of Savage & Lun (1988), this automatically sets a direction for segregation
and accurately reflects the gravity-driven nature of the kinetic sieving process. Unlike
Savage & Lun’s model, our theory does not yield formulae for the other functional
dependencies of the segregation velocity q or the diffusivity D. In order to apply the
model, either empirical laws for the dependencies must be determined, or, average
values must be measured in a given experiment. Ultimately, it may also be possible
to use particle-dynamics simulations or a modified statistical mechanics approach
similar to Savage & Lun (1988) to yield more detailed theoretical information about
the appropriate functional forms.

The mathematical structure of the expressions for the segregation velocities in (2.15)
imply that, in the absence of diffusion, the large particles will rise towards the surface
until there are no more small particles to fall down through the gaps and a pure
phase of coarse grains is formed. Conversely, the fines will percolate down until there
are no more large grains to be levered upwards. The steady-state configuration in
the absence of diffusion therefore consists of a pure layer of large particles on top
of a pure layer of fines as observed in the experiments of Savage & Lun (1988).
The segregation–remixing model introduces a diffusive term into (2.14) that competes
against particle-size segregation, resulting in a smoothly distributed inverse grading
through the depth of the avalanche.

2.4. The segregation–remixing equation

The velocities induced by particle-size segregation and diffusive remixing are assumed
to be of the same order of magnitude as the bulk normal velocity. Since the shallowness
of the avalanche implies that the lateral velocity components are much larger than
the normal velocity, it follows that, to leading order, the lateral components of the
constituent velocities are equal to the bulk velocity

uµ = u, vµ = v (µ = l, s). (2.17)

An equation for particle-size segregation and diffusive remixing is obtained by
substituting the partial densities (2.5) and the constituent velocities (2.15) and (2.17)
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into the small particle mass balance (2.2) to give

∂φs

∂t
+

∂

∂x
(φsu) +

∂

∂y
(φsv) +

∂

∂z
(φsw) − ∂

∂z
(qφsφl) =

∂

∂z

(

D
∂φs

∂z

)

. (2.18)

The first four terms sweep the local concentration along with the bulk flow, while
the fifth term is responsible for particle-size segregation and the sixth for diffusive
remixing.

Anticipating that this equation will be used in conjunction with existing avalanche
models, it is non-dimensionalized by using the standard avalanche scalings. These
assume that the avalanche thickness H is much smaller than its length L, so that
the aspect ratio ε = H/L ≪ 1. Incompressibility then implies that typical downslope
velocity magnitudes U are much larger than the normal velocity which is of magnitude
HU/L. The variables are therefore non-dimensionalized by the scalings

(x, y, z) = L(x̃, ỹ, εz̃), (u, v, w) = U (ũ, ṽ, εw̃), t = (L/U )̃t, (2.19)

where the tilde denotes a non-dimensional variable. Substituting these into (2.18)
and dropping the tildes and the superscript s implies that the non-dimensional
segregation–remixing equation is

∂φ

∂t
+

∂

∂x
(φu) +

∂

∂y
(φv) +

∂

∂z
(φw) − ∂

∂z
(Srφ(1 − φ)) =

∂

∂z

(

Dr

∂φ

∂z

)

, (2.20)

where the non-dimensional segregation and diffusive-remixing numbers

Sr =
qL

HU
, Dr =

DL

H 2U
, (2.21)

control the length and time scales for segregation and remixing in avalanche flows. The
theory therefore contains only two parameters. The segregation flux F = −Srφ(1 − φ)
has the same structure as that proposed by Savage & Lun (1988) and Dolgunin &
Ukolov (1995). The three models are therefore closely related and the experimental
comparisons that they made provide considerable evidence that the simple form of the
pressure perturbations in (2.12) is, in fact, a very good model. Savage & Lun (1988)
used splitter plates to collect samples from different heights and different positions
in the flow and were thus able to build up a two-dimensional steady-state picture
of the particle size distribution along the length of the chute. They showed that, as
an avalanche with a homogenous inflow concentration moved down the chute, three
concentration shocks were generated. Two of these were initiated at the release point,
and separated material that was still close to the inflow concentration from pure
coarse grains above and pure fines below. The third was created some way down the
chute, once the flow had fully separated to create an inversely graded stratified layer.
Exactly the same structure develops naturally in models using the segregation flux
F = −Srφ(1 − φ) in the absence of diffusion.

2.5. Boundary conditions

Provided there is no erosion or deposition, the appropriate conditions at the surface
and base of the flow are that there is no flux of small particles across the boundary.
This can be expressed mathematically by using a limiting argument (e.g Chadwick
1976) at a surface of discontinuity to show that (2.20) implies that the jump must
satisfy

[[φ(u · n − vn)]] − [[Srφ(1 − φ)k · n]] = [[Dr (∂φ/∂z)k · n]], (2.22)
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where the jump bracket [[f ]] = f + −f − is the difference of f evaluated on the forward
‘+’ side and rearward ‘−’ side of the surface, k is the unit vector normal to the chute,
n is the unit normal to the surface and vn is its normal speed of propagation.
At the free surface F = z − zs(x, y, t) ≡ 0, the normal n = ∇F/|∇F | and vn satisfies
∂F/∂t + vn|∇F | =0 (e.g. Sethian 1999). Since there are no small particles outside the
avalanche, φ+ ≡ 0, and the surface boundary condition reduces to

−φ

[

∂z

∂t
+ u

∂z

∂x
+ v

∂z

∂y
− w

]

= Srφ(1 − φ) + Dr

∂φ

∂z
on z = zs, (2.23)

where φ− is assumed to be equal to φ. The square-bracketed term on the right-hand
side of this equation is simply the kinematic boundary condition at the surface of the
avalanche, which is identically zero (e.g. Gray et al. 1999, 2003). A similar argument
holds at the base of the flow, z = zb(x, y, t). The surface and basal no flux conditions
therefore reduce to

Srφ(1 − φ) + Dr

∂φ

∂z
= 0 on z = zs, zb. (2.24)

This nonlinear boundary condition insulates the segregation and remixing taking
place within the avalanche from the exterior.

3. Steady-state solutions for uniform flows

For steady-uniform flow of constant height, the scalings (2.19) imply that the
non-dimensional thickness can without loss of generality be chosen to be unity.
Assuming lateral uniformity in concentration and that the time-derivatives are zero,
the segregation–remixing equation (2.20) and no normal flux boundary conditions
(2.24) reduce to

−Sr

∂

∂z
(φ(1 − φ)) = Dr

∂2φ

∂z2
(0 < z < 1), (3.1)

Srφ(1 − φ) + Dr

∂φ

∂z
= 0 (z = 0, 1). (3.2)

Integrating (3.1) with respect to z implies that the small-particle normal flux, Srφ(1 −
φ) + Dr∂φ/∂z, is equal to a constant throughout the flow. This has the same form
as both the boundary conditions (3.2), which implies that the constant of integration
is equal to zero. Note, that for a steady state to exist, the boundary fluxes must
be equal to one another, as they are here. The resulting first-order ODE is a form
of the logistic equation and can be integrated again by separation of variables.
However, the boundary conditions (3.2) are not sufficient to determine the constant
of integration and a further criterion must be imposed. The mean concentration in
the layer 0 � z � 1 is therefore assumed to be

φm =

∫ 1

0

φ dz, (3.3)

which implies that the steady-state concentration

φs =
(1 − exp(−φm/z0)) exp((φm − z)/z0)

1 − exp(−(1 − φm)/z0) + (1 − exp(−φm/z0)) exp((φm − z)/z0)
, (3.4)

where

z0 =
Dr

Sr

=
D

Hq
=

d

Hbg cos ζ
, (3.5)
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Figure 3. The one-dimensional steady-state small-particle concentration distribution φ as
a function of avalanche depth z is plotted for z0 = 0, 0.02, 0.1, 0.5, ∞ and for (a) φm = 0.5
and (b) φm = 0.3. The parameter z0 =Dr/Sr determines the non-dimensional length scale for
order-unity changes in concentration. The horizontal dot-dash line corresponds to no diffusive
remixing (z0 = 0) and the dashed line corresponds to no segregation (z0 = ∞). For z0 ∈ (0, ∞)
graded particle-size distributions develop with increasingly sharper grading as z0 decreases.

is the non-dimensional segregation–remixing length scale over which there are order
unity changes in concentration. Note, that this is independent of the linear drag
coefficient c and is equal to the reciprocal of the Péclet number Pe = qH/D. In
time-dependent problems, the mean concentration φm is set by the initial conditions,
since the boundaries insulate the problem from the exterior. The one-dimensional
time-dependent segregation–remixing equation therefore has the property that the
final steady state is uniquely determined by the initial conditions.

Steady-state solutions are illustrated in figure 3 for z0 = 0, 0.02, 0.1, 0.5, ∞ and
φm = 0.3, 0.5. All of them have ‘S’-shaped profiles typical of the logistic equation.
When there is no diffusive remixing (z0 = 0), the particles separate out to form two
distinct inversely graded layers with all the large particles on top of all the fines and
a sharp concentration jump at z = φm. This is the case that Savage & Lun (1988),
Gray & Thornton (2005), Thornton et al. (2006) and Gray, Shearer & Thornton
(2006) investigated theoretically and experimentally. At the opposite extreme, when
there is no segregation (z0 −→ ∞), the particles are uniformly distributed with
concentration φ =φm throughout the depth of the avalanche. For values of z0 in the
range (0, ∞), there is a balance between the effects of particle-size segregation and
diffusive remixing, and distributed inversely graded concentration profiles develop.
For low values of z0, there is a rapid transition from small to large particles with
increasing height with states approaching the pure phases at the top and the bottom
of the avalanche. For larger values of z0, the grading appears linear with depth
and the surface and basal values may be far from the pure states. The parameter
dependence of φ(z) on z0 is shown in figure 4 for φm =0.3, 0.5. These show that when
z0 = 0, a concentration shock lies at z =φm and that as z0 is increased, the contours
fan out, so that by z0 = 1 there is a very weak inverse grading through the avalanche
depth. When φm = 0.5, the contours of φ are straight lines in (z0, z) space. For a given
contour level φ∗ the equation of the line is

z = 1
2

− z0 ln

(

φ∗
1 − φ∗

)

. (3.6)
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Figure 4. Contour plots showing the variation in the small-particle concentration φ as a
function of depth z and the segregation/diffusive remixing length scale z0 =Dr/Sr . (a) Average
concentration φm =0.5; (b) φm = 0.3.

In particular, the φ = 0.5 contour lies at a constant height z = 1/2, so that the profiles
all intersect at the same point in figure 3. When φm is not equal to a half, the contours
are no longer straight, but bend over with increasing z0 as shown for φm = 0.3 in
figure 4. As a result, the profiles do not neatly intersect at (φ, z) = (φm, φm) for
φm 	= 1/2, as shown in figure 3.

4. Comparison with particle dynamics simulations

Accurately determining the volume fraction of small particles in a thin rapidly
flowing granular avalanche presents many technical challenges and until non-invasive
techniques are improved, samples of material must be collected from the deposit once
the flow has come to rest. Savage & Lun (1988) developed a splitter-plate arrangement
that collected the outflow in a series of five bins. By varying the length of the chute
they were able to build up a detailed spatial picture of the size distribution and the
evolution towards a fully segregated state, although the binning procedure did not
have enough resolution to determine the position of the concentration shocks that
they observed through the sidewall. Dolgunin & Ukolov (1995) binned samples from
the cascading jet of material as it exited the chute. They claimed that their procedure
could measure the outflow velocity, the particle concentration and the solids volume
fraction. However, while the trajectory of a particle at a known height and exit velocity
can be calculated using the laws of a free-falling body, the inverse problem does not
have a unique solution. Additional assumptions must be made about the mapping
from the chute exit to the bin, which are not described in the paper. Furthermore,
their formula (17) for the exit velocity is dependent on time, which is incorrect, so
there is an element of doubt about the data that they collected.

Until better experimental data become available, the best way of assessing the
validity of the model is by using particle dynamics simulations which allow the
local particle size distribution to be calculated. Kharkar et al. (1999) have performed
a series of simulations using inelastic particles of different densities and sizes and
at different solids volume fractions. The regime appropriate for size segregation in
a dense granular avalanche is illustrated in their figure 19. In order to make a
comparison to the segregation–remixing theory, their data must be transformed from
number densities nl and ns for the large and small particles of diameters d l and ds ,
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Figure 5. Comparison of the steady-state concentration with equilibrium particle dynamics
simulations (Khakhar et al. 1999) for (a) large and small particles and (b) heavy and light
particles. The size segregation simulations are performed with equal density inelastic particles
with a size ratio σ = 0.9 on a slope inclined at ζ = 24◦ and the data are indicated with grey
circular markers. These are in good agreement with the segregation–remixing solution (thick
solid line) with φm = 0.55 and z0 =0.25. The horizontal dashed line marks the approximate
position of the avalanche/saltation layer interface, where the solids volume fraction ν drops
well below 0.4 in the particle dynamics simulations as indicated by the square markers and
the thin solid line. The density simulations (b) are performed for equal size particles with a
density ratio of 0.5 on the same slope and the density concentration is accurately modelled
with parameters φm = 0.57 and z0 = 0.12.

respectively, into the volume fraction φ of small particles. The relevant definitions
are given by Savage & Lun (1988) in equations (3.4), (3.5) and (4.7) who define the
number density ratio and the particle diameter ratio as

η =
ns

nl
, σ =

ds

d l
, (4.1)

and the corresponding small-particle concentration is then

φ =
ησ 3

1 + ησ 3
. (4.2)

Figure 5(a) shows the transformed data from the particle dynamics simulations as
grey circular markers at eight heights in the flow. A very good fit with the steady-state
small-particle concentration is obtained by setting the value of the single parameter
z0 = 0.25 once the mean concentration is determined to be φm = 0.55. In particular,
the fit is much better than that obtained by using kinetic theory with an effective
granular temperature as a fitting parameter. The solids volume fraction ν in the
particle dynamics simulations has been plotted on the same graph. This illustrates
that while it is approximately constant throughout much of the depth (ν ≃ 0.45−0.55)
consistent with the mono-disperse computations of Silbert et al. (2001) and Louge
(2003), it drops significantly in the uppermost near-surface layer. This indicates the
presence of what may be best described as a diffuse saltation layer at the free surface,
where the dominant interactions are due to binary collisions rather than sliding or
rolling contacts. There is therefore no reason to assume that the simple segregation–
remixing theory will apply here and we have indicated the approximate position of
the transition with a horizontal dashed line.
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A similar segregation–remixing theory has been used before by Khakhar et al. (1997)
to model density segregation in rotating drums and they obtained good agreement
with experiments, Monte Carlo methods and particle dynamics simulations. Further
evidence that the proposed segregation–remixing theory is also useful for modelling
density segregation in granular avalanches is given by comparing it to the particle
dynamics simulations of Khakhar et al. (1999). Transforming the data shown in their
figure 9 for inelastic particles with a density ratio of 0.5 into a volume fraction φ

of dense particles, a good fit to the segregation–remixing theory is obtained with
parameters φm = 0.57 and z0 = 0.12. This predicts that dense particles concentrate
themselves near the base of the flow and the light particles rise to the surface as
anticipated. Once again, the agreement is better than that obtained with kinetic
theory with an effective temperature that is used as a fitting parameter, which
provides further evidence that this structure is useful for modelling segregation in
dense granular avalanches.

At present, the theory does not provide explicit formulae or empirical relations for
the magnitude of the segregation and remixing coefficients and their dependence on
the particle-size, particle density, local shear rate, slope inclination, degree of agitation
or solids volume fraction. In particular, it is unclear which effect will dominate when
there are both size and density differences between the particles. However, particle
dynamics appears to provide a useful avenue for answering these questions and
calibrating the model.

5. Time-dependent solutions for uniform flows

Time-dependent exact solutions to the segregation–remixing equation (2.20) have
been constructed when the diffusion coefficient Dr is equal to zero, and the
system reduces to a quasi-linear equation, which can be solved by the method of
characteristics (Gray & Thornton 2005, Thornton et al. 2006, Gray et al. 2006). It is
of interest to construct solutions to the full parabolic equation (2.20) when the effects
of diffusion are included.

5.1. Uniform flow

To construct time-dependent solutions for segregation and remixing, the flow is
assumed to be laterally uniform and there are no lateral gradients in the small-
particle concentration

u = u(z), v = v(z), w = 0, O < z < 1, (5.1)

∂φ/∂x = 0, ∂φ/∂y = 0. (5.2)

These conditions imply that the segregation–remixing equation (2.20) reduces to

∂φ

∂t
− Sr

∂

∂z
(φ(1 − φ)) = Dr

∂2φ

∂z2
, (5.3)

which is independent of u(z) and v(z). This is important, because it implies that the
results hold for arbitrary lateral velocity profiles, from plug flow, which is usually
assumed in most avalanche models, to simple shear (Savage & Lun 1988) and
nonlinear profiles (e.g. Silbert et al. 2001). Equation (5.3) must be solved subject to
an initial concentration profile φ0(z) and the no-flux boundary condition (2.24) at the
surface and base of the avalanche

t = 0 : φ = φ0(z), (5.4)
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z = 0, 1 : Srφ(1 − φ) + Dr

∂φ

∂z
= 0. (5.5)

The reduced segregation–remixing equation (5.3) is a nonlinear parabolic PDE that
is subject to nonlinear boundary conditions (5.5) at its upper and lower boundaries.

5.2. Transformation and general solution of the equations

The method of solution relies on a sequence of transformations of the segregation–
remixing equation (5.3) and the initial and boundary conditions (5.4)–(5.5) to obtain
a linear system that can be solved by standard methods. The first transformation
scales the time and space axes and introduces a concentration mapping

t =

(

Dr

S2
r

)

τ, z =

(

Dr

Sr

)

ζ, φ = 1
2
(1 + Ψ ), (5.6)

to obtain a convenient parameter independent form of the equations

∂Ψ

∂τ
+ Ψ

∂Ψ

∂ζ
=

∂2Ψ

∂ζ 2
(0 < ζ < ζ0), (5.7)

τ = 0 : Ψ = Ψ0 = 2φ0 − 1, (5.8)

ζ = 0, ζ0 : 1
2
(1 − Ψ 2) +

∂Ψ

∂ζ
= 0, (5.9)

where ζ0 = 1/z0 is the number of non-dimensional segregation–remixing lengths z0

that fit into an avalanche of unit height. The concentration mapping has transformed
the segregation–remixing equation (5.3) into the Burgers equation (5.7), whose
properties are well known (e.g. Whitham 1974; Billingham & King 2000; Cantwell
2002). In particular, solutions to (5.7) may be constructed by using the Cole–Hopf
transformation (Hopf 1950; Cole 1951)

Ψ = − 2

χ

∂χ

∂ζ
, (5.10)

to map the Burgers equation into the heat equation

∂χ

∂τ
=

∂2χ

∂ζ 2
(0 < ζ < ζ0), (5.11)

and the initial and boundary conditions to

τ = 0 : χ = χ0(ζ ) = exp

(
∫ ζ

0

− 1
2
Ψ0(ζ

′) dζ ′
)

, (5.12)

ζ = 0, ζ0 :
∂2χ

∂ζ 2
= 1

4
χ. (5.13)

The transformed problem (5.11) is now linear with linear boundary conditions (5.13).
In order to further simplify the boundary conditions (5.13), a solution of the form

χ = exp(ατ )ω(ζ, τ ), (5.14)

is sought, which implies that

αω +
∂ω

∂τ
=

∂2ω

∂ζ 2
, (5.15)
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τ = 0 : ω = χ0(ζ ), (5.16)

ζ = 0, ζ0 :
∂2ω

∂ζ 2
= 1

4
ω. (5.17)

At steady state, ∂2ωs/∂ζ 2 =αωs and hence the boundary conditions reduce to

ζ = 0, ζ0 :
(

α − 1
4

)

ωs = 0. (5.18)

Since the steady-state solution ωs(ζ ) is not equal to zero at the boundaries, equation
(5.18) implies that both boundary conditions (5.17) are satisfied provided α = 1/4.
Putting α = 1/4 in the transformation (5.14) implies that the term ∂2ω/∂ζ 2 − ω/4
is common to equation (5.15) and the boundary conditions (5.17), which necessarily
implies that ∂ω/∂τ = 0 at ζ =0, ζ0. The boundary values therefore remain constant
and equal to their initial values throughout the evolution of the transformed problem.
Hence, the initial condition (5.16) implies that the boundary conditions (5.17) reduce
to

ζ = 0 : ω = 1, (5.19)

ζ = ζ0 : ω = χ0(ζ0) = exp

(
∫ ζ0

0

− 1
2
Ψ0(ζ

′) dζ ′
)

. (5.20)

Considerable simplification of the problem can be achieved by breaking the solution
down into a steady-state and time varying part, i.e.

ω(ζ, τ ) = ωs(ζ ) + ωτ (ζ, τ ), (5.21)

where the steady-state solution is

ωs = χ0(ζ0)
sinh(ζ/2)

sinh(ζ0/2)
− sinh((ζ − ζ0)/2)

sinh(ζ0/2)
. (5.22)

Reversing the transformations (5.6), (5.10) and (5.14) implies that the corresponding
steady-state concentration φs(z) is equal to

φs =
1

2

[

1 − χ0(ζ0) cosh(z/(2z0)) − cosh((z − z0)/(2z0))

χ0(ζ0) sinh(z/(2z0)) − sinh((z − z0)/(2z0))

]

, (5.23)

where χ0(ζ0) = exp{−(2φm − 1)/(2z0)}. Using the definitions of the hyperbolic
functions, it is easy to show that (5.23) is precisely the same as the steady-state
solution (3.4) investigated in § 3. The remaining time-dependent part of the solution
is of standard form

∂ωτ

∂τ
=

∂2ωτ

∂ζ 2
− 1

4
ωτ , (5.24)

τ = 0 : ωτ = χ0(ζ ) − ωs(ζ ), (5.25)

ζ = 0, ζ0 : ωτ = 0. (5.26)

Using the separation of variables ωτ = T (τ )Z(ζ ) gives

Z′′ + (λ2 − 1/4)Z = 0, ζ = 0, ζ0 : Z = 0, (5.27)

and

Ṫ + λ
2T = 0, (5.28)
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where the prime denotes d/dz and the over dot d/dt . The only non-trivial solutions
of the eigenvalue problem (5.27) are

λ
2 =

(

nπ

ζ0

)2

+ 1
4
, Z(ζ ) = sin

(

nπζ

ζ0

)

, (5.29)

where n is a strictly positive integer. The corresponding solutions for T are

T = exp

(

−
(

n2
π

2

ζ 2
0

+
1

4

)

τ

)

, (5.30)

and the principle of linear superposition implies that the general solution is

ωτ =

∞
∑

n=1

An exp

(

−
(

n2
π

2

ζ 2
0

+
1

4

)

τ

)

sin

(

nπζ

ζ0

)

, (5.31)

where the coefficients An are determined from the initial conditions. At τ = 0,
equation (5.31) reduces to a Fourier sine series for ωτ (ζ, 0) and the Fourier coefficients
An are therefore given by

An =
2

ζ0

∫ ζ0

0

ωτ (ζ, 0) sin

(

nπζ

ζ0

)

dζ. (5.32)

From the initial condition (5.25), An can be decomposed into the difference of two
integrals, An = Bn − Cn, where

Bn =
2

ζ0

∫ ζ0

0

χ0(ζ ) sin

(

nπζ

ζ0

)

dζ, Cn =
2

ζ0

∫ ζ0

0

ωs(ζ ) sin

(

nπζ

ζ0

)

dζ. (5.33)

The first integral, Bn, is dependent on the functional form of the transformed initial
conditions, χ0(ζ ), defined in (5.12). The second integral Cn is dependent on the steady-
state solution ωs , given by (5.22), and can be integrated for general initial conditions
since the factor χ0(ζ0), defined in (5.20), is constant, i.e.

Cn =
8nπ

ζ 2
0 + 4n2

π
2
(1 − (−1)nχ0(ζ0)). (5.34)

Putting the transformations (5.6), (5.10), (5.14) and (5.21) together, it follows that
the general solution of the segregation–remixing equation (5.3), for arbitrary initial
concentration profiles φ0(z) and the no-flux boundary conditions (5.5) at the surface
and base of the avalanche, is

φ = 1
2

(

1 − 2

ω

∂ω

∂ζ

)
∣

∣

∣

∣

ζ=z/z0, τ=Sr t/z0

(5.35)

where ω is decomposed into a steady and time-varying part

ω = ωs + ωτ . (5.36)

These functions and their derivatives are given by

ωs = χ0(ζ0)
sinh(ζ/2)

sinh(ζ0/2)
− sinh((ζ − ζ0)/2)

sinh(ζ0/2)
, (5.37)

∂ωs

∂ζ
=

1

2
χ0(ζ0)

cosh(ζ/2)

sinh(ζ0/2)
− 1

2

cosh((ζ − ζ0)/2)

sinh(ζ0/2)
, (5.38)
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ωτ =

∞
∑

n=1

An exp

(

−
(

n2
π

2

ζ 2
0

+
1

4

)

τ

)

sin

(

nπζ

ζ0

)

, (5.39)

∂ωτ

∂ζ
=

∞
∑

n=1

nπ

ζ0

An exp

(

−
(

n2
π

2

ζ 2
0

+
1

4

)

τ

)

cos

(

nπζ

ζ0

)

, (5.40)

where the coefficients χ0(ζ0) and An must be determined from equations (5.20) and
(5.32), respectively, once the initial conditions are specified. Some simple cases are
investigated in § § 5.3–5.5.

5.3. Homogeneous initial conditions

Consider the problem in which the avalanche is laterally uniform and is assumed to
have a homogeneous initial distribution of small particles with depth

φ0 = φm, 0 < z < 1, (5.41)

where φm is the mean concentration. To construct the solution the constant χ0(ζ0) and
the Fourier coefficients An in the general solution (5.35)–(5.40) must be determined.
The concentration mapping (5.8) implies that

Ψ0 = Ψm = 2φm − 1, 0 < ζ < ζ0. (5.42)

Since Ψm is constant, the integrals (5.12) and (5.20) imply that

χ0(ζ ) = exp(−Ψmζ/2), χ0(ζ0) = exp(−Ψmζ0/2), (5.43)

which determines the unknown function in the integral (5.33) for Bn and the constant
in the expression (5.34) for Cn. Using the standard result

∫

exp(αζ ) sin(βζ ) dζ =
exp(αζ )

α2 + β2
(α sin(βζ ) − β cos(βζ )), (5.44)

it is easy to show that the integral

Bn =
8nπ

Ψ 2
mζ 2

0 + 4n2
π

2
(1 − (−1)n exp(−Ψmζ0/2)), (5.45)

and hence that the coefficients in the Fourier sine series are

An =
8nπζ 2

0

(

1 − Ψ 2
m

)

(

Ψ 2
mζ 2

0 + 4n2
π

2
)(

ζ 2
0 + 4n2

π
2
) (1 − (−1)n exp(−Ψmζ0/2)). (5.46)

The solution is therefore given by equations (5.35)–(5.40) with χ0(ζ0) defined in (5.43)
and the Fourier coefficients An given by (5.46). The results for varying Dr and
φm = 0.55 and 0.35 are illustrated in figure 6. The upper middle panels show the case
for Dr = 0.02 and Sr = 1.0, which implies that the segregation–remixing length scale
z0, defined in (3.5), is equal to 0.02. For short time, the concentration stays close to
its initial value φm throughout most of the depth, and the small particles percolate
downwards levering the large grains upwards. At the free surface, the boundary
condition (5.5) ensures that no more small particles are fed in and the large particles
start to accumulate. As opposed to the solutions of Gray & Thornton (2005), the
large particles do not separate out into a pure phase across a concentration shock.
Instead there is a continuous sharp transition over the segregation–remixing length
scale z0. After t = 0.4, a region approaching a pure phase of large particles begins to
develop at the surface. A similar smooth transition to a pure phase of small particles
develops at the bottom. With increasing time-both the pure phase regions grow in size
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Figure 6. Contour plot showing the evolution of the small-particle concentration φ as a
function of the avalanche depth z and time t . The concentration is laterally uniform throughout
the flow field and the solution holds for arbitrary downslope and cross-slope velocities. Initially,
the flow is homogeneously distributed with depth with a mean concentration φm = 0.55 in the
left-hand panels and φm = 0.35 for those on the right. The segregation number Sr = 1 in all
of the panels and the diffusive remixing coefficient Dr takes the values 0, 0.02, 0.1 and 0.5
from top to bottom, respectively. Lighter greys correspond to larger concentrations of small
particles.
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and by t = 1.0 the large central region at the initial concentration φm is annihilated,
and instead there is rapid transition from an almost pure phase of large particles to
almost pure fines. By t =2, the solution is very close to the steady states discussed in
§ 3.

It is interesting to contrast the low diffusion limit with the shock solutions derived
by Gray & Thornton (2005) for Dr =0. As illustrated in the top two panels of figure 6,
these consist of three linearly time-dependent shocks

z1 = Srφmt, 0 � t � 1/Sr ,

z2 = 1 − Sr (1 − φm)t, 0 � t � 1/Sr ,

z3 = φm, t > 1/Sr ,

⎫

⎪

⎬

⎪

⎭

(5.47)

that separate regions of constant concentration from one another

φ =

⎧

⎪

⎨

⎪

⎩

φm, z1 � z � z2, t � 1/Sr

1, 0 � z < z1, 0 � z � z3,

0, z2 � z � 1, z3 � z � 1.

(5.48)

Qualitatively the solutions look very similar to those when the segregation–remixing
length scale z0 = 0.02, except that the rapid smooth transitions are replaced by shocks.
Indeed, the time scale for the annihilation of the initial concentration region at t = 1/Sr

is almost identical to the low remixing case.
For larger segregation–remixing lengths z0, order-unity changes in concentration

occur over longer length and time scales by virtue of the scalings (5.6) and the
contours for Dr = 0.1 and 0.5, shown in the lower middle and bottom panels of
figure 6, are much more spread out than when Dr = 0.02. An important feature of
these solutions is that the initial condition (5.41) is incompatible with the boundary
conditions (5.5) at z = 0, 1, since the initial conditions are uniform with depth and the
boundary conditions necessarily imply that there is a finite gradient at the boundary.
The net result is that as the large particles gather at the free surface, and the fines
percolate to the base, there is a very rapid local adjustment as the solution satisfies
the no normal flux condition (5.5). This adjustment produces large gradients that are
then rapidly diffused into the interior, with the strength increasing with increasing z0.
As a result, the homogeneous triangular region in the shock solutions (5.48) is rapidly
annihilated when Dr = 0.5. Note that the incompatibility of the boundary conditions
is a stern test of numerical methods to solve the segregation–remixing equation. All
of the solutions tend towards the steady-state solutions described in § 3 by t = 2.

5.4. Reverse graded initial conditions

Ensuring that the initial concentration distribution is laterally uniform and
homogeneous with depth is difficult to do experimentally. It is, however, much
easier to create layered initial distributions in the laboratory, and our second problem
is motivated by this. Let us suppose that initially a pure layer of large grains overlies
a pure region of fines with a sharp concentration jump at z = zr , i.e.

φ0 =

{

0, zr < z < 1,

1, 0 < z < zr .
(5.49)

In the absence of diffusive remixing, the shock condition (2.22) reduces to

∂z/∂t = Sr (φ
+ + φ− − 1), (5.50)
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(see also Gray & Thornton 2005), where the concentration above the shock φ+ = 0
and the concentration below the shock φ− = 1. This has the trivial solution

z = zr , t > 0, (5.51)

which implies that the initial condition is a stable solution of pure segregation
equations. When there is diffusive remixing, the sharp interface is diffused. This time,
(5.8) implies that

Ψ0 =

{

−1, ζr < ζ < ζ0,

1, 0 < ζ < ζr ,
(5.52)

where ζr = zr/z0. Integrating over the appropriate ranges, (5.12) implies that

χ0(ζ ) =

{

exp(ζ/2 − ζr ), ζr < ζ < ζ0

exp(−ζ/2), 0 < ζ < ζr ,
(5.53)

and hence the constant (5.20) is simply

χ0(ζ0) = exp(ζ0/2 − ζr ). (5.54)

Equation (5.53) implies that the integral (5.33) for Bn must be split into two parts

Bn =
2

ζ0

∫ ζr

0

exp(−ζ/2) sin

(

nπζ

ζ0

)

dζ +
2

ζ0

∫ ζ0

ζr

exp(ζ/2 − ζr ) sin

(

nπζ

ζ0

)

dζ, (5.55)

which can easily be evaluated using (5.44) to show that

Bn =
−8ζ0

ζ 2
0 + 4n2

π
2

{

exp(−ζr/2) sin

(

nπζr

ζ0

)

− nπ

ζ0

(1 − (−1)n exp(ζ0/2 − ζr ))

}

. (5.56)

The second term in the curly brackets cancels out with Cn, so that the Fourier
coefficients are given by

An =
−8ζ0

ζ 2
0 + 4n2

π
2
exp(−ζr/2) sin

(

nπζr

ζ0

)

. (5.57)

The full solution is therefore given by equations (5.35)–(5.40) with χ0(ζ0) given by
(5.54) and the Fourier coefficients by (5.57). The shock solution for Dr = 0 and the
solutions for three non-zero values of segregation–remixing length z0 are illustrated
in figure 7. The upper middle panels show that for z0 = 0.02, the sharp shock interface
is diffused over a relatively short smooth transition and the solution rapidly attains
its steady state, consistent with the scalings (5.6). As z0 is increased to 0.1, the initial
concentration shock is diffused over a much wider range and takes significantly longer
to reach steady state. The initial discontinuity at z = zr is rapidly smoothed away by
diffusive-remixing and the concentration contours therefore emerge from (zr , 0) with
an infinite gradient. When z0 =0.5, the initial response becomes even stronger, which,
once again, provides a stern test for numerical methods. The solutions tend towards
the steady-state solutions illustrated in figures 3 and 4 with increasing time.

5.5. Normally graded initial conditions

If the initial configuration of § 5.4 is reversed so that a pure region of fines now lies
above the coarse grains with a sharp concentration jump at z = zr

φ0 =

{

1, zr < z < 1,

0, 0 < z < zr ,
(5.58)
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Figure 7. Contour plot showing the evolution of the small-particle concentration φ as a
function of the avalanche depth z and time t . The concentration is laterally, uniform throughout
the flow field and the solution holds for arbitrary downslope and cross-slope velocities. Initially,
the flow is reverse graded with a sharp jump in concentration at zr = 0.5 in the left-hand panels
and zr = 0.3 in the right-hand panels. The segregation number Sr =1 in all of the panels and
the diffusive remixing coefficient Dr takes the values 0, 0.02, 0.1 and 0.5 from top to bottom,
respectively. Lighter greys correspond to larger concentrations of small particles.
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then the grains are unstably stratified and the solution must readjust into a stable
reverse-graded configuration. To construct the solution, the concentration mapping
(5.8) transforms the initial conditions for Burgers equation to

Ψ0 =

{

1, ζr < ζ < ζ0,

−1, 0 < ζ < ζr ,
(5.59)

the second mapping (5.10) therefore implies that

χ0(ζ ) =

{

exp(ζr − ζ/2), ζr < ζ < ζ0,

exp(ζ/2), 0 < ζ < ζr ,
(5.60)

and hence

χ0(ζ0) = exp(ζr − ζ0/2). (5.61)

This determines the steady-state part of the solution (5.37). To construct the time-
dependent part, the integral Bn in (5.33) must be evaluated. The function (5.60) implies
that the integral can be evaluated by splitting it into two parts, as in (5.55), to give

Bn =
8ζ0

ζ 2
0 + 4n2

π
2

{

exp(ζr/2) sin

(

nπζr

ζ0

)

+
nπ

ζ0

(1 − (−1)n exp(ζr − ζ0/2))

}

. (5.62)

The second term in the curly brackets cancels out with Cn and the Fourier coefficients
in the time-dependent solution (5.39) reduce to

An =
8ζ0

ζ 2
0 + 4n2

π
2
exp(ζr/2) sin

(

nπζr

ζ0

)

. (5.63)

The solution is therefore given by (5.35)–(5.40) with the coefficients given by (5.61)
and (5.63) and are illustrated in figure 8 together with the no-diffusion limit derived
by Thornton et al. (2006). This consists of an expansion fan, three shocks and four
pure regions, where the small-particle concentration

φ =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, zr + Sr t � z � 1, 0 � z � z1 ∪ z3,

1
2

(

1 +
z − zr

Sr t

)

, |z − zr | < Sr t, z1 < z < z2,

0, 0 � z � zr − Sr t, & z2 ∪ z3 � z � 1,

(5.64)

the shocks

z1 = zr + Sr t − 2
√

Srzr t, 0 � t � tp,

z2 = zr − Sr t + 2
√

Sr (1 − zr )t, 0 � t � tp,

z3 = 1 − zr , t > tp,

⎫

⎪

⎬

⎪

⎭

(5.65)

and the triple-point

tp =
1

Sr

(
√

zr +
√

1 − zr )
2. (5.66)

The large particles start at the bottom and move downslope until they feel the first
small particles percolating down through the matrix and they then begin to be levered
upwards. The large particles rise though the expansion fan until they reach the top
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Figure 8. Contour plot showing the evolution of the small-particle concentration φ as a
function of the avalanche depth z and time t . The concentration is laterally uniform throughout
the flow field and the solution holds for arbitrary downslope and cross-slope velocities. Initially,
the flow is normally graded with a sharp jump in concentration at zr = 0.5 in the left-hand
panels and zr = 0.7 in the right-hand panels. The segregation number Sr = 1 in all of the panels
and the diffusive remixing coefficient Dr takes the values 0, 0.02, 0.1 and 0.5 from top to
bottom, respectively. Lighter greys correspond to larger concentrations of small particles.
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shock, z2, where they separate out into a pure phase and move straight downstream
again. The small particle paths are similar, except that they start at the top, move
down through the expansion region and separate out into a pure phase at the bottom.
After time tp , the flow has reached a steady state with all the large particles on top
of all the fines.

When z0 = 0.02, the solution looks very similar to the no-diffusion limit except that
the expansion fan is slightly wider and the shocks are replaced by rapid smooth
transitions. The fan spreads out more quickly because diffusive remixing very rapidly
smoothes out the initial discontinuity, which helps the large and small particles to
reach the surface and base of the flow, thus aiding segregation. This effect becomes
stronger at larger values of the segregation–remixing length z0 = 0.1 and 0.5, as
illustrated in the lower-middle and bottom panels of figure 8. For larger z0, the final
grading of the particles is not as strong and the large and small particles therefore
have less far to travel to reach their steady-state positions. The combined effects
of the smoothing of the discontinuity and the particles having less far to travel to
reach their final heights means that steady state is attained faster for larger z0 when
Sr = 1.

6. Time-dependent solutions for plug-flow in a semi-infinite chute

In this section, some simplified time-dependent solutions for segregation and
remixing in a semi-infinite chute are constructed. The method is based on the
observation of Gray & Thornton (2005) that in plug-flow, each moving column of
material is uncoupled from the adjacent columns. The segregation–remixing equation
(2.20) for plug-flow is

∂φ

∂t
+ u0

∂φ

∂x
− Sr

∂

∂z
(φ(1 − φ)) = Dr

∂2φ

∂z2
, (6.1)

where the transport velocity u0 can, without loss of generality, be assumed to be unity
by virtue of the scalings in (2.19). In a frame of reference moving downstream with
speed u0, given by the transformation of variables

t̂ = t − ts, ξ = x − u0t, ẑ = z, (6.2)

the segregation–remixing equation (6.1) reduces to

∂φ

∂t̂
− Sr

∂

∂ẑ
(φ(1 − φ)) = Dr

∂2φ

∂ẑ2
. (6.3)

Since this is independent of the column coordinate ξ , the segregation–remixing
equation in a fixed moving column of material is completely independent of the
segregation taking place in the adjacent columns. Equation (6.3) has exactly the same
form as (5.3), which was investigated in section § 5. The crucial difference is that t̂

replaces t and the transformation (6.2) therefore introduces a time-shift ts into the
general solution given by (5.35)–(5.40). Temporally and spatially varying solutions
can therefore be constructed by considering a series of adjacent material columns, all
moving downslope at speed u0, in which the time-shift ts(ξ ), the coefficient χ0(ζ0, ξ )
and the Fourier coefficients An(ξ ) are functions of the column coordinate ξ .

Consider a steady uniform plug-flow on a semi-infinite chute (x > 0) that is supplied
with granular material with a prescribed concentration distribution from a hopper at
x = 0. The coordinate ξ is used to label each column of material uniquely by using
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either its initial position

ξ = x at t = 0, (6.4)

or its effective position x < 0, assuming that it reaches the mouth of the hopper at
time texit = −x/u0. It follows from (6.2) that at time t , column ξ lies at

x = ξ + u0t. (6.5)

Columns with positive ξ are therefore initially within the avalanche, whilst columns
with negative ξ first enter the avalanche, at x =0, at time texit = −ξ/u0. The transition
point, ξ = 0, between the columns initially within the avalanche and those that
subsequently enter it, is transported downstream with constant speed u0 and has
position xtrans = u0t .

6.1. Steady-state solutions in a semi-infinite chute

Consider the case when the time-shift parameter is equal to the exit time for all
columns irrespective of whether they were initially in the chute or entered it at a later
time, i.e.

ts = −ξ/u0, ∀ξ. (6.6)

The transformation (6.2) and equation (6.5) therefore imply

t̂ = t + ξ/u0 = x/u0, (6.7)

which shows that the time-dependent evolution in a column of material moving
downstream at speed u0 is equivalent to spatial dependence in a fixed frame of
reference. If, in addition, there is no variation in the column parameters χ0(ζ0, ξ )
or An(ξ ) then the solution is completely independent of time and is equivalent to a
steady-state solution of (6.1). For the examples considered in § 5, this implies that
either

φm = const, or zr = const, ∀ξ. (6.8)

The steady-state solutions for a homogeneous, reverse graded and normally graded
inflow into a semi-infinite chute are effectively illustrated in figures (6)–(8), where the
t-axis must now be replaced by x/u0. Another way to see this is that when ∂/∂t =0,
equation (6.1) reduces to

u0

∂φ

∂x
− Sr

∂

∂z
(φ(1 − φ)) = Dr

∂2φ

∂z2
, (6.9)

which can be transformed to (5.3) with the mapping x = u0t . The general solution
given by (5.35)–(5.40) therefore holds with t replaced by x/u0.

6.2. Time-dependent evolution towards a steady state

Solutions that show the time-dependent evolution of the homogeneous, reverse graded
or normally graded solutions towards the steady state in a semi-infinite chute can be
constructed by setting

ts = 0, φm = 0.55 or zr = 0.5 for ξ � 0,

ts = −ξ/u0, φm = 0.55 or zr = 0.5 for ξ < 0,

}

(6.10)

where the parameters φm or zr are equal to the same constant for all columns. For
columns ξ � 0, the time-shift parameter ts =0, which implies that there is no lateral
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variation and the solution is purely time-dependent. For columns ξ < 0, the time-shift
parameter ts = −ξ/u0, which implies that the solution is at steady state, as shown
in § 6.1. The solution therefore consists of two zones: a region that was initially in
the chute that is purely time-dependent; and a steady-state region created by the
columns that enter into the chute. This is illustrated for the initially homogeneous
solution in figure 9 for Dr = 0.1 and Sr = 1. Initially, all the material in the chute
is at the homogeneous concentration φm = 0.55 and once the particles are released
the small particles percolate downwards and lever the large particles upwards. The
no normal flux condition (5.5) together with the incompatibility with the initial
conditions (5.41) creates a diffuse, but rapidly thickening, layer of large particles at
the free surface, and a layer of fines at the base, as shown for t = 0.1, 0.2, 0.3. This
drives the time-dependent solution rapidly towards steady state, which is attained
locally at t = 2. The interface between the laterally uniform time-dependent solution
and spatial steady state lies at the kink in the contours. Since u0 = 1, its position
is the same as the time t in each of the panels. Note, that Gray & Thornton
(2005) have constructed the corresponding solution for no-diffusive remixing in their
figure 6.

Figure 10 shows the corresponding solutions for a reverse graded initial state
with Dr =0.1 and Sr =1. Initially, the particles are sharply normally graded with
all the fines on top of the coarse grains and separated by a concentration shock at
zr = 0.5. The discontinuity is rapidly diffused away, so that significant concentrations
of large particles reach the free surface by t = 0.2. This is much quicker than in
the no-diffusive remixing solution constructed by Thornton et al. (2006), where the
large particles reach the free-surface only at t =0.5. This shows that the remixing
process can help the particles to approach a segregated state more quickly than the
non-diffusive case. By t = 0.5, the large particles arriving at the free surface produce
a diffuse coarse-grain-rich layer that grows in size with increasing time. By t =1.5,
the solution is at steady state in half of the domain and it reaches a local steady state
in x ∈ (0, 3) at t =3. Again the position of transition between the steady state and
laterally uniform region is given by the time t , since u0 = 1.

6.3. Solutions for a time-varying inflow in a semi-infinite chute

The final example shows some solutions in which there are periodic sinusoidal pulses,
which may give some insight into what to expect when this occurs experimentally.
This time

ts = 0, φm = 0.55 for ξ � 0,

ts = −ξ/u0, φm = 0.55 + 0.1 sin(10ts) for ξ < 0.

}

(6.11)

The solution is illustrated in figure 11 for Dr = 0.1 and Sr = 1. For the grains that
were initially in the chute, the time-shift is zero and the columns all have the same
value of φm =0.55, so the solution is identical to the laterally uniform time-dependent
part of the solution illustrated in figure 9. However, the region behind the transition
is not at steady state, because each of the columns has different values of the mean
concentration φm dependent on when they entered the chute. The mean concentration
is determined by the sinusoidal variation in (6.11), which in turn determines the final
steady-state solution (3.4) that a fixed column will tend towards. Since the columns
are moving downstream, the concentration in a fixed frame of reference varies in both
space and time. Sufficiently far downstream, the solutions in each column are close
to their steady state and in a fixed frame of reference this appears as propagating
sinusoidal oscillations in the concentration contours. Note, that Gray & Thornton
(2005) have constructed the corresponding case with no diffusion (see their figure 7).
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Figure 9. A sequence of contour plots showing the temporal evolution of the small-particle
concentration φ as a function of (x, z) for segregation and diffusive remixing in plug-flow. The
bulk flow is from left to right with velocity u0 = 1 and initially the avalanche is homogeneously
mixed with mean concentration φm =0.55. At x = 0, the avalanche is fed with homogeneously
mixed grains of the same concentration φm. The segregation number Sr = 1 and the diffusive
remixing number Dr = 0.1. A local steady state is attained at t = 2. Note that the x-axis may
be considerably elongated in the physical domain because of the differential vertical and
horizontal scalings in (2.19).
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Figure 10. A sequence of contour plots showing the temporal evolution of the small-particle
concentration φ as a function of (x, z) for segregation and diffusive remixing in plug-flow.
The bulk flow is from left to right with velocity u0 = 1 and initially the avalanche is sharply
normally graded at a height zr =0.5, with all the small particles on top of the coarse grains.
At x = 0, the avalanche is fed with normally graded material with a jump in concentration
at z = zr . The segregation number Sr = 1 and the diffusive remixing number Dr = 0.1. A local
steady state is attained at t = 3.
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Figure 11. A sequence of contour plots showing the temporal evolution of the small-particle
concentration φ as a function of (x, z) for segregation and diffusive remixing in plug-flow. The
bulk flow is from left to right with velocity u0 = 1 and initially the avalanche is homogeneously
mixed with mean concentration φm =0.55. At x = 0, the avalanche is fed with homogeneously
mixed grains whose mean concentration varies sinusoidally in time with an amplitude of 0.1
around the background concentration of 0.55. The segregation number Sr = 1 and the diffusive
remixing number Dr = 0.1.
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Both solutions rely that the columns uncoupling in plug-flow. When there is shear
with depth, the sinusoidal oscillations will be sheared over one another, causing
further segregation and remixing.

7. Discussion and conclusions

This paper uses binary mixture theory to derive a model for particle-size segregation
and diffusive remixing in an avalanche composed of large and small particles. The
theory is a generalization of Gray & Thornton’s (2005) model for segregation by
kinetic sieving and uses constituent momentum balances (2.3) to formulate equations
for the normal percolation velocities (2.15) of the large and small grains. This
provides a natural way of introducing gravity and diffusive remixing into the theory
and ensures that the model is consistent with the gravity-driven nature of the kinetic
sieving mechanism. This is a significant advantage over other segregation theories
(e.g. Savage & Lun 1988; Dolgunin & Ukolov 1995) which are independent of
gravity. The theory is designed to be compatible with the assumptions of shallowness,
incompressibility and bulk lithostatic pressure, that are made by almost all current
avalanche models (e.g. Grigorian et al. 1967; Kulikovskii & Eglit 1973; Eglit 1983;
Savage & Hutter 1989; Iverson 1997; Gray et al. 1999, 2003; Iverson & Denlinger
2001; Gray 2001). The segregation–remixing theory can therefore be coupled to these
models to compute segregation and remixing in dynamically evolving avalanches. This
opens up the possibility of coupling the bulk motion to the local size distribution
through the modification of the pore-pressure or the basal friction to investigate
the instabilities that these can generate (e.g. Pouliquen, Delour & Savage 1997;
Pouliquen & Vallance 1999; Iverson & Vallance 2001; Iverson 2003).

Since the boundary conditions (2.24) imply no flux of particles across the free
surface, or the base, the steady-state solution to the segregation–remixing equation
(2.20) is dependent on the initial mean concentration of small particles, as well as
the segregation–remixing length scale z0. This is defined in (3.5) as z0 = Dr/Sr and
shows that there is a competition between the effects of remixing and segregation.
For low values of z0, there is rapid smooth transition from high concentrations of
fines to high concentrations of coarse particles with increasing height. For large z0

the distribution is almost linear with a weak grading of the particles. Elementary
solutions for laterally uniform time-dependent flows have also been constructed by
using the Cole–Hopf transformation (5.10) to obtain a linear PDE that could be
solved by standard methods. This allows us to write a general-solution (5.35)–(5.40)
for arbitrary initial conditions φ0(z). Three specific solutions are investigated when
the initial concentration is (i) homogeneous, (ii) reverse graded, and, (iii) normally
graded. These show that, for low z0, the shocks, in the pure segregation solutions
obtained by Gray & Thornton (2005) and Thornton et al. (2006), are replaced by
rapid smooth transitions. In the homogeneous problem, the boundary conditions are
not compatible with the initial conditions, this drives a rapid readjustment to the
solution that becomes increasingly strong with larger z0. In plug-flow, the segregation
and remixing in each material column is independent of that taking place in adjacent
columns. As a result, it is possible to construct time-dependent two-dimensional
solutions for plug-flow in a semi-infinite chute. These show that if the boundary
conditions at the inflow are held constant, a spatial steady state develops. If they
are varied, oscillatory solutions can be generated. The time-dependent and plug-
flow segregation–remixing solutions constructed in this paper are considerably more
general and complex than the corresponding pure segregation solutions investigated
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by Gray & Thornton (2005) and Thornton et al. (2006). However, the pure segregation
limit is a very useful approximation when the diffusive remixing is small, as it is
possible to construct steady-state and fully dynamic solutions (Gray et al. 2006) that
take account of shear through the avalanche depth. There are also situations, such
as in modelling the formation of patterns, when the simplicity afforded by the pure
segregation limit gives us a two-tone picture that is easier to understand than the full
solution.
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