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SUMMARY 

In this paper a general design method is described that can significantly reduce the effort needed for form 

finding grid shells consisting of flexible members. This design method is based on particle-spring models for 

simulating the behaviour of a grid shell during construction. Hereby, the stress limitations that follow from the 

material properties are taken into account to modify the grid shell geometry with a minimal deviation from a 

pre-defined target shape. It is demonstrated how a simple design tool can generate the geometry, internal forces 

and the support reactions with satisfactory accuracy. 
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1. INTRODUCTION 

Grid shells that consist of flexible members have, in 

addition to the favourable properties of shell 

structures in general, the considerable advantage 

that they can be erected in very little time. 

Construction takes place in three steps. First, a flat 

grid of straight members is laid out, making the 

creation of the connections very easy. The joints are 

not fully fixed and allow some sliding of the laths. 

Second, construction struts push the grid to its shell 

form by lifting it from within. Third, the edges and 

connections are fixed and the struts are removed. 

Prominent examples of grid shells that were 

constructed this way are the Mannheim grid shell 

[1] and the Weald and Downland grid shell [2]. 

The downside of this type of grid shell is that due to 

the flexibility of the members the final shape is hard 

to predict with sufficient accuracy. It highly 

depends on equilibrium between the forces in the 

laths. The forces in the laths are introduced by the 

bending process, in addition to self weight and 

external loading. 

Very little is known about the methods that have 

been used to analyse existing grid shell structures. 

In design of the earliest grid shells extensive use 

was made of physical models. Nonetheless, a 

considerable number of laths broke during 

construction. Repairing or replacing broken laths 

was a time consuming and expensive part of the 

construction process [1], In recent grid shell 

projects far less broken laths were reported which 

shows that progress has been made [2]. However, 

most commercially available structural analysis 

software is ill suited for analysing grid shell 

structures. For example, very large displacements 

(nonlinear) are not supported and neither is form 

finding or the application of initial stresses. 

Therefore, at Delft University of Technology in the 

Netherlands, two research projects were undertaken 

on grid shell design and analysis [3], [4]. The latter 

of these projects led to the method proposed in this 

paper. 

Barnes [5] has described how dynamic relaxation 

can be used in form finding tension structures. 

Killian and Ochsendorf [6] elaborated on this by 

describing how particle-spring systems can be used 

in the form finding of shell structures. Hereby they 

considered axial forces only. For grid shells 

consisting of flexible members the bending 

moments are especially important, as shown by 

Adriaenssens and Barnes [7]. Therefore, their 

method needed to be extended. 

In this paper an intelligent design method is 

proposed that is capable of form finding and 

analysing grid shell structures. This method has 
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been implemented in a computer program and has 

been applied as a design tool. The method has been 

demonstrated in several case studies that are 

included at the end of this paper. 

2. GENERAL APPROACH 

The process starts by specifying a target shape for a 

grid shell. This shape can include functional and 

aesthetic requirements of the geometry. However, 

this shape does not need to be structurally feasible. 

The proposed method designs a grid that fits closely 

to this target shape. Hereby, the method takes the 

following requirements into account. 

 Equilibrium of the grid 

 Stress limits of the laths 

 Best approximation to the target shape 

The grid of laths is modelled by a particle-spring 

model [6] which consists of particles that are 

connected by translational and rotational springs 

(Fig. 1). The particles represent the positions of the 

connections between the laths. The self weight and 

the mass of the laths are lumped to these particles. 

The springs represent the elastic properties of the 

lath parts between the connections. Several types of 

springs are possible, where each type corresponds 

to an action that works on the laths of the grid shell. 

In this paper the two main actions, namely normal 

and bending action, are considered. Torsion springs 

that represent torsion action on the laths have not 

been included as yet. 

 
Figure 1. A simply supported lath modelled by particles 

and springs 

First, an initially flat grid is generated. This grid is 

pulled towards the target shape, which causes the 

grid to curve and gives some change of the spacing 

between the grid points. The pulling continues until 

the limit stress prevents a closer agreement with the 

target shape. Second, the grid edges are fixed and 

the pulling forces are removed, after which the final 

equilibrium geometry is obtained. This approach is 

similar to the erection method of a grid shell. 

The first procedure is called shape approximation. 

The second procedure is called spring back analysis 

(Fig. 2). Both procedures are based on dynamic 

relaxation for finding a shape that is in equilibrium. 

The result is the geometry of the grid shell as it can 

stand on its own.   

 
Figure 2. Diagram of the proposed design method 

3. GRID SHELL MODEL 

Each particle has three coordinates representing its 

location in space. The particles are connected by 

translational springs and rotational springs. The 

translational springs have an initial length equal to 

the target spacing of the laths. During computation, 

the actual spring length is the distance between the 

two particles that the spring connects. The spring 

exerts forces F onto the particles in the direction of 

the spring. 

F = k u    (1) 

In this, u is the difference between the current 

spring length and the initial length (negative when 

the distance is smaller than the initial length) and k 

is the spring stiffness.  

Since the deformation of the laths due to bending is 

much larger than due to extension, the extensional 

stiffness of the springs does not need to be the exact 

value of the stiffness of the laths without losing 

much accuracy. Moreover, it appeared to be useful 

to implement a non-linear constitutive relation for 

the translational springs, giving greater speed of 

calculation without losing numerical stability (Fig. 

3). 

In addition, a small translational spring stiffness can 

be specified for simulating sliding of the 

connections when the grid is pushed into shape. The 

rotational springs represent bending of the lath parts 

between the connections. The initial angle of the 

springs is zero. During a computation these angles 

change (Fig. 4) 
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Figure 3. The translational springs can be linear as well as 

non-linear 

 

 
Figure 4. The angle between three particles that are 

connected by a rotational spring 

The moment M due to this angle is 

θ

EI

M  =    (2) 

where EI is the flexural rigidity of the laths and 

 is the lath spacing (see Appendix). The 

moment exerts forces on the three particles 

connected by the rotational spring (Fig. 5).  

 
Figure 5. The moment in a rotational spring is converted 

to equivalent forces acting on the connected particles 

4. DYNAMIC RELAXATION 

For finding equilibrium states of a particle-spring 

model the dynamic relaxation method has been 

applied. Each particle is loaded by internal and 

external forces. If not in equilibrium, the resultant 

of all forces on a particle accelerates this particle in 

the direction of the resultant (Newton’s second law 

of motion). In some time step this will lead to a new 

position of the particle. The basic idea of dynamic 

relaxation is that this dynamic equilibrium will 

come to rest in a static equilibrium. 

In each time step the resultant forces are 

recalculated for every grid point. The resultant force 

consists of forces due to bending in the grid point 

itself, bending in the grid points connected to it, 

forces due to extension and external forces.  

The computation of the particle velocities and 

displacements is performed by the implicit fourth 

order Runge Kutta method [8]. 

The particle mass and the particle damping do not 

need to have the actual values because the objective 

is computing the equilibrium situation and not the 

actual dynamic response. A successful method to 

prevent oscillations around the equilibrium state is 

monitoring the total kinetic energy of the system. 

When a peak is detected all velocities are set to zero 

[5]. 

5. APPROXIMATION TO A TARGET SHAPE 

As explained in Section 2, the particle-spring 

system is fitted to a target shape. This is 

accomplished by adding extra springs – called 

shaping springs – to the system. Each shaping 

spring connects a particle to the surface of the target 

shape. The shaping springs are directed vertically to 

the target shape. The shaping springs have zero 

initial length, therefore, they pull the particles 

towards the target shape (Fig. 6). The bending 

stresses in the laths are computed from the moments 

in the particle-spring system. If somewhere the 

stress limit according to Eurocode 5 [9] is 

exceeded, the stiffness of the connected shaping 

spring is reduced. The procedure continues until the 

internal forces are in equilibrium with the shaping 

forces. The result is a grid geometry that matches 

the target shape as accurately as possible and fulfils 

the stress conditions everywhere (Fig. 7). 
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Figure 6. Shape approximation 

Normal stresses, shear stresses and torsion stresses 

are not checked in the proposed method. However, 

it would not be difficult to implement this too. For 

reducing torsion stresses the stiffness of two 

shaping springs need to be reduced. These are 

located on either side of the grid point on the lath 

perpendicular to the considered lath part. 

6. SPRING BACK ANALYSIS 

After the shape approximation is concluded, the 

edges of the particle-spring system are fixed. The 

equilibrium length of the translational springs is set 

to the current local lath spacing . The stiffness of 

the translational springs can be set to linear elastic 

with a value of  


EA

k =     (3) 

where EA is the axial stiffness of the laths. This 

represents the fact that the lath connections are 

fixed now and cannot slide over each other 

anymore. The shaping springs are removed from the 

particle-spring system and the final equilibrium 

geometry is computed with dynamic relaxation 

(Fig. 8). 

7. CASE STUDIES 

The proposed method has been implemented in a 

design tool and then applied to several case studies. 

Use has been made of the C++ programming 

language with graphic user interface. The run time 

strongly depends on the number of laths. The 

computation times of the examples presented below 

are 1 minute for example 1, 10 minutes for example 

2 and 30 minutes for example 3, on a modern 

computer.  

Example 1  

Figure 9 shows a simple target shape representing a 

dome like structure. 

 
Figure 7. Flow chart of the first calculation procedure 

(shape approximation) 

As input parameters properties are used that are 

based on timber of strength class C18 (Table 1). 

Applying the design tool to this example results in 

the grid geometry shown in Figure 10. The 

geometry has changed only slightly in the spring 

back analysis, nevertheless this cannot be neglected 

(Fig. 11). 
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Figure 8. Flow chart of the second calculation procedure 

(spring back analysis) 

 
Figure 9. Target shape of example 1 

Table 1. Input values of example 1 

Grid point spacing 0.8 m 

Lath cross section dimensions 34 x 28 mm 

Elastic modulus (E0;mean) 9000 

N/mm2 

Characteristic bending strength (fm;k) 18 N/mm2  

Initial spring stiffness of shaping 

springs 

10.0 kN/m 

Spring stiffness of translational 

springs 

1100.0 

kN/m 

Density 320 kg/m3 

 
Figure 10. Final grid geometry of example 1 

 
Figure 11. Detail of the grid geometry before (red) and 

after (blue) the spring back analysis 

Example 2 

Figure 12 shows a target shape that consists of two 

intersecting ellipsoids. More detail is not necessary 

for application of the design tool. The calculation is 

run twice with values of the mechanical properties 

corresponding to timber of strength class C22 and 

D35 (Table 2). For these strength classes Young’s 

moduli are equal, but the bending strength differs. 

The lath dimensions are kept equal for both 

calculations. The resulting final geometries are 

shown in Figure 13 and 14. The calculation based 

on C22 shows a larger deviation from the target 

shape than that of D35, because the stiffness of the 

shaping springs has been reduced more during the 

shape approximation procedure. This demonstrates 

that the final geometry depends strongly on the 

timber strength. 

In both instances the design tool has found the grid 

shell geometry that is as close as possible to the 

target shape. 
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Figure 12 Target shape of example 2 

Table 2. Input values of example 2 

Grid point spacing 0.6 m 

Lath cross section dimensions 34 x 28 mm 

Elastic modulus (E0;mean) 10000 

N/mm2 

Characteristic bending strength (fm;k) 

C22 

22 N/mm2  

Characteristic bending strength (fm;k) 

D35 

35 N/mm2  

Initial spring stiffness of shaping 

springs 

10.0 kN/m 

Spring stiffness of translational 

springs 

1100.0 

kN/m 

Density (average) 450 kg/m3 

 
Figure 13. Grid geometry of example 2 for C22 

 
Figure 14. Comparison of generated geometries with 

timber strength class D35 (blue) and C22 (red) 

Example 3 

Spectacular shapes can be constructed as a grid 

shell. The design tool is capable of finding the 

geometry for very elaborate target shapes. An 

example is the grid shell in Fig. 15 and 16. For this 

example the values of the mechanical properties are 

based on that of a composite material with which 

very high bending strengths can be obtained (Table 

3). 

Table 3. Input values of example 3 

Grid point spacing 0.3 m 

Lath cross section dimensions 50 x 50 mm 

Elastic modulus (E0;mean) 25000 

N/mm2 

Characteristic bending strength (fm;k) 450 N/mm2  

Initial spring stiffness of shaping 

springs 

10.0 kN/m 

Spring stiffness of translational 

springs 

6250.0 

kN/m 

Density (average) 1800 kg/m3 

 

Figure 15. Final grid geometry of example 3 

 
Figure 16. Grid shell geometry viewed from within 
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8. DISCUSSION 

The proposed design method assures that the grid 

shell geometry can be build with no laths breaking. 

In general, the final grid geometry needs covering 

with roofing materials. These can also contribute to 

the strength of the grid shell structure. The final 

grid geometry plus roofing materials need checking 

for load combinations related to the serviceability 

limit state and ultimate limit state. For this 

commercially available software for structural 

analysis can be used. The designed grid shell can be 

easily imported as a dxf type file. 

The proposed method might also be applied to grid 

shells with triangular spacing or hexagonal spacing. 

Usually, these shells are made of metal members 

that are not curved and have no intitial stresses. In 

this application of the proposed method the initial 

moments and normal forces have no physical 

meaning but are used to obtain a regularly shaped 

grid. However, this idea needs to be tested. 

As clearly demonstrated in the examples the target 

shape does not need to be a nearly feasible grid 

shell. In fact almost any geometry can be used as a 

starting point of the form finding process. This is 

considered a considerable advantage of the 

proposed method. 

9. CONCLUSIONS 

This paper presents a new design method for grid 

shells consisting of flexible members. The method 

uses particle-spring models that are curved over a 

target shape. When implemented in user-

friendly software the method is fast, reliable 

and easy to apply. Moreover, the target shape does 

not need to be specified in great detail, which 

makes it possible to apply the method in a 

conceptual design stage. 

It is believed that the proposed method removes an 

important obstacle for realising many more 

beautiful and efficient grid shell structures. 
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APPENDIX: DEFORMATION OF A SINGLE 

LATH 

In this appendix the deformed shape of an initially 

straight lath is analytically derived and numerically 

computed. The results have been used to check the 
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implemented particle-spring method. It may also 

serve as a bench mark for future implementations of 

the proposed method. 

where 
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Figure 17 shows a simply supported lath deformed 

by two horizontal forces F =18093 N. Before 

loading the lath was straight with a length L = 7.6 

m. The flexural rigidity is EI = 95000 Nm2. 

 

and  
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Figure 17. Deformation and loading of the considered lath These functions can be evaluated for different 

values of a and b to find for which the potential 

energy is at a minimum. This is the case for a = 

2.01 m and b = -0.0280 m. The resulting 

deformation w is plotted in Fig. 19. 

 

In the analytical calculation the principle of 

minimum potential energy is used to determine the 

deformed shape. To this end, the deflection w of the 

lath is assumed as 

It is noted that the accuracy of the potential energy 

solution depends on how well the initially assumed 

functions were chosen. 

3
sin sin

s s
w = a b

L L

 
  (4) 

In the numerical calculation the particle-spring 

method has been used. The particle distance is 0.2 

m. The iterations were continued until the force 

resultant was less than 0.05 N for each particle. Fig. 

19 shows the numerical result as well. The 

analytical result and the numerical result agree very 

well. 

Note that w is a function of s, which runs along the 

deformed shape of the lath. Note also that if s = 0 or 

s = L then w = 0, therefore, w fulfils the kinematic 

boundary conditions (Fig. 18), which is necessary 

for application of minimal potential energy. 
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Figure 18 Two components are assumed to make up the 

deformed shape of the lath (a =1, b = 1) 

The values of a and b need to be found for which 

the system has a minimum potential energy. The 

potential energy of the system is 
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Figure 19. Comparison between the analytical and 

numerical deformation [m] of an initially straight lath)   (5) 
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