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ABSTRACT

The gquasilinear theory of collisionless test particle
diffusion in stochastic magnetic fields is extended to
include the effects of finite gyroradius ; and particle
drifts (including magnetic trapping). A canonical frame-
work is used, in which both the criterion for onset of
stochasticity and the diffusion tensor scale with field-
particle coupling coefficients g,- The g, contain all
the information about a given pa;ticle‘s ;nperturbed orbit
and the perturbation fields with which it interacts. The
modification of transport due to finite p and drifts is
thus found by comparison of the g, including these effects
to their driftless, p-+o limit. ;t is found that runaway
electron confinement is substantially improved over earlier,
driftless estimates, and that trapped particles in micro-
turbalence ought not be stochastic. The perturbations from
proposed ripple injection schemes are large enough to induce

stochasticity for certain classes of particles.
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I. TINTRODUCTIOM

This paper deals with the effects of finite gyroradius,
particle drifts, and magnetic trapping on particle diffusion
due to magnetic perturbations of axisymmetric toroidal con-

. . X L ) 1,2,3
figurations. DProvitus authors have made the anproximation
in which particies exictly follow stochastic magnetic field
lines. We find thal inclusion of realistic orbit character-

istics can substantially reduce the transport rute rvom that

found by those previous "line-following" theories.

We consider two types of magnetic perturbations: those
arising from microturbulcnce,l e.g. from drift or tearing
modes, and those arising from a colierent magnetic "ripple"
field, due zither Lo colil errors or introduced intentionally
as in ripple injection schemes.4 We also consider two types
of particie orbits, trapped and untrapped, and three gereral
classes of particles, thermal electrons, thermal ions, and
runaway «lectrons (specics labels s=e,i, and r, respectively).
In principle, the formalism is applicable to that class of
particles in tihe intermediate region between trapped and passing,
where the rapid change in the bounce freguency S with bounce
action Iy is c¢rucial to understanding stochastic effects. How-

=7 and the

zy=r, similar problems have been treated elsewhere,5
~rzsent work excludes this regine.

The principle results are® :

'3) The diffusion of passing particles in turbulence is
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reduced by three effects. In order of decreasing importance, -
these are
(i) an averayging over the mode profile due to guiding-center
dr .fts,
(ii) a shift due to drifts of the radius at wrich a particle is
resonant with a given mode, and

(iii) an averaging over the mode profile due to finite gyroradius.

(b) Trapped particles in turbulence arc not expected to be
stochastic, for reasonable turbulence levels.

{c) In a ripple field, passing particles not too far from the
separatrix separating trapped from passing can be stochastic,

for perturbation fields of strength exceeded by proposed ripple
injection schemes. (Trapped particles in ripple are not explic-
itly considered here, but preliminary indications are that they

are at least as stochastic as the class of passing particles

just mentioned.) This calculation is totally collisionless, and

12

thus studies a regime different from those considered previouslyg"

for ripple-~induced transport.

The problem is treated using a Hamiltonian framework, which
deals succinctly with the unperturbed motion, and isolates the
resonances due to the perturbuation simply and explicitly. The
quasilinear diffusion tensor D we use was developed in this frame~-
work by Kaufman,l3 and the overlap criterion for onset of sto-
chasticity is that used by Chirikov.7 Here the generai abstract

quantities in those developments arc explicitly evaluated, for



the various specific cases we study.

Section II describes the toridal coordinate system we shall
us2 in the subsequent development. In Sec. III the canonical
formalism, in torms of which'Q_and the overlay criterion are
phrased, 18 describeid, and the forml3 for D is given. Formal

-
expressions for the overlap criterion in this framework’' are

developed in Sec. IV.

Soth D and the overlap criterion involve a set of field-
varticle coupling cocfficient g. , Which succinctly express all
the information about a given p;rticle‘s :rajectory and the per-
tarbation fields with which it interacts, The modifications of
particle transport due to realistic orbit characteristics (hence
the contribution of the present work beyond that in Refs. 1 and 2)
may be seen by comparison of the expression for 9, including these
characteristics, to the expression for 9, in the ;ero gyroradius,
line-fnllowing limit. Accordingly, in Sec. V we evaluate 9y
and compare it to the line-following limit assumed in previous

theories. Further comparison is made in Sec VII.

In Seo. VI various quantities of the canonical formalism,
abstractly represented in Refs. 7 and 13, are explicitly evalu-
ated, and their physical content discussed. This readies the
canonical machinery to make physical statements. This is done
in Sec. VII, where the results already noted are demonstrated

and elaborated upon.




II. GEOMETRY

The formalism to be employed in this papey is in principle
applicable to any axisymmetric eguilibrium confiyuration, but we
shall chiefly have in mind the tokamak goemetry, illustrated in
Fig. 1. We parametrize real space by the orthogonal curvilinear
coordinates quz {(1,6,¢), where ¢ is the toroidal angle, x is the
radial coordinate, constant on a given flux surface, and f cor-
responds to the poloidal angle, generalized to apply to noncir-
cular poloidal cross-sections, reducing to the usual pouloidal
angle in the particular case of circular cross-sections, (we do
not refer to this angle coordinate by the usual 0, tc avoid
confusion of this symbol with the canonical angle variables 9,
to be introduced in Sec. III.} In terms of the covariant com~

5 z A° - 3x/3g" of the unperturbed vector potential

ponents A
éo, and in a gauge in which A§==0, the poloidal and toroidal

components of the magnetic field B are given by

.1 c ol
B_= - (g% g")? 30%30, B, = (g% ") 52a%0q , (1)
P $ t R
N 2

where the g = QEq”{ are the diagonal elements of the metric
tensor. In particular, v_:gc"==R_2 (R is the major radius), and,
generalizing the definition of minor radius r to noncircular
cross sections, gB Er-z. Fully specifying a by taking A¢=ch

one has

Bp=—R-l(aa/ar),oru=-—frdr‘RBp, (2)

NN



and

J
~—

. 20,
q—rBt/RBp=—uA5/du. (

It is convenient to further define B~ B} , B=B/B ,

b = d z
B Bp/B and bt Bt/B

III. DIFFUSION TENSOR, CQUPLING COEFFICIENTS

In this section we present the form for the diffuison tensor
E~developed in Ref. 13, and introduce the canonical quantities in
terms of which the present work is expressed. We do not rederive
D here, but instead only sketch the origin of its form, indicating
its structural similarity to more familiar forms. The expression
for D involves the square of field-particle coupling coefficients
9y 4 which succinctly express all the information about the inter-
action of a given particle with the perturbing spectrum, includinsg
the full nature of the particle trajectory (e.g. finite gyroradius
and particle drifts). The 9, play a central role in determining

both,Q\and the stochasticity criterion, and in seeing the modi-

fication by the present work of previous results.

Following Ref. 13, we consider the diffusion of a particle
in the space Iz (u,Jb ,P¢) of canonical momenta which are invari-
ants in the absence of the perturbing fields. For the axisymmetric
geometries we consider here, these invariants are:

1) the gyroaction u vaf/z Qc (where ch eB/mc), i.e.

= (mc/e)ll , where {i is the usual magnetic moment,



(2) the loungitudinal invariant ("bounce action") Jb' and
{3) the canonical angular momentum P¢. It is P¢ which
determines the flux surface ab(the "banana center")
about which the particle moves, and it is thus chiefly
diffusion in P¢ which determines radial particle trans-
port.
Conjugate to these momenta are the cocrdinates
St (Og. Cb . 9), with Og the gyrophase, ub the phase of the bounce
motion, and ¢ the bounce-averaged value of tcroidal angle ¢.
(Note that the concept of “bounce motion" applies to a particle
which is passing, as well as to one which is trapped. For passing
particles the bounce time s is given by the connection length gR
divided by the parallel velocity W!') In the absence of the peyr-

turbation, the Hamiltonian Hy is a function only of the invariants

I , and the D thus evolve linearly in time, 0= Q1) =9 Hu/a I=(a,9,,0

~¢).

Here & is the bounce-averaged gyrofrequency, Qb is the bounce
frequency, and Q¢ is the bounce-averaged toroidal drift (the

"banana drift").

The diffusion tensor in I space is given Dby B

D =zrlg I, alfstnsle, -0 . (4)

Here a labels the components of the perturbing field, with com-
ponent a having freguency Wy Each of the components of the
vector § = (lq,Qb,l¢) may assume any integral value. From the

§-function in Eq. (4), we read off the resonance condition



O=w_ -2-0 . (5)

Finally, the field-particle coupling coefficients g, are
c2fined by

I, a) ey 2T a0 4 Yy e a tztzy) (e

]
where z:'(u,;) is a particle's phase-space position, r (2) is its
real-space position, given z, and v (z) is its velocity. Aa(x)
is the vector potential describing both the electric and magnetic

parts of contribution a to the perturbation (we work in radiation

gauge, 42 =0). One sees that 9, is just the Fourier coefficient
of the first-order perturbing Hamiltonian Hl= vEIc‘lj . a8 ¢ 1.e.
a 4
Hl(z,t)=g§gg($.a) exp 1(L-0-a t) . (7

One notes the structural similarity of D in Eg. (4) to the
more familiar expression for the gquasilinear diffusion coefficient
in linear momentum space for an unmagnetized plasma, with purely

electrostatic perturbations:
09 (p) = (2073 >k fe v k) [Pk km s luy ~k - ¥) e)

The analog to g, here is e$ (k), again the Fourier coefficient of

the perturbing Hamiltonian.

If interpreted literally, expression (4) is singular at



each of the wave-particle resonances, and zero elsewhere.
However, the non-vanishing Kolmogorov entropy in the sto-
chastic state and the consequent nonlinear mixing of orbits
ensures that the resonances are smoothed, so that for per-
turbation strength sufficiently large that the motion is
stochastic, the £ sum is to be interpreted as a suitable inte-
gral, as discussed in Ref. 1. In the next sectioa we consider
the perturbation strength reguired for the onset of stochas-
ticity.

IV. STOCHASTICITY CRITERIA (FORMAL)

In order that expression (4) for the diffusion tensor be
valid, the perturbation strength must be large enough that the
sotion of a particle in I space is stochastic in nature. If the
perturbation is smaller than this,g&vﬁj&.equal zero instead of
the value given by Eg. (4). 1In this section, we develop yeneral
expressions for the required perturbation strength for the onset
of stochasticity, similar to those of an analysis by Chirikov,7

employing the widely used rescnance overlap criterion.

One proceeds by using Hamilton's equation for a system with
unperturbed Hamiltonian HO(;), and perturbation of the form of
Eq. (7). We assume that the particle has momentum I * 1, , where
£1 is a value of [ satisfying resonance condition (5).‘ We first
consider the particle motion keeping only the (i, a) component of
Hy and its complex conjugate, in which case the perturb.d problem

is exactly soluble. One has
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e
i

—ig.ql exp i(g-Q—mat)+c.c. , (9)

and

grb-e 22 QD) -w *E-30/3F - 8T, (10)

where 6I £ I~I ., and we have expanded { (I) about 8I =0 and
used (5) in obtaining {10). Defining wl =L+0 —wgt (absorbing
the a-dependence into the . when used as a subscript), we may

combine Egs. {(9) and (10) to give

. -1 L
Ve = Mg IZgE.SLn We o (11)

where M; 22 -(39/3I) & . This is just the equation for a par-
ticle of mass M, moving in a one-dimensional sinusoidal potential
of amplitude lg;{. Particles well-trapp=zd in the sinusoidal wells
osvillate at freguency wg ; given by

. (12)
Using (9) and (12), one sees that the phase points z corresponding
to such particles make a maximum excursion A ;Qin momentum space

given by

i
A1y =2l2gp/u,l =129, m0%, (13)
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and corresponding excursicn ., in L-space,
:

1

I, :(3@/3‘1)-:&\2%1\19’]* . (14)

>

L“n‘.’..‘,’ = (d:l/x ;[) .

From Egs. (12) and (i4), one notus that

wy = L AHQ . {15)

Turning now to consideration of motion under the influence
of all the components (&, a), one expects that the motion will
become stochastic when the excursion AL, (or AQQ) due to one
componeni is large enough to put the phuse pcint within a dis-

tance 4 ;2.(or A@F.) of the resonance point 12, of another com-

ponent.

To write down explicit expressions for this verbally
described criteriaon, one must know thz spacing between the
resonance points Lo for the particular perturbation being con-
sidered. As noted in the Introduction, we shall consider two
types of perturbations here, a turbulent spectrum, consisting
of many incoherent, radially localized modes, and a ripple
spectrum, consisting of a single, totally coberent, time-
independent perturbation. 1In both cases, the physical mechanism

of radial transport comes from the change AR, , of the bounce

b e

frequency with change A rzin radial position being large enough
to allow the particle to come into resonance with another com-

ponent (L', a') . For the turbulent spectrum the spacing dt



-12-

petween successiive resonances 1s given by the physical radial

distancoe betwean the surlaces on o which the modes arce loalized,

Et fi/m . (o “i Lo g typical lon gyroraliuc, and mois g
typical poloidal mode nunmbeey ) the criterjicn Zor stochastizity
for the turbulent spectruin may thus be written
) 2
Lo rﬁ/zt) . (1)

For the ripple spectroun, which is radially unloncalized and

has only a single component a, the radial resonance spacing e
is determined differently.  The resonance spacing .. A1, in the

., direction of 2 space ia given by Aﬁh:rno - 10-20. This i5 wiler

than the spacing Db Alb =y for the lb direction. Thus, a particle

moves along a chain of successive resonances 0=12'- . (r,,}, where

L= b, Rt R, L2

oy

', +.., With £ the unit vector in the n, OF
7 B8 direction. Using this condition for two adjacent resonances,

viz. L+Q(r ) =0, (2+8)- 9(r1+'%9 =0, and writing 2 (c, +° )=

ey

!, . one obtains the stochasticity criterion (L Qigi»iﬁb;

o (rg) +A

or sguaring both sides for convenience and using Bg. {15},
2 )2 (17)
< \ !
1< (ug/:b) .

Equivalently, given an exXpression for 2 (r) , one can expanrd

Q (rq‘+6r) about ¥, and obtain criterion (17) in a form involving

5r explicitly. The expression so obtained has the same form as
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Egq. (16),
1 (L /) . (18)

V. FIELD-PARTICLE CQUPLING COEFFICIENTS

In the past two sections, we have seen that the coupling
coefficients g. play a central role in both the stochasticity

criteria (through . or . r. ‘S,P_c) and in the form for D .

d
K

We now ulopt forms for the phase functions r(z) and v(z) which

include finite gyroradius and particle drifts, and use them in

cxpression (6) to obtain a moro explicit expression for the 9g-
Comparison of this expression to its zero-gyroradius, driftless
limit will show the modifications by these effects of previous

results,l'2 in situations to which those results apply (viz.

turbulent spectrum, passing particles).
1. Particle Trajectories

We make the usual separtation of ¢ and v into the con-

tributions from guiding-center motion and gyromotion:

g=R+p , v=R+p . (19)
The gyromotion is described by
0. )=p(& sin €_+ a
pl g p (& sin g x4 cos Og) s (20)

p(0.) =0 ol8 cos ©_-Bx4& sin O
e 8y ol g a si g) ]
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and the guiding-center position R is modelea by

b+-L1cos Cb) (21)

+ P (bO O‘b+ b]. sin f;‘vb) + 4 {4+ -,hl sin fi?b)
{;rom this, E too amy be written down directly, if desired.)
The projection of R(Ob) onto the poloidal plane is illustrated
in Fig. 2. Here, Ty is the flux surface about which a particle
drifts in the course of its bounce motion, and 4y is the "banana
width", the size of the excursion from 2y which the particle
makes, in units of uo.

The secular motion of the particle is described by the terms
botﬁ)and ®., For a trapped particle (Fig. 2a), b =0 , correctly
modeling the fact that the only secular drift for such particles
is the toroidal banana drift @, b, For passing particles (Fig.

2b), bozzl, so that a particle makes one complete circuit poloid-

ally each bounce period.

The terms in bl and 0y model both drifts normal to 8, and

the modulation of W‘due to the mirroring effect of the | B-well.
The separation of the parallel from the perpendicular effects may
be explicitly accomplished, decomposing the vector glz ﬁrbl-ké R¢l,
into its parallel and perpendicular components. Defining

Ry TBR /Rt {8 x 8) + B, , one obtains

Ry, = byfby+ b Rb) Ry = byrby=b Réy - (22)



Thus, in cases where . B effects dominate those of perpen-

dicular drifts, setting Rl*::D yields jl/bl =r‘bt/Rlap..q

For particles ncar the transition from trapped to passing,
the higher harmonics (i.e. terms like sin m Gb, cos m Ob) of the
bounce mction becomes appreciable, and the model (21} for R may
be inadequate. We shall henceforth exclude particle in this
transitional, "separatrix" region from consideration. Related
problems dealing with this reqime have beun treated by Smith

6

and Kaufman,5' and by Chirikuv.7

2. Evaluation of 9

We now evaluate g,. For the turbulent spectrum, gtrﬁ!ﬁ,
so we neglect the contribution from the term 5+ A. For the
ripple spectrum, because k; p 5 p/a <<l (a is the minor radius at

the limiter), $d 0 7 -A~A-¢d6  $=0, so again the P A

g
contribution is negligible. Now writing A(R+ p)= A(R) etkto
where k 1s the local wavevector, we perform the integral over
gyrophase Cg:

. =3 . I i . i .
gg ¢ -ezn T’ [dg, fae RraR a0 et Qelk-p

= —e(2n)-2j'd@be_i Yy Objdd)e‘i g¢'¢!3'lj (R) 7, (k_,_p)e—i g % .
¥ (23)
Here and henceforth, we set m=c=1 for notational simplicity.
The phase Gk, defined by k+* p=k,p sin (Og-—Ok), is unimportant,

gince it islgzlwhich appears in gquantities of interest to us here.
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We therefore drop it from explicit notation. 1In cbtaining (23),

)

we have used the familiar Bessel identity
- -i90 i in "
J.Y,(;/):(Zn) lgsdnellJelysz.n; . (24)

Due to the axisymmetry, the only quantitiss in (23) depen-
dent upon ? are A (R) and e 1P ¥ rhe integral over 4 is thus
simply the Fourier transform of A (R). Writing A(R) © A («, b, 1)
= yf'f A, b, 2,) ety ¥ (b is the B ~ coordinate of the guiding B),

»
and 9 =7+ &4 (Qb) [where from (21), 6§ ¢ (Ob) = ':;1 sin ’.“b] , one has

4y = - © (217t da Op, et Yy p ReA (s, b, 2,) ety (ki
(25}
Because we are considering perturbations which are either
low or zero frequency {m << Qi) , 1n order that condition (5) be

satisfied and also that g, appreciable, we henceforth always take
e =0 . (26)

Since D~ ¥, &Lg =0 implies that {i is still a good invuriant
e

under the perturbation.

For the ripple problem, k, p << 1l for all species s = e,r,i,
so the factor JsL =J, in Eq. (25) is essentially egual to one.
For the turbulent spectrum, for both s=r and i, one may have
k, p~1. Tnus one sees that finite particle gyroradius may

2 : .
appreciably reduce gy s and hence o- [gll . This mechanism



was alluded to in Ref. 2.

we now turn to the integral over ‘:b appearing in (25).
We neglect the dependence of K,. On L, taking the factor
Jo(klp) outside the integral. If we also neglect the mode
localization width W, in comparison with the particle banana
Ldth Cre/ i) have A (W=, + 6 u) = A (o) e Ko B
wir ry 1y Cir/oa) , we have A “b . A (ay .

Then using our model expression ({21) for R, we obtain
= - B : \
ER eJo(k-‘-’)m{{ bboA;:+"-¢-As;v]J'{b—bom(yl‘

G+ ! ‘
- 'b[blA:‘-+ '1“»:»][% “bm-1YD Iy m+1(Yl)]}
<L b Yo b o

(27)

Here we denote by AB the component Az (o.b , M, !L{!]) of the perturba-

tion, where Ag (x,m, &) (211)—199 ape t™MP A% {a, B, %

¢)

. (27:)-2 éd £ ng ] e-i (m B+ g'j“q'})A‘;;(m, B, d), and similarly for A¢.
For the individual modes Aa(g) in the turbulent spectrum,

Aa(r) - Aa(l) expl (mf -~ n¢), and the sum over m in (27) consists
of a single term. Similarly the ripple field from field-coil
errors may also be approximated by a single term, with m=0.
Ripple fields for particle injection schemes, which are strongest

at 8= - /2 and weakest at B= - 1/2, may be approximated by

three terms, m =0, 1.

The argument ¥, of the Bessel functions is given by

2 _ 2 2
yl:(mbl+1¢¢l) +(kaul) ; (28)
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we have suppressed notation of an accompanying phase factor,

-1 %40
as done for e g vk
3. Discussion and Estimates

The first line in Eq. (27) comes from the non-oscillatory
portion of the velocity éoi El%)ﬁb+ % Q¢, and the second line
from the oscillatory portion. We recover the result of the
zerec-gyroradius, driftless theories by considering passing
particler (b0= 1) with the drifts "turned off" (bl= ml==y1= a),
setting k,. to zero, and taking Aa (r) of the exp 1 (m: ~nd¢)
form of the turbulent spectrum. Then using the fact that
J,{y=0)= 5(2) (8§ here is the Kronecker-delta) , Eq. (27) reduces

to

g, = —ed(e, +n)8{e ~m &+ a%. (29}

Including the effects of drifts, one has yl# 0, in general,
so the Bessel functions Jn(yl)in Eq. {27), which in the driftless
limit acted like a 8-function, will for yl# 0 introduce a spread
AR~ 2 Yy in the effective spectrum which a particle sees. lUsing

the large-and-small-argument limits for Jz(y) ’

3 0 = {yr2tser ty<m,

(2/r y)%cos (y-2m/2-1/4) (y>2), (30) fl

in Fig. 3 we illustrate this spreading, sketching JQ(Y) versus



its index » for fixed y. [Eq. (30) and Fig. 3 are strictly valid

only when ¢ is an integer, which is always the case here.]

We now consider the size of Yy for both the turbulent
and ripple spectra. We shall see shortly that for the turbulence
problemn, Y1 is a number on the order of or smaller than 2 or 3,
so that the spreading of the spectrum through the terms Jﬁ(yl)
in g, is small and not a dominrant effect of particle drifts.
The ;mall value of Yy is due to the small value of k”, and the
fact that guiding center motion is predominantly parallel to B.
For the ripple case, however HI -n/R is appreciable, so one finds
Yy -* 1 here. Because the riprle spectrum consists of a small
number of components, with resonance points IZ widely separated
in I space, the spectrum-spreading effect of ;l>> 1 is crucial
to understanding how the coherent ripple field can induce
stochasticity. (An analogous problem, in which a purely coherent

field induces particle motion, is studied in Refs. 5 and 6.)

Denoting by o Vit the amplitude of modulation of the parallel

velocity by the h B well (hence Gv” rb-Rll]f R¢l) and by Vg4 the
perpendicuelar drift velocity, from the origin of Yy in the integral
of Eq. (25) one sees that we many approximate the size (and phys~-

ical interpretation) of ¥y by the formula
¥y~ (k" § v“/s?b)+(1~:L vd/Qb) 2yt Yy. - (31)

One has that v, ~v (p/R) , where v = |y| is the magnitude of
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the particle velocity. For a trapped or barely passing particle,
< .2 . .
3w, ~ ¢ v/v“-ev. The size of Yy r OF ¢l:(;bl, is greatest for

the former class of particles, for which

L

tbl"f 5 v Tb/R = ':“,'q B 132)
and thus
. b
Yy ¥ Ky Reyp= €"aRk ¥y, qek, - (33)

Putting in the values k ~ L;l~ k;R)—l ,kl'-p;l for the turbulent

spectrum, and Hl~ n/R, k, ~ bpn/R for ripple, one finds the esti-

mates

Yo <€t ¥ia® ale/pg) (34)

for turbulence, and

1

. i -
Yyp ¥ © 90, YlL‘E(Q/R‘n << yln (35)

for ripple,.
4. Effect of Finite (rl/wa)

For the turbulent spectrum and for s=r,i, one may have the
particle banana width r, comparable to the width w, of the mode
a with which the particle is resonant. There are two effects to

be considered here.



ot¥: %4 jade in obtaine

First, the approximation A(a) ~ a(ab)
ing BEg. (27) from (25) is not strictly valid, and the size of g,
may accordingly be modified. One can obtain an analytic expres-
sion for this modification by writing A(a) = é (o) ei ko g , where
A is a slowly-varying mode amplitude, and expanding 3 about o= a

Afa) = é(ab)+ §a él(ab)+... . Then, noting that (6a)nelkalsu =

(—j_a/aka)n et ky &g , one may take the derivatives (8/8k1) outside
the integral in (25), yielding these derivatives acting on the

same form as (27), with A there replaced by derivatives of

B¢

A, to the appropriate order.

Ve
While such an approach may be useful for subsequent numerical

analysis, it does not give much physical insight. We therefore

make the rough approximation that th. effect of this excursion

in o is to average the mode amplitude over the range oy about the

point «

b The form of (27) is then unchanged, if one interprets

AB N there to include this averaging effect.
14

The second effect of finite (rl/wa) is to shift the value Lpas
which a particle's @y must equal in order to make it resonant with
a given node a, localized at L For simplicity, and because it is
the most important instance of this effect, we consider runaway

electrons, s=x. ‘Then Wy ~ Wy may be neglected in the resonance

condition, which appears as

o=nbnb+z¢n¢= Ky vyt Ry vy o . (36)
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Wich vd set to zero, (36) says k1| (ures) =0, i.e. a particle is

resonant with a wave at that N, where the wave has ku'-'—‘ 0.
For the turbulent spectrum, % ag =%y the position of maximum

amplitude of the mode. For finite Vg however, one has instead
ik, 7k, ] = |vg/vyl - Using k; = k (8 r/Lg), where ér = r-r,=

(3r/9 ) (o= aa), we are led to the estimate

on
N
m
2]

res res fa 9Pg - (37)

Because q fg is comparable to the mode width W, pi for s=r,
a runaway electron will interact resonantly with a mode at a

position where the mode amplitude is appreciably reduced from its

value at r= L

VI. HAMILTONIAN HO(}) AND AUXILIARY QUANTITIES

1. 8 (D)

The formalism of the preceding sections calls for the unper-
turbed Hamiltonian Hy in terms of the invariants I , both in
evaluating 3 = 3 Ho/ 3 I for the resonance condition 5), and for
38/ 3L , used in determining the stochastieity threshoid. 1In
this section we obtain approximate expressions for Ho(ll) , for
the two types of particle trajectories modeled by Eq. {21).

We begin from the guiding-center Hamiltonian Ry v valid for

tokamak geometries, for which b, >> bp ]3:
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. . = L -2 -— [V} 2
KO(U.ber:Pq))—uQ'f'zR (PCb e G) . (38)
dere R and R are evaluated at the particle guiding-center position
(uG, b) (the toroidal angle ¢ dces not enter), and uG is deter-~

mined hy the gquiding-center condition

v

o
Pb—eAS(aG.b). (39)
From Hamilton's equation $==R_2(P¢-eaG), one sees that in
the course of a bounce period, a, executes a single oscillation,
as does Pb . For trapped particles, the oscillation is about the

point where $ =0 , hence where eas; =P¢ . For this reascn, it is

appropriate to define @y by

(40)

(For passing particles, we may also adopt this form for Ay
adequate for nurposes of estimation.)

We want to transform from the guiding-center variables (b, Pb)
in terms of which Ko is expressed, to actian-angle variables (Gb ,Jb)

used in “o : where
3, = (2n lddanp (41)
b b *

For passing particles not in the immediate vicinity of the
separatrix between passing and trapped, Pb is roughly constant

over a bounce period, so from (41},
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~ . o]
=P e AB (QG) ¢ O, = b . (42)

b b
{The dependence of Ag on b, which is weak in any case, has been

dropped in (42), since we have averaged over b in cbtaining Jb .1
We now define AG as the functional inverse of Ag, i.e.

o -
AG[AB(uG)} = . Thus

-1 -1
DA/AR = (3R/00g) = -q . (43)

Using (42) in (38), therefore, Hy for passing particles is approx-

imately given by

) 2
H *uQ +545R [Pb‘ eAG(Jb/e)] . {14}

(Here Q@ and R are understood as bounce-averaged gquantities.)

From (40) and (42), and noting that ag % ay , We see that

P, and J, play essentially the same role for passing particles,

®
that of a radial coordinate, with

-1 -1 -1
3/, =(Rrb) /3 = -q 3/dP,,3/3P,= —(QRbp) 3/3x
(45)
For trapped particles, it is precisely the variation of P
over a hounce period (finite banana width) which gives a nonzero

value for J_ in (41). Hence, 3, = (Zn)_lg‘idbdpb(b) , where from

Zqg. (39), 6Pb(b)= (Bﬁ%/a u)é(eaG) We solve (38) for é(eaG)Ee(aG—-ﬂﬁ,

&
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1.
§leag =R[2(Ko—u§2)]z , (46)
and so evaluate Jb:

J, = —(21r)—lnﬁ db gR 2(K_ -p@)t = (Zn)'lgsd Lv, . (47)
b d o Y ‘

Here d? = ~gR db is a differential length element along the field,
so the last form in (47) is the usual definition of the longitudinal

invariant.

Expanding G(b) about its b=0 value, one evaluates (47) explicitly

and solves for HO = KQ , obtaining

- -1 e )
Ho=uQ+ (@R 0 (e u@? (48}

for well-trapped particles. 1In Fig. 4 we sketch Ho-—u 1 verses
Iy using the forms (44) and (48) in their domains of validity,
and interpolating between them to give the proper plateau
behavior (Qb= aHO/BJb-+3) in the separatrix region.
2. Auxiliary Guantities, Physical Interpretation
Now we compute the frequencies {§ and their derivatives
3R /31 , using Egs. (44) and (48) for Ho(;) , and check that these

expressions give physically reasonable results. For passing par-

ticles, Eq. (44) yields
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. . -2
fp=AH /BT =g TR (P ~eAl) . (49)

Noting from (44) that v”2= R"Z(%-eAG)2

,we find from (49) that

2 2 .
2 = (v /4R) . (50)

1.e. the bounce time for passing paricles is just the time rerquired

to travel a connection length gR.

From (49) one also sees that

S2¢/Qb=q . {51)

showing that passing particles basically follow field lines.

Similarly, for trapped particles, one has

2
Q¢=uaﬂ/BP¢=—(KBvl/2QRbp) '

- 1
8, = (aR) Yewm? (52)



-

where w2 31n 2/5r = \YB|/B . For the second form given for fy
we have used the second of Egs. (45), and that u0=1/2 Vf . We

. : 2, .
see that Q¢ is just -—bp VB/R , where yB H KB v,/9Q is the usual VB

drift. The "amplification" of this drift by the factor —bD‘l
comes from the fact that the predominantly poloidal VB drift puts
the particle on new field lines, which arrive after one poloidal

. . : X 12
transit considerably displaced in toroidal angle.

I . N .
The factor (e p &) ° in Qb in (52) is equal to the maximum
i which the particle attains bouncing in the i B well. Hence the

interpretation of Q is about the same as for passing particles.

From these physical interpretations, we obtain the estimate
Q.7 b :.,‘) - 2
~ By o T i
.ﬂ(b/szb (q kg 0/ p€ a (p/x)q . (53)

For s=1 this ratio may be on the order of 1/5.

We now calculate 3Q /9 I . For passing particles,
50,/8P, =R"%2 , 3Q./3J, =230 /3P, =q LR2 (54)
b b ! b b b ¢ !
and
-2

_ -2 _ 2
D, /8 T =q “R™-(0, R/x°b QL)) , (55)

r
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where I‘5 "gR/(AIng/Alnr) = -e/(3 q—¥/8 r) is the shear scale length.
We have uscd the first of Eas. (45) in obtaining the last term 1in
Eq. (55). This term, expressing the change in Qb with r due to

shear, 1is critical in determining the overlap criterion.

The components of 2{/3 I for trapped particles may be sim-
ilarly computed using Eys. (52). However we shall be ablc to find
the desired results using quantities already computed, so we do

not display these additional formulae here.

Finally, we use 3 /3 1 to compute MElez *3u/9 18 for

passing varticles. Neyglecting R i Ba. (5), one has
. - -1/2 .
Ly = __2,4)(.%/%) = “(-‘l\b/ﬂb) ~qe / /o) . (56)

Neglect of Gy is not justified only for trapped .ons in turbulence
i 0. G S - L= n,i ri ; -

for which .$S¢/La £ , so that wy Eb p is an appropriate approx

imation to the resonance condition. In this case,

~3/2

lb ﬂm_/‘lb = m*/Qb ~geE

a te/p;) . 57

These expressions for Qb are understood to be approximations to its

nearest resonant value, which must be integral.

Using relations (56) and (51) with Egs. (54) and (55), one

1

finds a cancellation of all contributions to ME for passing par-

ticles except the second term in (535):
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Mg . ,_b(H . R/TC bT?. ,S) zb Qq)(va/prrLS) . (58)

The results needed to study the central problem of this paper

are now in hand. We utilize them in the following section.

VII. Results of the Analysis

Now Wwe are ready to obtain explicit expressions for the formal
criteria of Sec. IV for the onset of stochasticiry, as well as to
see the modifications due to drifts and finite gyroradius on the

diffusion tensor.
We consider first the case studied in Refs. 1,2, passing par-

L)

in (27). Using this and Eq. (58) in Eq. (13) to compute Ar, =

ticles in a turbulent spectrum. Then the factor &, A, dominates 9,

(rr/0eq) AP$9 , one finds that criterion (16) becomes, after some
algebra,

. .2 2 2
1< [al(Ls/kr3 N )~ By (m” Lg/kg pi°) | . (59)

This expression is formally the same as that in Ref. 3, but with the

ratio By,¢ EBlr(ra)/B[where Blr(ra) is the radial field of the com-
ponent a with which the particle -s resonant, evaluated at the radius

r, at which B, is greatest] there replaced by

By E By pdotkap) J"b - me(yl) (Bl (r gl /By (r01 . (60)



Here Yoo is the radius at which a particle is resonant with mode a,
and Blr(rres) is to be regarded as an average of the mocde amplitude
over a "banana width" r- q ¢ about Tes " The ratio

B T R, _(r th a ; for b £ s dezerib i

lr( res)/ " a) en accounts for hoth effects deszeriibed in

: ~ . -1, Fur -
Sec, V.4, Assuming a Gaussian form for Blr(r), one has T =g “1"'.3‘

Since Ty oW for ==v,1, 7 is strongly dependent upun the value

(rl/wa) .
A second effect of drifts is contained ir the factor
J.o_ bom (yl) . For passing particles bO:l. We determine ¢

8] 3
from EBq (56}, Qb = -k, 0 /Elb= nq (ra) .  For the turbulent spectrum,
t

4
one also has m=ngq (ra), so J, —bom(\"l) = Jo(yl) . Usinyg (24), we
see that for s=1i,r, Yy~ 20or 3, hence Jo may be considerably reducecd
from its driftless, yl=0 value . For small (rl/wd), the seravation
of A(r) inte an oscillatory (- ei}“éa) and amplitude portion ls not
uniquely determined, so there is some exchange of inforrmation pos-
sible between the factors [ and Jo(yl). However, they are not ihe
same. In particular, frowm (28) one sees that even for ":',::0 and a

constant modc amplitude, y. would still be of the sawme order of mag-

nitude, due to drifts in the 8 x & direction.

We estimate the size of }31/}31'0 for the present case (turbulence,
passing particles). If one takes ky,¢~1,v,-2, rl/wa ~ 1, then
Jo(klp% 2/3, Jo(yl)- 1/3,and I'~ 1/3, so that Bl/Bl,O ~1/13 . The
stochasticity criterion (62) is then about 13 times more difficult
to satisfy than the driftless, zero gyroradius result, from roughly

7

Bl,O »>2x10 " to B0

estimate is highly sensitive to the parameters k,p .y, and rl/wa ,

>2.5x 10_6. One notes, however, that this
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which are not well-known.

For example,

if one instead takes

Kyw = /2, ¥y~ 1, and rl/wa-l/z , one has Jo(klu) ~9/lO,JO(yl)~ 2/3,

and '~ 4/5, hence Bl/Bl,O ~1l/2.

The diffusion tensor D is correspondingly reduced by these

~~

eftects.

For comparison to previous results, we first remove these

effects by mathematically "turning off" the drifts and setting k,o

to zero. Then 9, is given by Eg. {(29). Radial transport comes
- 2 . :
from the component D_. Dgan(jI-/upb) of P in Eg. (4). In this
ariftless limit, one recovers the result of Refs. 1 and 2,
o _ -4 2 . -~
Doy _g;%(R'”$) Bl0 s (m Gy, IIQ¢) : (61)
Restoring the new effects, Drr is given by Eg. (61), but with

replaced by B

B0 1°

the expectations of previous theories by a factor Drr/Dr

Radial diffusion is therefore reduced from

Q
~(B,/B

r 1.0

F

For runaway electrons, the estimates just made show that this factor

may range from 1/4 to as much as

it is noted that the simple line-

two orders of magnitude. In Ref.

tollowing estimate DrrO predicts

that the confinement time for runaway electrons should be reduced

from that for thermal electrons by a factor ve/c-l/ls, whereas

experimentally the confinement times for these two particle classes

seem to be comparable. One sees
by (Bl/B]'O)2 provides a possible

(though alternative explanations

The analysis is similar for

theory. For ripple, we may take

that the reduction of Dr
explanation for this discrepancy

may also exist).

the other cases covered by the

A =

® g.

For passing particles in

from D
r rr

o]
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the ripple field, we evaluate criterion (17) or (18), finding
1B tqPRE feL ) ! (62
1 SVAR RN (62)

tow Jo(kl. )=1=T , and in JP,b—m(yl) ; one has fp *dn as before.

Now however, m~<qgn- 30, and from (28), (35), ¥i® “l¢l‘;l'."-'|n Qb g

-1/3

Thus Bl/Bl,O “:an(ylgqn) < (gn) 1/3. Using this in (62), one

obtains the estimate

which current ripple injection schemes satisfy. Eq. (63) assumes,
however, bl - 1. For more strongly-passing particles, whose tra-
jectories are less affected by the [i B well, one should instead use
the small argument value in (30) for an(yl) , making criterion
(62) more difficult to satisfy by a factor an(q n)/J’qn(yl)

gy T o TAT

We now consider the case of trapped particles. The dominant

contribution to (27) is now from the factor ¢. A, for turbulence,
Iy 1%

and bl AB for ripple. We thus redefine B, slightly, letting J, _, .
b "o
+

- _1%v _ = k|J _ H ]
Eb bom 1 Q’b b0m+l] ]:Zb 1 . +1].

in (60) be replaced by 5';‘[\]
b

For s=e, Eq, (56) says lb=0. For this resonance, however,
Bl aJl(yl) +J_l(yl) =0. This zero coupling arises because an elec-
tron stays so close to its original field line in a bounce period

that on the return half of the bounce motion it follows almost the

same path along which it came.
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Since no stochasticity arises from the nearest resonance,
one may look at the next nearest ones, Lb:.'l. For these to

be effective, the electron must make an exXxcursion ét to the

next resonant surface in less than half a bounce period, 1in

order that the particle not retrace its steps, as just described.
For such perturbation strengths, the electron effectively “*doesn't
know" if it is trapped or passing, and SO onc may usc expressions
derived for passing particles. In a bounce period, an clectran
makes an excursion -r which is a fraction wi/ﬂb of its full excur-

sion ( r, . For stochasticity, one must have ¢ r > 4 i.e.
L

t ’
1~ (m?/ﬂb)(ﬁ rn/ét) . (64)

rFrom expressions (12), (13) and (58), one may compute the ratio of

. o -1 .
the two factors in (64), finding (A rg/ét)(ﬂb/mg)—t<q Ls/ot

~(r/p)2- 104. Therefore condition (66) is a factor cf lO4 more

difficult to satisfy that (16) or (59), requiring Bl 0 >2.5 X10‘2,
’
a regime not considered here. We conclude that trapped electrons

should not be stochastic.

Since there are no trapped runaway electrons, the oaly remain-

ing species is the ions. For these, from (57) and (34), & :ma/ﬁb

b
~ - 3/2 . ,
¥ ge ~12, and ¥y *4- Thus the small-argument expansion of
L i . . L
an_¥1 i1s appropriate, reducing gg by a factor < (yl/ﬂb) b
3 2 .
= (e /2) I9*(35)]'2 - This factor in g, overwhelms the others in

criterion (16), and so one expects no stochasticity from
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trapped lons in turbulence, for any reasonable size of Bl ne The
0
r

physical origin here is that because oy is large compared to iy,
7
for s=1i, an ion cannct resonate with the wave, which woves hasi-

cally across field lines.

The final casc to bhe discussed would be trapp=d particles
in a ripple field. However, since the present theory assumes
integration along unperturbed trajectories is valid, it nay not
apply welllto trapped particles, which will be strongly aftected
by the ripple fields as they approach the turning points of their
unperturbed orbits. The proper study of this case, removing this

limitation of the formalism, is thus left to future work.
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Projection in
Poloidal Plane

792478
Fig., 1. Illustration of the toroidal geometry considered

in the text, showing the coordinate system («,8,¢) used there.
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Op= /2

=0
Op=-m/2
Trajectary
a=ap
-8p=£=0
792477

Fig. 2. The poloical projection of the unperturbed
guiding-center trajectories modeled by Eq. (21), for
(a) trapped and (b) passing particles.
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792480

Fig. 3. Sketch of J.(y) versus 2 (y fixed), using the limiting forms in Eq. (30),

showing the spreading A1~2y due to inclusion of drift effects from the driftless
(y=0) limii. The sketch, and expressions (30) from which it is drawn, are valid
only for integral ?. as is always the case in the text.
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Trapped| Separ'afrix | Passing
Regime | Regime

rio “fL 0
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feen o

. . . R . 792474
Fig. 4. Sketch o! the parallel Kinetic cnecrgy [ID - . versus bounce action
Jp, using forms (14) and (48) for H, for pa@sing apnd trupped pa-ticles, respec-
tively. and interpolating in the intermediate sepmrotrix regime. o ¢onformity

with the requiremc»t that ° « 0 in this rooion.



