
HAL Id: inria-00332104
https://hal.inria.fr/inria-00332104

Submitted on 20 Oct 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A robot behavior-learning experiment using Particle
Swarm Optimization for training a neural-based Animat

Fabien Moutarde

To cite this version:
Fabien Moutarde. A robot behavior-learning experiment using Particle Swarm Optimization for train-
ing a neural-based Animat. 10th International Conference on Control, Automation, Robotics and
Vision (ICARCV 2008), Dec 2008, Hanoï, Vietnam. �inria-00332104�

https://hal.inria.fr/inria-00332104
https://hal.archives-ouvertes.fr

978-1-4244-2287-6/08/$25.00 ©2008 IEEE

A robot behavior-learning experiment using
 Particle Swarm Optimization for
training a neural-based Animat

Fabien Moutarde
Robotics laboratory (CAOR)

Mines ParisTech
60 Bd St Michel, F-75006 Paris, FRANCE

Fabien.Moutarde@ensmp.fr

Abstract— We investigate the use of Particle Swarm
Optimization (PSO), and compare with Genetic Algorithms (GA),
for a particular robot behavior-learning task: the training of an
animat behavior totally determined by a fully-recurrent neural
network, and with which we try to fulfill a simple exploration and
food foraging task. The target behavior is simple, but the
learning task is challenging because of the dynamic complexity of
fully-recurrent neural networks. We show that standard PSO
yield very good results for this learning problem, and appears to
be much more effective than simple GA.

Keywords— animat, behavior-learning, genetic algorithms,
particle swarm optimization, recurrent neural network.

I. INTRODUCTION
Animats are simulated animals or robots with behaviors

inspired by those of real animals, for instance particular
locomotion modes, or more abstract tasks such as exploration
for food foraging [1]. One of the aims of animat research is to
explore means of “naturally” producing (as opposed to “hand-
crafting”) autonomous and adaptive behaviors for simulated
animals or biologically inspired robots. A very fruitful part of
this research field has focused on evolutionary robotics, where
behaviors are obtained by evolutionary algorithms and self-
organization [2].

Genetic Algorithms (GA), originally developed in the 1960s
by John Holland, are an optimization method inspired by
evolution where natural selection ensures that fittest members
of a population tend to reproduce more often than others. In
order to search a good solution to a problem, a population of
solutions is first generated, each one being encoded as a
genome, i.e. a set of genes (each of them corresponding either
to a single bit or to one elementary information such as an
integer or floating-point number) [3]. The genetic algorithm
then proceeds by evolving this population with reproduction
biased by selection according to fitness evaluation of
individuals, followed by crossover (hybridization of genomes
from 2 previous solutions) and mutations [4]. Evolutionary
algorithms have been extensively used for learning of robot
behaviours, and standard GA have already been shown to be
effective in evolving simple robotic controllers [5].�

The Particle Swarm Optimization (PSO) algorithm,

originally introduced by Kennedy & Eberhart [6], is a kind of
population-based cooperative-search inspired by swarm
intelligence such as bird flocking and fish schooling. The basic
PSO model consists in a swarm of particles moving in an n-
dimensional search space, in which a certain objective
function is to be optimized. Each particle has a position x in
the optimization space, and a velocity vector v defining its
moving speed in this space; it also remembers its own best
past position bp. Furthermore, each particle has a set of
“informants” (defined by a neighbourhood relation in the
swarm), which provide a best group-explored position bg. At
each iteration step, the velocity of each particle is updated
according to equation (1), in which I(t), N(t) and F(t)
are three time-dependant coefficients described below. Once
the new velocity v(t+1) has been computed, the particle is
moved to its new position according to its velocity by the
following equation: x(t+1)=x(t)+v(t+1).

))()()(())()()(()()()1(txtbgtFtxtbptNtvtItv −+−+=+ (1)

As seen on equation (1), the velocity update is a
compromise between inertia (keeping the same velocity
vector) I(t), nostalgia (trying to go back to best past
position) N(t), and following (going to best known group
position) F(t). Each of these three coefficients is usually
itself the product of a uniform random variable in [0;1] by
specific fixed parameters I, N and F. According to theoretical
and empirical studies (see e.g. [7], [8] and [9]), best
convergence is obtained with values I~0.7 and N~S~1.5.

PSO has proven to be a very efficient optimization method,
with successful applications in many fields, as reported for
instance in [10]. PSO has been shown to perform as well as, or
better than, Genetic Algorithms (GA) for several optimization
problems (see for instance [6]).

One of the fields it has been fruitfully applied to, is the
training of neural network weights (see eg [11]), including
(more recently) unsupervised training of recurrent networks
(see eg [12]). Several authors, among which Pugh et al. in [12]
have already compared the performance of PSO with that of

classical Genetic Algorithm evolution for unsupervised
robotics learning tasks, but with no clear and definite
conclusion about the superiority of one or the other method.

In this paper, we investigate the use of PSO algorithm for

the behaviour-training of an animat’s recurrent neural network
“brain”, in order to obtain a simple exploration and food-
foraging behaviour. We also compare with results obtained for
the same task with GA.

II. ANIMAT MODEL
Our animat model is very similar to that proposed in [13].

The animat behavior is defined by a fully recurrent neural
network with 5 sensory inputs, and a total of N fully-
connected neurons among which 4 are motor outputs, as
illustrated on figure 1. A recurrent neural network is used in
order to allow the animat’s behavior not to be purely reactive
on sensor inputs, but to depend on some internal state so as to
be able to exhibit complex behaviors.

The first 4 sensory inputs provide ternary information on
presence/absence of “something” (+1, -1 or 0 respectively for
presence of food or poison, presence of wall, or nothing) on
the animat current position and on 3 adjacent cells (in front of
the animat’s current orientation, on the left and on the right).
The fifth sensory input is a “smell” binary input indicating if
food (rather than poison) is present on the animat’s current
position, but its value is random when there is nothing on the
current cell. As exposed in [13], the idea behind this last
“smell” input is that, because the “presence sensor” does not
discriminate between food and poison, the eating decision has
to be made by fusion of 2 inputs: presence of something on
current place, simultaneously with food smell.

Figure 1. Schematic view of neural “brain” of the animat. It senses only its

immediate environment, with 4 input giving information on presence of
something (food, poison or wall on current and 3 adjacent cells in

front/left/right, and a last input giving a local smell (random in case nothing is
present). The “brain” is a fully recurrent network with N≥4 neurons, including

the 4 motor output neurons.

The 4 motor outputs independently suggest left-rotation,

right-rotation, forward-move, and eating. The actual action
taken by the animat is the one corresponding to the “active”

output if only one is activated, or nothing if several motor
output are simultaneously active. This forces the animat to
learn to produce a single-action decision.

The animat behavior is therefore totally defined by its brain
size (number of neurons) and the values of the
5N+N(N+1)=N2+6N weights and biases of the recurrent
neural network. In practice, all results presented in this paper
use N=4.

III. BEHAVIOUR-TRAINING EXPERIMENT
The behavior to be learnt by the animat is to forage a grid-

structured space where a fixed amount of “Food” and “Poison”
are placed at random locations, and to “eat” as much food as
possible but no poison. The grid size is fixed and equal to 7x7
cells, and the food and poison quantity are set respectively to 6
and 11, as illustrated on figure 2. Note that for the behavior
visualization we have used and modified an old version of
Becker’s implementation of “Karel the Robot” ([14]).

Figure 2. Typical grid and animat initial state before a behavior evaluation.

The animat position and orientation is given by the red arrow.
Positions of “food” and “poison” positions are respectively given

 by the F and P letters randomly scattered on the grid.

The evaluation of a given neural brain is done by generating

G random grids (with random food and poison positions). For
each grid, the animat has a random initial position and
orientation, its brain neuron states are all zero-initialized, and
the animat is allowed a fixed number of 150 sensory-motor
cycles. The animat evaluation is done by a combination of 2
criteria:

• the food-collecting aptitude obtained by just
counting the number of food eaten decremented by
the number of eaten poison, and divided by the
total food available;

• the exploration efficiency measured by the
proportion of the total grid space actually explored
by the animat during its 150 sensory-motor cycles.

Those two criteria are averaged over the G different random

F
Sensory Inputs

Full recurrency

Motor
Outputs

grids, and combined in one single “score” for each animat
brain, given in equation 2 below. For this evaluation to be
really representative of the behavior in any grid configuration,
G must be sufficiently high. We typically use G~300.

 score=(evalFood+ratioExplo*evalExplo)/(1+ratioExplo) (2)

The ratioExplo parameter allows to tune the respective
weights in the animat’s score, of “food-collecting aptitude”
and “exploration efficiency”.

IV. TRAINING WITH PSO
We first present results of behavior-training with Particle

Swarm Optimization (PSO) for the task described in §III.
The PSO-based behavior-training is done by applying

standard PSO as described in §I, to a swarm of animats with
uniform brain size N. Each particle is therefore simply the
vector of d=N2+6N weights and biases values of the recurrent
neural network, where N is the brain size. Particles are
initialized inside the [-10.;10]d area.

Figure 3. PSO-training results for varying swarm sizes (SS)

 (averages over 10 independent training tests, with fitness score
 defined by equation 2 with ratioExplo=0);

no significant improvement appears over SS>30.

We have tried and compared several swarm sizes (SS), from

SS=10 to SS=100. We use a “complete neighborhood”
topology in which all particles belong to the same information
group. The PSO parameters are fixed to I=0.729 and
N=S=1.429 (a set of values suggested in [7]). We first
considered only the food collecting capability, i.e. we set
ratioExplo to zero in equation 2. As can be seen on
figure 3, PSO training yields very good results in small
number of iterations. It also appears that no significant
improvement is obtained by growing swarm size over SS=30.

We also tried using fitness function with ratioExplo>0
in equation (2) of §III. An interesting finding is that beginning
training with ratioExplo>0 (for instance 10 first iterations
with ratioExplo=1) seems to accelerate significantly the
later convergence to optimum fitness score with

ratioExplo=0. In other terms, optimizing simultaneously
the exploration criterium at the beginning of training
apparently allows faster subsequent training based only on
food collection, as illustrated on figure 4.

Figure 4. Acceleration of PSO training by an initial short period of training

with ratioExplo=1 in fitness function, appearing on upper curve
 (averages over 10 independent training tests)

V. TRAINING WITH GA
We now present training results obtained with Genetic

Algorithms (GA) on exactly the same task described in §III.
The GA-based training uses genomes of length L=N2+6N

consisting of double values (each gene corresponding to one
weight or bias value of the recurrent neural network, so that
each genome corresponds to one possible animat “brain” with
N neurons). For the GA evolution operators, we used fixed-
point middle cross-over, and uniform randomization in [-
10;10] interval as gene mutation, so that explored space is the
same as in the PSO training. Several mutations policies and
rates were tried. We report here only on the mutation scheme
which gave best result: nearly systematic (0.9 probability)
mutation of only one single gene. Several population sizes
were also tested and compared, as reported on figure 5.

Obviously, the GA “flavour” we are using is not the most
sophisticated possible. However, we also used the most
standard version of PSO in §IV, and our aim is to compare
what can be achieved for our behaviour-training task by
applying techniques as straightforwardly as possible, rather
than focusing on fine-tuning the algorithms used.

As can be seen on figure 5, GA training can also provide

animat “brains” with quite good performance on the assigned
task. It also seems that maximal performance can be attained
on this problem with a population size PS=100, with only
slight acceleration of evolution for bigger sizes.

GA-training with varying population size

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 19 37 55 73 91 109 127 145 163 181 199

iterations

fit
ne

ss
 s

co
re

GApop300_moy
GApop100_moy
GApop30moy

Figure 5. GA-training results for varying population sizes (PS)

 (averages over 10 independent training tests); it seems no further
improvement can be obtained for PS>100.

VI. COMPARING PSO-BASED AND GA-BASED TRAINING
We can now compare, on the exact same task described in

§III, unsupervised learning with Particle Swarm Optimization
(PSO), and using Genetic Algorithms (GA). Both algorithms
are purposely used in their most standard variant, as our aim is
rather to check which simple technique can yield good results
even when applied without tedious fine-tuning.

PSO-training vs GA-training

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 19 37 55 73 91 109 127 145 163 181 199

iterations

fit
ne

ss
 s

co
re

PSOpop30 (moy)
GApop100_moy
GApop30 (moy)

Figure 6. Comparison of PSO-training and GA-training

 (averages over 10 independent training tests).
For the same population size of 30, PSO training is much quicker and reaches
a better final fitness. Note also that even with a 3 times larger population, GA

training requires more iterations to attain nearly the same final fitness.

In our problem, the computation time consists essentially of

the particles/genomes evaluation on a large set of 300 random
grids, and the particles updating or genome evolution

computation is negligible compared to it. The total computing
time for either PSO or GA is therefore basically proportional
to the population size and the number of required iterations.

Standard PSO turns out to be much more efficient than
simple GA for training, as illustrated on figure 6. Not only the
typical maximum fitness score is slightly higher (0.95 instead
of 0.9) with a population size of 30, but the PSO training is
definitely much quicker, with fitness score reaching 0.9 in less
than 50 iterations. Even when comparing 30-particles PSO
with 100-genomes GA, it can be seen that PSO requires much
less iterations to attain the same animat fitness level: about
200 iterations instead of 120 to reach maximum fitness.
Considering that computing time (largely dominated by
evaluation of particles/genomes) is proportional to population
size and number of iterations, this means that for our
unsupervised learning task PSO appears to be roughly
(200x100)/(120x30)~5 times faster for a same optimization
level of solution.

VII. CONCLUSIONS AND FUTURE WORK
We have presented a robot behavior-learning experiment in

which an animat’s “brain” consisting of a fully recurrent
neural network has to be trained to produce a foraging
behavior. We have shown that standard Particle Swarm
Optimization (PSO) seems particularly effective for this kind
of behavior-learning task. According to our experiments,
standard PSO clearly outperforms simple Genetic Algorithms
(GA) on our particular neural-animat behavior-learning setup.

Our results tend to confirm earlier results by Pugh et al [12]
in similar context. This reinforces the presumption that PSO
algorithm is particularly efficient, and a very appealing
alternative to GA evolution, for these kinds of behavior
learning tasks.

Further work planned includes similar systematic
investigation for learning of more complex behaviors, in
particular cooperative behavior of several animats.

REFERENCES
[1] Meyer, J.-A. and Guillot, A. Biologically-inspired robots. In Siciliano,

B. and Khatib, O., editors, Handbook of Robotics. Springer-Verlag.
(2008).

[2] Floreano, D., Husbands, P. and Nolfi, S., Evolutionary Robotics. in
Handbook of Robotics, Berlin : Springer Verlag, 2008.

[3] Goldberg, D. E. Genetic Algorithms in Search, Optimization &
Machine Learning. Addison-Wesley, Reading, MA, 1989.

[4] Mitchell, M. An Introduction to Genetic Algorithms. MIT Press,
Cambridge, MA, 1996.

[5] Floreano, D. & Mondada, F. “Evolution of Homing Navigation in a
Real Mobile Robot” Systems, Man and Cybernetics, Part B, IEEE
Transactions on, Vol. 26, No. 3, Jun 1996, pp. 396-407.

[6] Kennedy J. & Eberhart R., “Particle swarm optimization”, 1995. Proc.
IEEE Int. Conf. on Neural Networks, Nov/Dec 1995, pp. 1942-1948.

[7] M. Clerc, The swarm and the queen: towards a deterministic and
adaptive particle swarm optimization, in: Proc. ICEC, Washington,
DC, 1999, pp. 1951–1957.

[8] Clerc, M. and Kennedy, J. The particle swarm: explosion stability and
convergence in a multidimensional complex space. IEEE
Transactions on Evolutionary Computation 6(1), 2002, pp. 58-73

[9] Trelea I.C., The particle swarm optimization algorithm: convergence
analysis and parameter selection. Information Processing Letters, 85,
pp. 317-325 (2003).

[10] Eberhart; Yuhui Shi, "Particle swarm optimization: developments,
applications and resources," Evolutionary Computation, 2001.
Proceedings of the 2001 Congress on , vol.1, no., pp.81-86 vol. 1,
2001

[11] Hong-Bo Liu; Yi-Yuan Tang; Jun Meng; Ye Ji, "Neural networks
learning using vbest model particle swarm optimisation," Machine

Learning and Cybernetics, 2004. Proceedings of 2004 International
Conference on , vol.5, no., pp. 3157-3159 vol.5, 26-29 Aug. 2004

[12] Pugh, J., Zhang, Y. & Martinoli, A. “Particle swarm optimization for
unsupervised robotic learning” Swarm Intelligence Symposium,
Pasadena, CA, June 2005, pp. 92-99.

[13] R. Aharonov-Barki, T Beker & E. Ruppin , “Emergence of memory-
driven command neurons in evolved artificial agents” , Neural
Computation, 13(3), 2001, pp 691-716

[14] B. W. Becker, “Java: Learning to Program with Robots”, Course
Technology, 2006. [http://www.learningwithrobots.com]

