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Abstract— We investigate the use of Particle Swarm 
Optimization (PSO), and compare with Genetic Algorithms (GA), 
for a particular robot behavior-learning task: the training of an 
animat behavior totally determined by a fully-recurrent neural 
network, and with which we try to fulfill a simple exploration and 
food foraging task. The target behavior is simple, but the 
learning task is challenging because of the dynamic complexity of 
fully-recurrent neural networks. We show that standard PSO 
yield very good results for this learning problem, and appears to 
be much more effective than simple GA. 
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I.  INTRODUCTION 
Animats are simulated animals or robots with behaviors 

inspired by those of real animals, for instance particular 
locomotion modes, or more abstract tasks such as exploration 
for food foraging [1]. One of the aims of animat research is to 
explore means of “naturally” producing (as opposed to “hand-
crafting”) autonomous and adaptive behaviors for simulated 
animals or biologically inspired robots. A very fruitful part of 
this research field has focused on evolutionary robotics, where 
behaviors are obtained by evolutionary algorithms and self-
organization [2].  

Genetic Algorithms (GA), originally developed in the 1960s 
by John Holland, are an optimization method inspired by 
evolution where natural selection ensures that fittest members 
of a population tend to reproduce more often than others. In 
order to search a good solution to a problem, a population of 
solutions is first generated, each one being encoded as a 
genome, i.e. a set of genes (each of them corresponding either 
to a single bit or to one elementary information such as an 
integer or floating-point number) [3]. The genetic algorithm 
then proceeds by evolving this population with reproduction 
biased by selection according to fitness evaluation of 
individuals, followed by crossover (hybridization of genomes 
from 2 previous solutions) and mutations [4]. Evolutionary 
algorithms have been extensively used for learning of robot 
behaviours, and standard GA have already been shown to be 
effective in evolving simple robotic controllers [5].�

 
The Particle Swarm Optimization (PSO) algorithm, 

originally introduced by Kennedy & Eberhart [6], is a kind of 
population-based cooperative-search inspired by swarm 
intelligence such as bird flocking and fish schooling. The basic 
PSO model consists in a swarm of particles moving in an n-
dimensional search space, in which a certain objective 
function is to be optimized. Each particle has a position x in 
the optimization space, and a velocity vector v defining its 
moving speed in this space; it also remembers its own best 
past position bp. Furthermore, each particle has a set of 
“informants” (defined by a neighbourhood relation in the 
swarm), which provide a best group-explored position bg. At 
each iteration step, the velocity of each particle is updated 
according to equation (1), in which I(t), N(t) and F(t) 
are three time-dependant coefficients described below. Once 
the new velocity v(t+1) has been computed, the particle is 
moved to its new position according to its velocity by the 
following equation: x(t+1)=x(t)+v(t+1). 
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As seen on equation (1), the velocity update is a 
compromise between inertia (keeping the same velocity 
vector) I(t), nostalgia (trying to go back to best past 
position) N(t), and following (going to best known group 
position) F(t). Each of these three coefficients is usually 
itself the product of a uniform random variable in [0;1] by 
specific fixed parameters I, N and F. According to theoretical 
and empirical studies (see e.g. [7], [8] and [9]), best 
convergence is obtained with values I~0.7 and N~S~1.5. 

PSO has proven to be a very efficient optimization method, 
with successful applications in many fields, as reported for 
instance in [10]. PSO has been shown to perform as well as, or 
better than, Genetic Algorithms (GA) for several optimization 
problems (see for instance [6]). 

One of the fields it has been fruitfully applied to, is the 
training of neural network weights (see eg [11]), including 
(more recently) unsupervised training of recurrent networks 
(see eg [12]). Several authors, among which Pugh et al. in [12] 
have already compared the performance of PSO with that of 



        

classical Genetic Algorithm evolution for unsupervised 
robotics learning tasks, but with no clear and definite 
conclusion about the superiority of one or the other method. 

 
In this paper, we investigate the use of PSO algorithm for 

the behaviour-training of an animat’s recurrent neural network 
“brain”, in order to obtain a simple exploration and food-
foraging behaviour. We also compare with results obtained for 
the same task with GA. 

 

II. ANIMAT MODEL 
Our animat model is very similar to that proposed in [13]. 

The animat behavior is defined by a fully recurrent neural 
network with 5 sensory inputs, and a total of N fully-
connected neurons among which 4 are motor outputs, as 
illustrated on figure 1. A recurrent neural network is used in 
order to allow the animat’s behavior not to be purely reactive 
on sensor inputs, but to depend on some internal state so as to 
be able to exhibit complex behaviors. 

The first 4 sensory inputs provide ternary information on 
presence/absence of “something” (+1, -1 or 0 respectively for 
presence of food or poison, presence of wall, or nothing) on 
the animat current position and on 3 adjacent cells (in front of 
the animat’s current orientation, on the left and on the right). 
The fifth sensory input is a “smell” binary input indicating if 
food (rather than poison) is present on the animat’s current 
position, but its value is random when there is nothing on the 
current cell. As exposed in [13], the idea behind this last 
“smell” input is that, because the “presence sensor” does not 
discriminate between food and poison, the eating decision has 
to be made by fusion of 2 inputs: presence of something on 
current place, simultaneously with food smell.  

 
Figure 1. Schematic view of neural “brain” of the animat. It senses only its 

immediate environment, with 4 input giving information on presence of 
something (food, poison or wall on current and 3 adjacent cells in 

front/left/right, and a last input giving a local smell (random in case nothing is 
present). The “brain” is a fully recurrent network with N≥4 neurons, including 

the 4 motor output neurons.  
 
The 4 motor outputs independently suggest left-rotation, 

right-rotation, forward-move, and eating. The actual action 
taken by the animat is the one corresponding to the “active” 

output if only one is activated, or nothing if several motor 
output are simultaneously active. This forces the animat to 
learn to produce a single-action decision. 

The animat behavior is therefore totally defined by its brain 
size (number of neurons) and the values of the 
5N+N(N+1)=N2+6N weights and biases of the recurrent 
neural network. In practice, all results presented in this paper 
use N=4. 

 

III. BEHAVIOUR-TRAINING EXPERIMENT 
The behavior to be learnt by the animat is to forage a grid-

structured space where a fixed amount of “Food” and “Poison” 
are placed at random locations, and to “eat” as much food as 
possible but no poison. The grid size is fixed and equal to 7x7 
cells, and the food and poison quantity are set respectively to 6 
and 11, as illustrated on figure 2. Note that for the behavior 
visualization we have used and modified an old version of 
Becker’s implementation of “Karel the Robot” ([14]).  

   

 
Figure 2. Typical grid and animat initial state before a behavior evaluation. 

The animat position and orientation is given by the red arrow.  
Positions of  “food” and “poison” positions are respectively  given 

 by the F and P letters randomly scattered on the grid. 
 
The evaluation of a given neural brain is done by generating 

G random grids (with random food and poison positions). For 
each grid, the animat has a random initial position and 
orientation, its brain neuron states are all zero-initialized, and 
the animat is allowed a fixed number of 150 sensory-motor 
cycles. The animat evaluation is done by a combination of 2 
criteria:  

• the food-collecting aptitude obtained by just 
counting the number of food eaten decremented by 
the number of eaten poison, and divided by the 
total food available; 

• the exploration efficiency measured by the 
proportion of the total grid space actually explored 
by the animat during its 150 sensory-motor cycles. 

Those two criteria are averaged over the G different random 
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grids, and combined in one single “score” for each animat 
brain, given in equation 2 below. For this evaluation to be 
really representative of the behavior in any grid configuration, 
G must be sufficiently high. We typically use G~300. 

 score=(evalFood+ratioExplo*evalExplo)/(1+ratioExplo)  (2) 

The ratioExplo parameter allows to tune the respective 
weights in the animat’s score, of “food-collecting aptitude” 
and “exploration efficiency”.  

 

IV. TRAINING WITH PSO 
We first present results of behavior-training with Particle 

Swarm Optimization (PSO) for the task described in §III.  
The PSO-based behavior-training is done by applying 

standard PSO as described in §I, to a swarm of animats with 
uniform brain size N. Each particle is therefore simply the 
vector of d=N2+6N weights and biases values of the recurrent 
neural network, where N is the brain size. Particles are 
initialized inside the [-10.;10]d area.  

 

 
Figure 3. PSO-training results for varying swarm sizes (SS) 

 (averages over 10 independent training tests, with fitness score 
 defined by equation 2 with ratioExplo=0);  

no significant improvement appears over SS>30. 
 
We have tried and compared several swarm sizes (SS), from 

SS=10 to SS=100. We use a “complete neighborhood” 
topology in which all particles belong to the same information 
group. The PSO parameters are fixed to I=0.729 and 
N=S=1.429 (a set of values suggested in [7]). We first 
considered only the food collecting capability, i.e. we set 
ratioExplo to zero in equation 2. As can be seen on 
figure 3, PSO training yields very good results in small 
number of iterations. It also appears that no significant 
improvement is obtained by growing swarm size over SS=30. 
 

We also tried using fitness function with ratioExplo>0 
in equation (2) of §III. An interesting finding is that beginning 
training with ratioExplo>0 (for instance 10 first iterations 
with ratioExplo=1) seems to accelerate significantly the 
later convergence to optimum fitness score with 

ratioExplo=0. In other terms, optimizing simultaneously 
the exploration criterium at the beginning of training 
apparently allows faster subsequent training based only on 
food collection, as illustrated on figure 4. 

 
 

 
Figure 4. Acceleration of PSO training by an initial short period of training 

with ratioExplo=1 in fitness function, appearing on upper curve 
 (averages over 10 independent training tests) 

 

V. TRAINING WITH GA 
We now present training results obtained with Genetic 

Algorithms (GA) on exactly the same task described in §III.  
The GA-based training uses genomes of length L=N2+6N 

consisting of double values (each gene corresponding to one 
weight or bias value of the recurrent neural network, so that 
each genome corresponds to one possible animat “brain” with 
N neurons). For the GA evolution operators, we used fixed-
point middle cross-over, and uniform randomization in [-
10;10] interval as gene mutation, so that explored space is the 
same as in the PSO training. Several mutations policies and 
rates were tried. We report here only on the mutation scheme 
which gave best result: nearly systematic (0.9 probability) 
mutation of only one single gene. Several population sizes 
were also tested and compared, as reported on figure 5. 

Obviously, the GA “flavour” we are using is not the most 
sophisticated possible. However, we also used the most 
standard version of PSO in §IV, and our aim is to compare 
what can be achieved for our behaviour-training task by 
applying techniques as straightforwardly as possible, rather 
than focusing on fine-tuning the algorithms used. 

 
As can be seen on figure 5, GA training can also provide 

animat “brains” with quite good performance on the assigned 
task. It also seems that maximal performance can be attained 
on this problem with a population size PS=100, with only 
slight acceleration of evolution for bigger sizes. 

 



        

GA-training with varying population size
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Figure 5. GA-training results for varying population sizes (PS) 

 (averages over 10 independent training tests); it seems no further 
improvement can be obtained for PS>100. 

 

VI. COMPARING PSO-BASED AND GA-BASED TRAINING 
We can now compare, on the exact same task described in 

§III, unsupervised learning with Particle Swarm Optimization 
(PSO), and using Genetic Algorithms (GA). Both algorithms 
are purposely used in their most standard variant, as our aim is 
rather to check which simple technique can yield good results 
even when applied without tedious fine-tuning. 

 

PSO-training vs GA-training
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Figure 6. Comparison of PSO-training and GA-training 

 (averages over 10 independent training tests).  
For  the same population size of 30, PSO training is much quicker and reaches 
a better final fitness. Note also that even with a 3 times larger population, GA 

training requires more iterations to attain nearly the same final fitness.  
 
In our problem, the computation time consists essentially of 

the particles/genomes evaluation on a large set of 300 random 
grids, and the particles updating or genome evolution 

computation is negligible compared to it. The total computing 
time for either PSO or GA is therefore basically proportional 
to the population size and the number of required iterations. 

Standard PSO turns out to be much more efficient than 
simple GA for training, as illustrated on figure 6. Not only the 
typical maximum fitness score is slightly higher (0.95 instead 
of 0.9) with a population size of 30, but the PSO training is 
definitely much quicker, with fitness score reaching 0.9 in less 
than 50 iterations. Even when comparing 30-particles PSO 
with 100-genomes GA, it can be seen that PSO requires much 
less iterations to attain the same animat fitness level: about 
200 iterations instead of 120 to reach maximum fitness. 
Considering that computing time (largely dominated by 
evaluation of particles/genomes) is proportional to population 
size and number of iterations, this means that for our 
unsupervised learning task PSO appears to be roughly 
(200x100)/(120x30)~5 times faster for a same optimization 
level of solution. 
 

VII. CONCLUSIONS AND FUTURE WORK 
We have presented a robot behavior-learning experiment in 

which an animat’s “brain” consisting of a fully recurrent 
neural network has to be trained to produce a foraging 
behavior. We have shown that standard Particle Swarm 
Optimization (PSO) seems particularly effective for this kind 
of behavior-learning task. According to our experiments, 
standard PSO clearly outperforms simple Genetic Algorithms 
(GA) on our particular neural-animat behavior-learning setup.  

Our results tend to confirm earlier results by Pugh et al [12] 
in similar context. This reinforces the presumption that PSO 
algorithm is particularly efficient, and a very appealing 
alternative to GA evolution, for these kinds of behavior 
learning tasks. 

Further work planned includes similar systematic 
investigation for learning of more complex behaviors, in 
particular cooperative behavior of several animats. 
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