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Particle Swarm Optimization Aided Orthogonal
Forward Regression for Unified Data Modeling

Sheng Chen, Fellow, IEEE, Xia Hong, Senior Member, IEEE, and Chris J. Harris

Abstract—We propose a unified data modeling approach that
is equally applicable to supervised regression and classification
applications, as well as to unsupervised probability density
function estimation. A particle swarm optimization (PSO) aided
orthogonal forward regression (OFR) algorithm based on leave-
one-out (LOO) criteria is developed to construct parsimonious
radial basis function (RBF) networks with tunable nodes. Each
stage of the construction process determines the center vector and
diagonal covariance matrix of one RBF node by minimizing the
LOO statistics. For regression applications, the LOO criterion
is chosen to be the LOO mean square error, while the LOO
misclassification rate is adopted in two-class classification appli-
cations. By adopting the Parzen window estimate as the desired
response, the unsupervised density estimation problem is trans-
formed into a constrained regression problem. This PSO aided
OFR algorithm for tunable-node RBF networks is capable of
constructing very parsimonious RBF models that generalize well,
and our analysis and experimental results demonstrate that the
algorithm is computationally even simpler than the efficient
regularization assisted orthogonal least square algorithm based
on LOO criteria for selecting fixed-node RBF models. Another
significant advantage of the proposed learning procedure is that
it does not have learning hyperparameters that have to be tuned
using costly cross validation. The effectiveness of the proposed
PSO aided OFR construction procedure is illustrated using
several examples taken from regression and classification, as well
as density estimation applications.

Index Terms—Classification, density estimation, evolutionary
computation, leave-one-out cross validation, orthogonal forward
regression, particle swarm optimization, radial basis function
network, regression.

I. Introduction

M
ODELING from data is of fundamental importance

in all walks of engineering. Various data modeling

applications can be classified into three categories, namely,

regression [1]–[3], classification [4]–[6], and probability den-

sity function (PDF) estimation [7]–[9]. In regression, the task

is to establish a model that links the observation data to their

target function or desired output values. The goodness of a
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regression model is judged by its generalization performance,

which can be conveniently determined by the test mean square

error (MSE) on the data not used in training the model. Like

regression, classification is also a supervised learning problem.

However, the desired output is discrete valued, e.g., binary in

two-class classification problems, and the goodness of a classi-

fier is determined by its test error probability or misclassifica-

tion rate. Despite these differences, classifier construction can

be expressed in the same framework of regression modeling.

The third class of data modeling, namely, PDF estimation, is

very different in nature from regression and classification. The

task of PDF estimation is to infer the underlying probability

distribution that generates the observations. Because the true

target function, the underlying PDF, is not available, this is

an unsupervised learning problem and can only be carried

out based on, often noisy, observation data. Nevertheless, this

unsupervised task can be “transformed” into a supervised one,

for example, by computing the empirical distribution function

(EDF) from the observation data and using it as the target

function for the cumulative distribution function (CDF) of the

PDF estimation. Thus, a unified regression framework can be

adopted for all three classes of data modeling problems.

The radial basis function (RBF) network has found wide-

ranging data modeling applications in diverse engineering

fields [10]–[26]. The parameters of the RBF network, which

include the center vectors and variances or covariance matrices

of its hidden nodes, as well as the weights that connect the

RBF nodes to the network output, can be trained together

via nonlinear optimization using gradient based algorithms

[27]–[31], the expectation-maximization (EM) algorithm [32],

[33], or various evolutionary algorithms [34]–[38]. Generally

speaking, learning based on such a nonlinear approach is

computationally expensive and may encounter the problem

of local minima. Additionally, the network structure or the

number of RBF nodes has to be determined via other means,

typically based on cross validation. Alternatively, clustering

algorithms can be applied to find the RBF center vectors, as

well as the associated basis function variances [39]–[42]. This

leaves the RBF weights to be determined by the usual linear

least squares solution. Again, the number of clusters has to be

determined via cross validation. An alternative RBF network

selection criterion is based on sensitivity analysis [43]. How-

ever, one of the most popular approaches for constructing RBF

models for regression is to formulate the problem as a linear

learning problem by considering the training input data points

as candidate RBF centers and employing a common variance

1089-778X/$26.00 c© 2009 IEEE
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for every RBF node. A parsimonious RBF network is then

identified using the orthogonal least squares (OLS) algorithm

[44]–[48]. A similar linear learning approach is adopted in

the support vector machine (SVM) and other sparse kernel

modeling methods [49]–[55], which fix the kernel centers to

the training input data points and adopt a common kernel

variance for every kernel. A sparse kernel model is then sought

by making as many kernel weights to near zero as possible

based on appropriate optimization criteria. Hybrid learning

for RBF networks has also been proposed. For example, an

initial RBF network can be constructed using a linear learning

method and the resulting RBF model is then further optimized

using nonlinear optimization [56].

The SVM and related sparse kernel methods are equally

applicable to regression, classification, and density estimation

[57]–[62]. The OLS approach has also been extended to all

three types of data modeling. In particular, the regularization

assisted OLS (ROLS) algorithm based on minimizing the

leave-one-out (LOO) MSE [48] offers a state-of-the-art for

regression application. The work [63] has developed a ROLS

algorithm based on minimizing the LOO misclassification rate

for two-class classification applications. Owing to orthogonal

decomposition, the LOO misclassification rate can be com-

puted efficiently, just as in the case of the LOO MSE for

regression, and this ensures a fast RBF classifier construction.

A sparse density estimation technique has been developed

in [64], which uses the ROLS algorithm based on the LOO

MSE to select a parsimonious density estimate and computes

the associated kernel weights using the multiplicative non-

negative quadratic programming (MNQP) algorithm of [65].

Our experimental results [48], [63], [64] have demonstrated

that the ROLS-LOO algorithm compares favorably with many

other existing fixed-node RBF or kernel modeling methods for

data modeling, in terms of model sparsity and generalization

performance. One aspect of the linear learning approach for

RBF models, which deserves consideration, is the determina-

tion of the common RBF variance. Since this variance is not

provided by the learning algorithms, it must be treated as a

hyperparameter and determined via cross validation. For kernel

modeling methods, the learning algorithm’s hyperparameters

also have to be determined by cross validation. For example,

for the SVM algorithm with the ε insensitive cost function

[50], the kernel variance as well as the regularization and error-

band parameters must be specified.

To avoid using costly cross validation for determining the

RBF variance as is required by the above-mentioned linear

learning approach for fixed-node RBF or kernel modeling

methods, Chen et al [66] adopt a strategy of fitting a diagonal

covariance matrix to each candidate RBF node, which as usual

is centered at a training input point, by optimizing the cor-

relation criterion between the training data and the candidate

RBF regressor. Because fitting the covariance matrix of a RBF

node by maximizing the correlation criterion is a nonlinear and

nonconvex optimization task, a global search algorithm known

as the repeated weighted boosting search (RWBS) [67] is em-

ployed to perform this optimization. This RBF regression does

not need to learn any hyperparameter. However, it is required

to fit a diagonal RBF covariance matrix to every training data

point, which can be computationally costly, particularly for a

large training data set. More effective construction algorithms

for the RBF network with tunable nodes for regression and

classification are proposed in [68], [69], where each RBF

unit has a tunable center vector as well as an adjustable

diagonal covariance matrix. An orthogonal forward regression

(OFR) procedure is employed to optimize the RBF units one

by one by minimizing the LOO statistics. Specifically, each

stage of the model construction procedure determines one RBF

unit’s center vector and diagonal covariance matrix using the

RWBS [67]. Because the RBF centers are not restricted to the

training input points and each RBF node has an individually

adjusted covariance matrix, this OFR-LOO algorithm can

produce sparser representations with excellent generalization

capability, in comparison with the existing fixed-node RBF

modeling methods. This tunable-node approach is also very

different from those RBF learning methods based on nonlinear

optimization, as it does not attempt to optimize all the RBF

units together, which could be a too large and complicated

nonlinear optimization task. A drawback of the algorithms

[68], [69] for constructing tunable-node RBF models is that

they may require more computation in model construction

than the algorithms [48], [63] for selecting fixed-node RBF

models.

This paper proposes a particle swarm optimization (PSO)

aided OFR algorithm to construct tunable-node RBF models

for unified data modeling that includes regression, classifi-

cation, and density estimation. PSO [70], [71] constitutes

a population based stochastic optimization technique, which

was inspired by the social behavior of bird flocks or fish

schools. The algorithm commences with random initialization

of a swarm of individuals, referred to as particles, within the

specific problem’s search space. It then endeavors to find a

globally optimum solution by gradually adjusting the trajec-

tory of each particle toward its own best location and toward

the best position of the entire swarm at each optimization

step. The PSO method is popular owing to its simplicity in

implementation, ability to rapidly converge to a “reasonably

good” solution and to “steer clear” of local minima. It has been

successfully applied to wide-ranging optimization problems

[37], [38], [72]–[117]. Because of the simplicity and efficiency

of the PSO method, the proposed PSO aided OFR algorithm

based on LOO statistics for constructing tunable-node RBF

models not only produces smaller RBF models with better

generalization capability but also requires less computation in

model construction, in comparison with the efficient ROLS-

LOO algorithm for selecting fixed-node RBF models [48],

[63], [64]. Regression, classification and density estimation

examples are used in our experimental study to demonstrate

that the proposed PSO-aided OFR-LOO algorithm offers a

state-of-the-art for unified data modeling practice. Hence, the

novel contribution of this paper is that we develop a PSO-

aided OFR-LOO algorithm for constructing tunable-node RBF

models. This PSO-aided tunable RBF modeling approach

offers significant advantages over the best existing algorithms

for selecting fixed-node RBF models, in terms of achieving

smaller model size and better generalization performance as

well as imposing lower computational complexity.
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II. Unified Data Modeling Using

the Tunable RBF Network

Regression, classification, and PDF estimation can be uni-

fied under a regression framework of data modeling based

on appropriate modeling criteria, where the model is obtained

as a linear combination of a set of tunable RBF nodes or

kernels. For density estimation, additionally, each RBF kernel

is nonnegative and the area under the RBF kernel is unity.

A. Regression

Consider the generic regression modeling problem based on

the set of N pairs of training data, DN = {(xk, yk)}Nk=1, with

the RBF network defined in

yk = ŷk + ek =

M
∑

i=1

wigi(xk) + ek = gT (k)w + ek (1)

where the input xk ∈ Rm, the desired output yk ∈ R, ŷk

denotes the RBF model output, ek = yk − ŷk is the modeling

error, M is the number of RBF units, w = [w1 w2 · · · wM]T

is the RBF weight vector, gi(•) for 1 ≤ i ≤ M denote the

RBF regressors, and g(k) = [g1(xk) g2(xk) · · · gM(xk)]T . We

will consider the generic RBF regressor of the form

gi(x) = K(x; µi, �i)

= K

(
√

(

x − µi

)T
�−1

i

(

x − µi

)

)

(2)

where µi is the center vector of the ith RBF unit, the

ith RBF covariance matrix takes a diagonal form �i =

diag{σ2
i,1, · · · , σ2

i,m}, and K(•) is the chosen basis or kernel

function. Many types of basis function can be used and a

commonly adopted one is the Gaussian function of the form

K(x; µ, �) =
1

(2π)m/2 det1/2 |�|
e− 1

2
(x−µ)T�

−1
(x−µ). (3)

For regression and classification, the factor 1/
(

(2π)m/2

det1/2 |�|
)

can be combined into the RBF weight w.

By defining y = [y1 y2 · · · yN ]T , e = [e1 e2 · · · eN ]T , and

G = [g1 g2 · · · gM] with

gl = [gl(x1) gl(x2) · · · gl(xN )]T , 1 ≤ l ≤ M (4)

the regression model in (1) over the training data set DN can

be written in matrix form as

y = Gw + e. (5)

Note that gk denotes the kth column of G while gT (k) is the kth

row of G. Let an orthogonal decomposition of the regression

matrix G be G = �A, where

A =

⎡

⎢

⎢

⎢

⎢

⎣

1 α1,2 · · · α1,M

0 1
. . .

...
...

. . .
. . . αM−1,M

0 · · · 0 1

⎤

⎥

⎥

⎥

⎥

⎦

(6)

and

� = [φ1 φ2 · · · φM] (7)

with the orthogonal columns that satisfy φT
i φj = 0, if i �= j.

The orthogonalization can, for example, be performed by the

Gram–Schmidt procedure [44]. The regression model in (5)

can alternatively be expressed as

y = �θ + e (8)

where the weight vector θ = [θ1 θ2 · · · θM]T defined in the

orthogonal model space � satisfies the triangular system,

Aw = θ. Since the space spanned by the original model bases

gi(•), 1 ≤ i ≤ M, is identical to the space spanned by the

orthogonal model bases, the RBF model output is equivalently

expressed by

ŷk = φT (k)θ (9)

where φT (k) = [φ1(k) φ2(k) · · · φM(k)] is the kth row of �.

B. Classification

For notational simplification, we restrict to the two-class

classification problem with the given training data set DN =

{xk, yk}Nk=1, where xk ∈ Rm is an m-dimensional pattern vector

and yk ∈ {−1, +1} is the class label for xk. The task is to

construct a RBF classifier of the form

ỹk = sgn (ŷk) (10)

with the classifier

ŷk =

M
∑

i=1

wigi(xk) (11)

where ỹk is the estimated class label for xk and

sgn(y) =

{

−1, y ≤ 0

+1, y > 0.
(12)

By defining the modeling error as ek = yk − ŷk, the classifica-

tion model over the training data set DN can be expressed in

the regression model of (5), namely, y = Gw+e, or equivalently

in the orthogonal regression model of (8), i.e., y = �θ + e,

where all the relevant notations are as defined in Section II-A.

Thus, the classifier construction can be expressed in the same

regression modeling framework of Section II-A, and the only

difference with regression is that the target function yk in

classification applications is discrete valued. In particular, for

the two-class classification problem, yk is binary.

C. Density Estimation

Given the finite data sample set DN = {xk}Nk=1 drawn from

a density p(x), where xk ∈ Rm, the task is to estimate the

unknown density p(x) using the density estimate of the form

p̂(x) =

M
∑

i=1

wigi(x) (13)

with the constraints

wi ≥ 0, 1 ≤ i ≤ M (14)

and

wT 1M = 1 (15)
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where 1M denotes the vector of ones with dimension M. The

basis function used in this study is chosen to be the Gaussian

function as given in (3). However, many other basis functions

can also be used in the density estimate of (13). This density

estimation is an unsupervised learning problem, as the desired

response for the training data points xk is unknown. We follow

the approach of [64] to transform it into a supervised learning

problem.

Given the training set DN , the well-known Parzen window

(PW) estimate [7] is obtained as

p̂Par(x) =

N
∑

k=1

1

N
K(x; xk, ρ

2
Par)

=

N
∑

k=1

1

N
K

(

√

(x − xk)T (x − xk)/ρ2
Par

)

(16)

where ρPar is the kernel width and K(•) is usually chosen as

the Gaussian kernel function. The kernel width ρPar is typically

determined via cross validation. A disadvantage associated

with the PW estimate is its high computational cost of the

point density estimate for a future data sample, as the PW

estimate employs the full training data sample set in defining

density estimate for subsequent observation. The PW estimate,

however, is simple to construct and remarkably accurate [7].

Moreover, it can be regarded as the “observation” of the true

density, namely

p̂Par(x) = p(x) + e(x) (17)

where e(x) can be viewed as the “observational noise” at the

point x. Thus, the density estimation problem in (13) can be

viewed as a “supervised” regression problem with the PW

estimate as the “desired response,” subject to the constraints

given in (14) and (15).

Specifically, the PW estimate in (16) and the generic density

estimate in (13) at the training data point xk are, respectively,

defined as yk = p̂Par(xk) and ŷk = p̂(xk). Further, denote the

associated modeling error at xk as ek = yk − ŷk. Then the

generic density estimation problem in (13) is expressed in

the same regression modeling framework of (5), that is,

y = Gw + e, subject to the nonnegative constraint in (14) and

the unity constraint in (15), where all the relevant notations

have been defined in Section II-A. The regression model in

(5) can of course be written equivalently in the form of (8),

namely, y = �θ + e.

Appendix A explains in detail the two common approaches

for “converting” the unsupervised density estimation problem

into a supervised regression problem.

III. PSO Aided OFR for the Tunable RBF Network

As mentioned in the previous section, regression, classifi-

cation, and PDF estimation can all be unified in a common

regression modeling framework. We propose a PSO aided OFR

algorithm for efficient construction of the tunable-node RBF

model in this unified regression framework. First, the PSO

method adopted is briefly summarized.

A. PSO

Consider solving the generic optimization problem

uopt = arg min

u∈
∏m

′

j=1
Pj

F (u) (18)

using the PSO algorithm [70], [71], where u = [u1 u2 · · · um
′ ]T

is the m
′
-dimensional parameter vector to be optimized, F (•)

is the cost function, and

m
′

∏

j=1

Pj =

m
′

∏

j=1

[Pj,min, Pj,max] (19)

defines the search space. A swarm of particles, {u(l)
i }Si=1, that

represent potential solutions are “flying” in the search space
∏m

′

j=1 Pj , where S is the swarm size and index l denotes the

iteration step. The algorithm is summarized as follows.

a) Swarm Initialization: Set the iteration index l = 0 and

randomly generate {u(l)
i }Si=1 in the search space

∏m
′

j=1 Pj .

b) Swarm Evaluation: Each particle u
(l)
i has a cost F (u

(l)
i )

associated with it. Each particle u
(l)
i remembers its best

position visited so far, denoted as pb
(l)
i , which provides

the cognitive information. Every particle also knows the

best position visited so far among the entire swarm,

denoted as gb(l), which provides the social information.

The cognitive information {pb
(l)
i }Si=1 and the social infor-

mation gb(l) are updated at each iteration as follows:

For (i = 1; i ≤ S; i++)

If (F (u
(l)
i ) < F (pb

(l)
i )) pb

(l)
i = u

(l)
i ;

End for;

i∗ = arg min
1≤i≤S

F (pb
(l)
i );

If (F (pb
(l)
i∗ ) < F (gb(l))) gb(l) = pb

(l)
i∗ ;

c) Swarm Update: Each particle u
(l)
i has a velocity, denoted

as v
(l)
i , to direct its “flying.” The velocity and position of

the ith particle are updated in each iteration according

to

v
(l+1)
i = wI ∗ v

(l)
i + rand() ∗ c1 ∗ (pb

(l)
i − u

(l)
i )

+ rand() ∗ c2 ∗ (gb(l) − u
(l)
i ) (20)

u
(l+1)
i = u

(l)
i + v

(l+1)
i (21)

where wI is the inertia weight, rand() denotes the

uniform random number between 0 and 1, and c1 and c2

are the two acceleration coefficients. In order to avoid

excessive roaming of particles beyond the search space

[75], a velocity space

m
′

∏

j=1

Vj =

m
′

∏

j=1

[−Vj,max, Vj,max] (22)

is imposed on v
(l+1)
i so that

If (v
(l+1)
i |j > Vj,max) v

(l+1)
i |j = Vj,max;

If (v
(l+1)
i |j < −Vj,max) v

(l+1)
i |j = −Vj,max;

where v|j denotes the jth element of v. Moreover, if

the velocity as given in (20) approaches zero, it is
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reinitialized proportional to Vj,max with a small factor

γ

If (v
(l+1)
i |j == 0) v

(l+1)
i |j = ±rand() ∗ γ ∗ Vj,max; (23)

Similarly, each element of u
(l+1)
i is checked to ensure

that it stays inside the search space

If (u
(l+1)
i |j > Pj,max) u

(l+1)
i |j = Pj,max;

If (u
(l+1)
i |j < Pj,min) u

(l+1)
i |j = Pj,min;

Alternatively, if a particle is outside the search space, it

may be moved back inside the search space to a random

position, rather than forcing it to stay at the border [75].

d) Termination Condition Check: If the maximum number

of iterations, Imax, is reached, terminate the algorithm

with the solution gb(Imax); otherwise, set l = l + 1 and go

to Step b).

Ratnaweera and co-authors [73] reported that using a time

varying acceleration coefficient (TVAC) enhances the perfor-

mance of PSO. We adopt this mechanism, in which c1 is

reduced from 2.5 to 0.5 and c2 varies from 0.5 to 2.5 during

the iterative procedure

c1 = (0.5 − 2.5) ∗ l/Imax + 2.5

c2 = (2.5 − 0.5) ∗ l/Imax + 0.5.

(24)

The reason for good performance of this TVAC mechanism

can be explained as follows. At the initial stages, a large cog-

nitive component and a small social component help particles

to wander around or better exploit the search space, avoiding

local minima. In the later stages, a small cognitive component

and a large social component help particles to converge quickly

to a global minimum. We experiment with three choices of

the inertia weight, namely, wI = 0 as suggested in [73], which

removes the influence of the previous velocity, wI set to a

small positive constant, and wI = rand(). The third choice

sets wI as a uniform random number between 0 and 1 at each

iteration and it typically performs better than the other two

choices in our application.

The search space as given in (19) is defined by the spe-

cific problem to be solved, and the velocity limit can be

set to

Vj,max = 0.5 ∗ (Pj,max − Pj,min). (25)

An appropriate value of the small control factor γ in (23) for

avoiding zero velocity is empirically found to be γ = 0.1 for

our application. Our experimental results given in Section IV

show that a swarm size in the range of S = 10 to S = 20 is ap-

propriate for our application. We have also found empirically

that often the maximum number of iterations can be chosen as

Imax = 20. Thus, the PSO method is generally very efficient in

terms of the total required computational complexity. Let the

computational complexity of evaluating the cost function F (u)

once be Csingle. The total complexity of the above-mentioned

PSO algorithm in solving the optimization problem defined in

(18) is

Ctotal = Imax × S × Csingle. (26)

B. Regression Model Construction

Consider the modeling process that has produced the n-

unit RBF model. Denote the constructed n model columns

as �n = [φ1 φ2 · · · φn], the kth model output of this n-

unit model identified using the entire training set DN as

ŷ
[n]
k =

∑n
i=1 θiφi(k), and the corresponding kth modeling error

as e
[n]
k = yk − ŷ

[n]
k . If we “remove” the kth data point from DN

and use the remaining N − 1 data points to identify the n-unit

RBF network instead, the “test” error of the resulting model

can be calculated on the data point removed from training.

This LOO modeling error, denoted as e
[n,−k]
k , is given by [2]

e
[n,−k]
k = e

[n]
k /η

[n]
k (27)

where η
[n]
k is the LOO error weighting [2]. The LOO MSE for

the n-unit RBF network is then defined by

Jn =
1

N

N
∑

k=1

(

e
[n,−k]
k

)2

. (28)

This LOO MSE is a measure of the model generalization

capability [2], [118]. For the orthogonal model of (8), the

computation of the LOO criterion Jn is very efficient because

e
[n]
k and η

[n]
k can be computed recursively using [48], [119]

e
[n]
k = yk −

n
∑

i=1

θiφi(k) = e
[n−1]
k − θnφn(k) (29)

and

η
[n]
k = 1 −

n
∑

i=1

φ2
i (k)

φT
i φi + λ

= η
[n−1]
k −

φ2
n(k)

φT
n φn + λ

(30)

respectively, where λ ≥ 0 is a small regularization parameter.

The regularization parameter λ occurs in (30) because the

ROLS solution for weights is used [48]. The concept of LOO

cross validation, as well as the derivation of (29) and (30), are

detailed in Appendix B.

The OFR algorithm constructs the RBF nodes one by one

by minimizing the LOO MSE Jn. Specifically, at the nth stage

of the construction procedure, the nth RBF node is determined

by minimizing Jn with respect to the node’s center vector µn

and diagonal covariance matrix �n

min
µn,�n

Jn

(

µn, �n

)

. (31)

The construction procedure is automatically terminated when

JM ≤ JM+1 (32)

yielding an M-node RBF network. Note that the LOO criterion

Jn is at least locally convex with respect to the model size n,

that is, there exists an optimal size M such that, for n ≤ M, Jn

decreases as the model size n increases while the condition in

(32) holds [119]. After this OFR-LOO model construction, a

very small model set G, containing only M units, is obtained.

At this stage, the ROLS-LOO algorithm for the fixed-node

RBF model [48] may be applied to further reduce the model

size and to automatically update an individual regularization

parameter for each weight. This refinement requires a very

small amount of computation, as G is completely specified
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with only a few columns. Note that in the OFR-LOO algo-

rithm, the regularization parameter λ can simply be set to

zero (no regularization) or a very small value (e.g., 10−6). The

refinement using the ROLS-LOO will automatically optimize

each regularization parameter for individual weights without

involving cross validation [48]. Our previous experience [68],

[69] shows that for regression applications this refinement

involving the ROLS-LOO is beneficial but for classification it

is unnecessary (no further reduction in model size). It is also

unnecessary to apply this ROLS-LOO refinement at the end

of OFR-LOO construction for the tunable-node RBF density

estimate, as the MNQP algorithm used in computing the

weights of the constructed density model may further reduce

the model size [62], [65].

How efficient this OFR construction procedure is for tunable

RBF models depends crucially on the algorithm used in

solving the optimization problem defined in (31). We propose

to use the PSO algorithm of Section III-A to perform this

optimization task. Let u be the parameter vector that contains

µn and �n. Then the dimension of u is m
′

= 2m and the cost

function is simply F (u) = Jn(u). The search space defined in

(19) is specified by

Pj,min = min
1≤k≤N

{xk|j},

Pj,max = max
1≤k≤N

{xk|j},

⎫

⎬

⎭

1 ≤ j ≤ m (33)

Pj,min = σ2
min and Pj,max = σ2

max, m + 1 ≤ j ≤ m
′

(34)

where σ2
min and σ2

max are the chosen lower and upper bounds

for the RBF variances σ2
n,j , respectively. Given the following

initial conditions

e
[0]
k = yk and η

[0]
k = 1, 1 ≤ k ≤ N

J0 = 1
N

yT y = 1
N

N
∑

k=1

y2
k

⎫

⎬

⎭

(35)

and the maximum number of iterations Imax as well as the

swarm size S, the PSO aided OFR algorithm for constructing

the nth RBF node takes the PSO procedure summarized in

Section III-A with the following detailed cost evaluation in

Step b):

The Orthogonalization and Cost Function Evaluation:

1) For 1 ≤ i ≤ S, generate gi)
n from u

(l)
i , the candidates

for the nth model column, according to (4), and orthogonalize

them using the Gram–Schmidt orthogonalization [44]

α
i)
j,n = φT

j gi)
n/φT

j φj, 1 ≤ j < n (36)

φi)
n = gi)

n −
n−1
∑

j=1

α
i)
j,nφj (37)

θi)
n =

(

φi)
n

)T
y/

(

(

φi)
n

)T
φi)

n + λ
)

. (38)

2) For 1 ≤ i ≤ S, calculate the LOO cost for each u
(l)
i

e
[n]
k (i) = e

[n−1]
k − φi)

n (k)θi)
n , 1 ≤ k ≤ N (39)

η
[n]
k (i) = η

[n−1]
k −

(

φi)
n (k)

)2

(

φi)
n

)T
φi)

n + λ
, 1 ≤ k ≤ N (40)

F
(

u
(l)
i

)

=
1

N

N
∑

k=1

(

e
[n]
k (i)/η

[n]
k (i)

)2

(41)

where φi)
n (k) is the kth element of φi)

n .

When the PSO algorithm terminates, it yields the solution

gb(Imax), i.e., the center vector µn and diagonal covariance

matrix �n of the nth RBF node. The algorithm also generates

the nth model column gn, the orthogonalization coefficients

αj,n, 1 ≤ j < n, the corresponding orthogonal model column

φn, and the weight θn, as well as the n-node modeling

errors e
[n]
k and the associated LOO error weightings η

[n]
k for

1 ≤ k ≤ N. The next stage of the model construction can then

commence, and the construction is automatically terminated

when the condition in (32) is met.

C. Classifier Construction

The same LOO cross validation concept [2], as was used

in Section III-B for regression modeling, can be adopted to

provide a measure of a classifier’s generalization capability.

Denote the test output of the LOO n-node RBF classifier,

evaluated at the kth data sample of DN which has been

“removed” from training, as ŷ
[n,−k]
k . The associated LOO

signed decision variable is defined by

s
[n,−k]
k = sgn(yk)ŷ

[n,−k]
k = ykŷ

[n,−k]
k (42)

where sgn(yk) = yk since yk ∈ {−1, +1}. The LOO misclassi-

fication rate is defined as [63]

Jn =
1

N

N
∑

k=1

Id

(

s
[n,−k]
k

)

(43)

where the indicator function Id is defined by

Id (y) =

{

1, y ≤ 0

0, y > 0.
(44)

The LOO misclassification rate Jn can be evaluated efficiently

because s
[n,−k]
k can be calculated rapidly [63]. Specifically, the

LOO n-node modeling error is expressed as

yk − ŷ
[n,−k]
k =

(

yk − ŷ
[n]
k

)

/η
[n]
k . (45)

Multiplying both sides of (45) with yk and applying y2
k = 1

yield

1 − s
[n,−k]
k =

(

1 − ykŷ
[n]
k

)

/η
[n]
k (46)

which leads to

s
[n,−k]
k =

(

n
∑

i=1

ykθiφi(k) −
n

∑

i=1

φ2
i (k)

φT
i φi + λ

)

/η
[n]
k

= ψ
[n]
k /η

[n]
k . (47)

The recursive formula for the LOO error weighting η
[n]
k

is given in (30), while ψ
[n]
k can be represented using the

following recurrence relation:

ψ
[n]
k = ψ

[n−1]
k + ykθnφn(k) −

φ2
n(k)

φT
n φn + λ

. (48)

As in the regression case, the OFR algorithm constructs the

classifier’s RBF units one by one by minimizing the LOO



CHEN et al.: PARTICLE SWARM OPTIMIZATION AIDED ORTHOGONAL FORWARD REGRESSION FOR UNIFIED DATA MODELING 483

misclassification rate Jn defined in (43). At the nth stage of

construction, the nth RBF node is determined by minimizing

Jn with respect to µn and �n. The procedure is automatically

terminated when JM ≤ JM+1, yielding an M-node RBF

classifier.

The PSO algorithm used to construct the nth RBF node has

a similar form to the regression case with small modifications.

Specifically, the initial condition of (35) is replaced by

ψ
[0]
k = 0 and η

[0]
k = 1, 1 ≤ k ≤ N, and J0 = 1 (49)

while (39) and (41) in the calculation of the LOO cost for

each u
(l)
i are replaced, respectively, by

ψ
[n]
k (i) = ψ

[n−1]
k + ykθ

i)
n φi)

n (k)

−
(

φi)
n (k)

)2

/
(

(

φi)
n

)T
φi)

n + λ
)

, 1 ≤ k ≤ N (50)

and

F (u
(l)
i ) =

1

N

N
∑

k=1

Id

(

ψ
[n]
k (i)/η

[n]
k (i)

)

. (51)

At the nth stage of the classifier construction, when the PSO

algorithm terminates, it outputs gb(Imax) as the solution for µn

and �n. The algorithm also generates the nth model column

gn, the orthogonalization coefficients αj,n, 1 ≤ j < n, the

corresponding orthogonal model column φn, and the weight

θn, as well as ψ
[n]
k and η

[n]
k for 1 ≤ k ≤ N.

D. Density Estimate Construction

Since the density estimation can be expressed as a con-

strained regression modeling, the PSO aided OFR-LOO al-

gorithm detailed in Section III-B can be used to construct a

parsimonious density estimate. However, the model weights

obtained by the OFR-LOO algorithm do not necessarily meet

the nonnegative constraint of (14) and the unity constraint of

(15). This “deficiency” can easily be corrected by using the

MNQP algorithm to recalculate the weights of the constructed

model, as in the case of selecting a fixed-node RBF density es-

timate [64]. Specifically, the PSO aided OFR-LOO algorithm

presented in Section III-B is used to determine the structure

of the density estimate by constructing M RBF nodes. This

specifies the regression matrix G in the regression model of

(5). The model weight vector w is then recalculated using the

MNQP algorithm [62], [65], in order to meet the constraints

of (14) and (15). Formally, this task is defined as follows.

Given y and G, find w for the model of (5) subject to the

constraints of (14) and (15). Note that, since M is very small,

the computation involved is small.

More specifically, the weight vector of the constructed den-

sity estimate is obtained by solving the following constrained

nonnegative quadratic programming [65]:

min
w

{ 1
2
wT Dw − zT w}

s.t. wT 1M = 1 and wi ≥ 0, 1 ≤ i ≤ M
(52)

where D = GT G =
[

di,j

]

∈ RM×M is the related design

matrix and z = GT y = [z1 z2 · · · zM]T . Although there exists

no closed-form solution for this optimization problem, the

solution can readily be obtained iteratively using a modified

version of the MNQP algorithm [65]. Since the elements of

D and z are strictly positive, the auxiliary function for the

nonnegative quadratic programming of (52) is given by [65]

1

2

M
∑

i=1

M
∑

j=1

di,j

w
(t)
j

(

w
(t+1)
i

)2

w
(t)
i

−
M

∑

i=1

ziw
(t+1)
i (53)

and the Lagrangian associated with this auxiliary problem can

be formed as [62]

L =
1

2

M
∑

i=1

M
∑

j=1

di,j

w
(t)
j

(

w
(t+1)
i

)2

w
(t)
i

−
M

∑

i=1

ziw
(t+1)
i

−h(t)

(

M
∑

i=1

w
(t+1)
i − 1

)

(54)

where the index t denotes the iteration index and h is the

Lagrangian multiplier. Setting

∂L

∂w
(t+1)
i

= 0 and
∂L

∂h(t)
= 0 (55)

leads to the following updating equations:

r
(t)
i = w

(t)
i

⎛

⎝

M
∑

j=1

di,jw
(t)
j

⎞

⎠

−1

, 1 ≤ i ≤ M (56)

h(t) =

(

M
∑

i=1

r
(t)
i

)−1 (

1 −
M

∑

i=1

r
(t)
i zi

)

(57)

w
(t+1)
i = r

(t)
i

(

zi + h(t)
)

. (58)

It is easy to check that, if w(t) meets the constraints of (14)

and (15), w(t+1) updated according to (56) to (58) also satisfies

the constraints of (14) and (15). The initial condition can be

set to w
(0)
i = 1

M
, 1 ≤ i ≤ M. During the iterative procedure,

some of the weights may be driven to (near) zero [62], [65].

The corresponding RBF units can then be removed from the

model, leading to a further reduction in the model size.

E. Computational Complexity Comparison

The complexity of one LOO cost evaluation and the asso-

ciated model column orthogonalization, as defined in (36) to

(41), can be shown to be the order of N, O(N) (also see [120]).

Thus, Csingle = O(N), and the computational requirements of

the PSO-aided OFR-LOO algorithm in constructing an M-

node RBF model can readily be given as

CPSO−OFR = (M + 1) × Imax × S × O(N). (59)

For regression modeling, this complexity does not include

the complexity of using the ROLS-LOO refinement at the

end of model construction, which is negligible, while for

classification application, CPSO−OFR accounts for the total

complexity. For PDF estimate construction, CPSO−OFR does not

include the complexity of the MNQP algorithm for updating

the model weights but this complexity is small and can be

neglected.

The ROLS-LOO algorithm [48], [63], [64] is an efficient

construction algorithm for selecting fixed-node RBF models.
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Fig. 1. Engine data set (a) input υk , and (b) output yk .

The complexity of the ROLS-LOO algorithm in selecting

M
′

RBF nodes from the N-candidate set with a given RBF

variance is readily determined by

CROLS =

⎛

⎝

M
′
+1

∑

i=1

(N − (i − 1))

⎞

⎠ × O(N)

≈
(

M
′
+ 1

)

× N × O(N) (60)

where the approximation is arrived because the selected

model size M
′

is usually much smaller than the training

data size N. For regression application, this complexity only

accounts for the complexity of the first iteration of the

ROLS-LOO algorithm, but the complexity of subsequent

iterations is much smaller and can be neglected [48]. For

density estimation, CROLS does not take into account the

complexity of the MNPQ updating, which is negligible. Only

for classification application, CROLS is the total account of

complexity.

We can now draw some comparison for the two meth-

ods. The number of cost function evaluations is proportional

to the training data size N for the ROLS-LOO algorithm,

while for the PSO aided OFR-LOO algorithm, the number

of cost function evaluations is somewhat independent of N.

This suggests that the PSO aided OFR-LOO algorithm has

clearly computational advantage for large training data sets.

Specifically, since the model size M obtained by the PSO

aided OFR-LOO algorithm is generally much smaller than

the model size M
′

selected by the ROLS-LOO algorithm,

the PSO aided OFR-LOO algorithm will require less compu-

tation than the ROLS-LOO algorithm whenever the training

data size N is larger than Imax × S. In our experimental

investigation, we will show that Imax = 20 and S = 10 are

often adequate for the PSO algorithm. Thus for N ≥ 200,

we always have CPSO−OFR < CROLS. Note that this com-

putational advantage is largely due to the efficiency of the

PSO method. In fact, we can also apply other optimiza-

tion methods such as the genetic algorithm [121], [122],

the adaptive simulated annealing algorithm [123], [124], or

the RWBS [67] to perform the optimization task defined

in (31). However, these alternative OFR-LOO algorithms

typically require higher computational complexity than the

ROLS-LOO algorithm, as shown in our previous works [68],

[69].

A significant advantage of the OFR-LOO approach for

constructing tunable RBF models is that the learning algorithm

does not contain any hyperparameters which require costly

cross validation to tune. The complexity CPSO−OFR represents

the true computational requirement of the PSO-aided OFR-

LOO algorithm, while the complexity CROLS is the compu-

tational requirement of the ROLS-LOO algorithm with the

given RBF variance ρ2. Since this variance is not provided

by the learning algorithm, it is a hyperparameter and must be

determined typically based on a grid-search cross validation.

Thus, the true computational advantage of the PSO-aided

OFR-LOO algorithm over the ROLS-LOO algorithm is even

more significant.

IV. Empirical Data Modeling Results

Several examples, taken from regression, classification and

density estimation applications, were used to demonstrate

the effectiveness of the proposed unified regression model-

ing approach based on the PSO aided OFR-LOO algorithm.

Comparison with the ROLS-LOO modeling technique was

made. For the PSO aided OFR-LOO, the tunable Gaussian

basis function of (3) was employed. For the ROLS-LOO, the

N-candidate set was obtained by placing a Gaussian basis at

each training data point with a common RBF variance ρ2. The

value of ρ2 was determined separately via cross validation.

Other modeling results, including nonlinear optimization based

algorithms for constructing RBF models, were also quoted

from the literature for comparison.

Our extensive experience showed that the TVAC of (24)

was very effective for PSO and was used in our application.

The control factor γ = 0.1 was found to be adequate for

the mechanism of (23) and was used for all the examples.

For our application, it was found that setting wI = rand()

generally performed better than choosing a zero or constant

inertia weight. The maximum number of iterations was set

to Imax = 20, as increasing Imax further did not improve

performance but imposed higher complexity in our applica-

tion. An adequate swarm size was determined in terms of

algorithmic computational complexity and performance. In

our application, typically S = 10 to 20 were found to be

adequate.
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TABLE I

Comparison of the Two Gaussian RBF Network Models Obtained by the ROLS-LOO and PSO-Aided OFR-LOO Algorithms for the

Engine Data Set

Algorithm RBF Type Model Size Training MSE Test MSE Complexity

ROLS-LOO Fixed 22 0.000453 0.000490 4830 × O(210)
PSO OFR-LOO Tunable 15 0.000426 0.000466 3200 × O(210)

Fig. 2. Modeling of the engine data set. (a) Performance of the PSO
algorithm with different wI while fixing S = 10 and Imax = 20. (b) Efficiency
of the PSO algorithm with different S while fixing wI = rand() and Imax = 20.

A. Regression Applications

1) Engine Data Set: This example constructed a model

representing the relationship between the fuel rack position

(input υk) and the engine speed (output yk) for a Leyland

TL11 turbocharged, direct injection diesel engine operated

at low engine speed [125]. Detailed system description and

experimental setup can be found in [125]. The data set,

depicted in Fig. 1, contained 410 samples. The first 210 data

points were used in modeling and the last 200 points in model

validation. The previous results [125] have shown that this data

set can be modeled adequately as

yk = fs(xk) + εk (61)

where fs(•) describes the unknown underlying system, εk

denotes the system noise, and xk = [yk−1 υk−1 υk−2]T . We

first applied the ROLS-LOO algorithm [48] to fit a fixed-node

RBF model with a common RBF variance ρ2 to the data set.

Fig. 3. Modeling of the engine data set by the 15-node RBF network
constructed using the PSO aided OFR-LOO algorithm. (a) Model prediction
ŷk superimposed on system output yk . (b) Model prediction error εk = yk −ŷk .

An appropriate value for the RBF variance was found to be

ρ2 = 1.69 via cross validation. Given ρ2 = 1.69, the algorithm

automatically selected M
′

= 22 RBF nodes, and this obtained

fixed-node RBF model is listed in Table I.

We next applied the PSO-aided OFR-LOO algorithm to

construct a tunable-node RBF model. The maximum number

of iterations was set to Imax = 20. Fig. 2(a) shows the

performance of the PSO algorithm, in terms of LOO MSE, for

three different choices of the inertia weight while fixing the

swarm size S = 10. It can be seen that for this example the case

wI = rand(), although less efficient, attained a smaller LOO

MSE than the choices of wI = 0 and wI = 0.7. Fig. 2(b) depicts

the efficiency of the PSO algorithm, in terms of the total

number of cost function evaluations, for three different swarm

sizes, while fixing wI = rand(). It can be seen that S = 5

was too small for guaranteeing adequate performance, while

S = 10 achieved the same excellent performance as S = 20 but

imposed much lower complexity. Hence, wI = rand(), S = 10,

and Imax = 20 were used for this example.
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TABLE II

Comparison of the Two Gaussian RBF Network Models Obtained by the ROLS-LOO and PSO-Aided OFR-LOO Algorithms for the

Gas Furnace Data Set

Algorithm RBF Type Model Size Training MSE Test MSE Complexity
ROLS-LOO Fixed 12 0.047448 0.080491 1924 × O(148)
PSO OFR-LOO Tunable 8 0.041639 0.078884 1800 × O(148)

Fig. 4. Gas furnace data set (a) input vk and (b) output yk .

The PSO algorithm automatically constructed M = 15 RBF

nodes, and this model is also listed in Table I, in comparison

with the 22-term RBF model selected by the ROLS-LOO

algorithm. Fig. 3 depicts the model prediction ŷk and the

prediction error εk = yk − ŷk generated by the 15-node RBF

model constructed by the PSO aided OFR-LOO algorithm.

In comparison with the benchmark ROLS-LOO algorithm,

the PSO aided OFR-LOO algorithm not only produced a

smaller RBF model with better test MSE performance but

also was more efficient in modeling process. Note that the

computational advantage of the PSO aided OFR-LOO was

much more significant than shown in Table I, as we did not

count the computational requirements for determining the RBF

variance ρ2 = 1.69 needed by the ROLS-LOO algorithm.

2) Gas Furnace Data Set: The gas furnace data set (the

time series J in [1]) contained 296 pairs of input-output points

as depicted in Fig. 4, where the input υk was the coded

input gas feed rate and the output yk represented the CO2

concentration from the gas furnace. From the 296 pairs of

input and output data, we constructed 296 data points {xk, yk}

Fig. 5. Modeling of the gas furnace data set. (a) Performance of the PSO
algorithm with different wI while fixing S = 10 and Imax = 20. (b) Efficiency
of the PSO algorithm with different S while fixing wI = rand() and Imax = 20.

with xk given by

xk = [yk−1 yk−2 yk−3 υk−1 υk−2 υk−3]T . (62)

From Fig. 4, it can be observed that the second half of the data

set was different from the first half. Therefore, we used the

even-number pairs of {xk, yk} for training and the odd-number

pairs of {xk, yk} for testing. Both the training and testing

sets had 148 data points. For the fixed-node RBF modeling,

an adequate RBF variance was found to be ρ2 = 1000.0

after a grid search based cross validation for the ROLS-LOO

algorithm, and the algorithm automatically selected a model

of 12 RBF nodes. The performance of this fixed-node RBF

model is given in Table II.

For constructing the tunable-node RBF model, we set

S = 10 and Imax = 20 while using wI = rand(). This set

of the PSO algorithmic parameters was appropriate, as clearly

demonstrated by the results shown in Fig. 5(a) and (b). The

model construction using the PSO-aided OFR-LOO algorithm
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TABLE III

Comparison of the Two Gaussian RBF Network Models Obtained by the ROLS-LOO and PSO-Aided OFR-LOO Algorithms for the

Liquid Level Data Set

Algorithm RBF Type Model Size Training MSE Test MSE Complexity

ROLS-LOO Fixed 30 0.001400 0.002532 15500 × O(500)
PSO OFR-LOO Tunable 20 0.001461 0.002463 4200 × O(500)

Fig. 6. Modeling of the gas furnace data set by the 8-node RBF network
constructed using the PSO aided OFR-LOO algorithm. (a) Model prediction
ŷk superimposed on system output yk . (b) Model prediction error εk = yk −ŷk .

automatically terminated with a 8-node RBF network, and this

8-node tunable RBF model is listed in Table II, in comparison

with the 12-term fixed-node RBF model selected by the

ROLS-LOO algorithm. Fig. 6 depicts the model prediction

ŷk and the prediction error εk = yk − ŷk produced by the

8-node RBF model constructed using the PSO-aided OFR-

LOO algorithm. Even though this example had a relatively

small training data size N = 148, the PSO-aided OFR-LOO

algorithm still offered clear advantages in producing a more

parsimonious model and better generalization performance as

well as less computation in model construction, compared with

the benchmark ROLS-LOO algorithm. The true complexity of

the ROLS-LOO algorithm, including the cost of determining

ρ2 = 1000.0, was several times larger than CROLS listed in

Table II, since several values of ρ2 needed to be tested in the

grid search based cross validation.

3) Liquid Level Data Set: The data set was collected from

a nonlinear liquid level system, which consisted of a DC water

pump feeding a conical flask which in turn fed a square tank.

The system input υk was the voltage to the pump motor and

Fig. 7. Liquid level data set (a) input υk , and (b) output yk .

the system output yk was the water level in the conical flask.

A description of this nonlinear process can be found in [126],

and Fig. 7 shows the 1000 data points of the data set used in

this experiment. From the data set, 1000 data points {xk, yk}
were constructed with xk given by

xk = [yk−1 yk−2 yk−3 υk−1 υk−2 υk−3 υk−4]T . (63)

The first 500 pairs of the data were used for training and

the remaining 500 pairs for testing. For the fixed-node RBF

model with every training input data used as a candidate RBF

center vector, an appropriate RBF variance was found to be

ρ2 = 2.0 via a grid search based cross validation for the ROLS-

LOO algorithm. With ρ2 = 2.0, the ROLS-LOO algorithm

automatically selected a model set of M
′

= 30 nodes, and this

fixed-node model is shown in Table III.

Based on the empirical results shown in Fig. 8(a) and (b),

we again set S = 10 and Imax = 20 while adopting wI = rand().

The PSO-aided OFR-LOO algorithm automatically produced

a model set of M = 20 nodes. The results produced by

the PSO-aided OFR-LOO and the ROLS-LOO are compared

in Table III. Fig. 9 shows the model prediction ŷk and the

prediction error εk = yk − ŷk produced by the 20-node RBF
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Fig. 8. Modeling of the liquid level data set. (a) Performance of the PSO
algorithm with different wI while fixing S = 10 and Imax = 20. (b) Efficiency
of the PSO algorithm with different S while fixing wI = rand() and Imax = 20.

model constructed using the PSO-aided OFR-LOO algorithm.

For this example, the PSO-aided OFR-LOO algorithm has

clear advantages over the benchmark ROLS-LOO algorithm,

in terms of model size and generalization capability, as well

as complexity of model construction.

B. Classification Applications

1) Breast Cancer Data: This classification benchmark data

set was originated in the UCI repository [127] and the data set

used in our experiment was obtained from [128]. The feature

input space dimension was m = 9. The data set contained

100 realizations, each having 200 training patterns and 77

test patterns. In [129], seven existing state-of-the-art RBF and

kernel classifier construction algorithms were compared and

the performance averaged over all the 100 realizations was

given. For the first five methods studied in [129], the RBF

network with five optimized nonlinear Gaussian units was

used. The kernel Fisher discriminant was the optimal non-

sparse method that placed a Gaussian kernel on every training

data sample. For the SVM method with the Gaussian kernel,

no average model size was given in [129] but it was certainly

larger than, say, 50. We applied both the ROLS-LOO algorithm

to select sparse fixed-node Gaussian RBF classifiers and the

PSO-aided OFR-LOO algorithm to construct small tunable-

node Gaussian RBF classifiers, and the results obtained are

listed in Table IV, in comparison with the benchmark results

quoted from [129]. For the PSO-aided OFR-LOO, S = 10,

Fig. 9. Modeling of the liquid level data set by the 20-node RBF network
constructed using the PSO aided OFR-LOO algorithm. (a) Model prediction
ŷk superimposed on system output yk . (b) Model prediction error εk = yk −ŷk .

Imax = 20, and wI = rand() were empirically found to be

appropriate. From Table IV, it can be seen that the PSO

aided OFR-LOO algorithm compared favorably with other

RBF modeling methods, in terms of classification accuracy

and model size. The PSO aided OFR-LOO algorithm is

also seen to impose less computational complexity in model

construction than the efficient ROLS-LOO algorithm.

2) Diabetes Data: This was another benchmark data set

originated from the UCI repository [127] and we obtained the

data set from [128]. The feature space dimension was m = 8.

There were 100 realizations of the data set, each having 468

training patterns and 300 test patterns. We applied both the

ROLS-LOO and PSO-aided OFR-LOO algorithms to the data

set. For the PSO-aided OFR-LOO, the swarm size and the

maximum number of iterations were set to S = 10 and Imax =

20, respectively, while the random inertia weight wI = rand()

was adopted. The results obtained by these two algorithms

are listed Table V, in comparison with the seven benchmark

RBF classifiers studied in [129]. For the first five methods

studied in [129], the Gaussian RBF network with 15 optimized

nonlinear RBF units was used. For the SVM with RBF kernel,

no average model size was given in [129] but we could safely

assume that it might be larger than 100. It can be seen from

Table V that the PSO-aided OFR-LOO method produced the

best classification accuracy with the smallest RBF classifier.

It is also seen to impose much lower complexity in model

construction than the ROLS-LOO method.
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TABLE IV

Comparison of Average Classification Test Error Rates in % Over the 100 Realizations of the Breast Cancer Data Set Obtained

by Nine Methods

Method RBF Type Test Error Rate Model Size Complexity

RBF-Network Tunable 27.64 ± 4.71 5 NA
AdaBoost with RBF-Network Tunable 30.36 ± 4.73 5 NA
LP-Reg-AdaBoost (-"-) Tunable 26.79 ± 6.08 5 NA
QP-Reg-AdaBoost (-"-) Tunable 25.91 ± 4.61 5 NA
AdaBoost-Reg (-"-) Tunable 26.51 ± 4.47 5 NA
SVM with RBF-Kernel Fixed 26.04 ± 4.74 Not available NA
Kernel Fisher Discriminant Fixed 24.77 ± 4.63 200 NA
ROLS-LOO Fixed 25.74 ± 5.00 6.0 ± 2.0 1400 × O(200)
PSO OFR-LOO Tunable 23.04 ± 3.41 2.8 ± 0.9 760 × O(200)

The first seven results were quoted from [129].

TABLE V

Comparison of Average Classification Test Error Rates in % Over the 100 Realizations of the Diabetes

Data Set Obtained by Nine Methods

Method RBF Type Test Error Rate Model Size Complexity

RBF-Network Tunable 24.29 ± 1.88 15 NA
AdaBoost with RBF-Network Tunable 26.47 ± 2.29 15 NA
LP-Reg-AdaBoost (-"-) Tunable 24.11 ± 1.90 15 NA
QP-Reg-AdaBoost (-"-) Tunable 25.39 ± 2.20 15 NA
AdaBoost-Reg (-"-) Tunable 23.79 ± 1.80 15 NA
SVM with RBF-Kernel Fixed 23.53 ± 1.73 Not available NA
Kernel Fisher Discriminant Fixed 23.21 ± 1.63 468 NA
ROLS-LOO Fixed 23.00 ± 1.70 6.0 ± 1.0 3276 × O(468)
PSO OFR-LOO Tunable 21.87 ± 1.24 3.5 ± 1.4 900 × O(468)

The first seven results were quoted from [129].

TABLE VI

Comparison of Average Classification Test Error Rates in % Over the 100 Realizations of the Thyroid

Data Set Obtained by Nine Methods

Method RBF Type Test Error Rate Model Size Complexity

RBF-Network Tunable 4.52 ± 2.12 8 NA
AdaBoost with RBF-Network Tunable 4.40 ± 2.18 8 NA
LP-Reg-AdaBoost (-"-) Tunable 4.59 ± 2.22 8 NA
QP-Reg-AdaBoost (-"-) Tunable 4.35 ± 2.18 8 NA
AdaBoost-Reg (-"-) Tunable 4.55 ± 2.19 8 NA
SVM with RBF-Kernel Fixed 4.80 ± 2.19 Not available NA
Kernel Fisher Discriminant Fixed 4.20 ± 2.07 140 NA
ROLS-LOO Fixed 4.80 ± 2.20 4.6 ± 1.0 784 × O(140)
PSO OFR-LOO Tunable 2.48 ± 1.41 3.5 ± 0.8 1800 × O(140)

The first seven results were quoted from [129].

3) Thyroid Data: This was also a benchmark data set in

the UCI repository [127] and again we obtained the data set

from [128]. The input space dimension was m = 5. There

were 100 realizations of this data set, each containing 140

training patterns and 75 test patterns. Nine RBF classifiers

are compared in Table VI, with the first seven quoted from

[129]. Again it is seen that the PSO-aided OFR-LOO method

produced the best classification accuracy with the smallest

RBF classifier. The PSO algorithmic parameters were found

empirically to be S = 20, Imax = 20, and wI = rand().

For this example, the complexity of the PSO aided OFR-

LOO algorithm is seen to be higher than that of the ROLS-

LOO algorithm when the latter’s RBF variance ρ2 was given.

However, several points of ρ2 needed to be tested via grid

search for the ROLS-LOO algorithm and, therefore, its true

complexity was likely to be higher than that of the PSO aided

OFR-LOO algorithm even for this example of small N.

C. Density Estimation Applications

For each density estimation case, a data set of N randomly

drawn samples was used to construct a density estimate, and

a separate test data set of Ntest = 10 000 samples was used to

calculate the L1 test error for the resulting estimate according

to

L1 =
1

Ntest

Ntest
∑

k=1

|p(xk) − p̂(xk)| . (64)

The Kullback–Leibler divergence (KLD) is a measure of the

difference between the two probability distributions, p(x) and

p̂(x), and is defined by

DKL(p|p̂) =

∫

Rm

p(x) log
p(x)

p̂(x)
dx. (65)

For a 1-D problem, by partitioning the integration range

[xmin, xmax] into the Npar small equal-length intervals, the
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Fig. 10. (a) A PW estimate, (b) a ROLS-LOO estimate, (c) a PSO-aided OFR-LOO estimate, and (d) a GMM estimate, in comparison with the true density,
for the 1-D example of Gaussian and Laplacian mixture.

KLD can be approximated accurately using the summation

DKL(p|p̂) ≈
Npar
∑

k=1

p(k) log
p(k)

p̂(k)
�x (66)

where �x = (xmax − xmin)/Npar, p(k) = p(xmin + k�x), and

p̂(k) = p̂(xmin + k�x). In the experiment, Npar ≥ 10 000

was used to ensure the accuracy of approximation. For a 2-D

problem, by partitioning the integration range [x1,min, x1,max]×
[x2,min, x2,max] into the Npar ×Npar small equal-area intervals,

the KLD is approximated by the summation

DKL(p|p̂) ≈
Npar
∑

k=1

Npar
∑

l=1

p(k, l) log
p(k, l)

p̂(k, l)
(�x)2 (67)

where �x = (x1,max − x1,min)/Npar = (x2,max − x2,min)/Npar,

p(k, l) = p(x1,min + k�x, x2,min + l�x), and p̂(k, l) = p̂(x1,min +

k�x, x2,min + l�x). To ensure the accuracy of approximation,

we chose Npar > 100. For higher-dimensional problems, cal-

culation of the KLD becomes too expensive. The experiment

was repeated by Nrun different random runs for each example.

Four PDF estimators, the PW estimator, the ROLS-LOO

estimator, the PSO-aided OFR-LOO estimator and the Gaus-

sian mixture model (GMM) based on the EM algorithm (see

Appendix C) were compared. The optimal values of the kernel

variances ρ2
Par and ρ2 for the PW and ROLS-LOO estimators,

respectively, with the fixed-kernel model were found via cross

validation. Instead of using costly cross validation to determine

the number of mixture components for the GMM, we simply

set the number of mixture components to the average model

size obtained by the PSO-aided OFR-LOO estimator, rounded

to an integer.

1) 1-D Example: The density to be estimated was the

mixture of Gaussian and Laplacian distributions defined by

p(x) =
1

2
√

2π
e− (x−2)2

2 +
0.7

4
e−0.7|x+2|. (68)

The number of data points for density estimation was N = 100,

and the experiment was repeated Nrun = 100 times. For

the PSO-aided OFR-LOO estimator, S = 9, Imax = 20 and

wI = rand() were found to be adequate. For this example,

the average model size obtained by the PSO-aided OFR-LOO

estimator was 4.8. Therefore, for the GMM, we set M = 5.

Table VII lists the performance of the four density estimators,

in terms of the L1 test error and the KLD, as well as the

number of kernels required. Fig. 10(a) to (d) plot a PW

estimate obtained, a ROLS-LOO estimate selected, a PSO-

aided OFR-LOO estimate constructed and a typical GMM

estimate obtained, in comparison with the true density. For this

example, it is seen that the PSO-aided OFR-LOO estimator

achieved the best test performance with the most compact

estimate. The complexity of the ROLS-LOO estimate listed

in Table VII was for the given RBF variance. Since several

points of ρ2 needed to be tested for the ROLS-LOO algorithm,

its true computational complexity was likely to be higher than

that of the PSO-aided OFR-LOO algorithm.
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TABLE VII

Performance of the PW, ROLS-LOO, PSO-Aided OFR-LOO, and GMM Estimators for the 1-D Example of Gaussian and Laplacian

Mixture, Quoted as Mean ± Standard Deviation Over 100 Runs

Estimator PW ROLS-LOO PSO OFR-LOO GMM

Kernel type Fixed Gaussian, ρPar = 0.54 Fixed Gaussian, ρ = 1.1 Tunable Gaussian Tunable Gaussian

L1 error (1.9963 ± 0.6179) × 10−2 (2.0213 ± 0.6535) × 10−2 (1.9784 ± 0.7039) × 10−2 (2.4597 ± 0.8117) × 10−2

KLD (8.0003 ± 5.1662) × 10−2 (8.1419 ± 5.0102) × 10−2 (6.5097 ± 4.0160) × 10−2 (12.7724 ± 9.5317) × 10−2

Kernel no. 100 5.1 ± 1.2 4.8 ± 0.8 5
Complexity NA 610 × O(100) 1044 × O(100) NA

TABLE VIII

Performance of the PW, ROLS-LOO, PSO-Aided OFR-LOO, and GMM Estimators for the 2-D Example of Gaussian and Laplacian

Mixture, Quoted as Mean ± Standard Deviation Over 100 Runs

Estimator PW ROLS-LOO PSO OFR-LOO GMM

Kernel type Fixed Gaussian, ρPar = 0.42 Fixed Gaussian, ρ = 1.1 Tunable Gaussian Tunable Gaussian

L1 error (4.0358 ± 0.6925) × 10−3 (3.8379 ± 0.7797) × 10−3 (3.8550 ± 0.8658) × 10−3 (3.1319 ± 0.8567) × 10−3

KLC (1.4661 ± 0.2281) × 10−1 (1.4028 ± 0.5337) × 10−1 (1.0279 ± 0.3848) × 10−1 (0.4380 ± 0.1328) × 10−1

Kernel no. 500 15.3 ± 3.9 6.1 ± 1.6 7
Complexity NA 8150 × O(500) 2840 × O(500) NA

Fig. 11. (a) True density and (b) contour plot for the 2-D example of the
Gaussian and the Laplacian mixture.

Fig. 12. (a) A PW estimate and (b) its contour plot for the 2-D example of
the Gaussian and the Laplacian mixture.
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Fig. 13. (a) A ROLS-LOO estimate and (b) its contour plot for the 2-D
example of the Gaussian and the Laplacian mixture.

2) 2-D Example: The density to be estimated was defined

by the mixture of Gaussian and Laplacian distributions given

as follows

p(x1, x2) =
1

4π
e− (x1−2)2

2 e− (x2−2)2

2

+
0.35

8
e−0.7|x1+2|e−0.5|x2+2|. (69)

Fig. 11 shows this density distribution and its contour plot.

The estimation data set contained N = 500 samples, and

the experiment was repeated Nrun = 100 times. The swarm

size and the maximum number of iterations were set to

S = 20 and Imax = 20 while the inertia weight was chosen

as wI = rand() for the PSO-aided OFR-LOO algorithm.

Because an average model size of 6.1 was obtained by the

PSO-aided OFR-LOO estimator, M = 7 was used for the

GMM. Table VIII lists the L1 test errors and the KLD values

as well as the numbers of kernels required for the four density

estimates, namely, the PW, ROLS-LOO, PSO-aided OFR-LOO

and GMM estimators. For this example, the GMM estimator

achieved the best test performance. The PSO-aided OFR-LOO

Fig. 14. (a) A PSO-aided OFR-LOO estimate and (b) its contour plot for
the 2-D example of the Gaussian and the Laplacian mixture.

estimator also did well with the second best test performance,

and it imposed much lower complexity than the ROLS-LOO

estimator. Typical PW, ROLS-LOO, PSO-aided OFR-LOO

and GMM estimates obtained are depicted in Figs. 12–15,

respectively.

3) 6-D Example: The underlying density to be estimated

was given by the mixture of three Gaussian distributions

p(x) =
1

3

3
∑

i=1

1

(2π)6/2

1

det1/2 |Ŵ̄i|
e− 1

2
(x−µ̄i)

T ¯Ŵ
−1

i (x−µ̄i) (70)

with

µ̄1 = [1.0 1.0 1.0 1.0 1.0 1.0]T

Ŵ̄1 = diag{1.0, 2.0, 1.0, 2.0, 1.0, 2.0} (71)

µ̄2 = [−1.0 − 1.0 − 1.0 − 1.0 − 1.0 − 1.0]T

Ŵ̄2 = diag{2.0, 1.0, 2.0, 1.0, 2.0, 1.0} (72)

µ̄3 = [0.0 0.0 0.0 0.0 0.0 0.0]T

Ŵ̄3 = diag{2.0, 1.0, 2.0, 1.0, 2.0, 1.0}. (73)
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TABLE IX

Performance of the PW, ROLS-LOO, PSO-Aided OFR-LOO and GMM Estimators for the 6-D Example of Three-Gaussian Mixture,

Quoted as Mean ± Standard Deviation Over 100 Runs

Estimator PW ROLS-LOO PSO OFR-LOO GMM

Kernel type Fixed Gaussian, ρPar = 0.65 Fixed Gaussian, ρ = 1.2 Tunable Gaussian Tunable Gaussian

L1 error (3.5195 ± 0.1616) × 10−5 (3.1134 ± 0.5335) × 10−5 (2.4979 ± 0.2749) × 10−5 (1.5309 ± 0.2995) × 10−5

Kernel no. 600 9.4 ± 1.9 4.3 ± 0.9 5
Complexity NA 6240 × O(600) 2120 × O(600) NA

Fig. 15. (a) A GMM estimate and (b) its contour plot for the 2-D example
of the Gaussian and the Laplacian mixture.

The estimation data set contained N = 600 samples, and the

experiment was repeated Nrun = 100 times. For the PSO-aided

OFR-LOO algorithm, S = 20, Imax = 20 and wI = rand() were

again found to be sufficient. For the GMM estimator, M = 5

was used. The results obtained by the four density estimators

are summarized in Table IX, where it can be seen that both the

PSO-aided OFR-LOO and GMM estimators performed well. It

can also be seen from Table IX that for this multi-dimensional

example the PSO-aided OFR-LOO algorithm for constructing

tunable-node density estimate offered clear advantages over

the ROLS-LOO algorithm for selecting fixed-node density

estimate, in terms of achievable test performance and estimator

model size, as well as complexity in model construction.

V. Conclusion

A unified regression framework has been proposed for data

modeling applications that include supervised regression and

classification, as well as unsupervised density estimation. A

novel algorithm has been developed for constructing the RBF

network with tunable nodes. Unlike most of the sparse RBF or

kernel modeling methods, the RBF centers are not restricted

to the training input data points and each RBF node has

an individually adjusted diagonal covariance matrix. On the

other hand, it does not attempt to optimize all the RBF

network’s parameters together using nonlinear optimization.

Rather the RBF units are optimized one by one using the

PSO assisted OFR algorithm based on LOO criteria. The RBF

network construction is fully automatic and the user does not

need to specify any additional termination criterion. Compared

with the state-of-the-art ROLS-LOO algorithm for selecting

fixed-node RBF models, the proposed PSO-aided OFR-LOO

algorithm offers significant advantages in terms of better

generalization performance and smaller model size, as well

as imposes lower complexity in model construction process.

Moreover, the proposed approach gains further computational

advantages because the model construction algorithm does not

have any hyperparameter that requires costly tuning based on

cross validation. Several examples taken from regression and

classification, as well as PDF estimation applications have

been used in our experimental study, and the results obtained

have demonstrated that the proposed PSO-aided tunable RBF

network construction algorithm compares favorably with many

existing benchmark RBF network learning algorithms.

Appendix A

Density Estimation as a Constrained Regression

One way of transferring the unsupervised density estimation

problem into a supervised learning problem is to convert

the kernels into the associated CDFs and to adopt the EDF

calculated using the training data as the desired response for

the unknown CDF of the PDF p(x) to be estimated, as in the

various fixed-kernel density estimation methods of [59]–[61],

[130], [131]. The true CDF of the PDF p(x) is defined as

F (x) =

∫ x

−∞
p(u) du (74)
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and the CDF associated with kernel gi(x) is given by

qi(x) =

∫ x

−∞
gi(u) du (75)

where x = [x1 x2 · · · xm]T ∈ Rm. Further define the EDF on

the training set DN as

F̂ (x) =
1

N

N
∑

k=1

m
∏

j=1

ω
(

xj − xj,k

)

(76)

with

ω(x) =

{

1, x > 0

0, x ≤ 0.
(77)

Using F̂ (x) as the desired response for F (x), the density

estimation can be expressed as a regression modeling

F̂ (x) =

M
∑

i=1

wiqi(x) + ê(x) (78)

subject to the constraints of (14) and (15), where ê(x) denotes

the modeling error at x.

An alternative approach is the direct modeling in the PDF

space by using the PW estimate defined in (16) as the desired

response for the unknown true PDF p(x) to be estimated, as

in the fixed-kernel density estimation method of [64]. Using

p̂Par(x) as the desired response for p(x), the density estimation

can be expressed as a regression modeling

p̂Par(x) =

M
∑

i=1

wigi(x) + ẽ(x) (79)

subject to the constraints of (14) and (15), where ẽ(x) is the

modeling error at x.

Reformulating the density estimation as a regression prob-

lem by using the PW estimate as the target function of the

true PDF has some advantages over the regression approach

based on using the EDF as the target function of the true

CDF. The former approach can use any type of kernel function

and it is computationally simpler, as it does not need to

compute the values of regressors of (75) on the training data

set DN . Computing the associated CDFs for the kernels can

be inconvenient and may be difficult for certain types of

kernels. Computing the values of the PW estimator on DN

is no more complex than calculating the values of F̂ (x) on

DN . The only drawback of using the PW estimate is that

the kernel variance for the PW estimator must be deter-

mined. Although we develop the tunable kernel model using

the PW estimate as the target function in this contribution,

the construction algorithm developed is equally applicable

for the both approaches.

Appendix B

Leave-One-Out Cross Validation

A commonly used cross validation for model selection is the

LOO cross validation [2], [118]. Consider the model selection

problem where a set of mS models have been identified using

the training data set DN . Denote these models, identified using

all the N data points of DN , as ŷ
[j]
k and the corresponding

modeling error as e
[j]
k = yk − ŷ

[j]
k with index j = 1, 2, · · · , mS .

The concept of LOO cross validation is as follows. For every

model, each data point in the training set DN is sequentially

set aside in turn, a model is estimated using the remaining

N −1 data points, and the test error is derived using the single

data point that was removed from training. Specifically, let

DN \ (xl, yl) be the resulting data set by removing the lth data

point from DN , and denote the jth model estimated using DN\
(xl, yl) as ŷ

[j,−l]
k . The test error of the model ŷ

[j,−l]
k calculated

on the data point (xl, yl) not used in training is given by

e
[j,−l]
l = yl − ŷ

[j,−l]
l . (80)

The mean square LOO test error for the jth model is obtained

by averaging all these test errors

E
[(

e
[j,−l]
l

)2] ≈
1

N

N
∑

l=1

(

e
[j,−l]
l

)2
(81)

where E[•] denotes the expectation. The LOO MSE is a

measure of the mode generalization capability [2], [118]. To

select the best model from the mS model candidates ŷ
[j]
k ,

1 ≤ j ≤ mS , the same LOO cross validation procedure is

applied to each of the mS models, and the model with the

minimum LOO MSE is selected.

For the linear-in-the-weights models, which the model of

(1) is when the regression matrix G has been determined, the

LOO test errors can be generated, without actually sequen-

tially splitting the training data set and repeatedly estimating

the associated models, by applying the Sherman–Morrison–

Woodbury theorem [2], [118]. Furthermore, within the OFR

model selection procedure, the LOO test errors for the n-term

model can be computed very efficiently [48], [119]. More

specifically, consider the n-term model with the associated

orthogonal regression matrix

�n = [φ1 φ2 · · · φn]. (82)

The regularized least squares solution for the parameter vector

θn = [θ1 θ2 · · · θn]T is [48]

θn =
(

�T
n �n + λIn

)−1
�T

n y = B̃−1
n �T

n y (83)

where λ is the regularization parameter, In denotes the n × n

identity matrix, B̃n = �T
n �n + λIn is diagonal. The modeling

error at the kth training data sample is given by

e
[n]
k = yk − θT

n φn(k) = yk − yT �nB̃−1
n φn(k) (84)

where φT
n (k) denotes the kth row of �n. Let the kth data

sample be deleted from the training data set DN , and the

resulting LOO training set is used to estimate the model

parameter vector. The corresponding regularized least squares

solution is defined by

θ[−k]
n =

(

(

�[−k]
n

)T
�[−k]

n + λIn

)−1
(

�[−k]
n

)T
y[−k]

=
(

B̃[−k]
n

)−1 (

�[−k]
n

)T
y[−k] (85)

where �[−k]
n and y[−k] denote the resulting LOO regression

matrix and LOO desired output vector, respectively. The model
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output for this LOO n-term model evaluated at the kth data

sample not used in training is given by

ŷ
[n,−k]
k =

(

θ[−k]
n

)T
φn(k). (86)

By definition, it can be shown that

B̃[−k]
n = B̃n − φn(k)φT

n (k), (87)

(

y[−k]
)T

�[−k]
n = yT �n − ykφ

T
n (k). (88)

The LOO test error evaluated at the kth data sample not used

for training, denoted as e
[n,−k]
k = yk − ŷ

[n,−k]
k , is given by

e
[n,−k]
k = yk −

(

θ[−k]
n

)T
φn(k)

= yk −
(

y[−k]
)T

�[−k]
n

(

B̃[−k]
n

)−1
φn(k). (89)

Applying the matrix inversion lemma to (87) yields

(

B̃[−k]
n

)−1
= B̃−1

n +
B̃−1

n φn(k)φT
n (k)B̃−1

n

1 − φT
n (k)B̃−1

n φn(k)
(90)

and

(

B̃[−k]
n

)−1
φn(k) =

B̃−1
n φn(k)

1 − φT
n (k)B̃−1

n φn(k)
. (91)

Substituting (88) and (91) into (89) results in

e
[n,−k]
k = yk −

(

yT �n − ykφ
T
n (k)

)

B̃−1
n φn(k)

1 − φT
n (k)B̃−1

n φn(k)

=
yk − yT �nB̃−1

n φn(k)

1 − φT
n (k)B̃−1

n φn(k)

=
e

[n]
k

1 − φT
n (k)B̃−1

n φn(k)
=

e
[n]
k

η
[n]
k

(92)

where the n-term modeling error

e
[n]
k = yk −

n
∑

i=1

φi(k)θi = e
[n−1]
k − φn(k)θn (93)

and the associated LOO error weighting

η
[n]
k = 1 − φT

n (k)
(

�T
n �n + λIn

)−1
φn(k)

= 1 −
n

∑

i=1

φ2
i (k)

φT
i φi + λ

= η
[n−1]
k −

φ2
n(k)

φT
n φn + λ

. (94)

Appendix C

Gaussian Mixture Model

A general finite mixture model (FMM) [132] is described

by

p̂(x; �) =

M
∑

i=1

wiK
(

x; µi, �i

)

(95)

where M is the number of mixture components, the weights

wi satisfy the constraints given in (14) and (15), µi =

[µi,1 · · · µi,m]T and �i = diag{σ2
i,1, · · · , σ2

i,m} are the mean

vector and covariance matrix of the ith component, respec-

tively, and � = {wl, µl, �l}Ml=1 denotes all the parameters of

the FMM. When the Gaussian function of (3) is used, the

FMM of (95) is the GMM.

The EM algorithm for estimating the parameters of the

GMM takes an explicit iterative form [133]. Given a value

of �, labeled as �old, define

P(l|xk, �
old) =

wold
l K(xk; µold

l , �old
l )

M
∑

i=1

wold
i K(xk; µold

i , �old
i )

(96)

for 1 ≤ l ≤ M and 1 ≤ k ≤ N. Then a new value of � is

obtained according to [133]

wnew
l =

1

N

N
∑

k=1

P(l|xk, �
old) (97)

µnew
l =

N
∑

k=1

xkP(l|xk, �
old)

N
∑

k=1

P(l|xk, �
old)

(98)

�new
l =

N
∑

k=1

P(l|xk, �
old)diag{(�lxk,1)2, · · · , (�lxk,m)2}

N
∑

k=1

P(l|xk, �
old)

(99)

where

�lxk,i = xk,i − µnew
l,i (100)

denotes the ith element of xk − µnew
l .

This simple EM algorithm for the GMM, however, is

generally ill-posed. In particular, the updating (99) may cause

numerical problems, which leads to divergence. Often more

complicated robust techniques such as the bootstrap [32], [134]

may need to be used to overcome numerical difficulties. The

choice of the initial � is also critical, as the algorithm can only

converge to local minima, and whether or not the algorithm

converges may depend on the initial parameter value. Based

on our previous experience [32] we found that it is necessary

to impose a minimum bound, σ2
min, for all the variances σ2

l,i,

1 ≤ i ≤ m and 1 ≤ l ≤ M. During the iteration process, any

σ2
l,i goes below the value σ2

min is reset to this minimum value.

This helps to alleviate numerical problems and improve the

chance of convergence. Appropriate σ2
min values are problem

dependant and can only be found by experiment.

In the experiment study, all the initial mixing weights wl can

be set to 1.0
M

, the initial center vectors µl are randomly chosen

from the region [a, b]m ∈ Rm, and all the initial variances σ2
l,i

are set to the same value σ2
ini. If some runs of the EM algorithm

are observed to diverge, the region [a, b]m, the values of

σ2
ini and/or σ2

min are re-chosen until all the Nrun of the EM

algorithm are converged.
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[128] G. Rätsch, T. Onoda, and K. R. Müller, Data Sets in [129] [Online].
Available: http://ida.first.fhg.de/projects/bench/benchmarks.htm
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