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Abstract 
To deal with the problems of premature convergence and tending to jump in-
to the local optimum in the traditional particle swarm optimization, a novel 
improved particle swarm optimization algorithm was proposed. The 
self-adaptive inertia weight factor was used to accelerate the converging speed, 
and chaotic sequences were used to tune the acceleration coefficients for the 
balance between exploration and exploitation. The performance of the pro-
posed algorithm was tested on four classical multi-objective optimization 
functions by comparing with the non-dominated sorting genetic algorithm 
and multi-objective particle swarm optimization algorithm. The results veri-
fied the effectiveness of the algorithm, which improved the premature con-
vergence problem with faster convergence rate and strong ability to jump out 
of local optimum.  
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1. Introduction 

Particle swarm optimization (PSO) algorithm is a swarm intelligence optimiza-
tion algorithm, which derives agglomeration of organism behavior, such as a 
simulation of the behavior of a flock of birds or fish. Compared to other intelli-
gent algorithms, PSO algorithm has simple structure, less parameters and is easy 
to describe and implement. The global search ability is stronger, without gra-
dient information and many other features, which makes it to be widely used in 
many fields such as function optimization, multi-objective problem solving and 
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pattern recognition. In particular, it is applicable to solving the problems of non-
linear, multipolar and non-differentiable and complex optimization [1] [2] [3]. 
However, the standard PSO algorithm also has shortcomings such as premature 
convergence and bad local searching ability similar to other intelligent algo-
rithms [4] [5] [6]. For example, in the optimization of complex problems in 
high-dimension, the population may have accumulated to a certain point of 
stagnation without finding the global optimization point, forming premature 
convergence. In other words, the premature convergence problem does not 
guarantee that the algorithm can converge to the global extreme point. Mean-
while, in the PSO algorithm search process, when the particle is approaching or 
entering the most advantageous region, the convergence speed is obviously slow. 
That is, in the later period of particle optimization, the search ability is poor. 
Thus, the application of PSO algorithm is restricted. 

For the lack of PSO algorithm, the researchers propose many improvement 
strategies [7]. Inertia weighting factor [8], contraction factor and adaptive muta-
tion operator are the most representative, such as linear decrease method [9], 
fuzzy adaptive method [10], distance information method and other inertial 
coefficients adaptive adjustment methods [11], PSO algorithm with compression 
factor, the PSO algorithm of adaptive mutation operator, etc. In addition, the 
PSO algorithm and the hybrid PSO algorithm combined with the PSO algo-
rithm, synergy polices, chaos theory [12] and other algorithms [13] are also at-
tracted by the researchers, such as quantum PSO algorithm with chaotic muta-
tion operator [14]. In addition, there are also many researches on discrete PSO 
algorithm, multi-objective PSO algorithm [15] [16], etc. At present, the im-
provement of PSO algorithm mainly focuses on two aspects: adjustment of algo-
rithm parameters and update of particle structure and trajectory. The aim is to 
make the algorithm solve or improve the local search slow, precocious conver-
gence and so on, and improve the convergence speed and accuracy of the algo-
rithm to improve the performance of the algorithm [17]. Although the proposed 
particle swarm improvement algorithm improves both performance and effi-
ciency, it is difficult to improve the local search ability of the algorithm while 
avoiding precocious convergence. To provide better, more efficient, and cheaper 
particle swarm algorithms, academics and industry researchers have been ex-
ploring and experimenting with new approaches [18]. 

In order to improve search precision and convergence speed of the standard 
PSO algorithm, this paper tries to propose a more efficient and higher conver-
gence speed algorithm by combining chaos theory with dynamic adaptive weight 
adjustment strategy. A new chaos self-adaptive particle swarm optimization al-
gorithm (CSAPSO) was proposed. The algorithm improves the convergence 
speed by adaptive adjustment strategy evolution inertia weight. The chaotic se-
quence of chaos theory is used to optimize the learning factor of the algorithm, 
so that it can get out of the local optimum when it comes to precocious conver-
gence. Finally, according to the solution experiment of multi-objective optimiza-
tion problem, by comparing and analyzing the CSAPSO algorithm with the 
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standard PSO algorithm and the classical multi-objective algorithm, the feasibil-
ity and validity of the algorithm are verified and the convergence speed and ac-
curacy are discussed. 

2. CSAPSO Algorithm 
2.1. Standard PSO  

Particle Swarm Optimization algorithm (PSO) is a group evolution algorithm 
proposed by scholars Eberhart and Kennedy [19] based on the social behaviors 
of birds in 1995. The PSO algorithm is derived from the behavior characteristics 
of biological groups and is used to solve the optimization problems. It has the 
advantages of easy description, easy implementation, little adjustment parame-
ter, fast convergence speed and low calculation cost. And there is no high re-
quirement for memory and CPU speed. In the process of particle optimization, 
the potential solution of the problem is assumed to be a “particle” in the 
n-dimensional space, and the particle will fly at a certain speed and direction in 
the solution space. In the iterative process, all particles use two global variables 
to represent the best position of the particle itself (pbest) and the best position of 
all particles (gbest). It is assumed that, in an n-dimensional search space, the 
particle population ( )T

1 2, , , nX x x x= �  is composed of m particles. The posi-
tion of the ith particle is denoted as ( )T

,1 ,2 ,, , ,i i i i nx x x x= �  and the velocity is 
denoted as ( )T

,1 ,2 ,, , ,i i i i nv v v v= � . The individual extremum is  

( )T
,1 ,2 ,, , ,i i i i np p p p= � , The global extreme of the population of particles is 

( )T
,1 ,2 ,, , ,g g g g np p p p= � . During the k + 1 iteration, the particle updates its 

speed and position through Formulas (1) and (2). 

( ) ( )1
, , 1 , , 2 , ,
k k k k k k
i d i d i d i d g d i dv v c p x c p xω+ = + − + −              (1) 

1 1
, , ,
k k k
i d i d i dx x v+ += +                        (2) 

where, 1, ,i m= � ; ω  is called an inertial weight factor, it makes the particles 
keep sport inertia and have the ability to expand search space; C1 and C2 are the 
learning factors, which represent the weight of each particle to the statistical ac-
celeration item of the extremum position; rand () is a random number within (0, 
1), ,

k
i dv  and ,

k
i dx  are respectively the velocity and position of particle i in 

d–dimension kth iteration; ,
k
i dp  is the position of the individual extremum of 

particle i in d-dimension, is the position of the global extremum of the whole 
population in d-dimension.  

2.2. CSAPSO Algorithm 

The standard PSO algorithm has its own limitations, such as the implementation 
process of the algorithm has a great relationship with the value of the parame-
ters. When the algorithm is applied to the complex optimization problem of 
high dimension, the algorithm tends to converge to some extreme point and 
stagnates when the global optimum is not found, that is, precocious convergence 
is easy to occur. These points can be a point in the local extreme point or local 
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extreme point area. In addition, the convergence rate of the algorithm becomes 
slow when approaching or entering the optimal solution area. The early conver-
gence rate of PSO algorithm is fast, but in the later stage, when the algorithm 
converges to local minimum, due to the lack of effective local search mechanism, 
the local search speed is slow. According to the formula of particle velocity up-
date of PSO algorithm, the change of particle velocity is determined by three 
factors: 1) The inertial weight factor, which represents the velocity information 
at the previous moment. It indicates the relationship between current speed and 
forward speed. 2) The cognitive factor, which is the development capacity coeffi-
cient, represents the error of the optimum of the particle itself, and reflects the 
local mining and development capability of the particle. 3) The exploration fac-
tor, which is the social sharing ability coefficient, represents the error of global 
optimum, the information sharing and cooperation ability between the particles. 
Under the circumstances, the inertia coefficient determines the search step 
length. When it is larger, it is good for global search. When it is smaller, it is 
helpful for local exploration. Cognitive factors and exploration factors are col-
lectively called learning factors, which represent the effect proportion of the op-
timum of the particle itself and global optimum. By adjusting the learning fac-
tors properly, the global and local search of the particles can be weighed. When 
the algorithm is in precocious convergence, it is possible to change the explora-
tion factor to achieve out of local optimal.  

In order to improve the precocious convergence of the algorithm and improve 
the convergence speed of the algorithm, this paper uses adaptive weight adjust-
ment strategy to realize the dynamic adjustment of inertia coefficient. The cha-
otic sequence generated by chaotic mapping is used to optimize the parameters 
of learning factor C1 and C2, and a chaos self-adaptive particle swarm optimiza-
tion algorithm (CSAPSO) is obtained. The inertial weight factor ω  is adjusted 
by Formula (3).  

( ) ( )max max min maxavePgbest k Plbest k kω ω ω ω= − − − ×         (3) 

where, ωmax and ωmin respectively represent the maximum and minimum values 
of inertial weight; Pgbest (k) represents the global optimal for the kth iteration; 
Plbestave represents the local optimal average of all particles; kmax is maximum 
number of iterations; k is current iteration times. 

Learning factor C1 and C2 are adjusted by chaotic sequence generated by cha-
otic mapping. This paper uses the typical Lorenz’s equation to generate chaotic 
sequences, as shown in Formula (4). 

( )d
d
d
d
d
d

x y z
t
y x ay
t
z b xz cz
t

 = − +

 = +



= + −


                         (4) 

where, parameters a, b and c are controlled parameters, which are 0.2, 0.4 and 
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5.7 respectively. The learning factor (c1, c2) is defined as: 

( )
( )

1

2

c x t

c y t

=


=
                            (5) 

Because the change of chaotic variables is random, ergodic and regular, the 
algorithm can maintain the diversity of population, effectively overcome the 
problem of precocious convergence, and improve global search performance.  

The CSAPSO algorithm performs the following process: 
1) To initialize the particle group  
The position and velocity of particles in PSO algorithm are initialized. The in-

itial position and velocity of the particles are generated randomly. The current 
position of each particle is used as the particle individual extremum, and the op-
timal value of the individual extremum is selected as the global optimal value.  

2) To calculate the adaptive value of group particles. 
3) The adaptive value of each particle is compared with the adaptive value of 

the best position it has passed. If it is better, the current position is the best posi-
tion of the particle. 

4) The adaptive value of each particle is compared with the adaptive value of 
the global best position, and if it is better, the current position is the global best 
position.  

5) The learning factor C1, C2 and inertial weight ω  were obtained respec-
tively, and the velocity and position of the particles were updated and optimized  

6) If the end condition of the algorithm is satisfied, the global best position is 
the optimal solution, saving the result and ending. Otherwise return to Step (2). 

3. Numerical Experiment 
3.1. Experiment Function and Evaluation 

In order to test the performance of CSAPSO algorithm, this paper selects the 
multi-objective optimization test functions proposed by Schaffer [20] and Deb 
[21] as an experimental case. Multi-objective optimization problem is the most 
typical optimization problems, due to the constant contradiction and constraint 
among targets, it is difficult to achieve the optimal at the same time, as well as 
one of the optimization of goals must be at the expense of the other goals. The 
solutions to such problems are usually not unique, but a series of optimal solu-
tions, also called non-inferior solutions. A collection of non-inferred solutions is 
often referred to as Pareto optimal solution. Because intelligent algorithm can 
search multiple solutions of solution space in parallel, multi-objective optimiza-
tion is more suitable to verify the performance of intelligent algorithm. The mul-
ti-objective optimization test functions used in this paper are shown in Table 1. 

In order to evaluate the merits of non-inferior solutions, this paper adopts the 
convergence index and the distribution index to evaluate the performance of the 
algorithm, and the indexes of convergence and distribution uniformity are re-
spectively defined as follows [2] [3]: 

https://doi.org/10.4236/jcc.2017.512002


M. S. Li et al. 
 

 

DOI: 10.4236/jcc.2017.512002 18 Journal of Computer and Communications 
 

Table 1. Test functions used in this paper. 

Function Definition Property 

SCH1 

( ) ( ) ( )( ) [ ]1 2min , s.t. 5,7f x f x f x x= ∈ −  

( ) 2
1f x x=  

( ) ( )2

2 2f x x= −  

Convex 

SCH2 

( ) ( ) ( )( ) [ ]1 2min , s.t. 5,10f x f x f x x= ∈ −  

( )

( )
( )

( )
( )

1

, 1

2 , 1 3

4 , 3 4

4 , 4

x x

x x
f x

x x

x x

− ≤

− + < ≤

= 
− < ≤

− + >

 

( ) ( )2

2 5f x x= −  

Discontinuous 

ZDT2 

( ) ( ) ( )( ) [ ]1 2min , s.t. 5,10f x f x f x x= ∈ −  

( )1 1f x x=  

( ) ( ) ( )( )2

2 11f x g x x g x = −   

( ) ( )
2

1 9 1
n

i
i

g x x n
=

 = + − 
 
∑  

Concave 

ZDT3 

( ) ( ) ( )( ) [ ]1 2min , s.t. 0,1if x f x f x x= ∈  

( )1 1f x x=  

( ) ( ) ( ) ( ) ( )1
2 1 11 sin 10πxf x g x x g x x

g x
 

= − − 
  

 

( ) ( )
2

1 9 1
n

i
i

g x x n
=

 = + − 
 
∑  

Discrete 

 
1) Convergence index (GD), GD is used to describe the distance between the 

ungoverned solution that the algorithm searches for and the optimal front-end 
of the real Pareto.  

2

1GD

N

i
i

d

N
==
∑

                         (6) 

where, N represents the number of ungoverned solutions that the algorithm 
searches for, 2

id  represents the shortest Euclidean distance between the 
non-inferior solution i and all solutions in the optimal front-end of the real Pa-
reto.  

2) Distribution index (SP), SP is used to evaluate the uniformity of distribu-
tion of ungoverned solution. 

( )
1 2

2

1

1

SP

n

i
i

d d
n

d
=

 −  =
∑

                     (7) 
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1

1 n

i
i

d d
n =

= ∑                           (8) 

where, N is the number of ungoverned solutions, and represents the shortest 
distance between the ith non-inferior solution in the target space and all solu-
tions in the optimal front-end of the real Pareto.  

3.2. Experimental Results 

The CSAPSO algorithm was used to experiment with SCH1, SCH2, ZDT2 and 
ZDT3. The algorithm parameter is set to: the particle size is 50; the maximum 
iteration number is 100; the maximum and minimum values of inertia weight 
are 0.9 and 0.3 respectively; inertia weight ω  and learning factor C1 and C2 are 
obtained according to Formulas (3) and (5) respectively. The Pareto non-infe- 
rior solutions of each function are shown in Figures 1-4. 
 

 
Figure 1. Pareto non-inferior solution of SCH1. 

 

 
Figure 2. Pareto non-inferior solution of SCH2. 
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Figure 3. Pareto non-inferior solution of ZDT2. 

 

 
Figure 4. Pareto non-inferior solution of ZDT3. 

 
In the target function space, non-inferior optimal target domain is the boun-

dary of the fitness value region, which is the effective interface. It can be seen 
from the experimental results that the four test functions accurately give the ef-
fective interface, and the complete Pareto non-inferior solution can be obtained. 
In particular, for the discrete problem of ZDT3, the algorithm also gives a more 
accurate non-inferior solution. In general, the number of Pareto solutions ob-
tained by the algorithm is more and the distribution is more uniform. The accu-
racy and reliability of CSAPSO algorithm are verified.  

Through CSAPSO algorithm runs 30 times for each test function, the conver-
gence index GD, distribution index SP and the mean value of computed time CT 
were respectively calculated, and four test function evaluation index are calcu-
lated, the results are shown in Table 2. 
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Table 2. Performance statistics of CASPSO. 

Performance Index SCH1 SCH2 ZDT2 ZDT3 Average 

GDa 0.000335 0.000334 0.000351 0.000332 0.000338 

SPb 0.00338 0.00337 0.00333 0.00327 0.00334 

CTc 6.4 7.8 6.6 9.6 7.6 

aConvergence index, bDistribution index, cCalculated time (s). 

 
The evaluation index GD, SP and CT confirmed the feasibility, accuracy and 

efficiency of the CSAPSO algorithm for solving multi-objective optimization 
problems. GD indicates that the non-inferior solution is very close to the optim-
al front end of the real Pareto. SP shows that the non-inferior solution has good 
distribution. CT shows that the time spent running is within acceptable limits.  

In order to test the superiority of the algorithm in multi-objective optimiza-
tion solution, comparing CSAPSO algorithm in this paper with classic non-poor 
classification multi-objective genetic algorithm(NSGA-II), multi-objective par-
ticle swarm optimization, the statistical comparison results are shown in Table 
3. 

According to GD of Table 3, the convergence of CSAPSO algorithm is better 
than the other two algorithms. It is shown that the optimal front distance be-
tween the non-inferior solution and real Pareto is smaller. That is, the solution is 
closer to the real solution. The SP of Table 3 shows that the distribution of 
non-inferior solutions obtained by the CSAPSO algorithm is better, that is, the 
distribution of the non-inferior solution of the algorithm is more uniform than 
the other two algorithms. For CT, the execution time of CSAPSO algorithm is 
between two algorithms, lower than NSGA II algorithm but higher than 
MOPSO. The reason for this is that the standard PSO algorithm is according to 
the equal step and flying in a single direction search, while CSAPSO algorithm 
dynamically adjusted with the flight process of particle, the process of dynamic 
adjustment will consume more time. Although the CSAPSO algorithm spends 
more computation time, the convergence and distribution of non-inferior solu-
tions are better than the other two algorithms, which can obtain more and more 
evenly distributed feasible solutions.  

In conclusion, through the CSAPSO algorithm for the numerical experiments 
of four multi-objective optimization problems, compared with the classical mul-
ti-objective optimization of NSGA II algorithm and MOPSO algorithm, we can 
know, CSAPSO algorithm has a better comprehensive performance. Algorithm 
improves the convergence speed by dynamic adaptive mechanism. Through the 
chaotic learning mechanism, the precocious convergence problem is improved.  

4. Conclusions 

This paper presents a chaotic self-adaptive particle swarm optimization algo-
rithm (CSAPSO). The algorithm uses chaos theory and dynamic adaptive ad-
justment strategy to optimize the parameters in PSO algorithm, improve the  
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Table 3. Comparison results of three algorithms. 

Performance Index NSGA II MOPSO CSAPSO 

GD 0.000362 0.000465 0.000338 

SP 0.00475 0.00502 0.00334 

CT 8.7 6.8 7.6 

 
precocious convergence of PSO algorithm, and improve the convergence speed. 
By the experiment of four standard test functions, the proposed algorithm can 
be used to solve the multi-target problem, and the obtained non-inferiority solu-
tion can get a good approximation of the optimal solution set of Pareto and dis-
tribute evenly. By comparing with other algorithms, CSAPSO algorithm has 
better property, which can provide practical reference value for many optimiza-
tion problems in the project. In the future, the convergence strategy and ma-
thematical proof of the PSO algorithm can be discussed in-depth. 

Acknowledgements 

The authors gratefully acknowledge the support from the National Natural 
Science Foundation of China (Grant Numbers: 51663001, 51463015, 51377025) 
and the science and technology research project of the education department of 
Jiangxi province (Grant Numbers: GJJ151012, GJJ150983). 

References 
[1] Neri, F., Mininno, E. and Lacca, G. (2013) Compact Particle Swarm Optimization. 

Information Sciences, 239, 96-121. https://doi.org/10.1016/j.ins.2013.03.026  

[2] Tan, K.C., Lee, T.H. and Khor, E.F. (2002) Evolutionary Algorithms for Mul-
ti-Objective Optimization: Performance Assessments and Comparisons. Artificial 
Intelligence Review, 17, 253-290. https://doi.org/10.1023/A:1015516501242  

[3] Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M. and da Fonseca, V.G. (2003) 
Performance Assessment of Multiobjective Optimizers: An Analysis and Review. 
IEEE Transactions on Evolutionary Computation, 7, 117-132. 
https://doi.org/10.1109/TEVC.2003.810758  

[4] del Valle, Y., Venayagamoorthy, G.K., Mohagheghi, S., Hernandez, J.C. and Harley, 
R.G. (2008) Particle Swarm Optimization: Basic Concepts, Variants and Applica-
tions in Power Systems. IEEE Transactions on Evolutionary Computation, 12, 
171-195. https://doi.org/10.1109/TEVC.2007.896686  

[5] Tsekouras, G.E. and Tsimikas, J. (2013) On Training RBF Neural Networks Using 
Input-Output Fuzzy Clustering and Particle Swarm Optimization. Fuzzy Sets and 
Systems, 221, 65-89. https://doi.org/10.1016/j.fss.2012.10.004  

[6] Nickabadi, A., Ebadzadeh, M.M. and Safabakhsh, R. (2011) A Novel Particle Swarm 
Optimization Algorithm with Adaptive Inertia Weight. Applied Soft Computing, 
11, 3658-3670. https://doi.org/10.1016/j.asoc.2011.01.037  

[7] Akay, B. (2013) A Study on Particle Swarm Optimization and Artificial Bee Colony 
Algorithms for Multilevel Thresholding. Applied Soft Computing, 13, 3066-3091. 
https://doi.org/10.1016/j.asoc.2012.03.072  

[8] Zhan, Z.H., Zhang, J., Li, Y. and Chung, H.S.H. (2009) Adaptive Particle Swarm 

https://doi.org/10.4236/jcc.2017.512002
https://doi.org/10.1016/j.ins.2013.03.026
https://doi.org/10.1023/A:1015516501242
https://doi.org/10.1109/TEVC.2003.810758
https://doi.org/10.1109/TEVC.2007.896686
https://doi.org/10.1016/j.fss.2012.10.004
https://doi.org/10.1016/j.asoc.2011.01.037
https://doi.org/10.1016/j.asoc.2012.03.072


M. S. Li et al. 
 

 

DOI: 10.4236/jcc.2017.512002 23 Journal of Computer and Communications 
 

Optimization. IEEE Transactions on Systems Man and Cybernetics Part B: Cyber-
netics, 39, 1362-1381. https://doi.org/10.1109/TSMCB.2009.2015956  

[9] Khare, A. and Rangnekar, S. (2013) A Review of Particle Swarm Optimization and 
Its Applications in Solar Photovoltaic System. Applied Soft Computing, 13, 
2997-3006. https://doi.org/10.1016/j.asoc.2012.11.033  

[10] Valdez, F., Melin, P. and Castillo, O. (2011) An Improved Evolutionary Method 
with Fuzzy Logic for Combining Particle Swarm Optimization and Genetic Algo-
rithms. Applied Soft Computing, 11, 2625-2632.  
https://doi.org/10.1016/j.asoc.2010.10.010  

[11] Marinakis, Y. and Marinaki, M. (2013) Particle Swarm Optimization with Expand-
ing Neighborhood Topology for the Permutation Flowshop Scheduling Problem. 
Soft Computing, 17, 1159-1173. https://doi.org/10.1007/s00500-013-0992-z 

[12] Cheng, M.Y., Huang, K.Y. and Chen, H.M. (2012) K-Means Particle Swarm Opti-
mization with Embedded Chaotic Search for Solving Multidimensional Problems. 
Applied Mathematics and Computation, 219, 3091-3099. 

[13] Li, M.W., Kang, H.G., Zhou, P.F. and Hong, W.C. (2013) Hybrid Optimization Al-
gorithm Based on Chaos, Cloud and Particle Swarm Optimization Algorithm. 
Journal of Systems Engineering and Electronics, 24, 324-334.  
https://doi.org/10.1109/JSEE.2013.00041 

[14] Coelho, L.D. (2008) A Quantum Particle Swarm Optimizer with Chaotic Mutation 
Operator. Chaos Solitons & Fractals, 37, 1409-1418. 

[15] Qasem, S.N., Shamsuddin, S.M., Hashim, S.Z.M., Darus, M. and Al-Shammari, E. 
(2013) Memetic Multiobjective Particle Swarm Optimization-Based Radial Basis 
Function Network for Classification Problems. Information Sciences, 239, 165-190. 

[16] Zheng, Y.J. and Chen, S.Y. (2013) Cooperative Particle Swarm Optimization for 
Multiobjective Transportation Planning. Applied Intelligence, 39, 202-216.  
https://doi.org/10.1007/s10489-012-0405-5 

[17] Gandomi, A.H., Yun, G.J., Yang, X.S. and Talatahari, S. (2013) Chaos-Enhanced 
Accelerated Particle Swarm Optimization. Communications in Nonlinear Science 
and Numerical Simulation, 18, 327-340. 

[18] Tsekouras, G.E. (2013) A Simple and Effective Algorithm for Implementing Particle 
Swarm Optimization in RBF Network’s Design using Input-Output Fuzzy Cluster-
ing. Neurocomputing, 108, 36-44. 

[19] Kennedy, J. and Eberhart, R. (1995) Particle Swarm Optimization. In: 1995 IEEE 
International Conference on Neural Networks Proceedings, Proceedings of Interna-
tional Conference on Neural Networks, IEEE Australia Council, Perth, 1942-1948.  
https://doi.org/10.1109/ICNN.1995.488968 

[20] Schaffer, J.D. (1985) Multiple Objective Optimization with Vector Evaluated Ge-
netic Algorithms. In: International Conference on Genetic Algorithms, Lawrence 
Erlbaum Associates, 93-100. 

[21] Deb, K. (1999) Multi-Objective Genetic Algorithms: Problem Difficulties and Con-
struction of Test Problems. Evolutionary Computation, 7, 205-230.  
https://doi.org/10.1162/evco.1999.7.3.205 

https://doi.org/10.4236/jcc.2017.512002
https://doi.org/10.1109/TSMCB.2009.2015956
https://doi.org/10.1016/j.asoc.2012.11.033
https://doi.org/10.1016/j.asoc.2010.10.010
https://doi.org/10.1007/s00500-013-0992-z
https://doi.org/10.1109/JSEE.2013.00041
https://doi.org/10.1007/s10489-012-0405-5
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1162/evco.1999.7.3.205

	Particle Swarm Optimization Algorithm Based on Chaotic Sequences and Dynamic Self-Adaptive Strategy
	Abstract
	Keywords
	1. Introduction
	2. CSAPSO Algorithm
	2.1. Standard PSO 
	2.2. CSAPSO Algorithm

	3. Numerical Experiment
	3.1. Experiment Function and Evaluation
	3.2. Experimental Results

	4. Conclusions
	Acknowledgements
	References

