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Abstract 

Orthogonal Frequency-Division Multiple Access (OFDMA) systems have attracted considerable attention 
through technologies such as 3GPP Long Term Evolution (LTE) and Worldwide Interoperability for Micro-
wave Access (WiMAX). OFDMA is a flexible multiple-access technique that can accommodate many users 
with widely varying applications, data rates, and Quality of Service (QoS) requirements. OFDMA has the 
advantages of handling lower data rates and bursty traffic at a reduced power compared to single-user 
OFDM or its Time Division Multiple Access (TDMA) or Carrier Sense Multiple Access (CSMA) counter-
parts. In our work, we propose a Particle Swarm Optimization based resource allocation and scheduling 
scheme (PSORAS) with improved quality of service for OFDMA Systems. Simulation results indicate a 
clear reduction in delay compared to the Frequency Division Multiple Access (FDMA) scheme for resource 
allocation, at almost the same throughput and fairness. This makes our scheme absolutely suitable for han-
dling real time traffic such real time video-on demand. 
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1. Introduction 
 
TDMA and FDMA used for distributing subcarriers in 
OFDM systems form static subcarrier management sche- 
mes. While in OFDM-TDMA, one of the users is as-
signed all the subcarriers for the entire scheduling inter-
val, in the OFDM-FDMA, each user is assigned prede-
termined number of subcarriers. However, neither of 
these techniques is time or frequency efficient: TDMA is 
a time hog and FDMA is a bandwidth hog. OFDMA is a 
multi-user OFDM that allows multiple access on the 
same channel (a channel being a group of evenly spaced 
subcarriers, as discussed above). WiMAX uses OFDMA, 
extended OFDM, to accommodate many users in the 
same channel at the same time. In OFDMA, the OFDMA 
subcarriers are divided into subsets of subcarriers, each 
subset representing a subchannel (see Figure 1). Dy-
namic subcarrier allocation schemes which consider the 
instantaneous channel conditions have been the main 
area of research interest recently. The resource allocation 
is usually formulated as a constrained optimization pro- 
blem, to either 1) minimize the total transmit power with 
a constraint on the user data rate [1,2] or 2) maximize the 
total data rate with a constraint on total transmit power 

[3-5]. The first objective is appropriate for fixed-rate 
applications, such as voice, whereas the second is more 
appropriate for bursty applications, such as data and 
other IP applications. 

In the downlink, a subchannel may be intended for 
different receivers or groups of receivers; in the uplink, a 
transmitter may be assigned one or more subchannels. 
The subcarriers forming one subchannel may be adjacent 
or not. The standard indicates that the OFDM symbol is 
divided into logical subchannels to support scalability, 

 

 

Figure 1. OFDMA frame structure. 
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multiple access and advanced antenna array processing 
capabilities. The multiple access has a new dimension 
with OFDMA where in a downlink or an uplink user will 
have a time and a subchannel allocation for each of its 
communications. 

The main motivation for adaptive subcarrier allocation 
in OFDMA systems is to exploit multiuser Diversity. In 
a K-user system in which the subcarrier of interest ex-
periences i.i.d. Rayleigh fading—that is, each user’s 
channel gain is independent of the others, as the number 
of users’ increases, the probability of getting a large 
channel gain increases. Further, it was observed that ma-
jority of the gain is achieved from only the first few users. 
Adaptive modulation is the means by which good chan-
nels can be exploited to achieve higher data rates. 

WiMAX systems use adaptive modulation and coding 
in order to take advantage of fluctuations in the channel. 
The basic idea is quite simple: Transmit as high a data 
rate as possible when the channel is good, and transmit at 
a lower rate when the channel is poor, in order to avoid 
excessive dropped packets. While Lower data rates are 
achieved by using a small constellation, such as QPSK, 
and low-rate error-correcting codes, such as rate convo-
lutional or turbo codes, the higher data rates are achieved 
with large constellations, such as 64 QAM, and less ro-
bust error correcting codes; for example, rate convolu-
tional, turbo, or LDPC codes. However, a key challenge 
in AMC is to efficiently control three quantities at once: 
transmit power, transmit rate (constellation), and the 

coding rate. 
In theory, the best power-control policy from a capac-

ity standpoint is the so-called waterfilling strategy, in 
which more power is allocated to strong channels and 
less power allocated to weak channels [6]. In practice, 
the opposite may be true in some cases. For example, in 
regions of low gain, the transmitter would be well ad-
vised to lower the transmit power, in order to save power 
and generate less interference to neighboring cells [7]. 

As mentioned earlier, OFDMA thus facilitates the ex-
ploitation of frequency diversity and multiuser diversity 
to significantly improve the system capacity. In a multi-
user System, the optimal solution is not necessarily to 
assign the best subcarriers seen by a single chosen user 
since the best subcarrier of one user is also the best sub-
carrier for another user who has no other good subcarri-
ers. Hence, a different approach should be considered for 
scheduling the best user. We consider the problem where 
K users are involved in the OFDMA system to share N 
subcarriers. Each user allocates non overlapping set of 
subcarriers Sk where the number of subcarriers per user 
is J(k). The allocation module of the transmitter assigns 
subcarriers to each user according to some QoS criteria. 
QoS metrics in the system are rate and BER. Each user’s 
bit stream is transmitted using the assigned subcarriers 
and adaptively modulated for the number of bits assigned 
to the subcarrier. The power level of the modulation is 
adjusted to meet QoS for given fading of the channel 
(see Figure 2). 
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Figure 2. Downlink OFDMA System architecture. 
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If k,n  is the indicator of allocating the nth subcarrier 

to the kth user, the transmission power allocated to the 
nth subcarrier of kth user can be expressed as 

2
, , ,= ( ,  )/k n k k n k k nP f C BER   where  k k,nf C  is the re-

quired received power with unity channel gain for reli-
able reception of c bits per symbol. Therefore, the re-
source allocation problem with an imposed power con-
straint can be formulated as 
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The limit on the total transmission power is expressed 
as maxP  for all   {1,  . . . , }n N ,   {1,  . . . , }k K  

and ,   {1,  . . . , }k nC M . The proposed method uses the 

Particle Swarm Optimization for resource allocation and 
scheduling in a multiuser scenario, considering the rate, 
power and the subcarrier allocation constraints. 
 
2. Particle Swarm Optimization 
 
Particle Swarm Optimization (PSO) is motivated from the 
simulation of social behavior of animals’. It was intro-
duced by Eberhart & Kennedy in 1995. In PSO, potential 
solutions (particles) move dynamically in space. PSO is 
similar to the other evolutionary algorithms in which the 
system is initialized with a population of random solutions. 
A list of Genetic algorithms is given in [8-12]. Each po-
tential solution, call particles, flies in the D-dimensional 
problem space with a velocity which is dynamically ad-
justed according to the flying experiences of its own and 
its colleagues. The location of the ith particle is repre-
sented as 1 ( , , , , )i i id iDX x x x   . The best previous 
position (which giving the best fitness value) of the ith 
particle is recorded and represented as iP   

1( , , , , )i id iDp p p  , which is also called pbest. The in-
dex of the best pbest among all the particles is represented 
by the symbol g. The location Pg is also called gbest. The 
velocity for the ith particle is represented as 

1 ( , , , , )i i id iDV v v v   . The particle swarm optimization 
concept consists of, at each time step, changing the veloc-
ity and location of each particle toward its pbest and gbest 
locations. The particle swarm optimization concept con-
sists of, at each time step, changing the velocity and loca-
tion of each particle toward its pbest and gbest locations 
according to the equations = w c1 rand()id idv v     
   c2 rand()id id gd idp x p x     and xid + id idx v  re-
spectively.where w is inertia weight, c1 and c2 are ac-
celeration constants [13] which is responsible for keep-
ing the particle moving in the same direction, and rand() 

is a random function in the range [0, 1]. For the first 
equation, the first part represents the inertia of pervious 
velocity; the second part is the “cognition” part, which 
represents the private thinking by itself which causes the 
particle to move to regions of higher fitness; the third 
part is the “social” part, which represents the cooperation 
among the particles [14]. Thus the social component 
causes the particle to move to the best region the swarm 
has found so far. 

The PSO algorithm consists of just three steps, which 
are repeated until some stopping condition is met [15]: 

1) Evaluate the fitness of each particle 
2) Update individual and global best fitnesses and po-

sitions 
3) Update velocity and position of each particle 
Further, velocity clamping is used to prevent the parti-

cle to move too much away from the search space, the 
limits being confined to [–Vmax, Vmax ] if the search space 
spans from [–Pmax, Pmax][16]. 
 
3. The Proposed System 
 
In this work, we propose a Particle Swarm Optimization 
(PSO) Approach combined with Credit based scheduling 
to guarantee QOS in WiMAX. 

Formal definition of our scheduling model: 
1

i 1
1
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where terms 1 and 2 refer to the time and power con-
straints during scheduling respectively. 

xik are decision variables, where 1 ≤ i ≤ N and 1 ≤ k ≤ 
K, xik is 1 if a subcarrier has been allocated, 0 otherwise. 
The decision of whether to grant the subchannel to the 
subcarrier is based on whether the subcarrier lies within 
the range of existing subcarriers for a subchannel. A cri-
teria such as rejection of the subcarrier if it is directly 
adjacent to a previously allocated subcarrier within the 
same subchannel and acceptance if not so is used. This 
results in an improvement of SINR. N is the total number 
of subcarriers per user and K total number of users, ri is 
the rate of each allocated subcarrier, D is the target rate 
for each user, ti is the allocation time for the subcarrier, u 
is the allowable deadline for a user, pi is the power allo-
cation for each subcarrier, m is the maximum power al-
location for user. Ci is the maximum allowable credits for 
a user. We define different penalty factors as follows: 
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Penalty factor for violating time constraint 
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In addition, in the third equation, we also define a 
constraint on the user using a large portion of a subcar-
rier repeatedly because this will deny opportunities to 
other users over this subchannel. We refer to such users 
as ‘selfish users’. We initially assign some credits δk to 
each user k, which are incremented when each user gains 
additional subcarriers and decremented when the user 
loses them. We define credit thresholds δmin and δmax such 
that δmin ≤ δk ≤ δmax and γ is the penalty factor for violat-
ing the credit usage. 

The fitness function of each user can be evaluated as: 

k 1 2 3Minimize H(x) = Z  + w  + w  + w     , where w1, 
w2, w3 denote the weights for the penalty terms. For gen-
eration of the initial swarm, the particle gives more pref-
erence to items that have a closer rate to the target rate. 

The mapping of the velocities to the probabilities can 
be carried out by the sigmoid function ( ) = 1 (1+ e )ij-v

ijS V  
where positive velocities drive the bit towards 1 value 
while negative velocities towards the 0 bit values (see 
Figure 3). 

The particle generation is based on the selection rule 
-ir D  is minimum subject to S(vij) = 1 .Hence it gives 

more selection probability to users that have closer rate 
to the target rate and are represented by particles with 
positive velocities (see Figure 4). 
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Figure 3. Sigmoid function for probability-velocity mapping. 
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Figure 4. Subcarrier allocation and scheduling in PSORAS. 
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4. The Simulation Model and Results 
 
We consider the downlink of an OFDMA system with N 
subchannels and K users. The time axis is divided into 
frames. A frame is further divided into S time slots, each 
of which may contain one or several OFDM symbols. 
The duration of a frame is set to be 5 ms, thus we can 
assume that the channel quality remains constant within 
a frame, but may vary from frame to frame. In our simu-
lation, there are 1024 subcarriers, 1 to 50 users in the IE- 
EE 802.16 OFDMA system. Each user transmits 80 bits in 
an OFDMA symbol. The modulation type in the OFDMA 
system is confined to QPSK, 16-QAM, 64-QAM. (see 
Figures 5-7) 

Following are the simulation results for the variation 
in average throughput, fairness index and the average 
delay with the number of users. The results clearly indi-
cate a reduction in the delay with the proposed swarm 
based approach compared to the Naïve allocation of 
subcarriers, i.e. allocation on availability basis in FDMA 
without considering variation in channel conditions. The 
results have been evaluated for different sets of target 
rates and target powers for the subcarriers and the priori-
ties of users are varied after every 5 ms based on the 

 

 

Figure 5. Number of users Vs. Average Throughput. 

 

 

Figure 6. Number of users Vs. Throughput Fairness Index. 

 

Figure 7. Number of users Vs. Average Delay. 

 
calculated fitness. The throughput fairness index has 
been calculated as max min min= ( - ) /nτ Th Th Th , where 

minTh  and maxTh  are the minimum and maximum val-

ues of throughput of each user over ‘n’ frames measured 
in bits. 
 
5. Conclusions 
 
Swarm optimization is increasingly finding its place in 
multiuser downlink MIMO scheduling, smart Antenna 
array systems etc. In our work, we have proposed a 
PSO-based fair Resource allocation and scheduling algo-
rithm for the IEEE 802.16 System. We have compared 
our results with the static FDMA algorithm and have 
found it offers better delay characteristics with increasing 
number of users while still maintaining the fairness and 
throughput utilization. This makes the proposed scheme 
absolutely useful for real-time applications. 

 
6. References 
 
[1] D. Kivanc, G. Li and H. Liu, “Computationally Efficient 

Bandwidth Allocation and Power Control for OFDMA,” 
IEEE Transactions on Wireless Communications, Vol. 2, 
No. 6, 2003, pp. 1150-1158. 

[2] C. Wong, R. Cheng, K. Letaief and R. Murch, “Multiuser 
OFDM with Adaptive Subcarrier, Bit, and Power Alloca-
tion,” IEEE Journal on Selected Areas in Communica-
tions, Vol. 17, No. 10, 1999, pp. 1747-1758. 

[3] J. Jang and K. Lee, “Transmit Power Adaptation for Mul-
tiuser OFDM Systems,” IEEE Journal on Selected Areas 
in Communications, Vol. 21, No. 2, 2003, pp. 171-178. 

[4] G. Li and H. Liu, “On the Optimality of the OFDMA 
Network,” IEEE Communications Letters, Vol. 9, No. 5, 
2005, pp. 438-440. 

[5] C. Mohanram and S. Bhashyam, “A Sub-optimal Joint 
Subcarrier and Power Aallocation Algorithm for Multi-
user OFDM,” IEEE Communications Letters, Vol. 9, No. 
8, 2005, pp. 685-687. 



C. K. CHAKRAVARTHY  ET  AL. 
 

Copyright © 2010 SciRes.                                                                               IJCNS 

471

[6] G. Manimaran and C. Siva Ram Murthy, “A 
Fault-Tolerant Dynamic Scheduling Algorithm for Mul-
tiprocessor Real-Time Systems and Its Analysis,” IEEE 
Transactions on Parallel and Distributed Systems, Vol. 9, 
No. 11, 1998, pp. 1137-1152.  

[7] R. Chen, J. G. Andrews, R. W. Heath and A. Ghosh, 
“Uplink Power Control in Multi-Cell Spatial Multiplex-
ing Wireless Systems,” IEEE Transactions on Wireless 
Communications, Vol. 6, No. 7, 2007, pp. 2700-2711. 

[8] A. J. Page and T. J. Naughton, “Framework for Task 
Scheduling in Heterogeneous Distributed Computing 
Using Genetic Algorithms,” 15th Artificial Intelligence 
and Cognitive Science Conference, Ireland, 2004, pp. 
137-146. 

[9] A. J. Page and T. J. Naughton, “Dynamic Task Schedul-
ing Using Genetic Algorithms for Heterogeneous Dis-
tributed Computing,” Proceedings of the 19th IEEE/ACM 
International Parallel and Distributed Processing Sym-
posium, Denver, 2005, pp. 1530-2075. 

[10] A. S. Wu, H. Yu, S. Jin, K.-C. Lin and G. Schiavone, “An 
Incremental Genetic Algorithm Approach to Multiproc-
essor Scheduling,” IEEE Transactions on Parallel and 

Distributed Systems, Vol. 15, No. 9, 2004, pp. 824-834. 

[11] A. Y. Zomaya and Y.-H. Teh, “Observations on Using 
Genetic Algorithms for Dynamic Load-Balancing,” IEEE 
Transactions on Parallel and Distributed Systems, Vol. 
12, No. 9, 2001, pp. 899-911. 

[12] E. S. H. Hou, N. Ansari and H. Ren, “A Genetic Algo-
rithm for Multiprocessor Scheduling,” IEEE Transactions 
on Parallel and Distributed Systems, Vol. 5, No. 2, 1994, 
pp. 113-120. 

[13] R. Eberhart and Y. Shi, “Particle Swarm Optimization: 
Developments, Applications and Resources,” IEEE In-
ternational Conference on Evolutionary Computation, 
Seoul, 2001, pp. 81-86. 

[14] J. Kennedy, “The Particle Swarm: Social Adaptation of 
Knowledge,” IEEE International Conference on Evolu-
tionary Computation, Indianapolis, 1997, pp. 303-308. 

[15] F. van den Bergh, “An Analysis of Particle Swarm Opti-
mizers,” PhD Thesis, University of Pretoria, 2001. 

[16] J. Blondin, “Particle Swarm Optimization: A Tutorial,” 
September 2009. 

 

 

 

 

 


