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A novel particle swarm optimization based selective ensemble (PSOSEN) of online sequential extreme learningmachine (OS-ELM)
is proposed. It is based on the original OS-ELM with an adaptive selective ensemble framework. Two novel insights are proposed
in this paper. First, a novel selective ensemble algorithm referred to as particle swarm optimization selective ensemble is proposed,
noting that PSOSEN is a general selective ensemblemethodwhich is applicable to any learning algorithms, including batch learning
and online learning. Second, an adaptive selective ensemble framework for online learning is designed to balance the accuracy and
speed of the algorithm. Experiments for both regression and classi�cation problemswithUCI data sets are carried out. Comparisons
between OS-ELM, simple ensemble OS-ELM (EOS-ELM), genetic algorithm based selective ensemble (GASEN) of OS-ELM, and
the proposed particle swarm optimization based selective ensemble of OS-ELM empirically show that the proposed algorithm
achieves good generalization performance and fast learning speed.

1. Introduction

Feedforward neural network is one of the most prevailing
neural networks for data processing in the past decades [1,
2]. However, the slow learning speed limits its applications.
Recently, an original algorithm designed for single hidden
layer feedforward neural networks (SLFNs) named extreme
learning machine (ELM) was proposed by Huang et al. [3].
ELM is a tuning free algorithm for it randomly selects the
input weights and biases of the hidden nodes instead of
learning these parameters. And, also, the output weights of
the network are then analytically determined. ELM proves to
be a few orders faster than traditional learning algorithms and
obtains better generalization performance as well. It lets the
fast and accurate data analytics become possible and has been
applied to many �elds [4–6].

However, the algorithms mentioned above need all the
training data available to build the model, which is referred
to as batch learning. In many industrial applications, it is
very common that the training data can only be obtained
one by one or chunk by chunk. If batch learning algorithms
are performed each time new training data is available, the
learning process will be very time consuming. Hence online
learning is necessary for many real world applications.

An online sequential extreme learning machine is then
proposed by Liang et al. [7]. OS-ELM can learn the sequential
training observations online at arbitrary length (one by one
or chunk by chunk). New arrived training observations
are learned to update the model of the SLFNs. As soon
as the learning procedure for the arrived observations is
completed, the data is discarded. Moreover, it has no prior
knowledge about the amount of the observations which
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will be presented. 
erefore, OS-ELM is an elegant online
learning algorithm which can handle both the RBF and
additive nodes in the same framework and can be used to
both the classi�cation and function regression problems. OS-
ELM proves to be a very fast and accurate online sequential
learning algorithm [8–10], which can provide better gener-
alization performance in faster speed compared with other
online learning algorithms such as GAP-RBF, GGAP-RBF,
SGBP, RAN, RANEKF, and MRAN.

However, due to the randomgeneration of the parameters
for the hidden nodes, the generalization performance of
OS-ELM sometimes cannot be guaranteed, similar to ELM.
Some ensemble based methods have been applied to ELM to
improve its accuracy [11–13]. Ensemble learning is a learning
scheme where a collection of a �nite number of learners are
trained for the same task [14, 15]. It has been demonstrated
that the generalization ability of a learner can be signi�cantly
improved by ensembling a set of learners. In [16] a simple
ensemble OS-ELM, that is, EOS-ELM, has been investigated.
However, Zhou et al. [17] proved that selective ensemble
is a better choice. We apply this idea to OS-ELM. At �rst,
a novel selective ensemble algorithm, termed as PSOSEN,
is proposed. PSOSEN adopts particle swarm optimization
[18] to select the individual OS-ELMs to form the ensemble.
Bene�ting from the fast speed of PSO, PSOSEN is designed
to be a new accurate and fast selective ensemble algorithm. It
should be noted that PSOSEN is a general selective ensemble
algorithm suitable for any learning algorithms.

Dierent from batch learning, online learning algorithms
need to perform learning continually.
erefore the complex-
ity of the learning algorithm should be taken into account.
Obviously, performing selective ensemble learning each step
is not a good choice for online learning. 
us we designed
an adaptive selective ensemble framework for OS-ELM. A set
of OS-ELMs are trained online, and the root mean square
error (RMSE) will always be calculated. 
e error will be
compared with a preset threshold �. If RMSE is bigger than
the threshold, it means the model is not accurate. 
en
PSOSEN will be performed and a selective ensemble � is
obtained. Otherwise, it means themodel is relatively accurate
and the ensemble will not be selected. 
en the output of the
system is calculated as the average of the individuals in the
ensemble set. And each individual OS-ELM will be updated
recursively.

UCI data sets [19], which contain both regression and
classi�cation data, are used to verify the feasibility of the
proposed algorithm. Comparisons of three aspects including
RMSE, standard deviation and running time between OS-
ELM, and EOS-ELM, selective ensemble of OS-ELM (SEOS-
ELM) with both GASEN and PSOSEN are presented. 
e
results convincingly show that PSOSEN achieves better gen-
eralization accuracy and fast learning speed.


e rest of the paper is organized as follows. In Section 2,
previous work including ELM and OS-ELM is reviewed.

e novel selective ensemble based on particle swarm opti-
mization is presented in Section 3. An adaptive selective
ensemble framework is designed for OS-ELM in Section 4.
Experiments are carried out in Section 5 and the comparison
results are also presented. In Section 6, further discussion

about PSOSEN is provided. We draw the conclusion of the
paper in Section 7.

2. Review of Related Work

In this section, both the basic ELM algorithm and the online
version OS-ELM are reviewed in brief as the background
knowledge for our work.

2.1. Extreme Learning Machine (ELM). ELM algorithm is
derived from single hidden layer feedforward neural net-
works (SLFNs). Unlike traditional SLFNs, ELM assigns the
parameters of the hidden nodes randomly without any
iterative tuning. Besides, all the parameters of the hidden
nodes in ELM are independent of each other. Hence ELM can
be seen as generalized SLFNs.

Given � training samples (��, ��) ∈ �� × ��, where �� is
an input vector of 	 dimensions and �� is a target vector of
 dimensions. 
en SLFNs with �̃ hidden nodes each with
output function �(�, ��, �) are mathematically modeled as

��̃ (��) = �̃∑
�=1
���(�, ��, ��) = ��, � = 1, . . . , �, (1)

where (�, ��) are parameters of hidden nodes, and �� is the
weight vector connecting the �th hidden node and the output
node. To simplify, (1) can be written equivalently as

�� = �, (2)

where

�(1, . . . , �, �1, . . . , ��̃, �1, . . . , ��)

= [[[[[
[

� (1, �1, �1) ⋅ ⋅ ⋅ � (�̃, ��̃, �1)
... d

...
� (1, �1, ��) ⋅ ⋅ ⋅ � (�̃, ��̃, ��)

]]]]]
]�×�̃

,

� = [[[[
[

��1...
���̃
]]]]
]�̃×�

� = [[[[
[

��1...
���
]]]]
]�×�

,

(3)

� is called the hidden layer output matrix of the neural
network, and the �th column of � is the output of the �th
hidden node with respect to inputs �1, �2, . . . , ��.

In ELM,� can be easily obtained as long as the training
set is available and the parameters (�, ��) are randomly
assigned. 
en ELM evolves into a linear system and the
output weights � are calculated as

�̂ = �†�, (4)

where�† is theMoore-Penrose generalized inverse of matrix�.


e ELM algorithm can be summarized in three steps as
shown in Algorithm 1.
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Input:
A training set� = {(��, ��)|�� ∈ ��, �� ∈ ��, � = 1, . . . , �}, hidden node output function�(�, ��, �), and the number of hidden nodes �̃.
Steps:

(1) Assign parameters of hidden nodes (�, ��) randomly, � = 1, . . . , �̃.
(2) Calculate the hidden layer output matrix�.

(3) Calculate the output weight � : ∧� =�†�, where�† is the Moore-Penrose generalized
inverse of hidden layer output matrix�.

Algorithm 1

2.2. OS-ELM. In many industrial applications, it is impossi-
ble to have all the training data available before the learning
process. It is common that the training observations are
sequentially inputted to the learning algorithm; that is, the
observations arrive one-by-one or chunk-by-chunk. In this
case, the batch ELM algorithm is no longer applicable.
Hence, a fast and accurate online sequential extreme learning
machine was proposed to deal with online learning.


e output weight � obtained from (4) is actually a least-

squares solution of (2). Given rank(�) = �̃, the number of
hidden nodes,�† can be presented as

�† = (���)−1��. (5)


is can also be called the le� pseudoinverse of � for it

satis�es the equation�†� = "�̃. If��� tends to be singular,

smaller network size �̃ and larger data number�0 should be
chosen in the initialization step of OS-ELM. Substituting (5)
to (4), we can get

�̂ = (���)−1��� (6)

which is the least-squares solution to (2). 
en the OS-ELM
algorithm can be deduced by recursive implementation of the
least-squares solution of (6).


ere are two main steps in OS-ELM, initialization step
and update step. In the initialization step, the number of
training data �0 needed in this step should be equal to or

larger than network size �̃. In the update step, the learning
model is updated with the method of recursive least square
(RLS). And only the newly arrived single or chunk training
observations are learned, which will be discarded as soon as
the learning step is completed.


e two steps for OS-ELM algorithm in general are as
follows.

(a) Initialization step: batch ELM is used to initialize the
learning system with a small chunk of initial training

data N0 = {(��, ��)}�0�=1 from given training set

N = {(��, ��) , �� ∈ ��, �� ∈ ��, � = 1, . . .} , �0 ≥ �̃. (7)

(1) Assign random input weights � and bias �� (for
additive hidden nodes) or center � and impact

factor �� (for RBF hidden nodes), � = 1, . . . , �̃.

(2) Calculate the initial hidden layer output matrix:

�0 = [[[
[
� (1, �1, �1) ⋅ ⋅ ⋅ � (�̃, ��̃, �1)... d

...� (1, �1, ��0) ⋅ ⋅ ⋅ � (�̃, ��̃, ��0)
]]]
]�0×�̃

. (8)

(3) Calculate the initial output weight �(0) = &0��0 �0,
where &0 = (��0�0)−1 and �0 = [�1, . . . , ��0]�.

(4) Set ' = 0. Initialization is �nished.

(b) Sequential learning step is as follows.


e (' + 1)th chunk of new observations can be
expressed as

N
+1 = {(��, ��)}∑�+1�=0 ���=(∑��=0��)+1
, (9)

where N
+1 represents the number of observations in
the (' + 1)th chunk newly arrived.

(1) Compute the partial hidden layer output matrix�
+1 for the (' + 1)th chunk:�
+1

= [[[[
[

�(1, �1, �(∑��=0��)+1) ⋅ ⋅ ⋅ � (�̃, ��̃, �(∑��=0��)+1)... d
...

� (1, �1, �∑�+1�=0 ��) ⋅ ⋅ ⋅ � (�̃, ��̃, �∑�+1�=0 ��)
]]]]
]��+1×�̃

.
(10)

(2) Set�
+1=[�(∑��=0��)+1, . . . , �∑�+1�=0 ��]�. Andwe have
/
+1 = /
 + ��
+1�
+1,

�(
+1) = �(
) + /−1
+1��
+1 (�
+1 − �
+1�(
)) . (11)

To avoid calculating inverse in the iterative procedure,/−1
+1 is factored as the following according to Wood-
bury formula:

/−1
+1 = (/
 + ��
+1�
+1)−1
= /−1
 − /−1
 ��
+1 (" + �
+1/−1
 ��
+1)−1�
+1/−1
 .

(12)

Let &
+1 = /−1
+1.
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(3) Calculate the output weight �(
+1), according to
the updating equations:

&
+1 = &
 − &
��
+1 (" + �
+1&
��
+1)−1�
+1&
,
�(
+1) = �(
) + &
+1��
+1 (�
+1 − �
+1�(
)) . (13)

(4) Set ' = ' + 1. Go to step (b).

3. Particle Swarm Optimization
Selective Ensemble

In this section, a novel selective ensemble method referred to
as particle swarm optimization selective ensemble (PSOSEN)
is proposed. PSOSEN adopts particle swarm optimization
to select the good learners and combine their predictions.
Detailed procedures of the PSOSEN algorithm will be intro-
duced in this section.

A remarkable superiority of PSOSEN is its speed over
other selective ensemble algorithms. Another popular selec-
tive ensemble learningmethod is based on genetic algorithm.
Compared with GASEN, PSOSEN achieves faster conver-
gence to optimal solution due to the omission of crossover
and mutation operations used in GASEN. GASEN is actually
quite complicated for the requirement of encode, decode, and
other genetic operations. For instance, GASEN only works
with binary encoding, while PSOSEN is available for any
forms of values based on their current positions and velocity
vectors in the corresponding hyperspace. For PSOSEN, there
is no need for overmuch parameter adjustment, thus easy
to implement. Although using simple method, PSOSEN is
still capable of obtaining high accuracy of prediction and
reaching the optima earlier than GASEN. Furthermore, PSO
is less in�uenced by changes in problem dimensionality or
modality of problems compared with GA, which also proves
to be robust in most situations [20].

As selective ensemble is usually more time-consuming
than original algorithm, a faster optimization method might
be preferable. For this purpose, PSOSEN might be more
appropriate to be adopted to search for the optimal ensemble
of ELMmodels e�ciently.

Zhou et al. [17] have demonstrated that ensembling many
of the available learners may be better than ensembling all
of those learners in both regression and classi�cation. 
e
detailed proof of this conclusion will not be presented in
this paper. However, one important problem for selective
ensemble is how to select the good learners in a set of available
learners.


e novel approach selective ensemble algorithm is pro-
posed to select good learners in the ensemble. PSOSEN is
based on the idea of heuristics. It assumes each learner can
be assigned a weight, which could characterize the �tness of
including this learner in the ensemble. 
en the learner with
the weight bigger than a preset threshold � could be selected
to join the ensemble.

Wewill explain the principle of PSOSEN from the context
of regression. We use 2� to denote the weight of the �th

component learner. 
e weight should satisfy the following
equations:

0 ≤ 2� ≤ 1,
�∑
�=1
2� = 1. (14)


en the weight vector is

2 = (21, 22, . . . , 2�) . (15)

Suppose input variables � ∈ �� according to the
distribution 4(�), the true output of � is 5(�), and the actual
output of the �th learner is��(�).
en the output of the simple
weighted ensemble on � is

�̂ (�) = �∑
�=1
2��� (�) . (16)


en the generalization error 6�(�) of the �th learner and

the generalization error 6̂(�) of the ensemble are calculated
on �, respectively:

6� (�) = (�� (�) − 5 (�))2 ,
6̂ (�) = (�̂ (�) − 5 (�))2 . (17)


e generalization error 6� of the �th learner and that of

the ensemble 6̂ is calculated on 4(�), respectively:
6� = ∫5�4 (�) 6� (�) ,
6̂ = ∫ 5�4 (�) 6̂ (�) . (18)

We then de�ne the correlation between the �th and the �th
component learner as follows:

8�� = ∫5�4 (�) (�� (�) − 5 (�)) (�� (�) − 5 (�)) . (19)

Obviously 8�� satis�es the following equations:
8�� = 6�,
8�� = 8��. (20)

Considering the equations de�ned above, we can get

6̂ (�) = ( �∑
�=1
2��� (�) − 5 (�))( �∑

�=1
2��� (�) − 5 (�)) ,

(21)

6̂ = �∑
�=1

�∑
�=1
2�2�8��. (22)

To minimize the generalization error of the ensemble,
according to (22), the optimumweight vector can be obtained
as

2opt = argmin
�

( �∑
�=1

�∑
�=1
2�2�8��) . (23)
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e 'th variable of 2opt, that is, 2opt⋅
, can be solved by
Lagrange multiplier:

? (∑��=1∑��=1 2�2�8�� − 2 ∗ � (∑��=1 2� − 1))?2opt⋅

= 0. (24)


e equation can be simpli�ed to

�∑
�=1
� ̸=


2opt⋅
8
� = �. (25)

Taking (2) into account, we can get

2opt⋅
 = ∑��=1 8−1
�∑��=1∑��=1 2�2�8−1�� . (26)

Equation (26) gives the direct solution for 2opt. But the
solution seldomworks well in real world applications. Due to
the fact that some learners are quite similar in performance,
when a number of learners are available, the correlation
matrix 8�� may be irreversible or ill-conditioned.

Although we cannot obtain the optimum weights of the
learner directly, we can approximate them in some way.
Equation (23) can be viewed as an optimization problem. As
particle swarmoptimization has been proved to be a powerful
optimization tool, PSOSEN is then proposed. 
e basic PSO
algorithm is shown in Figure 1.

PSOSEN randomly assigns a weight to each of the
available learners at �rst. 
en it employs particle swarm
optimization algorithm to evolve those weights so that the
weights can characterize the �tness of the learners in joining
the ensemble. Finally, learners whose weight is bigger than
a preset threshold � are selected to form the ensemble. Note
that if all the evolved weights are bigger than the threshold �,
then all the learners will be selected to join the ensemble.

PSOSEN can be applied to both regression and classi�ca-
tion problems for the purpose of the weights evolving process
which is only to select the component learners. In particular,
the outputs of the ensemble for regression are combined via
simple averaging instead of weighted averaging. 
e reason
is that previous work [17] showed that using the weights both
in selection of the component learners and in combination of
the outputs tends to suer the over�tting problem.

In the process of generating population, the goodness
of the individuals is evaluated via validation data bootstrap

sampled from the training data set. We use 6̂�� to denote
the generalization error of the ensemble, which corresponds

to individual 2 on the validation data C. Obviously 6̂�� can
describe the goodness of 2. 
e smaller 6̂�� is, the better 2 is.

So, PSOSEN adopts �(2) = 1/6̂�� as the �tness function.

e PSOSEN algorithm is summarized as follows.E1, E2, . . . , E� are bootstrap samples generated from origi-

nal training data set. A component learner �� is trained
from each E�. And a selective ensemble �∗ is built from�1, �2, . . . , ��. 
e output is the average output of the
ensemble for regression or the class label who receives
the most number in voting process for classi�cation (see
Algorithm 2).

Start

Generate initial population

Evaluate individual �tness

Update particle speed

Update particle position

Present is better than 

Present is the best position

Present is better than 

global best position?

Satisfy the 

convergence?

Output global best position

Present is global best position

Yes

Yes

Yes

No

the best position?

No

No

Figure 1: Flowchart for particle swarm optimization algorithm.

4. Particle Swarm Optimization Based
Selective Ensemble of Online Sequential
Extreme Learning Machine

In this section, PSOSEN is applied to the original OS-ELM to
improve the generalization performance. In order to reduce
the complexity and employ PSOSEN �exibly, an adaptive
framework is then designed. 
e �owchart of the framework
is shown as in Figure 2.

Online learning is necessary in many industrial applica-
tions. In these situations, training data can only be obtained
sequentially. Although OS-ELM is proposed as useful online
learning algorithm, the generalization performance may not
be quite good results from the randomgeneration of the input
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Input: training set S, learner L, trial T, threshold �
Steps:
(1) for � = 1 to �{E� = bootstrap sample from E�� = F(E�)}
(2) generate a population of weight vectors
(3) evolve the population by PSO, where the �tness of the weight vector 2 is de�ned as

�(2) = 1/∧6�� .
(4) 2∗ = the evolved best weight vector
Output: ensemble�∗:�∗(�) = Ave ∑

�∗� >�
��(�) for regression

�∗(�) = argmax
�∈�

∑
�∗� >�,��(�)=�

1 for classi�cation

Algorithm 2: PSOSEN.

Yes

Initialization

update 
recursively

update 
recursively

update 
recursively

update 
recursively

No

OS-ELM(1) OS-ELM(2) OS-ELM(N− 1) OS-ELM(N)· · ·

· · ·
OS-ELM(1) OS-ELM(2) OS-ELM(N− 1) OS-ELM(N)

E > �

M = NM = PSOSEN of N

Yout =
1

M

M∑
j=1

fj,L =
1

M

M∑
j=1

Hj · �j,k

E = √∑N
i=1(f − fi,L)2

N

Figure 2: Flowchart for the proposed framework.

parameters. Ensemblemethods have been investigated inOS-
ELM, that is, the EOS-ELM algorithm [16]. However, it is
only very simple ensemble method, which just calculates the
average of all the � individual OS-ELMs. In this section,
selective ensemble, which is superior to simple ensemble, is
applied to OS-ELM. 
e novel selective ensemble method
proposed in Section 3 is adopted. Apparently, performing
PSOSEN each step is a time consuming process. We design
an adaptive framework to determine whether to perform
PSOSEN or simple ensemble. 
us the accuracy and the
complexity can be balanced well. 
e framework for the new
algorithm can be explained as follows.

First,� individual OS-ELMs are initialized. 
e number
of nodes is same for each OS-ELM, while the input weights
and biases for each OS-ELM are randomly generated.

Second, the RMSE error is calculated:

6 = √∑��=1 (� − ��,�)2� , (27)

where � is the expected output, while ��,� is the actual output
of the �th individual OS-ELM.


e RMSE will be compared with a preset threshold �.
If 6 is bigger than �, which means simple ensemble is not
accurate, PSOSEN is performed and a selective ensemble�
is obtained. And if 6 is smaller than �, which indicates that
simple ensemble is relatively accurate, the ensemble will not
be selected.


ird, the output of the system is calculated as the average
output of the individual in the ensemble set:

Hout = 1�
�∑
�=1
��,� = 1�

�∑
�=1
�� ⋅ ��,
, (28)

where�� is the output matrix of the �th OS-ELM, and ��,
 is
the output weight calculated by the �th OS-ELM at step '.

At last, eachOS-ELMwill update recursively according to
the update equations presented in Section 2.

5. Performance Evaluation of
PSOSEN Based OS-ELM

In this section, a series of experiments were conducted
to evaluate the performance of the proposed algorithm.
OS-ELM, EOS-ELM, and GASEN based OS-ELM are also
compared with the new algorithm in this section. All the
experiments were carried out in the MATLAB R2012b envi-
ronment on a desktop of CPU 3.40GHz and 8GB RAM.

5.1. Model Selection. For OS-ELM, the number of hidden
nodes is the only parameter that needs to be determined.
Cross-validation method is usually used to choose this
parameter. Fi�y trials of simulations are performed, respec-
tively, for regression and classi�cation problems.
e number
of hidden nodes is then determined by the validation error.
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Table 1: Network selection for New-thyroid dataset.

Number of
networks

1 5 10 15 20 25 30

Testing
accuracy

90.73 91.25 90.65 90.18 92.24 91.79 91.8

Testing dev. 0.0745 0.0254 0.0316 0.0276 0.0138 0.024 0.0156

Table 2: Speci�cation of benchmark datasets.

Dataset Classes
Training
data

Testing
data

Attributes

Regression problems

Abalone — 3000 1177 8

California housing — 8000 12640 8

Mackey-Glass — 4000 500 4

Classi�cation problems

New-thyroid 3 140 75 5

Image segmentation 7 1500 810 19

Satellite image 6 4435 2000 36

For EOS-ELM, SEOS-ELM (GASEN), and SEOS-ELM
(PSOSEN), there is another parameter that needs to be
determined, that is, the number of networks in the ensemble.

e parameter is set from 5 to 30 with the interval 5. Finally,
the optimal parameter is selected according to the RMSE for
regression, testing accuracy for classi�cation, and standard
deviation value. Under the same problem, the number of
OS-ELMs is selected based on the lowest standard deviation
and the comparable RMSE or accuracy compared with OS-
ELM.Table 1 is an example of selecting the optimal number of
networks for SEOS-ELM (PSOSEN) with RBF hidden nodes
on New-thyroid dataset. As illustrated by Table 1, the lowest
standard deviation occurs when the number of OS-ELMs
is 20. Meanwhile, the prediction accuracy of SEOS-ELM is
better thanOS-ELM.Hencewe set the number of networks to
be 20 for the New-thyroid dataset.
e numbers of OS-ELMs
for other datasets are determined in the same way.

Both theGaussian radial basis function (RBF)�(, �, �) =
exp(−‖�−‖2/�) and the sigmoid additive�(, �, �) = 1/(1+
exp(−( ⋅ � + �))) are adopted as activation function in
OS-ELM, EOS-ELM, SEOS-ELM (GASEN), and SEOS-ELM
(PSOSEN).

In the experiments, OS-ELM, EOS-ELM, and SEOS-
ELM (GASEN) were compared with SEOS-ELM (PSOSEN).
Some general information of the benchmark datasets used
in our evaluations is listed in Table 2. Both regression and
classi�cation problems are included.

For OS-ELM, the input weights and biases with additive
activation function or the centers with RBF activation func-
tion were all generated from the range [−1, 1]. For regression
problems, all the inputs and outputs were normalized into the
range [0, 1], while the inputs and outputs were normalized
into the range [−1, 1] for classi�cation problems.


e benchmark datasets studied in the experiments are
from UCI Machine Learning Repository except California

Housing dataset from the StatLib Repository. Besides, a time-
series problem, Mackey-Glass, fromUCI was also adopted to
test our algorithms.

5.2. Algorithm Evaluation. To verify the superiority of the
proposed algorithm, RMSE for regression problems and
testing accuracy for classi�cation problems are, respectively,
computed. 
e initial size of the dataset is very small, which
equals to the number of the hidden nodes to guarantee the
model to work. All the data then is sent to themodel in a one-
by-one learning mode. 
e evaluation results are presented
in Tables 3, 4, 5, and 6, which are, respectively, corresponding
to the models with sigmoid hidden nodes and RBF hidden
nodes for both regression and classi�cation problems. Each
result is an average of 50 trials. And in every trial of one
problem, the training and testing samples were randomly
adopted from the dataset that was addressed currently.

From the comparison results of four tables, we can easily
�nd that EOS-ELM, SEOS-ELM (GASEN), and SEOS-ELM
(PSOSEN) are more time consuming than OS-ELM, but they
still keep relatively fast speed at most of the time. It should be
noted that the complexity of SEOS-ELM is adjustable, which
depends on the threshold �.

What is important, EOS-ELM, SEOS-ELM (GASEN),
and SEOS-ELM (PSOSEN) all attain lower testing deviation
and more accurate regression or classi�cation results than
OS-ELM, which shows the advantage of ensemble learn-
ing. In addition, both SEOS-ELM (GASEN) and SEOS-
ELM (PSOSEN) are more accurate than EOS-ELM. 
is
veri�es that selective ensemble is better than simple ensemble
method.

In terms of the comparison between SEOS-ELM
(GASEN) and SEOS-ELM (PSOSEN), it can be observed
that both of the two selective ensemble algorithms achieve
comparable accuracy. However, the advantage of the new
algorithm is that it is more computational e�cient. 
is
veri�es that PSOSEN is a fast and accurate selective ensemble
algorithm.

As an online learning algorithm, the online learning
ability is another important evaluation criterion. To illustrate
the online learning ability of the proposed algorithm, a
simulated regression dataset is adopted. 
e dataset was

generated from the function J = �2 + 3� + 2, comprising
4500 training data and 1000 testing data. Noting that this
function is chosen arbitrarily just to simulate the regression
problem, Figures 3 and 4 explicitly depict the variability
of training accuracy of SEOS-ELM (PSOSEN), EOS-ELM,
and OS-ELM with respect to the number of training data
in the process of learning. It can be observed that with
the increasing number of training samples, RMSE values
of the three methods signi�cantly decline. As the online
learning progressed, the training models are continuously
updated and corrected. We can then conclude that the more
training data the system learns, the more precise the model
is. Whether sigmoid or RBF the hidden nodes is, SEOS-
ELM always obtains smaller RMSE than EOS-ELM and OS-
ELM, which indicates that the performance of SEOS-ELM
is considerably accurate compared with the other methods.
Moreover, the smaller testing deviation of SEOS-ELM in
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Table 3: Comparison of algorithms for regression problems with sigmoid hidden nodes.

Datasets Algorithm
Number of
nodes

Number of
networks

Training time (s)
RMSE or Accuracy

Testing dev.
Training RMSE Testing RMSE

Abalone

OS-ELM 25 0.1191 0.0758 0.0782 0.0049

EOS-ELM 25 5 0.5942 0.0754 0.0775 0.0023

SEOS-ELM (GASEN) 25 5 7.3864 0.0744 0.0760 0.0016

SEOS-ELM (PSOSEN) 25 5 4.1528 0.0742 0.0758 0.0015

Mackey-Glass

OS-ELM 120 0.9827 0.0177 0.0185 0.0018

EOS-ELM 120 5 4.8062 0.0176 0.0183 0.0007

SEOS-ELM (GASEN) 120 5 37.4371 0.0172 0.0180 0.0005

SEOS-ELM (PSOSEN) 120 5 25.1608 0.0173 0.0179 0.0006

California Housing

OS-ELM 50 0.6871 0.1276 0.1335 0.0035

EOS-ELM 50 5 3.2356 0.1280 0.1337 0.0019

SEOS-ELM (GASEN) 50 5 20.7635 0.1242 0.1321 0.0014

SEOS-ELM (PSOSEN) 50 5 15.6326 0.1238 0.1323 0.0014

Table 4: Comparison of algorithms for classi�cation problems with sigmoid hidden nodes.

Datasets Algorithm Number of nodes Number of networks Training time (s) RMSE or Accuracy Testing dev.

New-thyroid

OS-ELM 20 0.0043 93.18% 89.66% 0.1138

EOS-ELM 20 15 0.0627 94.32% 90.92% 0.0276

SEOS-ELM (GASEN) 20 15 1.2476 95.14% 91.58% 0.0201

SEOS-ELM (PSOSEN) 20 15 0.5012 95.23% 91.78% 0.0198

Image segmentation

OS-ELM 180 1.8432 97.07% 94.83% 0.0078

EOS-ELM 180 20 36.2458 97.08% 94.79% 0.0055

SEOS-ELM (GASEN) 180 20 432.1987 97.60% 95.12% 0.0045

SEOS-ELM (PSOSEN) 180 20 254.0721 97.56% 95.21% 0.0043

Satellite image

OS-ELM 400 42.2503 92.82% 88.92% 0.0058

EOS-ELM 400 20 853.2675 92.80% 89.05% 0.0026

SEOS-ELM (GASEN) 400 20 8241.4093 93.54% 89.92% 0.0017

SEOS-ELM (PSOSEN) 400 20 6928.0968 93.96% 90.16% 0.0018

Table 5: Comparison of algorithms for regression problems with RBF hidden nodes.

Datasets Algorithm
Number of
nodes

Number of
networks

Training time (s)
RMSE or Accuracy

Testing dev.
Training RMSE Testing RMSE

Abalone

OS-ELM 25 0.3445 0.0753 0.0775 0.0027

EOS-ELM 25 25 8.5762 0.0752 0.0773 0.0023

SEOS-ELM (GASEN) 25 25 54.2453 0.0742 0.0760 0.0016

SEOS-ELM (PSOSEN) 25 25 49.3562 0.0741 0.0761 0.0017

Mackey-Glass

OS-ELM 120 1.6854 0.0181 0.0185 0.0092

EOS-ELM 120 5 8.4304 0.0171 0.0171 0.0028

SEOS-ELM (GASEN) 120 5 79.3216 0.0155 0.0158 0.0021

SEOS-ELM (PSOSEN) 120 5 55.1469 0.0159 0.0156 0.0016

California Housing

OS-ELM 50 1.8329 0.1298 0.1317 0.0017

EOS-ELM 50 5 9.0726 0.1296 0.1316 0.0011

SEOS-ELM (GASEN) 50 5 69.8636 0.1216 0.1262 0.0008

SEOS-ELM (PSOSEN) 50 5 64.9625 0.1202 0.1243 0.0009
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Table 6: Comparison of algorithms for classi�cation problems with RBF hidden nodes.

Datasets Algorithm Number of nodes Number of networks Training time (s) RMSE or Accuracy Testing dev.

New-thyroid

OS-ELM 20 0.0118 93.45% 89.92% 0.0702

EOS-ELM 20 15 0.1682 93.87% 89.86% 0.0428

SEOS-ELM (GASEN) 20 15 1.9745 94.53% 91.05% 0.0332

SEOS-ELM (PSOSEN) 20 15 1.2315 94.68% 91.32% 0.0315

Image segmentation

OS-ELM 180 2.6702 94.98% 91.92% 0.0324

EOS-ELM 180 5 13.2174 94.39% 91.35% 0.0148

SEOS-ELM (GASEN) 180 5 128.3215 95.62% 95.06% 0.0085

SEOS-ELM (PSOSEN) 180 5 90.2856 96.02% 95.24% 0.0079

Satellite image

OS-ELM 400 45.2702 93.62% 89.54% 0.0056

EOS-ELM 400 10 448.1347 93.86% 89.37% 0.0034

SEOS-ELM (GASEN) 400 10 4263.1406 94.61% 90.38% 0.0022

SEOS-ELM (PSOSEN) 400 10 3145.8528 94.85% 90.57% 0.0019
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Figure 3: RMSE with respect to the number of training samples for
sigmoid hidden nodes.

Table 3 to Table 6 also con�rms the stability performance of
SEOS-ELM.

6. Discussion

In the experiments, PSOSEN showed its higher accuracy than
the originalOS-ELMand simple ensemble ofOS-ELM,which
veri�ed the feasibility of the selective ensemble method. In
addition, compared with GASEN, PSOSEN showed compa-
rable accuracy while much faster learning speed. Taking the
complexity and accuracy into consideration, PSOSEN is a
good choice for selective ensemble. Experiments on online
version ELM have demonstrated the advantages. However, it
should be noted that, as a general selective ensemble method,
PSOSEN is applicable to any learning algorithms, both batch
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Figure 4: RMSE with respect to the number of training samples for
RBF hidden nodes.

learning and online learning. So, applying PSOSEN to other
learning algorithms are of interest in the future.


e experiments also showed that although ensemble
learning, both simple ensemble and selective ensemble,
attains higher accuracy, it is more time consuming than the
original learning algorithm. In addition, selective ensemble
is slower than simple ensemble. As a selective ensemble
method, PSOSEN is also slower than the original learning
algorithm and the simple ensemble. So, selective ensemble is
a trade-o between complexity and accuracy. In the future,
new selective ensemblemethod should be designed to further
improve the speed of the algorithm.

7. Conclusion

In this paper, PSOSEN is proposed as a novel selective
ensemble algorithm. Bene�ting from the fast speed of PSO,
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PSOSEN proves to be faster than other selective ensemble
algorithms. It is a general selective ensemble algorithm,which
is applicable to any learning algorithms. To improve the
generalization performance of the online learning algorithm,
we then apply PSOSEN to OS-ELM. And in purpose of
balancing the complexity and accuracy, an adaptive selective
ensemble framework for OS-ELM is designed. Experiments
were carried out on UCI data set. 
e results convincingly
show that the new algorithm improves the generalization per-
formance of OS-ELM and also keeps balance on complexity.
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