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Abstract

Objective—Deep brain stimulation (DBS) therapy relies on both precise neurosurgical targeting 

and systematic optimization of stimulation settings to achieve beneficial clinical outcomes. One 

recent advance to improve targeting is the development of DBS arrays (DBSAs) with electrodes 

segmented both along and around the DBS lead. However, increasing the number of independent 

electrodes creates the logistical challenge of optimizing stimulation parameters efficiently.

Approach—Solving such complex problems with multiple solutions and objectives is well 

known to occur in biology, in which complex collective behaviors emerge out of swarms of 

individual organisms engaged in learning through social interactions. Here, we developed a 

particle swarm optimization (PSO) algorithm to program DBSAs using a swarm of individual 

particles representing electrode configurations and stimulation amplitudes. Using a finite element 

model of motor thalamic DBS, we demonstrate how the PSO algorithm can efficiently optimize a 

multi-objective function that maximizes predictions of axonal activation in regions of interest 

(ROI, cerebellar-receiving area of motor thalamus), minimizes predictions of axonal activation in 

regions of avoidance (ROA, somatosensory thalamus), and minimizes power consumption.

Main Results—The algorithm solved the multi-objective problem by producing a Pareto front. 

ROI and ROA activation predictions were consistent across swarms (<1% median discrepancy in 

axon activation). The algorithm was able to accommodate for (1) lead displacement (1 mm) with 

relatively small ROI (≤9.2%) and ROA (≤1%) activation changes, irrespective of shift direction; 

(2) reduction in maximum per-electrode current (by 50% and 80%) with ROI activation decreasing 

by 5.6% and 16%, respectively; and (3) disabling electrodes (n=3 and 12) with ROI activation 

reduction by 1.8% and 14%, respectively. Additionally, comparison between PSO predictions and 

multi-compartment axon model simulations showed discrepancies of <1% between approaches.

Significance—The PSO algorithm provides a computationally efficient way to program DBS 

systems especially those with higher electrode counts.
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1. Introduction

Deep brain stimulation (DBS) therapy has shown tremendous promise and growth over the 

past decades as an invasive neurosurgical technique for treating numerous brain disorders 

[1]. The clinical success of DBS relies on both accurate implantation of one or more leads of 

electrodes into deep brain target(s), and identification of stimulation parameters that 

alleviate symptoms without inducing adverse side effects. One recent advance in the field of 

DBS that can address both factors is the development of DBS leads with electrodes 

distributed both along and around the shank of the lead [2]–[6]. With this increase in number 

and distribution of electrode sites, these so-called DBS arrays (DBSAs) expand the 

programming options for steering, shifting, and sculpting volumes of neural activation [3], 

[7]. Such functionality may be especially important when DBS leads are positioned in a 

brain region with a non-uniform target morphology [8], or when DBS leads are implanted in 

close proximity to nuclei or fiber pathways that, when stimulated, evoke adverse side effects 

[3], [5], [6].

However, increasing the number of independent electrodes creates the logistical challenge of 

identifying (or programming) the stimulation settings that optimize therapy for a patient. 

DBS leads with four cylindrical electrode contacts are known to require hours of meticulous 

and tedious trial-and-error programming in some cases [9], and the increase to eight [4] or 

thirty-two electrodes [2] is likely to create an intractable problem to optimize electrode 

configurations and stimulation parameters within a clinical setting. One solution to decrease 

the high-dimensionality of this programming problem is to construct computational neuron 

models of DBS that are fit to patient imaging data [10]–[13] and then apply efficient 

algorithms to identify stimulation parameters on a subject-specific basis [14], [15].

One previously developed algorithmic approach is based upon machine learning and training 

a classifier on thousands of computational neuron model simulations [14] that are based on 

biophysically realistic axon models [16]. These axon models are distributed across a range 

of orientations relative to a DBS lead, and finite element models are used to solve for the 

tissue voltage across a range of electrode configurations and stimulation settings [17], [18]. 

Geometrical features that describe the resulting volume or tracts of tissue activated from 

these neuron model simulations are then used to train a machine learning algorithm. The 

trained algorithm can then predict stimulation settings based on a new target volume of 

tissue that one wishes to activate. While comprehensive in formulation, the machine learning 

approach requires a large number of upfront simulations to train the classifier.

A more computationally efficient approach for automating the DBS programming process is 

to optimize a less complex model of neural activation without actually simulating multi-

compartment neuron models. In such models of electrical stimulation, one typically 

estimates the stimulus-induced currents applied to each neuronal membrane compartment 

through an activating function [19], driving function [20], or weighted driving function [21] 

that is calculated from extracellular voltages obtained from solving finite element models. 

For example, Xiao and colleagues showed that one can maximize the sum of the activating 

function values within a region of interest using convex optimization to automate 

programming of DBS arrays [15]. Similarly, genetic algorithms have been developed for 
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programming stimulation settings through peripheral nerve cuff electrodes [22]. The 

challenge, however, with this overall approach is knowing how well the less complex model 

simulations actually compare with the more detailed multi-compartment neuron models that 

incorporate more biophysically realistic elements and parameters.

In this study, we formulate the problem of predicting neural activation within regions of 

interest and regions of avoidance as a non-convex, discrete-valued objective function with 

local minima. To solve such a problem, we developed a particle swarm optimization (PSO) 

methodology, which works by iterative exploration of the electrode configuration and 

stimulation amplitude parameter space. The PSO approach has been successfully applied in 

a number of optimization problems [23], which range from permutations [24], inversion of 

ocean color observations [25], training multi-layer neural networks [26], predicting tremor 

onset [27], and tracking human motion without markers [28]. In addition to implementing 

the PSO approach to solve the non-convex, threshold-based problem we have formulated, 

we also extend the optimization problem to a multi-objective one that optimizes for three 

separate clinically relevant objectives: (1) maximize activation of the therapeutic target 

volume, (2) minimize activation of side effect volumes, and (3) minimize overall power 

consumption.

2. Methods

2.1 Finite Element Modeling (FEM)

A three-dimensional finite element model (COMSOL Multiphysics v5.2) was developed for 

a DBS array [29], which consisted of 32 elliptical electrodes (0.53 mm major axis, 0.3 mm 

curved minor axis, 0.1 mm thick) arranged in eight rows and four columns along the 

cylindrical lead (0.5 mm diameter). Conductance values for lead insulation (σ = 1×10−12 

S/m) and electrodes (σ = 1×106 S/m) were set according to a previous model from our 

group [15], approximating the conductance of silicon carbide and polyimide insulation and 

conductive platinum electrodes, respectively. Though more complex tissue conductance 

models of DBS have been developed [30]–[33], for the purposes of demonstrating the PSO 

algorithm, we assigned simple isotropic conductance values to the encapsulation layer (0.1 

mm thick; σ = 0.18 S/m) [34] and to the bulk tissue (100 mm diameter; σ = 0.3 S/m) [35]. 

Quadratic tetrahedral mesh elements were generated by Delaunay triangulation with variable 

resolution mesh refinements set such that further refinement of the mesh yielded less than 

5% changes in the activating function measure. The resulting mesh consisted of 4,104,421 

domain elements, 204,990 boundary elements, and 12,708 edge elements [15], [36].

While there are myriad number of electrode configurations and stimulation amplitudes that 

could be modeled, we leveraged the principle of superposition and solved the Poisson 

equation in COMSOL to calculate the tissue voltage map individually for each of the 32 

electrodes. In this case, for each simulation, a single electrode was set as the boundary 

current source with a cathodic current of 1 mA (current density 8.63×103 A/m2) and the 

outer surface of the bulk tissue was set to ground. These single boundary current source 

simulations resulted in tissue voltage maps, which were then scaled and superimposed to 

generate finite element modeling solutions for more complex electrode configurations with 

independent current sources.
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2.2 Predictions of Thalamocortical Axon Model Activation

2.2.1 Motor and Somatosensory Thalamus Reconstructions—For this study, we 

modeled stimulation targeting the rhesus macaque cerebellar-receiving area of motor 

thalamus (VPLo: ventral posterolateral pars oralis) [15], which is the homologue of the 

ventral intermediate nucleus (Vim) in humans and primary DBS target for treating essential 

tremor. Of note, clinical DBS implants targeting this nucleus can be difficult to program 

because of low-threshold side effects such as paresthesia, which are thought to result from 

the spread of stimulation into the somatosensory thalamus (VPLc: ventral posterolateral pars 

caudalis) [6], [37]. Surface reconstructions of the region of interest (ROI; in this case, VPLo 

thalamus) and the region of avoidance (ROA; VPLc thalamus) were generated from the 

rhesus macaque brain [15], [38]. A DBSA was placed within the VPLo volume at 77° above 

the horizontal plane and at 10° from the sagittal plane in an anterior to posterior trajectory 

(Fig. 1A). VPLo and VPLc volumes were populated with 4,549 and 5,937 thalamocortical 

axon models (0.2 mm internodal spacing, with each axon arranged in a grid 0.72 mm away 

from adjacent neighbors) with simplified linear trajectories running from ventromedial to 

dorsolateral at 45° from the axial intercommissural plane (Fig. 1B). The linear trajectory and 

45° angle were approximated from a previous investigation of efferent thalamic fibers in 

non-human primates [39]. Axon models that overlapped the DBSA were removed from 

subsequent analysis.

2.2.2 Modeling Myelinated Axon Activation—One way to estimate axonal activation 

resulting from extracellular stimulation is to solve the inhomogeneous cable model equation 

of a myelinated axon [40]–[42]:

(1)

where λ is the axon space constant that is dependent on the axon dimensions and geometry, 

Vm is the membrane voltage, τ is the time constant of the axonal membrane, and Ve is the 

interpolated extracellular potential calculated from the finite element model solution. For 

simplicity, the source term can be approximated with the difference approximation:

(2)

where Ve,n corresponds to the extracellular voltage at node n, and Δx is the distance between 

adjacent nodes of Ranvier. This source term or “activating function” has been shown to 

provide a reasonable approximation of the non-faradaic transmembrane currents that result 

from the initial onset of an extracellular stimulation pulse [19], [40].

Here, we use a modified activating function (MAF) to predict axonal activation. We compute 

the second spatial difference using extracellular potentials from non-adjacent nodes of 

Ranvier:
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(3)

Notably, this approach is fundamentally the same as the activating function, except that it 

yields a smoother version of the activating function. Because this modified spatial difference 

is a linear function of the extracellular potentials, the superposition principle can be used to 

efficiently predict MAF values for an arbitrary electrode configuration [15]. For each axon, 

we constructed an N-by-32 matrix (denoted as the “C matrix”) containing the MAF value for 

all N nodes of Ranvier when stimulating through each electrode individually. This enabled 

computing the MAF value at every node for arbitrary electrode configurations by 

multiplying the C matrix with the 32-by-1 vector of currents going through each electrode of 

the DBSA.

2.2.3 Defining MAF Thresholds for Axonal Activation—An axon was considered 

activated if, for a given electrode configuration, the MAF value exceeded a predefined 

threshold (MAFT) at one or more of its nodes. Because the choice of MAFT is dependent on 

the specific axonal geometry, we tuned our MAFT empirically to maximize its predictive 

accuracy for our thalamic fiber geometry. We simulated the axonal fiber geometries as multi-

compartment myelinated axon models in NEURON (v7.4). Axon models consisted of 2 μm 

diameter fibers with compartments representing nodes of Ranvier, myelin attachment 

segments, paranode main segments, and internode segments connected through an axial 

resistance [16]. Axonal membrane compartments were each driven using the extracellular 

mechanism in NEURON (e_extracellular) [6], [8], [43]. We applied a waveform with a 90 μs 

cathode-leading phase, 400 μs interphase delay, 3 ms charge-balanced anodic phase, and 135 

Hz pulse rate [44]. The specific extracellular potential localized to each axonal node from 

current-controlled DBS inputs (0 to −1 mA per electrode) was estimated with the FEM and 

superposition. After running 30 primer simulations with a range of electrode configurations, 

we computed a best fitting MAFT value by minimizing the mean squared error between 

MAFT predictions and the 30 primer NEURON simulations. The obtained MAFT value 

(0.0023) was used for all subsequent PSO runs.

2.2.4 Estimating Axonal Activation—The MAFT value was then used to construct 

functions that predicted the number of axons activated in ROI, R(x), and the number of 

axons activated in ROA, S(x). These threshold-based functions were described as follows:

(3)

(4)

where x is a vector of size 32 corresponding to the current through each electrode; CROI,i 

and CROA,j are the C matrices for ROI axon i and ROA axon j, respectively; H(•) is the 
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Heaviside function; and α is the MAFT value. Using a MAFT value of 0.0023 (obtained as 

described in Section 2.2.3), the discrepancy between MAFT-based predictions and 

NEURON model predictions was less than 1% of the total axons in either ROI or ROA (Fig. 

2). Given this low discrepancy, the MAFT value and the functions R(x) and S(x) were used 

in all subsequent PSO simulations.

2.3 Optimization Problem

For the simplified thalamocortical axon geometry modeled, the optimization algorithm’s 

objectives were to (1) maximize the number of activated axons in the ROI, (2) minimize the 

number of activated axons in the ROA, and (3) minimize the power dissipated by the 

stimulator. These three distinct objectives reflect the desired clinical outcome, in which 

robust therapy is delivered with little to no side effects and with low power consumption. 

Additionally, we constrained the stimulus waveform through each electrode contact to have 

a cathode-leading phase (between 0 to −0.5 mA), which was within the current density 

safety limits based on the electrode size. Conceptually, this optimization problem can be 

denoted as follows:

(5)

(6)

(7)

(8)

where P(x) is the power in mA2 (not scaled by impedance).

To solve this multi-objective optimization problem, we employed a standard approach 

known as linear aggregation, which involves creating a single scalar objective function from 

the weighted sum of the three distinct objectives. We chose a weighting based on our 

ranking of importance of the objectives:

(9)

(10)
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However, one limitation of the linear aggregation approach, from the clinical perspective, is 

that it assumes that there is one correct prioritization between the three objectives. This 

limits the user who seeks to prioritize outcomes in a different, subject-specific manner. 

Ideally, we would be able to solve the optimization problem for every possible combination 

of weightings. To efficiently obtain solutions for a range of weighting combinations, we 

mixed the aggregation-based method with elements of a Pareto dominance-based method. 

Specifically, we leveraged the fact that exploratory optimization algorithms like particle 

swarm optimization evaluate many intermediate solutions in search of the “best” solution. 

We collected these intermediate solutions, and labeled as ‘Pareto dominated’ any candidate 

solution for which there was at least one ‘better’ solution (i.e. better in all three objectives). 

By collecting these intermediate solutions and getting rid of solutions that were Pareto 

dominated, we were able to construct a set of solutions known as the Pareto front (Fig. 3). 

Solutions on that Pareto front are considered Pareto optimal because they were not Pareto 

dominated by any other solution. As such, each solution on the resulting Pareto front 

represents the best electrode configuration possible given the specified tradeoffs. The Pareto 

front obtained from such a mixed approach enables the user to readily select among multiple 

Pareto-optimal electrode configurations without having to directly solve the problem for 

different weighting combinations. A schematic flow of this approach is illustrated in Figure 

4.

2.4 Particle Swarm Optimization

In this study, axons were considered activated when MAF exceeded a certain threshold 

(MAFT) at any point along the axon. Mathematically, this type of discrete function does not 

meet the criteria for convex optimization techniques. Therefore, to solve this problem 

without relaxing the parameters of the problem, we implemented a particle swarm 

optimization (PSO) approach in MATLAB (v2014b).

2.4.1 PSO Behavior—PSO solves optimization problems through a series of searches 

performed by a collection of interacting individuals [45]. Each individual (particle) exhibits 

three simple behaviors that enable it to search through the solution space, and to 

communicate its findings to neighboring individuals (swarm). The most fundamental of 

these behaviors is the particle’s persistent and somewhat random movement through solution 

space, which enables it to explore different potential solutions over time (i.e. inertia). The 

second behavior is the particle’s tendency to move toward a point that the swarm considers 

to be the best so far (i.e. the “social” or “global” best). The third behavior is the particle’s 

tendency to move towards the best point the particle itself has found (i.e. the “cognitive” 

best).

Mathematically, a particle’s position in the solution space at a given time can be described as 

follows:

(11)
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(12)

where x is the position (i.e. electrode current) bounded between Xmin and Xmax, i is the 

particle number, t is iteration, and v is the “velocity” term (i.e. change in current). The three 

simple behaviors of the particle are included in this velocity term by three components: 

inertial, social, and cognitive [46]. Hence, velocity is defined as:

(13)

where j is the electrode number, w is the inertial component, c1 is the cognitive component, 

c2 is the social component, y is the particle-specific best as of iteration t, and ŷ is the global 

best as of iteration t. Meanwhile, r1ij and r2ij are additional weighting factors that allow for 

randomness, which promotes exploration. In our implementation, we set r1ij to be randomly 

distributed between 0 and 1 (inclusive), while r2ij was set to 1 for all i and j. As such, the 

random component of motion was solely due to the cognitive component. Finally, we 

defined w as follows:

(14)

where n is the maximum number of generations. We set w such that it decreased linearly 

from 0.9 to 0.4 in order to promote initial exploration followed by a tendency to converge 

toward the end [46] (Table 1).

2.4.2 Cognitive vs. Social Velocity Components—PSO exploration is driven by 

social and cognitive components, such that the choice of c1 (cognitive) and c2 (social) 

significantly influences the effectiveness of exploration in a problem-specific way. To 

determine appropriate c1 and c2 values for our thalamic geometry, we performed a parameter 

sweep by running the PSO algorithm five times for every possible combination of c1 and c2 

across a range of values (0.025, 0.05, 0.1, 0.2, 0.4, 0.9, 1.8, 2.7, 3.6, 4.5, 5.4, and 6.3). We 

then assessed each combination based on (1) the optimality and consistency of its objective 

function value (i.e. mean and standard deviation of objective function value), and (2) its 

termination status (i.e. convergence vs. stalling vs. generation limit reached).

2.4.3 Number of Particles—The number of particles affects how effectively and 

efficiently the swarm can explore the search space. More particles increase the extent of 

exploration, but also increase computational demand. To select an appropriate number of 

particles for the modeled thalamic geometry, we assessed the performance of PSO with 

respect to 50, 100, 200, and 400 particles. Accuracy was measured using the minimum 

objective function value achieved, while computational demand was measured by the 

number of objective function calls by the program.
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2.4.4 Stimulation Current Constraints—In our implementation of PSO for DBSA 

programming, each electrode configuration was represented as a particle in 32-dimensional 

space (corresponding to the 32 electrodes). Each dimension was bounded between 0 mA to 

−0.5 mA, corresponding to current constraints below typical current density limits (Table 1). 

We generated 100 particles, 68 of which were initialized to have random current through 

each electrode (within 0 to −0.25 mA). The remaining particles were initialized to have 

exactly −0.25 mA going through only a single electrode. This so-called “multi-start 

initialization” approach promoted exploration of the search space [45]. Constraints were 

enforced by checking for any out-of-bounds particles at each iteration. Particles that 

exceeded the current constraints at any given electrode were stripped of their velocity (i.e. 

v=0) in that electrode’s dimension, and that electrode’s max stimulus waveform current was 

set to either 0 mA or −0.5 mA, depending on which bound was exceeded. Notably, these 

current bounds were the only constraints applied to the particles.

2.4.5 Generations and Termination Criteria—Similar to genetic algorithm 

approaches, the PSO algorithm involves the exploration of a state space over the course of 

multiple “generations” in order to find optimal solutions. We established three termination 

criteria: (1) convergence, (2) stalling, and (3) reaching the generation limit. The criteria for 

convergence, stalling, and generation limits were tuned by trial and error. Specifically, we 

considered particles to be converged if the particles’ currents were close to each other in at 

least 30 out of 32 electrodes, as measured by a given electrode having a the standard 

deviation less than 0.004 mA across all particles. In addition, we considered particles to be 

stalled if the objective function score did not improve for 100 consecutive generations (Table 

1). Meanwhile, we set the generation limit to be 200 generations (Table 1) since we found 

this enabled enough iterations for convergent runs to terminate while also enabling non-

convergent runs to explore the space and improve Pareto front estimates. If any of the 

termination criteria were met, the PSO algorithm terminated and returned the estimated 

Pareto front (Fig. 4).

3. Results

3.1 PSO Variable Parameter Sweeps

Consistently low objective function values were obtained when c1 was 3.6, 4.5, or 5.4 and 

when c2 was 0.1, 0.2, or 0.4 (white outlined boxes in Fig 5A–B and black outlined box in 

Fig. 5C). We used low objective function values as a measure of accuracy because such 

values were obtained by having either (1) increased ROI activation, (2) decreased ROA 

activation, or (3) decreased power. As such, the lowest objective function value also 

corresponded to the most favorable electrode configuration possible. While the stochastic 

nature of our algorithm did not guarantee that it would find the lowest possible objective 

function value on any given run, we took a lower objective function value to mean that the 

algorithm had more closely approached this “true” best. Thus, from the set of c1 and c2 

combinations that had low objective function values, we selected center values for c1 as 4.5 

and c2 as 0.2 for all subsequent PSO runs (Table 1). With respect to number of particles, an 

increase from 50 to 400 caused computational demand to increase linearly, while generating 
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only a small improvement in accuracy (Fig 5D). We chose a balanced tradeoff by selecting 

100 particles for the remaining simulations (Table 1).

3.2 Consistency of PSO Solutions

We measured the PSO algorithm’s consistency by quantifying the variation in Pareto fronts 

across 30 independent runs (Fig. 6). In addition, we compared each estimate to a 

“combined” Pareto front that was constructed from all 30 Pareto front estimates. For each 

point Y on each of the 30 Pareto fronts, we computed the discrepancy between Y and the 

closest “combined” Pareto front point. As shown in Figure 6A for five sample Pareto fronts, 

the fronts exhibited considerable overlap, and their respective “best” electrode 

configurations had in common 8 out of 11–13 active electrodes (Fig. 6B). Furthermore, 

predicted ROI activation variation was within 2.0% across all 30 runs. Constructing a 

“combined” Pareto front (Fig. 6C) and comparing its distribution of values to the all 30 runs 

(uncombined), we observed a relatively small difference in median ROI activation (19 

axons), median ROA activation (−20 axons), and median power (−4.11 mA2) (Fig. 6D).

3.3 Robustness

We evaluated robustness by measuring ROI, ROA, and Power under three conditions: (1) the 

existence of open electrode sites (i.e. those unusable because of very high impedances); (2) 

low per electrode current limit (e.g. low battery); and (3) lead shifts by 1 mm anterior, 

posterior, medial, and lateral relative to the DBSA trajectory. The PSO was able to 

accommodate for disabling 3 or 12 active electrodes, with ROI activation reduced by only 

1.8% and 14%, respectively (Fig. 7A). Reducing the maximum per-electrode current by 50% 

and 80% reduced ROI activation by 5.6% and 16%, respectively (Fig. 7B). Lead 

displacement by 1 mm resulted in different yet relatively similar percent ROI activation 

(center: 27.8%, posterior: 20.3%, anterior: 24.2%, lateral: 20.9%, medial: 37.0%). ROA 

activation was not significantly different across shifts (<1% change in any direction) (Fig. 

7C–D). Notably, additional simulations with larger lead shifts at 3 mm yielded more 

divergent values of percent ROI activation (center: 27.8%, posterior: 10.4%, anterior: 0%, 

lateral: 10.3%, medial: 41.4%). The active electrodes chosen by the algorithm were similar 

between the 1 mm and 3 mm shifts.

3.4 Efficiency

Efficiency was measured as the average runtime for constructing a Pareto front and 

obtaining a best electrode configuration. We assessed this by running the PSO algorithm five 

times on a PC with eight cores, 64-bit operating system, 24.0 GB RAM, and an Intel Core i7 

processor at 3.40 GHz. The algorithm took 3.19 seconds per generation, resulting in an 

average of 10.6 minutes per run. These times reflected the duration for obtaining a solution 

after segmentation of the brain volume, positioning of the DBSA within the volume, 

incorporation of axonal tract morphologies, and identification of the MAFT for the ROI and 

ROA.
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4. Discussion

In this study, we developed a particle swarm optimization approach to identify DBS 

electrode configurations and stimulation amplitudes that generate the most selective and 

efficient activation of a region of interest around a DBS array. This multi-objective problem 

incorporated a Pareto front, which offers a range of optimal electrode configurations from 

which a user can choose based on patient-specific programming goals. For example, a 

programmer may decide that activation within an ROA above 10% is undesirable for a given 

patient, whereas in another case, this value can be higher or lower. Thus, while the PSO is an 

automated algorithm, the user can select and test a set of optimized solutions along the 

Pareto front as needed, making the overall programming process more intuitive despite the 

complex geometries and nontrivial electrode configurations involved.

4.1 Particle Swarm Optimization

Particle swarm optimization algorithms employ cognitive and social components that adapt 

across multiple iterations, much like genetic algorithms and other evolutionary algorithms 

[22], [47]. In the case of the PSO algorithms, the individuals (or particles) survive 

throughout all iterations and continue to refine the solution to the overall problem [45]. This 

iterative refining process enables PSO to efficiently and effectively search the solution space. 

For multi-objective PSO, there are a number of approaches for selecting best solutions and 

subsequently updating particle positions. We used a mix between the linear aggregation-

based approach and a Pareto dominance-based approach. Specifically, we used a linear 

aggregation objective function to guide exploration of the particles, and we used Pareto 

dominance criteria to construct an archive of Pareto-optimal points from all explored 

candidate solutions.

The linear aggregation-based approach combines all the objectives of a multi-objective 

problem into a single objective function with fixed weights. This is the simplest approach to 

multi-objective PSO [23]. However, this approach gives only one solution, and does not 

consider the range of the solutions that could be obtained by altering the weighting of the 

objectives. To address this, we coupled a Pareto dominance-based method to keep track of 

all the Pareto-optimal points at every intermediate iteration [48]. Notably, the Pareto front 

estimate was fundamentally independent of the final solution obtained from the aggregate-

based approach, which yielded Pareto front estimates that were robust to choice of weighting 

for ROI, ROA, and power consumption. In other words, assigning a different weighting to 

each of the objectives (ROI, ROA, power) would yield a comparable Pareto front estimate in 

spite of the algorithm evolving differently across iterations.

In addition to linear aggregation-based approaches, there are also a number of more complex 

Pareto dominance-based methods [49] that may yield more efficient Pareto front estimates 

(e.g. in fewer generations or with fewer particles). These Pareto dominance-based 

approaches rely on selecting non-dominated “leader” solutions to guide the algorithm. 

Employing such methods for DBSA programming would require testing and tuning several 

different parameters, such as leader selection schemes, swarm diversity, particle front 

spread, and archive maintenance [23].
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Also important to PSO algorithms in general is the topological network of connections 

amongst particles and neighborhoods, which govern the convergence behavior of the 

algorithm. Here, we fully connected all particles to one another such that all particles in the 

swarm were directly informed of the global best solution at each iteration. Using such a 

global network enables the swarm to converge more rapidly than using a local network (e.g. 

ring, tree, wheel, von Neumann networks), since a locally connected network is slower to 

propagate the information of the global best solution. The global network’s faster 

convergence, however, may be undesirable if it leads to premature convergence on local 

optima [48]. As a result, using a local neighborhood approach may improve the diversity of 

exploration and consistency of the Pareto front estimates [50], [51].

To avoid premature convergence and facilitate exploration, we employed three strategies: (1) 

we implemented a multi-start initialization approach (see Section 2.4.4); (2) we chose low 

social velocity relative to cognitive velocity, which promotes exploration [48]; and (3) we set 

the convergence criteria to be very strict, as the particles are considered converged only 

when the standard deviation of current was less than 0.004 mA (<1% of max current) in at 

least 30 electrodes.

Notably, while exploration is essential to obtaining consistent Pareto front estimates, 

convergence is not necessary. We found that similar and comparable results were obtained 

from non-converging runs that reached the generation limit. This finding enabled us to 

specify a generation limit (see 2.4.5) such that non-converging runs continued to make small 

improvements before terminating. Such a strategy produced more exploration at the cost of 

additional generations of the PSO. Future studies may wish to try different topological 

network organizations to aid the PSO algorithm in optimizing its parameter space 

exploration and convergence.

4.2 PSO Performance

4.2.1 Consistency—Across 30 independent runs, the means and standard deviations of 

the best points on the Pareto fronts were 1281 ± 22 (1.7%) for ROI activation, 34 ± 5 

(14.7%) for ROA activation, and 34.0 ± 4.6 mA2 (13.5%) for Power. Furthermore, visual 

inspection of five sample Pareto fronts indicated a significant overlap between the fronts. 

This level of consistency meant that one could expect the PSO algorithm to provide fairly 

similar outputs across runs (particularly for ROI activation) in spite of varying initial 

conditions.

The discrepancies between the “combined” Pareto front and the 30 individual fronts were 19 

axons for median ROI activation, −20 axons for median ROA activation, and −4.11 mA2 for 

median power. The signs reflect the fact that the “combined” Pareto front had higher ROI 

activation, lower ROA activation, and lower power, which was consistent with expectations. 

Considering these discrepancies in terms of the total number of axons for each region (4,549 

for ROI and 5,937 for ROA) and the maximum power attained (60.04 mA2), these 

discrepancies corresponded to <1% for ROI and ROA axons, and 6.8% for power. The 

overall small discrepancies further suggested that the PSO algorithm could come up with 

similar estimates of the Pareto front across runs. However, despite this overall low 

discrepancy, there were still points on the individual Pareto fronts that reached high 
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discrepancies (e.g. up to ~300 axons, or ~7% of maximum ROI activated). Future 

implementations involving purely dominance-based Pareto front estimation (section 4.1) 

may help reduce the incidence of such deviations.

4.2.2 Robustness—The PSO was also robust to translation of the lead trajectory in 

relation to the ROA, which was located posterior, lateral, and slightly ventral to the ROI. As 

a result, shifting the lead 1 mm in the posterior direction positioned the lateral and posterior 

portions of the lead closer to the ROA. This caused a reduction in stimulation through the 

posterior electrodes (21, 25, 29) and the lateral electrodes (24, 28). The ventral electrodes 

(21, 22, 24) also had less current because the shape of the ROA at the new lead location had 

a greater ventral extent. The consequence of fewer electrodes being active and the lead being 

closer to the ROA was lower Power consumption, lower ROI activation, and relatively 

unchanged ROA activation. This result aligned with our objective function weightings in 

which low ROA activation was more highly prioritized (Equation 9). Shifting the lead 1 mm 

in the lateral direction had a similar impact as the posterior shift, since it positioned the lead 

closer to the ROA. As a result, the posterior electrodes (site 21) and lateral electrodes (sites 

24, 28) experienced a reduced current. In contrast to the posterior shift, however, the ventral 

electrodes were still active since the ventral end of the lead in the lateral shift still remained 

surrounded by ROI axons. The resulting solution had lower ROI activation, lower ROA 

activation, and lower Power (though Power was not as low as in the posterior shift). Shifting 

the lead 1 mm in the anterior direction had the opposite effect of the posterior shift. Since 

the lead at that location was further away from the ROA, there was less ROA activation. In 

addition, virtually every electrode in the ROI was sourcing current, resulting in an overall 

larger Power consumption. However, since this shift also caused the lead to have fewer 

surrounding ROI fibers, there was a reduction in ROI activation relative to the original 

location. Shifting the lead 1 mm in the medial direction positioned the lead farther away 

from the ROA in all directions, as well as positioning it deeper in the ROI. This resulted in 

more active ventral electrodes (sites 17–20), which increased Power (though not as much as 

in the anterior shift) and increased ROI activation. Notably, ROA activation was also 

increased, reflecting a tradeoff between the large increase in ROI activation and the 

relatively smaller increase in ROA activation (Equation 9).

Additionally, the PSO showed robustness to disabling ‘bad’ electrodes on the lead as well as 

modifying maximum current amplitudes resulting from a low battery, for instance. In the 

PSO runs, disabling posterior electrode 25 and anterior electrodes 27 and 31 led to an 

increase in current through the neighboring anterior electrode 23. Disabling the three most 

dorsal rows of electrodes (21–32) resulted in relatively higher current through the ventral 

electrodes 14, 17, 18, and 19. Overall, we observed the expected trend of reduced ROI, 

ROA, and Power as more electrodes were disabled. When employing more stringent current 

constraints, we also observed that the electrode configurations did not appreciably change in 

topology as current limits were reduced. As expected, lower current limits were associated 

with lower activation of ROI and ROA, as well as lower Power consumption. This was 

consistent with the idea that a higher power consumption would allow for more activation, 

all else being equal. Notably, if we had instead set constraints that force the algorithm to 
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budget a total amount (e.g. sum) of current across all electrodes, the reduced current limits 

may have evoked more complex changes in electrode configuration pattern.

4.3 Models for Predicting Axonal Activation

The PSO approach relies on accurate prediction of neural modulation from electrical 

stimulation. We used a modified version of the activating function (MAFT-predicted 

activation) to demonstrate the PSO approach. This MAFT-predicted activation tracked the 

multi-compartment NEURON models well (Fig. 2). While one could solve the nonlinear 

differential equations governing a multi-compartment neuron model as performed in 

NEURON and as we have shown here for a thalamocortical axon model, the computational 

time required for these calculations is high. This limitation led several groups to develop 

other simplified and more computationally efficient axonal excitability prediction models. 

These models have ranged from a discrete difference approximation of transmembrane 

current induced by extracellular stimulation (i.e. the so-called ‘activating function’) [19], 

[40], to variations in the activating function that account for redistribution of current via 

space constants [52], to inclusion of additional source terms at other points along an axon 

that can affect a given node through intracellular ohmic conductance [20], to a weighted 

distribution of source terms [21]. It is important to note that the PSO algorithm as described 

here can utilize other computational approaches for modeling axonal excitability resulting 

from DBS, as long as the predictive functions are specified (Equations 3 and 4).

It is also important to acknowledge that predicting axonal activation depends on a variety of 

factors including axon diameter, distance between nodes of Ranvier, ion channel density at 

the nodes and surrounding compartments, current waveforms, and geometry of the axons 

relative to the induced electric field [16]. In terms of latter, the MAFT value was found to 

vary slightly amongst axonal orientations, which means that one would need to identify an 

activating function threshold a priori and for each axonal pathway that one wishes to 

evaluate with the PSO. Along these lines, it would be possible to introduce more complex 

axonal geometries, such as nonlinear axonal trajectories, while keeping intact the 

fundamental framework of PSO for programming DBSA’s (equations 9 & 10). However, the 

activation prediction functions, R(x) and S(x), would need to be tuned to obtain reasonable 

predictions for the new, non-linear geometries. Future developments in activation predictions 

could be readily deployed into the PSO programming algorithm to facilitate robust 

prediction across stimulation parameters.

Because of this limitation on axonal geometry, biophysical models for the axonal geometry 

of interest must be constructed and run once as a primer for identifying an appropriate 

MAFT value. Since accurate prediction of axonal activation relied on the appropriate 

selection of a MAFT value, a poor choice of MAFT value would lead to suboptimal 

predictions. While this need for a small-scope biophysical model simulation adds an extra 

setup step in applying the PSO approach, the overall process remains computationally 

efficient. Another important limitation in the application of the PSO in this study is that we 

modeled only a single axonal pathway between thalamus and cortex. There are indeed 

several pathways that are likely activated during thalamic DBS, including the reticular 

nucleus to VPLo, the cerebellothalamic tract, and corticothalamic tract. Their activation as 

Peña et al. Page 14

J Neural Eng. Author manuscript; available in PMC 2018 February 01.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



well as the dynamic synaptic modulation resulting from the activation may underlie 

components of the therapy.

4.4 Practical Considerations

The results on robustness highlight an important practical point for DBS lead placement and 

the capabilities of current steering algorithms. While the simulations in Figure 7C–D suggest 

that current steering is able to compensate for off-target placement, this ability of directional 

DBS leads may be limited to displacements of a couple of millimeters or less [36]. At larger 

displacements, current steering through a single lead of electrodes may not adequately 

compensate for off-target lead placement, depending on the size of target. For the VPL 

example demonstrated in this paper, applications of the PSO to lead displacements of 3 mm 

yielded greatly reduced to no activation for shifts away from ROI.

For proof-of-concept and consistency with other ongoing work in our group, the PSO 

approach presented here was implemented for a 32-electrode DBS array with four radial 

electrodes per row. However, PSO programming is readily applicable to the eight-electrode 

directional DBS leads that have recently emerged on the market, such as the Vercise and 

Infinity DBS systems. While any given row of these commercial DBS leads only has three 

radial electrodes, this reduced number of radial electrodes does not significantly diminish 

steering capabilities when current is allowed to be non-uniformly distributed across the 

electrodes [36]. As such, the PSO approach can be readily integrated into a system that uses 

such DBS leads, enabling the development of a system for efficient, subject-specific DBS 

programming.

The PSO approach was observed to be efficient by running in a matter of minutes. However, 

it is important to acknowledge that running the PSO algorithm requires a series of 

preparatory steps that include segmenting the target structures from subject-specific 

anatomical images, as well as specifying the trajectory of the axonal pathways. Ultimately, 

the PSO approach for DBS programming is intended for use in subject-specific contexts. As 

such, widespread use of the algorithm will require that DBS systems become streamlined for 

anatomically-informed, subject-specific DBS. We anticipate that this streamlining process 

will occur in tandem with the current developments in directional DBS, due to the 

complementary nature of these two technologies. For the time being, centers that already 

have the technical expertise to implement prospective subject-specific models can leverage 

the PSO approach to enable optimized programming of directional DBS leads.

4.5 Future Applications

The PSO algorithm demonstrated here was applied to a pathway thought to be involved in 

DBS therapy for treating Essential Tremor [6], [53]. However, it could readily be applied to 

other known DBS targets. A number of DBS targets have been characterized in terms of 

their relevant fiber tracts and morphologies using probabilistic tractography and/or 

histological processing in the context of computational neuron models of DBS. For instance, 

in Parkinson’s disease, STN-DBS therapy is thought to stem from a combination of 

modulating pathways in and adjacent to the STN [10], [11], [54], and a similar combination 

of therapeutic pathways is thought to occur with GPi-DBS [55], [56]. There is also ongoing 
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research to characterize targets for other indications, such as in Major Depressive Disorder, 

where retrospective modeling suggests that the forceps minor, uncinate fasciculus, and 

cingulum bundle may play a critical role in the therapeutic DBS mechanisms [13]. It is 

important to note that the PSO approach presented here can be readily extended to cases in 

which there are multiple ROI’s. In this case, the PSO algorithm could provide the user with 

a set of electrode configurations that intuitively demonstrate the tradeoff between 

stimulating one target vs. another target (i.e. via the Pareto Front).

In addition, one could also consider including other stimulation parameters such as bipolar/

multipolar stimulation, a range of pulse widths, and potentially different stimulation pulse 

train patterns. The key to incorporating additional parameters would be to have a 

mathematical representation of how these factors influence axonal excitability. While this 

study used a simplistic homogeneous and isotropic model of tissue conductance to obtain 

extracellular potential values at the axonal nodes of Ranvier, one may consider using more 

complex models of brain tissue with the PSO algorithm. For example, studies have shown 

that finite element models that incorporate inhomogeneous and anisotropic tissue properties 

(assigning different conductance values to various tissue types) improve modeling results 

and may better reflect the physiological properties of the brain [11], [32], [57]. Finally, 

while the implementation presented here was designed for programming a set of electrodes 

that have already been implanted, it is conceivable to leverage the efficiency of this approach 

for pre-surgical planning of DBS lead placement. By simulating different lead placements 

(e.g. location, angle of attack, etc.) and aiming for the one that best achieves the objectives, 

one may be able to optimize lead placement and therefore improve targeting and functional 

outcomes of DBS.

5. Conclusion

We have shown particle swarm optimization to be an efficient, consistent, and robust method 

for programming DBS arrays. The proposed implementation provides the end-user 

flexibility to select among alternative configurations and objective function specification 

along the Pareto front to accommodate subject-specific needs.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Models of thalamic DBSA stimulation. (A) Reconstructions of the cerebellar-receiving area 

of motor thalamus (VPLo, green) and somatosensory thalamus (VPLc, blue) from the rhesus 

macaque, showing DBSA placed 77° above the horizontal plane and at 10° from the sagittal 

plane in an anterior to posterior trajectory [15]. (B) Trajectories of thalamocortical axons 

(VPLo axons: red, VPLc axons: blue) extending from both thalamic nuclei.
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Figure 2. 
Comparison of MAFT predictions and NEURON model predictions in the ROI and ROA. 

(A) Spatial cross sectional view of a subset of axons illustrated overall agreement between 

the MAFT (o) and NEURON predictions (x). (B) Comparison of MAFT and NEURON 

predictions in terms of number of axons activated. Results indicated a discrepancy of −1.3 

± 38 axons (slight MAFT underprediction) for ROI, and 1.6 ± 20 axons (slight MAFT 

overprediction) for ROA. This constituted a discrepancy of less than 1% of all axons.
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Figure 3. 
Typical output from a PSO run. (A) A three-dimensional Pareto front showing five unique 

points on the Pareto front, where each point corresponds to a different predicted ROI and 

ROA activation (i.e. number of axons activated) and power consumption (in mA2 without 

the impedance). Among them, point number 1 achieved the lowest objective function value 

(Equation 9). (B) Electrode configurations for each of the five highlighted points. Depending 

on a user’s desired prioritization between ROI, ROA, and Power, a different point along the 

Pareto front can be selected for stimulation. The table shows the PSO-predicted axonal 

activation (bold, in number of axons) in relation to the total number of axons in ROI and 

ROA, as well as the PSO-predicted power consumption (in mA2 without the impedance) for 

each electrode configuration.
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Figure 4. 
Flowchart for the PSO algorithm
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Figure 5. 
PSO algorithm parameter sweeps across cognitive and social velocities. Plots show (A) 

mean objective function values across 5 runs, (B) standard deviation of objective function 

values across 5 runs, and (C) termination behavior. The boxes highlight a range of c1 and c2 

values that consistently yielded low objective function values with little stalling. (D) Effects 

of number of particles on objective function value and computational demand.
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Figure 6. 
Pareto fronts from multiple PSO algorithm runs. The point that minimized the objective 

function is highlighted on each of the five independent Pareto front (A) and the 

corresponding electrode configurations are provided (B). The table shows the PSO-predicted 

number of axons activated in relation to the total number of axons in ROI and ROA, as well 

as the PSO-predicted power consumption for each electrode configuration. Pareto fronts and 

electrode configurations exhibited consistent topographies across runs. The “combined” 

Pareto front (C) was obtained from all points from 30 independent Pareto fronts. (D) 

Comparing the distribution of ROI, ROA, and Power across all runs to the distribution across 

the combined Pareto front in (C), there was a relatively small difference in axons activated 

and power. ROI and ROA are in units of “number of axons” and power is in unit of “mA2” 

without the impedance.
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Figure 7. 
Three tests for PSO algorithm robustness. (A) When three select electrodes near the ROI 

were disabled, the algorithm maintained relatively stable activation of ROI. Disabling 

additional electrodes resulted in ineffective targeting. (B) The algorithm exhibited similar 

robustness when reducing the upper bound current. (C–D) When shifting the DBSA lead 

from original center position “C” to 1 mm posterior “P”, anterior “A”, lateral “L”, and 

medial “M” relative to the DBSA trajectory, the algorithm adjusted stimulation to reflect the 

new location of the spatial target. The tables show the PSO-predicted number of axons 

activated in relation to the total number of axons in ROI and ROA, as well as the PSO-

predicted power consumption for each electrode configuration. ROI and ROA are in units of 

“number of axons” and power is in unit of “mA2” without the impedance.
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Table 1

PSO Algorithm Parameter Values

Parameter Value

Number of Particles 100

Generation Limit 200

Stalling Generation Constant 100

Cognitive Attraction Weight, c1 4.5

Social Attraction Weight, c2 0.2

Upper Inertia 0.9

Lower Inertia 0.4

Velocity Limit Infinite

Additional Cognitive Weighting, r1ij [0,1] (random)

Additional Social Weighting, r2ij 1

Lower Bound Current per Contact −0.5 mA

Upper Bound Current per Contact 0 mA

Total Bounded Current none
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