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ABSTRACT
Time-difference-of-arrival (TDOA) based source localiza-
tion has been intensively studied and broadly applied in many
fields. In this paper, particle swarm optimization (PSO) is
employed for positioning with TDOA measurements in the
circumstances of known and unknown propagation speed.
The optimization criterion is first developed and the PSO
technique is then employed to search the global minimum
of the cost function. For sufficiently small noise conditions,
simulation results show that the PSO approach provides ac-
curate source location estimation for both known and un-
known propagation speed, and also gives an efficient speed
estimate in the later case.

Index terms : time-difference-of-arrival, source localization,
particle swarm optimization

1. INTRODUCTION

Time-difference-of-arrival (TDOA) based source localiza-
tion is an important issue in many applications such as sonar,
radar, navigation and surveillance. In the TDOA method,
the differences in arrival times of the emitted source signal
at multiple pairs of sensors are measured. Multiplying the
TDOAs by the propagation speed will then yield the corre-
sponding range differences. In the noise-free case and as-
suming two-dimensional (2-D) positioning, each range dif-
ference defines a hyperbolic locus on which the source must
lie and its position is given by the intersection of two or more
hyperbolas. Letx = [x,y] andxk = [xk,yk], k = 1,2, · · · ,L, be
the unknown source location and known position of thekth
sensor, respectively. DenoteDk,1 as the TDOA with respect
to the first sensor, then we have the following relationship:

cDk,1 = ‖xk −x‖2−‖x1−x‖2, k = 2,3, ...,L (1)

wherec is the propagation speed which is either known or un-
known,‖·‖2 denotes the Euclidean norm andL is the number
of receivers.

In practice, the TDOA measurements are noisy andL is
usually larger than 3. Positioning based on intersection of
hyperbolas is thus inappropriate and generally the source po-
sition is solved using (1). In fact, many techniques have been
proposed for TDOA based source localization in the litera-
ture [1]-[6] but they either assume known propagation speed
and/or provide suboptimal estimates. The difficulty is due to
the fact that the equations of (1) are highly nonlinear.

In this paper, we propose to employ the particle swarm
optimization (PSO), an evolutionary search algorithm, to
provide a robust and accurate solution for both known and
unknown speed cases. It is noteworthy to mention that pi-
oneer works of source localization with PSO have been pre-
sented in the applications of wireless sensor networks [7] and

acoustics [8] where the former uses signal intensity and the
latter integrates with particle filtering in scenario of reverber-
ant environments.

The rest of the paper is organized as follows. An intro-
duction of the PSO algorithm is given in Section II. The PSO
algorithm is utilized for source localization in Section III for
the case of known propagation speed, and for joint source po-
sition and propagation speed estimation in Section IV when
the latter is not available. Simulation results are included in
Section V to evaluate the estimation performance of the PSO
approach. Finally, conclusions are drawn in Section VI.

2. PARTICLE SWARM OPTIMIZATION

PSO is an evolutionary technique invented by Eberhart and
Kennedy in 1995 [9]-[10] from their study of bird flocking
and fish schooling. Their idea is based on the observation on
the food searching of a swarm of birds: When the only infor-
mation for each bird (particle) is its distance from the food,
a simple yet efficient way is to search the neighborhood of
the bird which is the closest to the food (target). Assum-
ing that the particles have memories, at each search (gener-
ation), there is a best result obtained by theith particle from
its searching experience, denoted bypbest

i , and a best result
obtained by the whole group of particles, denoted byGbest .
For a dimensionN search withM particles,pbest

i andGbest

are vectors of lengthN, and both are updated at each genera-
tion. The solution of the problem is then achieved fromGbest

at the last generation.
The PSO algorithm is thus formulated as [9]-[11]

vi(t +1) = wvi(t)+ c1Ri1(pbest
i (t)−pi(t))

+c2Ri2(Gbest(t)−pi(t)) (2)
pi(t +1) = pi(t)+vi(t +1), i = 1,2, · · · ,M

where

vi(t) = [vi,1(t),vi,2(t), · · · ,vi,N(t)]T

pi(t) = [pi,1(t), pi,2(t), · · · , pi,N(t)]T

are the velocity and current location of theith particle at time
t, respectively,w is the inertia weight,Ri1 andRi2 areN ×N
diagonal matrices with elements uniformly drawn from[0,1],
which limit the search range for each particle in each dimen-
sion for a single iteration. Thec1 andc2 are learning factors,
which normally range from[1,4], and increasing their values
will increase the search steps but some optimal points may
be missed.

When the velocity grows to unreasonably large, algo-
rithm divergence may occur. To avoid divergence and control
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the resolution, each particle’s velocity is bounded by a max-
imum velocity, denoted byvmax

j , j = 1,2, · · · ,N. As a result,
we have [10], [12]:

vi, j(t) =

{

vi, j(t) if |vi, j| < vmax
j

sign(vi, j(t))vmax
j if |vi, j| ≥ vmax

j

i = 1,2, · · · ,M j = 1,2, · · · ,N (3)

where sign(u) = 1 if u > 0, otherwise sign(u) = −1. After
the initialization of particle velocity and position, a fitness
value is computed for each particle. Thepbest

i andGbest are
determined based on the fitness values, and then the velocity
and position of each particle are updated by (2) with the use
of (3), respectively.

Note that the PSO is more suitable than simulated anneal-
ing (SA) [13] in our non-linear positioning cost function with
numerous local optima. It is because SA escapes from local
optima by occasional jumps, but PSO which contains many
particles scratched within the search space, will jump at ev-
ery iteration and thus the latter provides a better anti-locking
ability. Compared to the genetic algorithm (GA) approach,
PSO is similar to it in that the populations are both initial-
ized by random solutions. On the other hand, PSO differs
from GA in that it does not involve crossover and mutation
operations. Instead, each particle updates itself with thein-
formation of itself and the particle group. Since PSO is sim-
ple in concept, easy to implement, has fewer user-defined pa-
rameters, and more computationally efficient than GA [14],
it has been widely used in many applications, for example,
neural networks training, power control, target positioning,
and adaptive filtering [14]-[15].

3. SOURCE LOCALIZATION WITH KNOWN
PROPAGATION SPEED

In this Section, the PSO algorithm is employed for the
TDOA-based source localization in the case of known prop-
agation speed. Generation of initial estimates for faster con-
vergence is also discussed. More general case of the un-
known propagation speed is discussed in the next Section.

First, we propose a fitness function

f (x) =
L

∑
k=2

(

cDk,1−‖xk −x‖2+‖x1−x‖2
)2

(4)

In fact, this nonlinear least squares cost function corre-
sponds to the maximum likelihood estimator when the dis-
turbance is zero-mean white Gaussian. The estimate of the
source location is derived by employing the PSO algorithm
to find the global minimum of (4).

When implementing the PSO, particle initialization with
random solutions will lead to slow convergence. To allow
faster convergence, we propose to use the least squares (LS)
method to provide initial parameter estimates, which are
given by [6]

θ̂1 = (AT
1 A1)

−1AT
1 b1 (5)

where

θ̂1 =

[

x̂
d̂

]

; A1 =







(x2−x1)
T cD2,1

...
...

(xL −x1)
T cDL,1







and

b1 =
1
2







x2
1 + y2

1− x2
2− y2

2 + c2D2
2,1

...
x2

1 + y2
1− x2

L− y2
L + c2D2

L,1







with x̂ the estimate ofx, d = ‖x1−x‖2, d̂ the estimate ofd,
(·)T and (·)−1 denote the matrix transpose and inverse, re-
spectively.

Then,x̂ is used in the initialization step for the PSO al-
gorithm:

pi(0) = Qix̂ (6)

Qi = diag(1+ c3σ2
1 qi,1,1+ c3σ2

2qi,2, · · · ,1+ c3σ2
Nqi,N)

i = 1,2, · · · ,M
whereσ2

j , j = 1,2, · · · ,N, is the noise power of thejth di-
mension,c3 > 0 is the proportional factor which controls the
particle spreading in each dimension,qi = [qi,1,qi,2, · · · ,qi,N ]
is a random vector withqi, j uniformly drawn from[0,1].

The implementation of the proposed method is illustrated
by the following pseudo code:

For eachpi
Initialize pi(0) using (6)
Initialize vi(0) with zeros
Initialize pbest

i (0) with pi(0)
End
t = 1
Do

For eachpi(t)
Calculate the fitness valuef (pi(t)) with (4)
If f (pi(t)) < f (pbest

i (t))
pbest

i (t) = pi(t)
End

End
Choose thepi with smallestf (pi(t)) asGbest(t)
For eachpi(t)

Updatevi andpi with (2)
End
t = t +1

while t < Iter

where the number of iterations, denoted byIter, is chosen
sufficiently large so that convergence is reached.

4. SOURCE LOCALIZATION WITH UNKNOWN
PROPAGATION SPEED

This Section discusses about a more general case in which
the propagation speed is also unknown, in addition to the
source location. Based on (4), the corresponding cost func-
tion to be minimized is then

f (c,x) =
L

∑
k=2

(

cDk,1−‖xk −x‖2+‖x1−x‖2
)2

(7)

Similar to Section III, the initial estimates are given by the
LS solution [6]:

θ̂2 = (AT
2 A2)

−1AT
2 b2 (8)

©2007 EURASIP 415

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP



where

θ̂2 =

[

x̂
û
v̂

]

; A2 =







2(x2−x1)
T 2D2,1 D2

2,1
...

...
...

2(xL −x1)
T 2DL,1 D2

L,1







and

b2 =







x2
1 + y2

1− x2
2− y2

2
...

x2
1 + y2

1− x2
L − y2

L







with u = c‖xk − x‖2,v = c2, andû and v̂ the estimates ofu
andv, respectively.

Similar to (6), the initial estimate of the source locationx̂
and the initial estimate of the propagation speed ˆc =

√
v̂ are

employed as the initial guesses for PSO:

pi(0) = Qi[x̂T ĉ]T , i = 1,2, · · · ,M (9)

whereQi is the same as that in (6) except it has one more
dimension.

The implementation flow for the unknown propagation
speed case is the same as the the known propagation case,
except thatpbest

i andGbest have one more dimension and the
speedc in the fitness function is replaced by its estimate,
namely, the last element ofpi. It is also worth noting that the
cost function in (7) is set to infinity when the estimated prop-
agation speed is negative, as the propagation speed cannot be
less than zero.

5. SIMULATION RESULTS

Computer simulations have been conducted to evaluate the
performance of the proposed method for source localization
and speed estimation by comparing it with the LS solution
of [6] as well as Cramér-Rao lower bound (CRLB) [1], [5].
The learning parametersc1 andc2 in (2), and proportional
parameterc3 in (6) are all set to 2. The inertia weight is set to
0.8 and all elements ofvmax = [vmax

1 ,vmax
2 , · · · ,vmax

N ] are set to
5 [16] for fast convergence. Both the number of particles and
iteration numberIter are chosen to be 100. For simplicity,
σ2

j , j = 1,2, · · · ,N in (6) are assumed to be identical.
The sensor-source geometry is shown in figure 1. Five

sensors are placed at (200, 200)m, (100, 300)m, (300, 300)m,
(100, 100)m, and (300, 100)m while the unknown source
is located at (110, 130)m. The propagation speed is set to
360ms−1 . The noise-free TDOA’s are added by correlated
Gaussian noises with covariance matrix given byQ, and
equal noise power is assigned for simplicity. Thus, the di-
agonal elements ofQ are two times of the noise power, and
all other elements equal to the noise power. All simulation
results are averages of 1000 independent runs.

Mean square error (MSE) is used as the perfor-
mance measure of the source location and speed estima-
tion. The MSE of the location estimate is defined as
E

{

(x− x̂)2 +(y− ŷ)2
}

, where ˆx and ŷ denote the estimates
of x andy, respectively. The MSE of the speed estimate is
defined asE

{

(c− ĉ)2
}

where ˆc is the estimate ofc.
Figures 2 compares the positioning accuracy of the PSO

method with the LS scheme and CRLB for the known prop-
agation speed case. It can be seen that the MSE performance

of the proposed method outperforms the LS method by ap-
proximately 5 dB and approaches the CRLB. For the un-
known propagation speed case, Figures 3 and 4 show that the
MSEs of the proposed method are very close to the CRLB
and is superior to the LS algorithm for both location and
speed estimation.

6. CONCLUSION

Particle swarm optimization (PSO) method is employed for
source localization in the cases of known and unknown
propagation speed, using time-difference-of-arrival (TDOA)
measurements. To guarantee fast convergence, least squares
(LS) method is utilized to provide initial estimates of the
parameters. For sufficiently small noise conditions, it is
shown that the accuracy of the proposed method approaches
Cramér-Rao lower bound and outperforms the LS method.
This paper aims to provide a simple and efficient approach
for dealing with highly non-linear problems. Our future
work includes further exploration of solutions for such prob-
lems. For example, ant colony optimization, another type of
swarming technique, will be studied.
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Figure 1: Sensor-source geometry
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Figure 2: Mean square position error with known propaga-
tion speed
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Figure 3: Mean square position error with unknown propa-
gation speed
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Figure 4: Mean square speed error
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