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1 Introduction

Particle Swarm Optimization (PSO) is a versatile population-based optimiza-
tion technique, in many respects similar to evolutionary algorithms (EAs).
PSO has been shown to perform well for many static problems [30]. However,
many real-world problems are dynamic in the sense that the global optimum
location and value may change with time. The task for the optimization al-
gorithm is to track this shifting optimum. It has been argued [14] that EAs
are potentially well-suited to such tasks, and a review of EA variants tested
in the dynamic problem is given in [13, 15]. It might be wondered, therefore,
what promise PSO holds for dynamic problems.

Optimization with particle swarms has two major ingredients, the particle
dynamics and the particle information network. The particle dynamics are de-
rived from swarm simulations in computer graphics [21], and the information
sharing component is inspired by social networks [32, 25]. These ingredients
combine to make PSO a robust and efficient optimizer of real-valued objective
functions (although PSO has also been successfully applied to combinatorial
and discrete problems too). PSO is an accepted computational intelligence
technique, sharing some qualities with Evolutionary Computation [1].

The application of PSO to dynamic problems has been explored by various
authors [30, 23, 17, 9, 6, 24]. The overall consequence of this work is that PSO,
just like EAs, must be modified for optimal results on dynamic environments
typified by the moving peaks benchmark (MPB). (Moving peaks, arguably
representative of real world problems, consist of a number of peaks of changing
with and height and in lateral motion [12, 7].) The origin of the difficulty lies
in the dual problems of outdated memory due to environment dynamism, and
diversity loss, due to convergence.

Of these two problems, diversity loss is by far the more serious; it has
been demonstrated that the time taken for a partially converged swarm to
re-diversify, find the shifted peak, and then re-converge is quite deleterious
to performance [3]. Clearly, either a re-diversification mechanism must be
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employed at (or before) function change, and/or a measure of diversity can be
maintained throughout the run. There are four principle mechanisms for either
re-diversification or diversity maintenance: randomization [23], repulsion [5],
dynamic networks [24, 36] and multi-populations [29, 6].

Multi-swarms combine repulsion with multi-populations [6, 7]. Interest-
ingly, the repulsion occurs between particles, and between swarms. The multi-
population in this case is an interacting super-swarm of charged swarms . A
charged swarm is inspired by models of the atom: a conventional PSO nu-
cleus is surrounded by a cloud of ‘charged’ particles. The charged particles
are responsible for maintaining the diversity of the swarm. Furthermore, and
in analogy to the exclusion principle in atomic physics, each swarm is subject
to an exclusion pressure that operates when the swarms collide. This prohibits
two or more swarms from surrounding a single peak, thereby enabling swarms
to watch secondary peaks in the eventuality that these peaks might become
optimal. This strategy has proven to be very effective for MPB environments.

This chapter starts with a description of the canonical PSO algorithm
and then, in Section 3, explains why dynamic environments pose particular
problems for unmodified PSO. The MPB framework is also introduced in
this section. The following section describes some PSO variants that have
been proposed to deal with diversity loss. Section 5 outlines the multi-swarm
approach and the subsequent section presents new results for a self-adapting
multi-swarm, a multi-population with swarm birth and death.

2 Canonical PSO

In PSO, population members (particles) possess a memory of the best (with
respect to an objective function) location that they have visited in the past,
pbest, and of its fitness. In addition, particles have access to the best location
of any other particle in their own network. These two locations (which will
coincide for the best particle in any network) become attractors in the search
space of the swarm. Each particle will be repeatedly drawn back to spatial
neighborhoods close to these two attractors, which themselves will be updated
if the global best and/or particle best is bettered at each particle update.
Several network topologies have been tried, with the star or fully connected
network remaining a popular choice for unimodal functions. In this network,
every particle will share information with every other particle in the swarm so
that there is a single gbest global best attractor representing the best location
found by the entire swarm.

Particles possess a velocity which influences position updates according to
a simple discretization of particle motion

v(t + 1) = v(t) + a(t + 1) (1)

x(t + 1) = x(t) + v(t + 1) (2)
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where a, v, x and t are acceleration, velocity, position and time (iteration
counter) respectively. Eqs. 1, 2 are similar to particle dynamics in swarm sim-
ulations, but PSO particles do not follow a smooth trajectory, instead moving
in jumps, in a motion known as a flight [28] (notice that the time increment
dt is missing from these rules). The particles experience a linear or spring-
like attraction, weighted by a random number, (particle mass is set to unity)
towards each attractor. Convergence towards a good solution will not follow
from these dynamics alone; the particle flight must progressively contract.
This contraction is implemented by Clerc and Kennedy with a constriction
factor χ, χ < 1, [20]. For our purposes here, the Clerc-Kennedy PSO will be
taken as the canonical swarm; χ replaces other energy draining factors extant
in the literature such as a decreasing ‘inertial weight’ and velocity clamping.
Moreover the constricted swarm is replete with a convergence proof, albeit
about a static attractor (although there is some experimental and theoretical
support for convergence in the fully interacting swarm where particles can
move attractors [10]).

Explicitly, the acceleration of particle i in Eq.1 is given by

ai = χ[cǫ · (pg − xi) + cǫ · (pi − xi)] − (1 − χ)vi (3)

where ǫ are vectors of random numbers drawn from the uniform distribution
U [0, 1], c > 2 is the spring constant and pi, pg are particle and global attrac-
tors. This formulation of the particle dynamics has been chosen to demon-
strate explicitly constriction as a frictional force, opposite in direction, and
proportional to, velocity. Clerc and Kennedy derive a relation for χ(c): stan-
dard values are c = 2.05 and χ = 0.729843788. The complete PSO algorithm
for maximizing an objective function f is summarized as Algorithm 1.

3 PSO problems with moving peaks

As has been mentioned in Sect 1, PSO must be modified for optimal results
on dynamic environments typified by the moving peaks benchmark (MPB).
These modifications must solve the problems of outdated memory, and of lost
diversity. This explains the origins of these problems in the context of MPB,
and shows how memory loss is easily addressed. The following section then
considers the second, more severe, problem.

3.1 Moving Peaks

The dynamic objective function of MPB, f(x, t), is optimized at ‘peak’ lo-
cations x∗ and has a global optimum at x∗∗ = argmax{f(x∗)} (once more,
assuming optimization means maximizing). Dynamism entails a small move-
ment of magnitude s, and in a random direction, of each x∗. This happens
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Algorithm 1 Canonical PSO

FOR EACH particle i

Randomly initialize vi,xi = pi

Evaluate f(pi)
g = arg max f(pi)

REPEAT
FOR EACH particle i

Update particle position xi according to eqs.. 1, 2 and 3
Evaluate f(xi)
//Update personal best
IF f(xi) > f(pi) THEN

pi = xi

//Update global best
IF f(xi) > f(pg) THEN

pg = arg max f(pi)
UNTIL termination criterion reached

every K evaluations and is accompanied by small changes of peak height and
width. There are p peaks in total, although some peaks may become obscured.
The peaks are constrained to move in a search space of extent X in each of
the d dimensions, [0, X ]d.

This scenario, which is not the most general, nevertheless has been put
forward as representative of real world dynamic problems [12] and a bench-
mark function is publicly available for download from [11]. Note that small
changes in f(x∗) can still invoke large changes in x∗∗ due to peak promotion,
so the many peaks model is far from trivial.

3.2 The problem of outdated memory

Outdated memory happens at environment change when the optima may shift
in location and/or value. Particle memory (namely the best location visited
in the past, and its corresponding fitness) may no longer be true at change,
with potentially disastrous effects on the search.

The problem of outdated memory is typically solved by either assuming
that the algorithm knows just when the environment change occurs, or that
it can detect change. In either case, the algorithm must invoke an appropriate
response. One method of detecting change is a re-evaluation of f at one or
more of the personal bests pi [17, 23]. A simple and effective response is to
re-set all particle memories to the current particle position and f value at this
position, and ensuring that pg = argmax f(pi). One possible drawback is that
the function has not changed at the chosen pi, but has changed elsewhere.
This can be remedied by re-evaluating f at all personal bests, at the expense
of doubling the total number of function evaluations per iteration.
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3.3 The problem of lost diversity

Equally troubling as outdated memory is insufficient diversity at change. The
population takes time to re-diversify and re-converge, effectively unable to
track a moving optimum.

It is helpful at this stage to introduce the swarm diameter |S|, defined
as the largest distance, along any axis, between any two particles [2], as a
measure of swarm diversity (Fig. 1). Loss of diversity arises when a swarm
is converging on a peak. There are two possibilities: when change occurs, the
new optimum location may either be within or outside the collapsing swarm.
In the former case, there is a good chance that a particle will find itself close to
the new optimum within a few iterations and the swarm will successfully track
the moving target. The swarm as a whole has sufficient diversity. However,
if the optimum shift is significantly far from the swarm, the low velocities
of the particles (which are of order |S|) will inhibit re-diversification and
tracking, and the swarm can even oscillate about a false attractor and along
a line perpendicular to the true optimum, in a phenomenon known as linear
collapse [5]. This effect is illustrated in Fig. 2.

Fig. 1. The swarm diameter

These considerations can be quantified with the help of a prediction for
the rate of diversity loss [2, 3, 10]. In general, the swarm shrinks at a rate
determined by the constriction factor and by the local environment at the
optimum. For static functions with spherical symmetric basins of attraction,
the theoretical and empirical analysis of the above references suggest that the
rate of shrinkage (and hence diversity loss) is scale invariant and is given by
a scaling law

|S(t)| = Cαt (4)

for constants C and α < 1, where α ≈ 0.92 and C is the swarm diameter
at iteration t = 0. The number of function evaluations between change, K,
can be converted into a period measured in iterations, L by considering the
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total number of function evaluations per iteration including, where necessary,
the extra test-for-change evaluations. We might expect that, for peak shift
distance s and box size X = |S(0)|, if s >> SL = XαL, tracking will be very
hard since the swarm has already converged to a very small ball at the first
change. The experiments reported in [3] show that canonical PSO fails to track
a single peaked dynamic environment defined by s = 8.7, L = 100, X = 10.
Since SL computes to 0.0024, this is hardly surprising.

Fig. 2. Sequence of frames showing possible behavior when optimum shift is greater
that swarm diversity. When the attractor T (square box, frame 1) shifts, particle a

is at the global best, pg. a continues along trajectory v since it is not accelerated in
this update (frame 2). Particle a continues to move along v, repositioning pg at each
update, becoming in effect the swarm leader (frame 3). After a while, the swarm
oscillates along v, about a point perpendicular to T (frame 4). Eventually random
fluctuations will cause another particle to deviate from v and move closer towards
the attractor. The swarm soon follows and converges on T .

4 Diversity lost and diversity regained

There are two solutions in the literature to the problem of insufficient diversity.
Either a diversity increasing mechanism can be invoked at change (or at pre-
determined intervals), or some permanent means can be put in place to ensure
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there is sufficient diversity at all times [7]. These modifications are the subject
of this section.

4.1 Re-diversification

Hu and Eberhart [23] study a number of re-diversification mechanisms. These
all involve randomization of the entire, or part of, the swarm. This happens
when re-evaluation of the objective function at one or several of the attractors
detects change, or at a pre-set interval. Clearly the problem with this approach
is the arbitrariness of the extra parameters. Since randomization implies infor-
mation loss, there is a danger of erasing too much information and effectively
re-starting the swarm. On the other hand, too little randomization might not
introduce enough diversity to cope with the change. And, of course, if tests
for change happen at pre-determined intervals, there is a danger of missing
a shift. The arbitrariness of the extra parameters can only be solved if much
prior knowledge about f ’s dynamism is available, or some other higher-level
modification mechanism scheme is implemented. Such a scheme could infer
details about f ’s dynamism during the run, making appropriate adjustments
to the re-diversification parameters. So far, though, higher level modifications
such as these have not been studied.

4.2 Maintaining diversity by repulsion

A constant, and hopefully good enough, degree of swarm diversity can be
maintained at all times either through some type of repulsive mechanism, or
by adjustments to the information sharing neighborhood. Repulsion can either
be between particles, or from an already detected optimum. For example,
Krink et al [34] study finite-size particles as a means of preventing premature
convergence. The hard sphere collisions produce a constant diversification
pressure. Alternatively, Parsopoulos and Vrahatis [30] place a repeller at an
already detected optima, in an attempt to divert the swarm and find new
optima. Neither technique, however, has been applied to the dynamic scenario.

An example of repulsion that has been tested in a dynamic context is the
atom analogy [5, 4, 9, 6]. In this model, a swarm is comprised of a ‘charged’
and a ‘neutral’ sub-swarm. The model can be depicted as a cloud of charged
particles orbiting a contracting, neutral, PSO nucleus, Fig. 3. The charged
particles can be either classical or quantum particles; either type are discussed
in some depth in references [6, 7] and in the following section. Charge enhances
diversity in the vicinity of the converging PSO sub-swarm, so that optimum
shifts within this cloud should be trackable. Good tracking (outperforming
canonical PSO) has been demonstrated for unimodal dynamic environments
of varying severities [3].
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Fig. 3. The Atom Analogy. The situation depicted here shows a PSO sub-swarm
of neutral particles (filled circles), converging at an optimum. The neutral swarm
diameter, |S0|, is shrinking by a factor of 0.92 at each iteration. This sub-swarm
is surrounded by a number of charged particles with constant diversity |S−|. Both
sub-swarms share the same global attractor pg. Optimum moves to locations within
the charged sub-swarm will be rapidly re-optimized by the swarm as a whole.

4.3 Maintaining diversity with dynamic network topology

Adjustments to the information sharing topology can be made with the in-
tention of reducing, maybe temporarily, the desire to move towards the global
best position, thereby enhancing population diversity. Li and Dam use a grid-
like neighborhood structure, and Jansen and Middendorf test a hierarchical
structure, reporting improvements over unmodified PSO for unimodal dy-
namic environments [24, 36].

4.4 Maintaining diversity with multi-populations

A number of research groups have considered multi-populations as a means
of enhancing diversity. The multi-population idea is particularly helpful in
multi-modal environments such as many peaks. The aim here is to allow each
population to converge on a promising peak. Then, if any secondary peak be-
comes the global optimum as a result of change, a population is close at hand.
Multi-population techniques include niching, speciation and multi-swarms.

In the static context, the niching PSO of Brits et al [16] can successfully
optimize some static benchmark problems. In nichePSO, if a particle’s fitness
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changes very little (the variance in fitness is less than a threshold) over a small
number of iterations, a two particle sub-swarm is created from this particle and
its nearest spatial neighbor. This technique, as the authors point out, would
fail in a dynamic environment because niching depends on a homogeneous
distribution of particles in the search space, and on a training phase.

A speciation PSO variation, known as clearing [31] has been adopted by Li
in the static context and generalized by Parrot and Li to dynamic functions
[27, 29]. Under clearing, the number and size of swarms is adjusted dynam-
ically by constructed an ordered list of particles, ranked according to their
fitness, with spatially close particles joining a particular species. This method
relies on a speciation radius and has no further diversity mechanism. Other
related work includes using different swarms in cooperation to optimize differ-
ent parts of a solution [35], a two swarm min-max optimization algorithm [33]
and iteration by iteration clustering of particles into sub-swarms [26]. Apart
form Parrot and Li’s speciation, none of these multi-population techniques
have been generalized as dynamic optimizers. The multi-swarm approach of
Blackwell and Branke is described in detail in the next section.

5 Multi-swarms

A combined approach might be to incorporate the virtues of the multi-
population approach and of swarm diversity enhancing mechanisms such as
repulsion. Such an optimizer would be well suited to the many peaks environ-
ment. Multi-swarms, first proposed in a non-optimization context [8] would
seem to do just this. The extension of multi-swarms to a dynamic optimizer
was made by Blackwell and Branke [6], and is inspired by Branke’s own self-
organizing scouts (SOS) [13]. The scouts have been shown to give excellent
results on the many peaks benchmark.

A multi-swarm is a colony of charged swarms interacting locally via ex-

clusion and globally by anti-convergence. The motivation for these operators
is that a mechanism must be found to prevent two or more swarms from try-
ing to optimize the same peak (exclusion) and also to maintain multi-swarm
diversity, that is to say the diversity amongst the population of swarms as a
whole (anti-convergence). Multi-swarms have been compared very favorably
to both hierarchical swarms and to self-organizing scouts.

We consider below the main ingredients of the multi-swarm algorithm in
more depth. In particular we will assess the values of parameters with relation
to the many peaks benchmark. A complete discussion of parameter choices is
given in [7]. The multi-swarm algorithm is presented in Algorithm 2.

5.1 Atom Analogy

In the atom analogy, each swarm is pictured as an atom with a contracting
nucleus of neutral PSO particles, and an enveloping cloud of charged par-
ticles. All particles are in fact members of the same information network
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Algorithm 2 Multi-Swarm

//Initialization
FOR EACH particle ni

Randomly initialize vni,xni = pni

Evaluate f(pni)
FOR EACH swarm n

png := argmax{f(pni)}
REPEAT

// Anti-Convergence
IF all swarms have converged THEN

Re-initialize worst swarm.
FOR EACH swarm n

// Test for Change
Evaluate f(png).
IF new value is different from last iteration THEN

Re-evaluate each particle attractor.
Update swarm attractor.

FOR EACH particle i of swarm n
// Update Particle
Apply equations (3) - (9) depending on particle type.
// Update Attractor
Evaluate f(xni).
IF f(xni) > f(pni) THEN

pni := xni.
IF f(xni) > f(png) THEN

png := xni

// Exclusion.
FOR EACH swarm m 6= n

IF swarm attractor png is within rexcl of pmg THEN
IF f(png) ≤ f(pmg) THEN

Re-initialize swarm n

ELSE
Re-initialize swarm m

FOR EACH particle in re-initialized swarm
Re-evaluate function value.
Update swarm attractor.

UNTIL number of function evaluations performed > max

so that they all (in the star topology) have access to pg. The mutual repul-
sions between the charged particles may follow a deterministic, classical, rule
(Coulomb repulsion, parameterized by particle charge Q). Alternatively, in a
quantum atom, the particles are positioned within a hypersphere of radius
rcloud centered on pg according to a probability distribution. So far, two uni-
form distributions have been tested. References [6, 7] consider a uniform shell
distribution, p(r, dr) = ρ(r)dr = const, where ρ is a probability density, r
is a shell radius, dv is a volume element and p is a probability. Recent work
has investigated a uniform volume distribution, p(x, dv) = ρ(x)dv = const. In
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both cases, the distributions are normalized so that p(r > rcloud) = 0. Other,
non-uniform and possibly dynamic distributions might be favorable for the
quantum swarm in some cases, but such distributions remain unexplored.

The quantum atom has the advantages of lower complexity and an easily
controllable distribution: the Coulomb repulsion has quadratic complexity and
highly fluctuating electron orbits [2, 3]. An order of magnitude estimation for
the parameters rcloud (for quantum swarms), or Q, for classically charged
clouds, can be made by supposing that good tracking will occur if the mean
charged particle separation < |x−−pg| > is comparable to s. This separation
is easy to compute for the quantum swarm: only empirical data is available
for classical charged particles.

5.2 Exclusion

In order to demonstrate the necessity for exclusion, first consider an assembly
of non-interacting swarms, also known as a many-swarm. A many-swarm has
M swarms, and each swarm, for symmetrical configurations has N0 neutral
and N− charged particles. Such a many-swarm is written M ∗ (N0 + N−).
Since the swarms do not interact - either dynamically through the particle
velocity and positions updates, or by sharing information - the M swarms are
completely independent, and any number of them may try to optimize the
same peak. This is undesirable because it is clearly inefficient to have two or
more swarms on the same peak, and in any case, we wish to distribute the
swarms throughout the search space for peak watching. Hence the swarms
must interact in some way. One possibility is to allow the swarms to interact
topologically and share a single information network. The multi-swarm ap-
proach is to seek a spatial interaction between swarms. Such an interaction
might repel entire swarms from already occupied peaks. However, Coulomb
repulsion, or some such similar physics-inspired repulsion would not be sat-
isfactory, because the attractive pull towards the peak might be balanced by
the repulsive force away from other nearby swarms. In such an equilibrium,
no swarm would be able to optimize the peak.

Exclusion is inspired by the exclusion principle in atomic and molecular
physics. This principle states that no two electrons may occupy the same
state. The exclusion principle provides an effective repulsive force between
two gas molecules with overlapping electron clouds [22]. However the effective
force does not arise from any deterministic equation that governs the electron
motion, but is a rule imposed on the probability distributions of the electron
positions. A version of this principle for interacting swarms is a rule that
forbids two swarms moving to within rexcl of each other, where the distance
between swarms is defined as the distance between their pg’s. The exclusion
operator simple randomizes, in the entire search space, the worse swarm in any
collision, as judged by the current best value determined by the swarm, f(pg).
The configuration of the interacting multi-swarm is written M(N0 + N−).
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An order of magnitude estimation for rexcl can be made by assuming that
all p peaks are evenly distributed in Xd. The linear diameter of the basin
of attraction of a peak is then, on average, dboa = X/p1/d. It is reasonable
to assume that swarms that are closer than this distance should experience
exclusion, since the overall strategy is to place one swarm on each peak.

5.3 Anti-Convergence

Anti-convergence is a simple operator that is designed to ensure there is at
least one free swarm in the multi-swarm at all times. A free swarm is one
that is patrolling the search space rather than converging on a peak. A swarm
is assumed to be converging when the neutral swarm diameter is less than
a convergence diameter, 2rconv. The idea is that if the number of swarms
is less than the number of peaks, all swarms may converge, leaving some
peaks unwatched. One of these unwatched peaks may later become optimal.
The presence of free swarms maintains multi-swarm diversity and encourages
response to peak promotion.

Estimations of rconv are difficult, but some progress can be made by con-
sidering the rate of convergence of the neutral swarm, as given by Equation
4. A lower bound on rconv can be estimated from the ideal case that a swarm
immediately tracks a shifted peak. This means that the swarm size at the
shift is about s and the swarm has K function evaluations worth of time to
contract around the peak. On the other hand, rconv should certainly be less
than rexcl because exclusion occurs before convergence.

Note that there are two levels of diversity. Diversity at the swarm level , as
enforced by exclusion, enables a single swarm to track a single moving peak
and diversity at the multi-swarm level enables the multi-swarm as a whole to
find new peaks.

5.4 Multi-swarm cardinality

The multi-swarm cardinality M can be estimated from p. If possible we would
expect that M > p is undesirable since free swarms absorb valuable function
evaluations and there is no need to have many more swarms than peaks. Anti-
convergence is expected to be beneficial for M < p. Optimally, we suppose
that M = p, and in this case anti-convergence can be switched off, since the
multi-swarm has just the right number of swarms.

5.5 Results

A exhaustive series of multi-swarm experiments has been conducted for the
many peaks benchmark. The standard settings for MPB are number of peaks,
p = 10, change period in function evaluations, K = 5000, peak shift severity,
s = 1.0, dimensionality, d = 5 and search space range X = 100. The peak
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heights and widths vary randomly but are constrained to [30, 70] and [1, 12]
respectively. Each experiment actually consists of 50 runs for a given set of
multi-swarm parameters. Each run uses a different random number genera-
tor seed for initialization of the swarms, the swarm update algorithm and the
MPB generator. Other non-standard MPB’s were also tested for comparisons.
Multi-swarm performance is quantified by the offline error which is the av-
erage, at any point in time, of the error of the best solution found since the
last environment change. This measure is commonly used for scenarios such
as the MPB and is zero for perfect tracking.

Various values of multi-swarm cardinality M were tested for fixed total
number of particles as given by the expression Ntotal = M(N0 + N−). As
expected, M = p was found to be optimal. The multi-swarm coped well with
shift severities between 1.0 and 6.0. The multi-swarm offline errors for MPB’s
with different numbers of peaks were lass than 3.0 for 5 ≤ p ≤ 200. Anti-
convergence was found to bring a significant improvement when M < p. The
robustness of the algorithm, and its generalizability into higher dimensions,
was also tested by taking d = 10 and varying the predicted optimal parameter
settings (i.e. rexcl, rconv, rcloud and Q) by 20

In all cases, the multi-swarms with charge outperform many-swarms, PSO
and multi-swarms without charge. Furthermore, quantum swarms perform
better than classical charged swarms. The offline error, as compared to hier-
archical swarms and self-organizing scouts, is cut by a half, and the improve-
ment over a randomization scheme is about an order of magnitude. It seems,
therefore, that the multi-swarm is a very promising approach for problems of
the MPB class.

6 Self-adapting multi-swarms

The multi-swarm model of the previous section introduced a number of new
parameters. Although recommendations can be made for these settings, this
analysis depends on prior knowledge of the environment and on many test
runs. A laudable goal for any optimization technique is the reduction of hand-
tunable parameters. Although parameter adjustments might improve perfor-
mance for any particular problem, a general purpose method that might per-
form reasonably well across a spectrum of problems is certainly attractive. We
therefore wonder to what extent PSO and PSO-variants can find their own
best parameter settings during a single run. Such self-adapting algorithms
might not return the best performance on any particular problem instance.
However to make fair comparisons, the total number of function evaluations
(or iterations) involved in all the trials of the hand-tuned method must be
taken into account. This point is emphasized by Clerc in his explorations of
‘Tribes’, a self-adapting PSO [18, 19].

Here we will describe self-adaptations at the level of the multi-swarm.
Future work will seek to incorporate adaptations of individual swarms into
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this scheme. The following will assume (50 + 5−) swarms with canonical PSO
neutral particles and quantum charged particles and with the swarm diversity
parameter, rcloud, determined by the peak shift severity. This recipe gave
the best results for the environments studied in the previous section. The
parameters at the multi-swarm level are the number of swarms M and the
exclusion and convergence radii rexcl and rconv. It is assumed in the following
that the multi-swarm has access to the dimensionality d and the extent of the
search space X , but not the MPB parameters p or K. (Previously, rexcl, rconv

and M were determined with knowledge of p and K.)

6.1 Swarm birth and death

The basic idea is to allow the multi-swarm to regulate its size by bringing new
swarms into existence, or by removing redundant swarms. The aim, as before,
is to place a swarm on each peak, and to maintain multi-swarm diversity with
(at least one) patrolling swarm. The multi-swarm therefore needs a new swarm
if all swarms are currently converging. Alternatively, if there are too many free
swarms (i.e. those that fail the convergence criterion), a free swarm should
be removed. If there is more than one free swarm, the choice for removal is
arbitrary and a simple rule might be to remove the worst of the free swarms,
as judged by f(pg).

This simple birth/death mechanism removes the need for the anti-con-
vergence operator, and for specifying the multi-swarm cardinality. The self-
adapting version of Algorithm 2 is given below in Algorithm 3, where Mfree

is the number of free swarms at iteration t, and identical steps in Algorithm
2 have been abbreviated.

Algorithm 3 Self-adapting multi-swarm

Begin with a single free swarm, randomized in Xd

At each iteration t:
IF Mfree = 0, generate a new free swarm
ELSE If Mfree > nexcess, remove worst free swarm
FOR EACH swarm n

test for change
IF swarm n is excluded, randomize
ELSE update particle velocities and positions
update attractors
test for convergence

apply exclusion
REPEAT

For generality, Algorithm 3 also specifies a redundancy parameter nexcess

which is set to the desired number of free swarms. A simple choice is to sup-
pose that nexcess = 1, but this may not give sufficient diversity if there are
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many peaks. Alternatively, nexcess = ∞ means that no swarm can ever be re-
moved. Intermediate values control the amount of multi-swarm diversity. Part
of the purpose of the experiments reported below is to assess the algorithm
for robustness in nexcess.

The multi-swarm size M(t) is dynamic and at any iteration t is given by

M(0) = 1

M(t) =

{

M(t − 1) + 1, Mfree = 0
M(t − 1) − 1, Mfree > nexcess

(5)

Swarm convergence and exclusion are now determined by a dynamic con-
vergence radius r(t) defined by

r(t) =
X

2M1/d
(6)

which has been chosen to ensure a mean volume per swarm of (2r)d = Xd

M ,
a condition which might be expected to be if the peaks are, on average, uni-
formly distributed in Xd. The number of free swarms at any time is the differ-
ence between the multi-swarm size and the number of converging swarms. A
swarm is defined as ‘converging’ if its diameter is less than 2r. The exclusion
radius is replaced by r(t). Hence two parameters, M and rexcl and one oper-
ator, anti-convergence, have been removed from the multi-swarm algorithm,
at the expense of introducing a new parameter, nexcess.

6.2 Results

A number of experiments using the MPB of Section 5.5 with 10 and 200
peaks were conducted to test the efficacy of the self-adapting multi-swarm
for various values of nexcess. The uniform volume distribution described in
Section 5.1 was used. An empirical investigation revealed that rcloud = 0.5s
for shift length s yields optimum tracking for these MPB’s, and this was the
value used here.

Table 6.2 shows the raw and rounded offline errors for 1 ≤ nexcess ≤ 7 and
for nexcess = ∞. Only the rounded errors are significant, but the pre-rounded
values have been reported in order to examine algorithm functionality. For
comparison, the best performance of an unadapted 10(100+10−) multi-swarm
for the p = 10 and p = 200 environments is, respectively, 1.75(0.06) and
2.26(0.03) [7]. The best self-adapting multi-swarm errors are 1.77(0.05) and
2.37(0.03), only slightly higher than the hand-tuned values. The constancy of
the raw offline error for nexcess ≥ 5 shows that the algorithm never tries to
generate 6 or more swarms: nexcess = 5 is equivalent to setting nexcess to ∞.
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Table 1. Variation of offline error with nexcess for 10 and 200 dynamic peaks. The
raw data demonstrates identical algorithm behavior for nexcess ≥ 5

Raw Rounded (standard error)
nexcess p = 10 p = 200 p = 10 p = 200

1 1.9729028458116666 2.5383187958098343 1.97(0.09) 2.54(0.04)
2 1.879641879674056 2.398361911062971 1.88(0.07) 2.40(0.02)
3 1.7699076299648027 2.386396596554201 1.77(0.05) 2.39(0.03)
4 1.8033988974332964 2.372590853208213 1.80(0.06) 2.37(0.03)
5 1.8013758537004643 2.365026825401844 1.80(0.06) 2.37(0.03)
6 1.8010120393728533 2.3651325663361167 1.80(0.06) 2.37(0.03)
7 1.8010120393728533 2.3651325663361167 1.80(0.06) 2.37(0.03)

infinity 1.8010120393728533 2.3651325663361167 1.80(0.06) 2.37(0.03)

6.3 Discussion

Theoretically, nexcess = 1 would appear to be an ideal setting, allowing the
multi-swarm to adapt to the number of peaks, whilst always maintaining a
single free swarm. However, inspection of the numbers of free and converged
swarms for a single function instance revealed that the self-adaptation mech-
anism at nexcess = 1 frequently adds a swarm, only to remove one at the
subsequent iteration. The explanation is believed to be the following: suppose
a swarm (swarm A) has started to converging on a peak. A new free swarm,
swarm B, will be created. Since A is just at the edge of convergence, fluctua-
tions in the swarm size may cause the swarm to appear to be free at the next
iteration. Hence there will be two free swarms, and one must be removed -
almost certainly swarm B, since this has had little chance to improve its pg.
Swarm A will again start to converge (according to the criterion), causing the
creation of a new free swarm at the next iteration. Such repeated creations
and annihilations of the free swarm waste valuable function evaluations.

Another possible setting is nexcess = ∞. This effectively turns swarm re-
moval off. Although there is no check to the number of swarms, it is not
unreasonable to suppose that given enough time, the multi-swarm would sta-
bilize at Mconv = p and Mfree = 1. The convergence criterion is rather naive
and may mark a free swarm as converging even though it is not associated
with a peak. This will cause the generation of another free swarm, with no
means of removal. This will only be a problem when Mconv > p, a situation
that might not even happen within the time-scale of the run. For example,
Figures 4 and 5 show convergence data for a single run at p = 10 and p = 200.
For p = 10, the eleventh swarm is generated at function evaluation, neval, =
254054. There are 500000 evaluations in a run, and in the remaining evalua-
tions the multi-swarm size is, at most 13, and remains fairly steady after the
400000th evaluation. The p = 200 trial shows a steadily growing multi-swarm,
which never attains complete coverage of all peaks, ending with 47 converging
swarms and 1 free swarm.
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Fig. 4. Convergence of the self-adapting nexcess = ∞ multi-swarm for a single
instance of the 10 peak MPB environment. Upper plot shows offline error, lower
plot shows number of converged and free swarms

The flexibility of a swarm removal mechanism is desirable for a number of
reasons. For example, two peaks might move within rexcl of each other, causing
a previously converged swarm to vaporize through exclusion (the better swarm
remains). Or maybe a peak i becomes invisible if its height is smaller than
other peak heights at its optimizer i.e. if f(x∗

i ) < f(xj) for some j 6= i. In
either case, superfluous free swarms will consume function evaluations.

The redundancy nexcess can be set at any value between the two extremes
of nexcess = 1 and nexcess = ∞. (nexcess = 0 gives very bad performance, no
swarms at all may be added and the single swarm converges, and remains on,
the first peak it finds.) The results for p = 10 and p = 200 indicate that tuning
of nexcess can improve performance for runs where the multi-swarm has found
all the peaks. Tuning can prevent the multi-swarm from generating too many
free swarms - for example 3 free swarms are optimal for p = 10. However,
setting nexcess at either extreme still produces good performance, and better
than the comparison algorithms cited in Section 5.5. Perhaps the multi-swarm
itself could tune nexcess during a run. A more sophisticated convergence cri-
terion would also have to be devised. For example, the convergence criterion
could take into account both the swarm diameter and the rate of improvement
of f(pg).
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Fig. 5. Convergence of the self-adapting Mexcess = ∞ multi-swarm for a single
instance of the 200 peak MPB environment. Upper plot shows offline error, lower
plot shows number of converged and free swarms

7 Summary

This chapter has reviewed the application of particle swarms to dynamic op-
timization. The canonical PSO algorithm must be modified for good perfor-
mance in environments such as many peaks. In particular the problem of
diversity loss must be addressed. The most promising PSO variant to date
is the multi-swarm; a multi-swarm is a colony of swarms, where each swarm,
drawing from an atomic analogy, consists of a canonical PSO surrounded by
a cloud of charged particles. The underlying philosophy behind multi-swarms
is to place a separate PSO on the best peaks, and to maintain a population
of patrolling particles for the purposes of identifying new peaks. Movement of
any peak that is being watched by a swarm is tracked by the charged particles.
An exclusion operator ensures that only one swarm can watch any one peak,
and anti-convergence seeks to maintain a free, patrolling swarm.

New work on self-adaptation has also been presented here. Self-adaptation
aims at reducing the number of tunable parameters and operators. Some
progress has been made at the multi-swarm level, where a mechanism for
swarm birth and death has been suggested; this scheme eliminates one oper-
ator and allows the number of swarms and an exclusion parameter to adjust
dynamically. One free parameter, the number of patrolling swarms, still exists,
but results suggest that the algorithm is not overly sensitive to this number.
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Self-adaptations at the level of each swarm, in particular allowing particles
to be born and to die, and self-regulation of the charged cloud radius remain
unexplored.
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