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Abstract—Wireless sensor networks (WSNs) are networks of
autonomous nodes used for monitoring an environment. Devel-
opers of WSNs face challenges that arise from communication
link failures, memory and computational constraints, and limited
energy. Many issues in WSNs are formulated as multidimensional
optimization problems, and approached through bio-inspired
techniques. Particle swarm optimization (PSO) is a simple,
effective and computationally efficient optimization algorithm.
It has been applied to address WSN issues such as optimal
deployment, node localization, clustering and data-aggregation.
This paper outlines issues in WSNs, introduces PSO and discusses
its suitability for WSN applications. It also presents a brief survey
of how PSO is tailored to address these issues.

Index Terms—clustering, data-aggregation, localization, opti-
mal deployment, PSO, Wireless sensor networks

I. INTRODUCTION

W IRELESS sensor networks (WSNs) are an emerging

technology [1] that has potential applications in

surveillance, environment and habitat monitoring, structural

monitoring, healthcare, and disaster management [2]. A WSN

monitors an environment by sensing its physical properties.

It is a network of tiny, inexpensive autonomous nodes that

can acquire, process and transmit sensory data over wireless

medium. One or more powerful base stations serve as the

final destination of the data. The the properties of WSNs that

pose technical challenges include dense ad-hoc deployment,

dynamic topology, spatial distribution and constrains in

bandwidth, memory, computational resources and energy.

WSN issues such as node deployment, localization,

energy-aware clustering and data-aggregation are often

formulated as optimization problems. Traditional analytical

optimization techniques require enormous computational

efforts, which grow exponentially as the problem size

increases. An optimization method that requires moderate

memory and computational resources and yet produces good

results is desirable, especially for implementation on an

individual sensor node. Bio-inspired optimization methods are

computationally efficient alternatives to analytical methods.

Particle swarm optimization (PSO) is a popular multidimen-

sional optimization technique [3]. Ease of implementation,
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high quality of solutions, computational efficiency and speed

of convergence are strengths of PSO. Literature is replete

with applications of PSO in WSNs. The objective of this

paper is to give a flavor of PSO to researchers in WSN, and

to give a qualitative treatment of optimization problems in

WSNs to PSO researchers in order to promote PSO in WSN

applications.

The rest of this paper is organized as follows: PSO and

its relative advantages are briefly outlined in Section II.

Sections III through VI discuss applications of PSO in optimal

deployment, localization, clustering and data-aggregation (also

referred to as data-fusion). In each of these sections, a specific

WSN issue is introduced, and a brief description of how PSO

is applied to address the particular issue is presented. Finally, a

projection of future PSO applications in WSNs and concluding

remarks are given in Section VII.

II. PSO: A BRIEF OVERVIEW

A. The PSO Algorithm

PSO models social behavior of a flock of birds [3]. It

consists of a swarm of s candidate solutions called particles,

which explore an n-dimensional hyperspace in search of the

global solution (n represents the number of optimal parameters

to be determined). A particle i occupies position Xid and

velocity Vid in the dth dimension of the hyperspace, 1 ≤ i ≤ s
and 1 ≤ d ≤ n. Each particle is evaluated through an objective

function f(x1, x2, · · · , xn), where f : R
n → R. The cost

(fitness) of a particle close to the global solution is lower

(higher) than that of a particle that is farther. PSO thrives

to minimize (maximize) the cost (fitness) function. In the

global-best version of PSO, the position where the particle

i has its lowest cost is stored as (pbestid). Besides, gbestd,

the position of the best particle. In each iteration k, velocity

V and position X are updated using (1) and (2). The update

process is iteratively repeated until either an acceptable gbest
is achieved or a fixed number of iterations kmax is reached.

Vid(k + 1) = w · Vid(k) + ϕ1 · r1(k) · (pbestid − Xid)

+ϕ2 · r2(k) · (gbestd − Xid) (1)

Xid(k + 1) = Xid(k) + Vid(k + 1) (2)

Here, ϕ1 and ϕ2 are constants, and r1(k) and r2(k)
are random numbers uniformly distributed in [0,1]. This

is the basic “textbook” information about PSO. Popular

themes of PSO research are: choice of parameters and their

ranges, iterative adaption of parameters, particle interaction

topologies, convergence acceleration, adaption to discrete,
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binary and integer domains, and hybridization with other

algorithms. The state-of-the art in PSO is presented in [4].

B. Other Optimization Algorithms

Traditional optimization methods include linear, nonlinear

and quadratic programming, Newton-based techniques and

interior point methods. Their computational complexities grow

exponentially with the problem size. Resource requirements

and cost of mathematical programming engines (such as

IBM ILOG CPLEX) used for linear, nonlinear and quadratic

programming make them unattractive for resource constrained

nodes. This is the motivation for heuristic algorithms such as

PSO, genetic algorithm (GA), differential evolution (DE) and

bacterial foraging algorithm (BFA). GA facilitates evolution of

the population generation by generation using operators such

as crossover, mutation and selection [5]. DE is similar to GA,

but it uses a differential operator [6], which creates a new

solution vector by mutating an existing one by a difference of

randomly chosen vectors. BFA models the foraging behavior

of bacteria that use a combination of straight line and random

movements to reach nutrient rich locations [7]. Advantages of

PSO over these alternatives are:

1) Ease of implementation on hardware or software.

2) Availability of guidelines for choosing its parameters.

3) High quality solutions because of its ability to escape

from local optima [8], [9].

4) Availability of variants for real, integer and binary

domains [4].

5) Quick convergence [10], [11].

PSO with s number of n-dimensional particles that runs

for kmax iterations requires kmax · s fitness evaluations and

memory for s · n variables each for positions, velocities, and

pbest, plus n variables for gbest. This can be prohibitively

expensive on some nodes.

III. OPTIMAL WSN DEPLOYMENT

WSN deployment problem refers to determining positions

for sensor nodes (or base stations) such that the desired

coverage, connectivity and energy efficiency can be achieved

with as few nodes as possible [12]. Events in an area devoid of

an adequate number of senor nodes remain unnoticed; and the

areas having dense sensor populations suffer from congestions

and delays. Optimally deployed WSN assures adequate quality

of service, long network life and financial economy. Available

PSO solutions to the deployment problem are computed

centrally on a base station for determining positions of sensors,

mobile nodes or base stations as summarized in Table I.

A. Stationary Node Positioning

Objective of the centralized, off-line PSO-Voronoi algorithm

proposed by Aziz et al in [13] is to minimize the area of

coverage holes. The strategy is based on the principle that

if each point in the region-of-interest (ROI) is covered by a

sensor, then the whole ROI is covered. Assessment of coverage

involves sampling the ROI through grid scan. PSO-Voronoi

circumvents this by Voronoi polygons around the sensors.

PSO particles are sensors positions. For each particle, a set

of Voronoi polygons are determined, and the vertexes of the

polygons are treated as sample points. The cost function

is the number of vertexes that are uncovered by sensors.

PSO-Voronoi achieves close to ideal coverage but ignores the

time complexity of determining Voronoi polygons.

Hu et al. have proposed PSO-Traffic for topological

planning for a real world traffic surveillance application [14].

The study uses a large number of camera loaded nodes,

some of which require larger transmission radii facilitated

by expensive high-power transmitters. The objective is to

determine the nodes with high power transmitters such

that the highest possible connectivity is achieved at the

lowest possible hardware expense. PSO-Traffic is binary

PSO in which the particles represent sequences of sensors.

PSO seeks to minimize a multi-objective fitness parameter

LDC = a · L + b · D + c · C, where L is the transmission hop

of the signal, D is the increase in conflict and C is the cost

of the extra high power transmitters. Constants a, b and c
define the relative weights of L, D and C respectively. L
and D are computed from the scaled length and the scaled

degree, concepts from the small world phenomenon. This

algorithm has resulted in symmetric distribution of high power

transmitters, improved network performance and a saving in

system cost.

B. Mobile Node Positioning

Li et al. have proposed a mixture of stationary and mobile

nodes and particle swarm genetic optimization (PSGO) as a

remedy to coverage holes [15]. The PSGO hybrid is employed

to determine redeployment positions of mobile nodes in

order to improve average node density. PSGO maximizes

quality-of-service, defined as the ratio of the area covered to

the total area of the ROI, QoS = Sc/S, which should be

ideally equal to unity. The area covered Sc is Sc = Snodc
∪

Srobc
, the union of the area covered by the stationary nodes

and the robot-assisted mobile nodes. Sc only depends on the

sensing radius rs and the positions (x and y coordinates) of the

N mobile nodes, Sc = f(xrob1 · · · xrobN
, yrob1 · · · yrobN

, rs),
which PSGO determines. PSGO borrows the mutation and

selection operations from GA. In each iteration, PSGO

discards some worst particles and generates an equal number

of new particles at random locations. Besides, it moves a few

particles randomly. The paper reports as high as 6% increase in

QoS with 5 out of 100 static nodes replaced by mobile nodes.

Mobile nodes can be repositioned usingPSGOdynamically as

the network topology changes. But, it necessitates mechanisms

for obstacle avoidance and location awareness.

VFCPSO: Wang et al. have proposed a virtual force

co-evolutionary PSO (VFCPSO) for dynamic deployment of

nodes for enhanced coverage in [16]. Virtual force based

dynamic deployment involves iteratively moving a sensor

based on virtual attractive or repulsive forces from other

nodes, obstacles in the field and the areas that need higher

coverage probability. Virtual force vectors depend on the

distance between nodes and whatever attract or repulse them,

and their relative directions. A sensor’s new positions are
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computed in such a way that it moves in the direction of the

virtual force by a step size proportional to its magnitude.

In [16], a 2n-dimensional particle i
represents x and y coordinates of all n mobile sensor nodes:

Xi = {x1
i1, x

2
i1, x

1
i2, x

2
i2, · · ·x

1
in, x2

in}. The objective function

f(Xi) is the effective coverage, which the PSO maximizes.

In order to achieve better coverage, the PSO velocity equation

is modified to by adding the term c3 · r3(k) · gij(k) to (1),

where, c3 is an acceleration constant, r3(k) is a random

number uniformly distributed in [0,1], and gij is the set of

new locations of n sensors computed using virtual forces

method. VFCPSO combines advantages of virtual force and

PSO. Here, the 2n-dimensional PSO is converted into 2n
single-dimensional PSOs, each conducted with an individual

swarm. The final solution is produced by concatenating the 2n
gbest solutions. Authors report superior sensor coverage with

significantly lesser computational effort. The method involves

significant energy expenditure in broadcasting initial and final

positions. It also necessitates mechanisms for localization and

collision avoidance.

C. Base Station Positioning

Hong et al. have PSO Multi-Base for optimal positioning

of multiple base stations in a two tier WSN [17]. The two

tier network consists of nodes that can communicate only

with the application nodes they are assigned to. Application

nodes possess long-range transmitters, high-speed processors,

and abundant energy. The PSO Multi-Base method aims at

determining positions of base stations so that the total of

distances of application nodes to their nearest base stations

is minimum. This deployment requires minimum transmission

power and, assures maximum network life. In PSO Multi-Base,

a particle i represents the positions of M base stations,

which can be in 2 or 3 dimensions based on the deployment

terrain. The fitness of i is defined as f(i) = min(
∑n

j=1 lij),
where N is the number of application nodes. Here, lij
represents the total lifetime of the network, as computed by

lij = max
∑M

k=1 li(k)j , the lifetime of the application node

j that communicates with the base station k. The lifetime

lij is computed as li(k)j =
ej(0)

rj(αj1+αj2dn
i(k)j

) . Here dn
i(k)j

represents the nth order Euclidean distance from kth base

station to jth application node. e(0) is the initial energy,

and α1 and α2 are the distance independent and distance

dependent parameters that decide the energy necessary for

the transmission respectively. While both PSO Multi-Base and

exhaustive grid scan methods result in comparable lifetime,

PSO converges in over 5 orders lesser time. The method is

central, and needs location awareness. Besides, nodes have

to communicate their initial energy to the base station; this

energy overhead affects network scalability.

Summary: Static deployment is a one-time process

in which solution quality is more important than fast

convergence. PSO suits centralized deployment. Fast PSO

variants are necessary dynamic deployment. PSO can also

limit network scalability.

IV. NODE LOCALIZATION IN WSNS

Node localization refers to creating location awareness

in deployed nodes [18]. Location information is used

in geometric-aware routing [19]. An obvious method of

localization is to equip each node with a global positioning

system (GPS), which is not attractive because of cost, size

and power constraints. Many WSN localization algorithms

estimate locations using a priori knowledge of the coordinates

of special nodes called beacons, landmarks, or anchors. WSN

localization is a two phase process. In ranging phase, nodes

estimate their distances from beacons using signal propagation

time or strength of the received signal. Signal propagation

time is estimated through measurement of time of arrival,

round trip time of flight or time difference of arrival of the

signal [20]. Precise measurement of these parameters is not

possible due to noise; therefore, results of such localization

is inaccurate as shown in Figure 1. In the estimation phase,

position of the target nodes is estimated using the ranging

information either by solving simultaneous equations, or by an

optimization algorithm that minimizes localization error. PSO

algorithms for WSN localization are summarized in Table I.

A. Determination of Locations of Target Nodes

Gopakumar et al. have proposed PSO-Loc for localization

of n target nodes out of m nodes based on the a priori

information of locations of m − n beacons [21]. The base

station runs a 2n-dimensional PSO (x and y coordinates of n
nodes) to minimize the localization error defined as f(x, y) =
1
M

∑M

i=1

(

√

(x − xi)2 + (y − yi)2 − d̂i

)2

. Here, (x, y) is an

estimate of the target node location, (xi, yi) is the location

of beacon node i, and M ≥ 3 is the number of beacons in

the neighborhood of the target node. Estimated distance from

beacon i, d̂i, is simulated as the actual distance corrupted

by an additive Gaussian white noise. The variance of noise

influences the localization accuracy. The approach does not

take into account the issues of flip ambiguity and localization

of the nodes that do not have at least three beacons in their

neighborhood. The scheme works well only if either beacons

have sufficient range, or there exist a large number of beacons.

Moreover, the base station requires range estimates of all target

nodes from all beacons in their neighborhoods. This requires

Fig. 1. Distance-based localization in a WSN
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a lot of communication that may lead to congestions, delays

and exhaustion of energy. In addition, the proposed scheme

has a limited scalability because the PSO dimensionality is

twice the number of target nodes.

PSO-Iterative: Kulkarni et al. have proposed a distributed

iterative localization algorithm PSO-Iterative in [11]. Each

target node that has three or more beacons in its hearing

range runs PSO to minimize the localization error. Nodes that

get localized act as beacons for other nodes. This continues

iteratively, until either all the nodes get localized, or no more

nodes can be. This method does not require that each node

transmit it range measurement to a central node. Besides,

it can localize all nodes that have three localized nodes or

beacons in their range. As the localization iterations pass by,

a node may get more number of references for localization,

which mitigates the flip ambiguity problem, the situation that

results in large localization error when the references are

near-collinear. However, the proposed method is prone to error

accumulation.

PSO-Beaconless: Low et al. have proposed in [22]

a PSO-based distributed localization scheme that does not

involve beacons. The nodes are deployed by an unmanned

aerial vehicle equipped with a position sensor. The exact

location Φi of a node i is treated as the conditional probability

density function of Φdi, the location where the node is

deployed (which is recorded by the use of a pedometer).

If this node can receive a signal from a localized node

j it can estimate its distance dj . A likelihood function

for exact location is expressed in terms of Φdi and dj .

PSO minimizes one term of this likelihood function. The

results of two variants of the algorithm are presented. Results

show fairly accurate localization even in sparse deployment.

Authors report the results of real-time field tests of an

implementation of the PSO-beaconless algorithm on a low-cost

Microchip-PIC18LF4620 microcontroller [23]. It is reported

that PSO takes longer computational time, but performs

as accurate localization as the Gauss-Newton algorithm

does when the pedometer accuracy is high. However, in

less accurate pedometer records, the PSO outperforms the

Gauss-Newton method in terms of localization accuracy.

PSO-4 Beacon: Low et al. have proposed PSO-4 Beacon

localization scheme in [24]. This scheme assumes a presence

of four beacons deployed roughly on boundaries of the sensor

field. All target nodes can receive the signals from the beacons

deployed at positions A,B, C and D. A node at location O in

the sensor field can estimate its distance from a beacon as d =
( P

P0
)−

1
α , where P is the power transmitted by the beacon and

P0 is the power at unit distance d0. Environmental path loss

exponent α plays an important role in distance estimation from

the received signal strength. In the scheme proposed in [24],

the target node at location O localizes by solving geometrical

equations if the value of α is known. The target node uses

PSO to find the best value of α and uses a Kalman filter

based recursive estimation to localize itself. The paper reports

fairly good localization accuracy.

Summary: Localization is a one-time optimization

process in which solution quality is more important than fast

convergence. Distributed localization is desirable due to energy

issues. Though PSO is appropriate for distributed localization,

the choice is influenced by availability of memory on the

nodes.

V. ENERGY-AWARE CLUSTERING (EAC) IN WSNS

Economic usage of energy is a critical issue in WSNs.

Communication is the most energy expensive activity a node

performs. Energy required to transmit varies exponentially

with transmission distance; therefore, it is customary to

use multi-hop communication in WSNs. A WSN’s life-time

largely depends on how efficiently it carries a data packet

from its source to its destination. Routing refers to determining

a path for a packet from a source node to a sink. The

WSN that uses hierarchical routing has its nodes clustered

into groups. Each cluster has a node that acts as the

cluster-head. Nodes that belong to a cluster transmit their

data packets to the cluster-head, which forwards it to the

base station as shown in Figure 2. A node that acts as

a cluster-head for a long duration exhausts its batteries

prematurely. This calls for an optimal cluster-head election

mechanism. Besides cluster assignment influences network

performance and longevity. Low energy aware clustering

hierarchy (LEACH) is a simple and efficient algorithm [25].

Clustering is an NP-hard optimization problem, which PSO

can handle efficiently. Clustering or cluster-head selection is

not a one-time activity; therefore, the simpler the optimization

algorithm, the better the network efficiency is. This is another

reason why PSO is a popular choice for WSN clustering. A

summary of recent PSO applications in WSN clustering is

given in Table I.

PSO-Clustering: Guru et al. have proposed four variants

of PSO, namely, PSO with time varying inertia weight

(PSO-TVIW), PSO with time varying acceleration constants

(PSO-TVAC), hierarchical PSO with time varying acceleration

constants (HPSO-TVAC) and PSO with supervisor student

mode (PSO-SSM) for energy aware clustering in [26]. PSO

assigns nj nodes to each of the k cluster-heads, j =
1, 2, · · · , k such that the total energy loss due to physical

distances Edd is minimum. This is defined in (3), where Dj

Cluster 1

Cluster 2

Cluster 4

Cluster 3

Base station

CH 1

CH 2
CH 3

CH 4

CH : Cluster-head
Route from a node 

to the base station 

Fig. 2. The structure of a clustered WSN
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is the distance between cluster-head j and the base station.

F =

k
∑

j=1

nj
∑

i=1

(d2
ij +

D2
j

nj

) (3)

In PSO-TVIW, the inertia weight w is decreased linearly in

each iteration. In PSO-TVAC, inertia weight is set constant,

and acceleration constants c1 and c2 are varied linearly

in every iteration. In HPSO-TVAC, the particle update is

not influenced by the velocity in previous iteration; but,

re-initialization of velocity is done when the velocity stagnates

in the search space. Lastly, in PSO-SSM, the PSO update

equation is modified to (4), where mc is a constant called

momentum factor. Clustering is based on a simple idea that

for a group of nodes that lie in a neighborhood, the node

closest to the base station becomes the cluster-head. A detailed

comparative analysis of the algorithms for optimal clustering is

presented. This scheme considers only the physical distances

between nodes and their assigned cluster-heads, but not the

energy available to the nodes.

Xid(k + 1) = (1 − mc) · Xid(k) + mc · Vid(k + 1) (4)

PSO-C: Latiff et al. consider both energy available to

nodes and physical distances between the nodes and their

cluster-heads in [27]. Each particle represents a combination

of cluster-heads. The fitness function for the centralized PSO

(PSO-C) is defined as f = β · f1 + (1 − β) · f2, where f1 is

the maximum average Euclidean distance of nodes to their

associated cluster heads and f2 is the ratio of total initial

energy of all nodes to the total energy of the cluster-head

candidates. These are expressed as (5) and (6) respectively.

f1 = max
k=1,2,..K







∑

∀ni∈Cp,k

d(ni, CHp,k)

|Cp,k|







(5)

f2 =

N
∑

i=1

E(ni)

K
∑

k=1

E(CHp,k)

(6)

Here, N is the number of nodes out of which K will be

elected as the cluster-heads. |Cp,k| is the number of nodes

that belong to cluster Ck in particle p. This ensures that

only the nodes that have above average energy resources are

elected as the cluster-heads, and that the average distance

between the nodes and the cluster-heads is minimum. They

compare the results of the algorithm with those of LEACH

and the LEACH-C algorithms [28]. The PSO-based clustering

outperforms both LEACH and LEACH-C in terms of the

network lifespan and the throughput. In [9], the authors

show that this PSO-based algorithm outperforms GA and

K-means-based clustering algorithms as well.

MST-PSO: Cao et al. have considered an interesting case

in which a node and its cluster-head engage in a multi-hop

communication [29]. The method computes a distance based

minimum spanning tree of the weighted graph of the WSN.

The best route between a node and its cluster-head is

searched from all the optimal trees on the criterion of energy

consumption. Cluster-heads are elected based on the energy

available to the nodes and the Euclidean distance to its

neighbor node in the optimal tree. The authors compare the

performances of three mechanisms of cluster-head election:

energy based, auto-rotation based and probability-based.

Routing and cluster-head rotation are treated as optimization

problems and tackled through PSO. The results show that the

PSO-based clustering methods ensure longer network life.

Summary: Optimal clustering has a strong influence

on the performance of WSN. Clustering is a centralized

optimization carried out in a resource rich base station suitable

for.

VI. DATA-AGGREGATION IN WSNS

Large-scale deployment of sensors results in voluminous

distributed data. Efficient collection of data is critical.

Data-aggregation is the process of combining the data

originating from multiple sources such that the result is

better (more concise, more reliable etc) or the communication

overhead is reduced [30]. A major application of a distributed

WSN is to detect an event. In decentralized detection

framework, each sensor node collects local observations

corrupted by noise and sends a summary (compressed or

partially processed data) to a fusion center. The fusion center

uses the same to make the final global decision. This ensures

an extended network lifespan at the expense of a reduction in

performance. PSO has provided optimization in several aspects

of data-aggregation as summarized in Table I.

A. Optimal Transmission Power Allocation

The wireless channel common to the nodes and the fusion

center undergoes fading, which influences the accuracy of

fusion. It is shown that the transmission power allocation

scheme for distributed nodes plays an important role in

the fusion error probability. Wimalajeewa et al address the

problem of optimal power allocation through constrained PSO

in [31]. Their algorithm PSO-Opt-Alloc uses PSO to determine

optimal power allocation in the cases of both independent

and correlated observations. The objective is to minimize the

energy expenditure while keeping the fusion error probability

under a required threshold. The authors present numerical

results to show that the power schedule determined by PSO

results in substantial energy savings in comparison to the

uniform power schedule, especially in case of a large number

of nodes.

B. Determination of Optimal Local Thresholds

In binary hypothesis-testing, distributed sensors make a

binary (0 or 1) decision using local thresholds and send

their decisions to a neighboring node. In a parallel fusion

architecture, all nodes send their decisions to a base station;

and in serial architecture, decisions follow a hop sequence

from the first node to the base station. Thresholding leads to

a gain in terms of bandwidth and energy, and a loss in terms

of accuracy. Optimal thresholds on all nodes and an optimal
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TABLE I
A SUMMARY OF APPLICATIONS OF PSO IN WSN DEPLOYMENT

Task of PSO Optimization criterion Algorithm Ref. Centralized/
Distributed

Study

D
ep

lo
y

m
en

t Position stationary nodes Max. coverage PSO-Voronoi∗ [13] Centralized Simulation
Position stationary nodes Min. cost of sensor

equipment
PSO-Traffic∗ [14] Centralized Real Deployment

Position mobile nodes Max. coverage PSGO [15] Centralized Simulation
Position mobile nodes Max. coverage VFCPSO [16] Combination

of both
Simulation

Position base stations Max. energy efficiency PSO Multi-Base∗ [17] Centralized Simulation

L
o

ca
li

za
ti

o
n Localize nodes Min. localization error PSO-Loc∗ [21] Centralized Simulation

Localize nodes Min. localization error PSO-Iterative [11] Distributed Simulation
Localize nodes Min. localization error PSO-Beaconless∗ [22] Distributed Simulation
Localize nodes Min. localization error PSO-Beaconless∗ [23] Distributed Real Deployment
Localize nodes Min. localization error PSO-4 Beacon∗ [24] Distributed Simulation

E
A

C Elect cluster-heads Min. intra-cluster distance PSO-Clustering∗ [26] Centralized Simulation
Elect cluster-heads Max. network longevity PSO-C∗ [27] Centralized Simulation
Elect cluster-heads Max. network longevity MSTree-PSO∗ [29] Centralized Simulation

D
at

a-
fu

si
o

n Allocate optimal
transmission power

Min. energy expenditure and
error probability

PSO-Opt-Alloc∗ [31] Centralized Simulation

Determine local thresholds Min. decision error ABC-PSO [32] Centralized Simulation
Determine sensor
configuration

Min. decision error and
transaction time

BMPSO [33] Distributed Simulation

∗ Authors refer to this algorithm by this name

decision route (called hierarchy) assure minimum energy

expenditure and maximum accuracy. Veeramachaneni et al.

present a hybrid of ant-based control and PSO (ABC-PSO)

for hierarchy and threshold management [32]. In ant-based

optimization, artificial ants move from a node to another

constructing a partial solution to the problem. Once an ant

reaches the final node, the performance of the solution is

evaluated and the path emphasized using a mathematical

value proportional to its performance (called pheromone). In

ABC-PSO algorithm, ants construct the sequence and PSO

identifies the thresholds and achieves the minimum error for

the sequence. A feedback on this is presented to ants to help

them move in the search space and identify better sequences.

C. Optimal Sensor Configuration

Multi-sensor systems consist of several sensing options and

configurations. Adaptive configuration of the system having

various sensor resources and multiple sensor parameters is a

multi objective optimization problem. Objectives generally in-

clude maximum accuracy, minimum usage of communication

resource, and maximum sensing coverage. Veeramachaneni et

al. present a binary multi-objective PSO BMPSO for optimal

configuration in [33]. This method uses Bayesian decision

fusion framework to fuse the decisions from multiple sensors.

Swarm agents are used to evolve the choice of sensors (each

agent is a subset of sensors used for fusion). Each agent evokes

PSO to evolve the thresholds and optimum fusion rules for

its sensor set. The results highlight agents’ ability to decide

an optimal configuration of sensors, their thresholds and the

optimal fusion rule.

Summary: Data-aggregation is a distributed repetitive

process moderately suitable for PSO. Effective

data-aggregation influences overall WSN performance and

demands quick-convergence optimization techniques that

assure high quality solutions. PSO is moderately suitable for

this challenge.

VII. CONCLUSION

Scale and density of deployment, environmental un-

certainties and constraints in energy, memory, bandwidth

and computing resources pose serious challenges to the

developers of WSNs. Issues of node deployment, localization,

energy-aware clustering, and data-aggregation are often

formulated as optimization problems. Most analytical methods

suffer from slow or lack of convergence to the final solutions.

This calls for fast optimization algorithms that produce quality

solutions utilizing less resources. PSO has been a popular

technique used to solve optimization problems in WSNs due

to its simplicity, high quality of solution, fast convergence

and insignificant computational burden. However, iterative

nature of PSO can prohibit its use for high-speed real-time

applications, especially if optimization needs to be carried

out frequently. PSO requires large amounts of memory,

which may limit its implementation to resource-rich base

stations. Literature has abundant successful WSN applications

that exploit advantages of PSO. Data-aggregation needs

frequent distributed optimization, and fast solutions: Thus

PSO moderately suits it. Static deployment, localization and

clustering are the problems solved just once on a base station:

Thus PSO highly suits them. Future research on PSO in WSN

applications is likely to focus on:

1) Transformation of existing simulations into real-world

applications.

2) Development of PSO in hardware.

3) Development of parameterless black-box PSO.

4) Cross-layer optimization through PSO.

An overview of PSO, issues in WSNs and a brief survey of

recent PSO-based solutions to the WSN issues are presented
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in this paper. Advantages and limitations of PSO have been

pointed out. A qualitative discussion on how PSO is tailored

for WSN applications is presented, and promising research

directions are projected. From the current rate of growth

of PSO-based applications, it is envisioned that PSO will

continue as an important optimization technique in several

engineering fields including WSNs.
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