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Abstract— Particle Swarm Optimization (PSO) is an evolutionary computation technique based on Swarm Intelligence. The PSO 
algorithm is simple in concept, easy to implement and computationally efficient. Many researchers have worked on improving its 
performance in various ways and have developed several interesting variants. In this paper, we present a new mutation operator 
called the Systematic Mutation (SM) operator for enhancing the performance of Basic Particle Swarm Optimization (BPSO) 
algorithm. The SM operator unlike most of its contemporary mutation operators do not use the random probability distribution 
for perturbing the swarm population, but uses a quasi random Sobol sequence to find new solution vectors in the search domain. 
The presence of SM operator makes the mutated particles to move systematically in the search space. The comparison of SMPSO is 
made with BPSO and some other variants of PSO on a set of 15 benchmark global optimization problems and three real life 
engineering design problems. The empirical results show that SM operator significantly improves the performance of PSO in terms 
of fitness function value. 
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I. INTRODUCTION  
Evolutionary Algorithms (EAs) [1] are a broad class of 

stochastic optimization algorithms inspired by biological 
processes and, in particular, by those processes that allow 
populations of organisms to adapt to their surrounding 
environments: genetic inheritance and survival of the fittest. 
EAs have a prominent advantage over other types of 
numerical methods, among which the two most important 
ones are [2]: 
(i) They can be applied to problems that consist of 

discontinuous, non-differentiable and non-convex 
objective functions and/or constraints. 

(ii) They can easily escape from local optima. 
 EAs have been applied to a wide range of functions and 
real life problems [3] - [6]. Some common EAs are Genetic 
Algorithms (GA) [7], Evolutionary Programming (EP) [8], 
Particle Swarm Optimization (PSO) [9], Differential 
Evolution (DE) [10] etc. All these algorithms have certain 
properties and special operators associated with them which 
make them different from each other. For example in 
Evolutionary Programming, mutation is the primary 
operator, in GA crossover, mutation and selection are the 
main operators. Similarly in DE also mutation, crossover 
and selection are prime operators. In this paper we have 
concentrated our study on PSO, which do not have any 
particular evolutionary operator but works on the socio-
cooperative species shown by various species. 
 Particle Swarm Optimization (PSO) is relatively a 
newer addition to a class of population based search 
technique for solving numerical optimization problems. 
Metaphorically, PSO imitates the collective and cooperative 

behavior of species moving in groups. Some classic 
examples being a swarm of birds, school of fish, cooperative 
behavior of ants and bees etc. 

In original PSO, developed by Kennedy and Eberhart in 
1995 [9], each particle adjusts its position in the search 
space from time to time according to the flying experience 
of its own and of its neighbors (or colleagues). The particles 
or members of the swarm fly through a multidimensional 
search space looking for a potential solution. Researchers 
have shown that although PSO finds solutions much faster 
than most of the contemporary search techniques like 
Evolutionary and Genetic Algorithms, it usually do not 
improve the quality of solutions as the number of iterations 
increase and thus becomes a victim of premature 
convergence resulting in a suboptimal solution. This 
problem becomes more persistent in case of highly 
multimodal problems having several global and local 
optima. This drawback of PSO is due to the lack of 
diversity, which forces the swarm particles to converge to 
the global optimum found so far (after a certain number of 
iterations), which may not even be a local optimum. Thus 
without an effective diversity enhancing mechanism the 
PSO algorithm/ technique is not able to efficiently explore 
the search space. 

One of the methods for maintaining the diversity of the 
population is inclusion of the concept of mutation (a 
phenomenon common to EP and GA). Ratnaweera et al. 
[11] state that lack of population diversity in PSO 
algorithms is understood to be a factor in their convergence 
on local minima. Therefore, the addition of a mutation 
operator to PSO should enhance its global search capacity 
and thus improve its performance. Most of the modern 
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mutation operators defined in literature makes use of 
random probability distribution. Higashi et al. [12] use a 
mutation operator that changes a particle dimension value 
using a random number drawn from a Gaussian distribution. 
Stacey et al. [13] implement a mutation operator similar to 
that of Higashi et al.  [12], but a Cauchy probability 
distribution is used instead. Esquivel et al. [14] incorporate a 
mutation operator into PSO that was developed by 
Michalewicz for use in real-valued Genetic Algorithms in 
[15]. This is called the Michalewicz’s non-uniform mutation 
operator as the random numbers used to mutate values 
depends on the current algorithm iteration, with the 
probability of a value being mutated by a large amount 
being higher at the start of an optimization run.  

In the present work, instead of using the random 
probability distribution, we have defined a SM operator 
which uses quasi random (Sobol) sequence for moving the 
particles of the swarm. The reason behind using quasi 
random sequence is that quasi random sequences cover the 
search domain more evenly in comparison to the random 
probability distributions, thereby increasing the chances of 
finding a better solution. The SM operator defined in this 
paper is applied to two versions of BPSO called SMPSO1 
and SMPSO2. In SMPSO1, mutation is applied to the global 
best (gbest) particle, where as in SMPSO2, the worst 
particle of the swarm is mutated.  

The remaining organization of the paper is as follows: 
Section II gives a brief review of Quasi Random Sequences 
(QRS) and Sobol Sequence. Section III describes the 
working of Basic Particle Swarm Optimization. In Section 
IV, we describe the proposed algorithms, Section V, gives 
the experimental settings and numerical results of some 
benchmark problems. Section VI gives three real life 
problems and their results. The paper finally concludes with 
Section VII. 

II. QUASI RANDOM SEQUENCES (QRS) 
QRS or low discrepancy sequences are less random than 

pseudorandom number sequences, but are more useful for 
computational methods, which depend on the generation of 
random numbers. Some of these tasks involve 
approximation of integrals in higher dimensions, simulation 
and global optimization. Some well known QRS are: 
Vander Corput, Sobol, Faure and Halton. These sequences 
have been applied to initialize the swarm and the numerical 
results show a marked improvement over the traditional 
BPSO, which uses uniformly, distributed random numbers 
[16], [17]. The numerical results showed that initializing the 
population with QRS significantly improve the performance 
of a population based search algorithms. Motivated by this 
fact we applied it as a mutation operator where the particles 
instead of moving randomly, move in a quasi random 
manner. 
 

A.  Discrepancy of a Sequence 
     Mathematically, discrepancy of a sequence is the 
measure of its uniformity. It is computed by comparing the 
actual number of sample points in a given volume of a 
multi-dimensional space with the number of sample points 
that should be there assuming a uniform distribution 
defined. 
For a given set of points x1, x2, …,xN ∈ IS and a subset G ⊂ 
IS, define a counting function SN(G) as the number of points 
xi ∈ G. For each x = (x1, x2, ….xS) ∈ IS, let Gx be the 
rectangular S dimensional region, such that              Gx = 
[0,x1) x [0,x2) x…x[0,xS), with volume x1x2…xN. Then the 
discrepancy of points is given by D*N(x1, x2, x3….xN) = Sup 
⏐SN(Gx) – Nx1x2…xS⏐, x∈ IS. 

B. Sobol Sequence 
The construction of the Sobol sequence [18] uses linear 

recurrence relations over the finite field, F2, where F2 = {0, 
1}. If the binary expansion of the non-negative integer n is 
given by 11
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We have i > q, and the bit ia , comes from the coefficients of 
a degree-q primitive polynomial over F2. 

III. BASIC PARTICLE SWARM OPTIMIZATION 
In this section we briefly describe the basic PSO. For a 

D-dimensional search space the position of the ith particle is 
represented as Xi = (xi1, xi2, …, xiD). Each particle maintains 
a memory of its previous best position Pi = (pi1, pi2… piD). 
The best one among all the particles in the population is 
represented as Pg = (pg1, pg2… pgD). The velocity of each 
particle is represented as Vi = (vi1, vi2, … viD). In each 
iteration, the P vector of the particle with best fitness in the 
local neighborhood, designated g, and the P vector of the 
current particle are combined to adjust the velocity along 
each dimension and a new position of the particle is 
determined using that velocity. The two basic equations 
which govern the working of PSO are that of velocity vector 
and position vector given by: 

)()( 2211 idgdidididid xprcxprcwvv −+−+=       (1)           

 ididid vxx +=                                                                               (2)                                                      

The first part of equation (1) represents the inertia of the 
previous velocity, the second part is the cognition part and it 
tells us about the personal thinking of the particle, the third 
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part represents the cooperation among particles and is 
therefore named as the social component. Acceleration 
constants c1, c2 and inertia weight w are the predefined by 
the user and r1, r2 are the uniformly generated random 
numbers in the range of [0, 1]. 

IV. PROPOSED VERSIONS 
     The structure of PSO, as discussed in the previous 
section, is such that due to the fast information flow among 
the particles, the diversity is soon diminished and as a result 
it gets stuck in a suboptimal solution. To overcome this 
shortcoming we included a mutation operator to induce 
diversity in the population. The mutation operator presented 
in this article follows Sobol sequence and is called Sobol 
Mutation (SM).  
The proposed SM operator is defined as: 
SM = R1 + ( R2 / ln R1), Where R1 and R2 are random 
numbers in a Sobol sequence. 

The proposed versions called SMPSO1 and SMPSO2 are 
an extension to the Basic Particle Swarm Optimization. 
These versions differ from each other in the sense that in 
SMPSO1, the best particle of the swarm is mutated, whereas 
in SMPSO2, the worst particle of the swarm is mutated. The 
quasi random numbers used in the SM operator allows the 
worst particle to move forward systemically and helps in 
exploring the search space more efficiently. As a result the 
probability of getting a better solution increases. Besides 
mutating the best particle of the swarm in SMPSO1, we 
have also mutated the worst particle in second version 
SMPSO2. The idea behind applying the mutation to the 
worst particle is to push the swarm from the back.  

A. Computational steps of proposed Algorithms 
The proposed algorithms start like the usual PSO 

algorithm up to the point of evaluating the position and 
velocity of the particles after which the systematic mutation 
is applied to produce a perturbation in the population. The 
computational steps of SMPSO1algorithm are given below.  
Step1 Initialization. 
For each particle i in the population: 
Step1.1 Initialize X[i] with uniformly distributed random 

numbers 
Step1.2 Initialize V[i] randomly. 
Step1.3 Evaluate the objective function of X[i], and 

assigned the value to fitness[i]. 
Step1.4 Initialize Pbest[i] with a copy of X[i]. 
Step1.5 Initialize Pbest_fitness[i] with a copy of fitness[i]. 
Step1.6 Initialize Pgbest with the index of the 
               particle with the least fitness. 
Step2 Repeat until stopping criterion is reached: 
For each particle i: 
Step 2.1 Update V[i] and X[i] according  
               to equations (1) and (2). 
Step2.2 Evaluate fitness of X[i]. 
Step2.3 If f(X[i]) < f(Pbest [i]) then Pbest[i] =X[i], 
Step2.4 if f(Pbest [i]) < f(Pgbest) then Pgbest = Pbest [i] 

Step 3 // Sobol Mutation 
 Find a new particle using SM operator 
 Let this particle as TX 
 TX = R1 + ( R2 / ln R1) 
 If f(TX) < f(Pgbest) then Pgbest = TX 
Step 4  Goto step 2 
The computational steps of SMPSO2 are same as that of 
SMPSO1, except for the fact that the worst particle in the 
swarm is mutated instead of the best particle. 

V. EXPERIMENTAL SETTINGS, BENCHMARK PROBLEMS 
AND NUMERICAL RESULTS 

A. Experimental Settings 
The main parameters of PSO algorithm are inertia 

weight w and acceleration constants c1 and c2. After 
performing a number of experiments and going through 
various PSO versions available in literature we took the 
following experimental settings: the inertial weight w is 
taken to be linearly decreasing from 0.9 to 0.5. Acceleration 
constants c1 and c2 are taken as 2.0 each and r1, r2 are taken 
as the uniformly distributed random numbers between 0 and 
1. The proposed SMPSO has two added parameters R1 and 
R2, which are the random numbers following quasi random 
Sobol sequence. 

For the purpose of comparison of the proposed SMPSO 
with other variants ([19] and [20]), we have kept the same 
parameter settings for a fair comparison and have 
considered the same set of problems as mentioned in 
literature. Each problem is evaluated for three different 
dimensions 10, 20 and 30 and size of the swarm is varied as 
20, 40 and 80 for each of these population sizes. The 
stopping criteria is taken as the maximum numbers of 
generations reached which are 1000, 1500 and 2000 for 
dimensions 10, 20 and 30 respectively. The corresponding 
numerical results are given in Tables I, II and III. The 
proposed algorithms are compared with BPSO for a larger 
set of problems, where we have tested each problem for 
dimensions 10, 20 and 30. The size of the swarm is fixed as 
20 and the stopping criteria is the maximum number of 
generations reached, which are 1000, 1500 and 2000 for 
dimensions 10, 20 and 30 respectively. The corresponding 
numerical results are given in Table IV. 

B. Benchmark problems  
In the present study we have taken 15 benchmark 

problems with box constraints. Mathematical models of the 
problems along with the true optimum value are given in 
Appendix. The collection of problems that we have taken 
though not exhaustive may be considered as a starting point 
for checking the credibility of any optimization algorithm. 

The test bed consists of a variety of problems including 
multimodal, unimodal and noisy functions. Test functions f1, 
f2, f5, f10, f11, f12, f13, f14 are multimodal in nature, where the 
complexity of the problem increases with the increase in the 
number of variables. Function f6 is a noisy function where a 
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uniformly distributed random noise is added. Due to the 
presence of this random noise, the optimum of the problem 
keeps on shifting from one position to another and it 
becomes a challenge for the global optimization algorithm 
to locate the optimum value. Functions f4, f7, f8, f9, f15 are 
unimodal in nature. Function f4 is a simple sphere function 
and any decent optimization algorithm can solve it, however 
on increasing the number of variables sometimes the exact 
global optimal value is not located. Function f7 has a 
discontinuity and function f9 has plateau type region.  

C. Numerical Results  
SMPSO1 and SMPSO2 are compared with other 

versions for test functions f1 – f3. We have especially chosen 
these problems because they are common to the versions we 
have taken for comparison. From the corresponding 
numerical results we can see that both the proposed versions 
outperform the other algorithms by a significant difference. 
If we compare the proposed algorithms with each other we 
can see that SMPSO2 in which the worst particle is mutated 
is marginally better than SMPSO1. The performance of the 
proposed algorithms is further evaluated on a larger set of 
problems and the numerical results are compared with the 
BPSO. From the numerical results reported in Table IV, we 
can easily judge that for almost all the test problems taken in 
the present study, the proposed algorithms give a better 
performance in comparison to the BPSO for almost all the 
cases. The superior performance is more evident when the 
dimension of the problems is increased up to 30. The 
convergence graphs of the proposed algorithms with BPSO 
for all benchmark problems are illustrated in Figure I. 

VI. REAL LIFE PROBLEMS AND RESULTS 
The credibility of an optimization algorithm also 

depends on its ability to solve real life problems. In this 
paper we took three real life problems to validate the 
performance of the proposed SMPSO1 and SMPSO2 
algorithms. Numerical results for the real life problems are 
listed in Table V. Numerical results show that in terms of 
average number of generations required to reach the 
optimum solution, the proposed SMPSO gave the best 
results. However in terms of function value all the 
algorithms gave more or less similar results 
 
Gas transmission compressor design [21]: 
Min 2/12

2
3/2

32
2/1

1
5 )1(1061.8)( −− −××= xxxxxf

219.0
2

1
1

8
3

4 1072.71069.3 xxx −××+××+ 1
1

61043.765 −××− x                                                         
Subject to: 5510 1 ≤≤ x , 21.1 2 ≤≤ x , 4010 3 ≤≤ x   
 
Optimal thermohydralic performance of an artificially 
roughened air heater [22]:  
Max HM GReL −−+= + 1.05.5ln*51.2                                                                                                             

Where 53.0
295.0 xRM = ; 57.028.0 )7.0()(5.4 += eGH ; 

2/1
31 )2/( fxxe =+ ; 2/)( rs fff += ; 25.0

3079.0 −= xfs ; 
22

1
53.0

3 )75.3)2/1ln(*5.295.0(2 −−+= xxfr ;                                      
Subject to: 8.002.0 1 ≤≤ x , 4010 2 ≤≤ x , 

200003000 3 ≤≤ x                                                    
 
Optimal capacity of gas production facilities [21]:  
Min 85.02

11 )]
200

ln()40[(2623.072.58.61)( −−++=
xxxxf  

75.0
2

2
1 23.700)

200
ln()40(087.0 −+−+ xxx                              

Subject to: 5.171 ≥x , 2002 ≥x ; 405.17 1 ≤≤ x , 
600300 2 ≤≤ x .      

VII. CONCLUSION 
The purpose of the present article is to study the effect of 

a newly defined Sobol Mutation (SM) operator in the basic 
PSO. The SM mutation operator follows quasi random 
Sobol sequence which allows the mutated particles to move 
in a systematic manner. We have proposed two versions 
incorporating the SM operator, called SMPSO1 and 
SMPSO2 which differ from each other in the application of 
mutation. In SMPSO1 the best particle of the swarm is 
mutated while in SMPSO2, the worst particle is mutated 
The empirical studies on 15 bench mark problems and three 
real life problems show that the proposed versions are better 
than the BPSO and other recently modified versions quite 
significantly. In the present article we have used Sobol 
sequence, which gave better results than other quasi random 
sequences like Faure and Vander corput when used for 
initializing the swarm [16]. However a similar comparative 
study can be conducted for other quasi random sequences 
for mutation as well. 
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TABLE I.  COMPARISON OF PROPOSED SMPSO1 AND SMPSO2 VERSIONS WITH BPSO AND OTHER VERSIONS AVAILABLE IN LITERATURE FOR 
FUNCTION F1 IN TERMS OF AVERAGE FITNESS FUNCTION VALUE 

Pop Dim Gne SMPSO1 
(gbest) 

SMPSO2 
 (gworst) 

BPSO 
[19] 

QPSO  
[19] 

Mutation 
gbest [20] 

Mutation 
gbest [19] 

10 1000 0.881465 0.641812 5.5382 5.2543 5.2216 4.3976 
20 1500 5.014802 4.52709 23.1544 16.2673 16.1562 14.1678 20 
30 2000 13.152097 12.669938 47.4168 31.4576 26.2507 25.6415 
10 1000 1.241561 0.85634 3.5778 3.5685 3.3361 3.2046 
20 1500 5.91223 5.472557 16.4337 11.1351 10.9072 9.5793 40 
30 2000 13.005205 14.523385 37.2896 22.9594 19.6360 20.5479 
10 1000 1.182363 0.813593 2.5646 2.1245 2.0185 1.7166 
20 1500 5.501107 4.97266 13.3826 10.2759 7.7928 7.2041 80 
30 2000 10.210538 15.028891 28.6293 16.7768 14.9055 15.0393 

 

TABLE II.  COMPARISON OF PROPOSED SMPSO1 AND SMPSO2 VERSIONS WITH BPSO AND OTHER VERSIONS AVAILABLE IN LITERATURE FOR 
FUNCTION F2 IN TERMS OF AVERAGE FITNESS FUNCTION VALUE 

Pop Dim Gne SMPSO1 
(gbest) 

SMPSO2 
 (gworst) 

BPSO 
[19] 

QPSO  
[19] 

Mutation 
gbest [20] 

Mutation 
gbest [19] 

10 1000 0.006896 0.007877 0.09217 0.08331 0.0627 0.0780 
20 1500 0.009177 0.008486 0.03002 0.02033 0.0209 0.0235 20 
30 2000 0.025227 0.014541 0.01811 0.01119 0.0110 0.0099 
10 1000 0.009677 0.009515 0.08496 0.06912 0.0539 0.0641 
20 1500 0.017195 0.012269 0.02719 0.01666 0.0238 0.0191 40 
30 2000 0.030103 0.011066 0.01267 0.01161 0.0119 0.0098 
10 1000 0.00886 0.006402 0.07484 0.03508 0.0419 0.0460 
20 1500 0.010828 0.01296 0.02854 0.01460 0.0136 0.0186 80 
30 2000 0.024265_ 0.004692  0.01258 0.01136 0.0120 0.0069 

TABLE III.  COMPARISON OF PROPOSED SMPSO1 AND SMPSO2 VERSIONS WITH BPSO AND OTHER VERSIONS AVAILABLE IN LITERATURE FOR 
FUNCTION F3 IN TERMS OF AVERAGE FITNESS FUNCTION VALUE 

Pop Dim Gne SMPSO1 
(gbest) 

SMPSO2 
 (gworst) 

BPSO 
[19] 

QPSO  
[19] 

Mutation 
gbest [20] 

Mutation 
gbest [19] 

10 1000 6.416553 6.410466 94.1276 59.4764 27.4620 21.2081 
20 1500 17.311169 17.287586 204.336 110.664 49.1176 61.9268 20 
30 2000 30.566478 28.259791 313.734 147.609 97.5952 86.1195 
10 1000 6.4147 6.401132 71.0239 10.4238 7.8741 8.1828 
20 1500 17.23444 17.250421 179.291 46.5957 28.4435 40.0749 40 
30 2000 28.114756 28.640997 289.593 59.0291 62.3854 65.2891 
10 1000 6.416151 6.345346 37.3747 8.63638 6.7098 7.3686 
20 1500 17.440593 17.190714 83.6931 35.8947 31.0929 30.1607 80 
30 2000 28.324733 30.153352 202.672 51.5479 43.7622 38.3036 

 

    
                                                                     (a) Function f1                                                                                                                                   (b) Function f2 
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TABLE IV.  COMPARISON OF PROPOSED SMPSO1 AND SMPSO2 VERSIONS WITH BPSO FOR FUNCTIONS F4 – F15 IN TERMS OF AVERAGE FITNESS 
FUNCTION VALUE 

Function Dim Gne SMPSO1 
(gbest) 

SMPSO2 
 (gworst) 

BPSO 
 

10 1000 1.62763e-10 1.69783e-10 1.04431e-07 

20 1500 0.000297 0.000391 0.000801 f4 

30 2000 0.004315 0.003344 0.009211 
10 1000 0.000368 0.000131 0.003435 
20 1500 0.026621 0.018378 0.123742 f5 
30 2000 0.115094 0.140612 1.31424 
10 1000 0.003347 0.006410 0.008474 
20 1500 0.023071 0.031297 0.031376 f6 
30 2000 0.005992 0.084939 0.089811 
10 1000 9.25975e-05 7.01387e-06 0.000102 
20 1500 0.010336 0.008547 0.020129 f7 
30 2000 0.061249 0.089932 0.174977 
10 1000 2.55247e-07 2.90956e-06 0.001198 
20 1500 0.041532 0.036888 4.40991 f8 
30 2000 3.80048 4.09788 271.793 
10 1000 0.000000 0.000000 0.000000 
20 1500 0.000000 0.000000 0.000000 f9 
30 2000 0.000000 0.000000 5.8 
10 1000 3.17643e-09 2.61458e-09 6.13307e-07 
20 1500 1.7112e-05 1.32619e-05 0.083184 f10 
30 2000 0.000109 0.000238 0.87767 
10 1000 -1.15042 -1.15044 -1.15007 
20 1500 -1.13147 -1.12577 -0.813208 f11 
30 2000 -1.12011 -1.04616 11.5649 
10 1000 -3439.57 -3456.7 -3308.83 
20 1500 -6355.59 -6593.98 -6258.6 f12 
30 2000 -9221.62 -9830.23 -8872.75 
10 1000 -20.5621 -20.604 -20.346 
20 1500 -18.9347 -19.0519 -17.479 f13 
30 2000 -17.2635 -16.1726 -13.4851 
10 1000 0.346679 0.29003 0.612593 
20 1500 1.203 1.07035 2.41555 f14 
30 2000 1.82546 1.7637 4.22028 
10 1000 -78.3323 -78.3323 -78.0496 
20 1500 -75.6455 -76.9185 -74.9025 f15 
30 2000 -75.4883 75.4935 -74.3619 

 
 

    
                (c) Function f3                                                                                                                                  (d) Function f4 
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TABLE V.  NUMERICAL RESULTS OF REAL LIFE PROBLEMS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(e) Function f5 

 

 
(f) Function f6 

 

 

 
(g) Function f7 

 

 
(h) Function f8 

 

Gas Transmission Compressor Design 

Item BPSO SMPSO1(gbest) SMPSO2(gworst) 

x1 55 51.9857 53.4474 
x2 1.19541 1.18335 1.1901 
x3 24.7749 24.7195 24.7186 

f(x) 296.446e+004 296.448e+004 296.436e+004 
GAvg 786.7 146.4 129.6 
f Eval 23631 6205.1 4422 

Optimal Thermohydralic Performance of an Artificially Roughened Air Heater 

Item BPSO SMPSO1(gbest) SMPSO2(gworst) 

x1 0.05809 0.066242 0.032359 
x2 10 10 10 
x3 10400.2 7924.19 16643.4 

f(x) 4.21422 4.21422 4.21422 
GAvg 205.9 196 146 
f Eval 6207 5911 4425 

Optimal Capacity of Gas Production Facilities 

Item BPSO SMPSO1(gbest) SMPSO2(gworst) 
x1 17.5 17.5 17.5 
x2 600 600 600 

f(x) 169.844 169.844 169.844 
GAvg 10.4 8 9.8 
f Eval 342 270 324 
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(i) Function f9 

 

 
(j) Function f10 

 

 
(k) Function f11 

 

 
(l) Function f12 

 

 
(m) Function f13 

 

 
(n) Function f14 

 

 
(o) Function f15 

Figure 1.  Performance curves of BPSO, SMPSO1 and SMPSO2 for all 
benchmark problems 
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APPENDIX 

BENCHMARK PROBLEMS 
 
The complete formulation of the test of problems is given 
below: 
 
1. Rastringin function 
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2. Griewank function 

x
min 1)

1
cos(

4000
1)(

1

0

1

0

2
2 +

+
−= ∑∑

−

=

−

=

n

i

i
n

i
i

i
xxxf , 

600600 ≤≤− ix , )0,...,0,0(* =x , 0*)(2 =xf . 

 
3. Rosenbrock function 
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4. Sphere function 
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5. Ackley’s function 
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6. Dejong’s function with noise 
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7. Schwefel function 1 
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8. Schwefel’s function 1.2 
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9. Step function 
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10. Generalized penalized function 1 

x
min ∑

−

=
++−+=

1

1
1

22
1

2
10 )](sin101[)1()(sin10{)(

n

i
ii yyy

n
xf πππ  

)4,100,10,(})1(
1

2 ∑+−+
=

n

i
in xuy , where )1(

4
11 ++= ii xy  

5050 ≤≤− ix , )0,...,0,0(* =x , 0*)(10 =xf . 
 
11. Generalized penalized function 2 
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12. Schwefel function  
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13. Levy function 
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14 Circle function 
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15 Test2N function 
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In problem 10 and 11 the value of penalty function u is 
given by, 

caxbcbaxu )(),,,( −= , if ax >   
caxbcbaxu )(),,,( −−=  , if  ax −<  

0),,,( =cbaxu , if axa ≤≤− . 
 

 


