
Particle Swarm Optimization with an
Oscillating Inertia Weight

Kyriakos Kentzoglanakis
School of Computing

University of Portsmouth
UK

kyriakos.kentzoglanakis@port.ac.uk

Matthew Poole
School of Computing

University of Portsmouth
UK

matthew.poole@port.ac.uk

ABSTRACT
In this paper, we propose an alternative strategy of adapt-
ing the inertia weight parameter during the course of par-
ticle swarm optimization. Three oscillating inertia weight
functions of time are presented and their influence on the
performance and success of the algorithm is investigated by
optimizing six standard benchmark functions. Instances of
the algorithm that make use of inertia weight adaptation
schemes from the literature are also tested for comparison
purposes. The results show that the proposed functions are
competitive and, in some cases, outperform the established
inertia weight functions, in terms of consistency and speed
of convergence.

Conference Track
Ant Colony Optimization and Swarm Intelligence

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—Global Opti-

mization; I.2.8 [Artificial Intelligence]: Problem Solving,
Control Methods and Search—Heuristic methods

General Terms
Algorithms, Performance, Experimentation

Keywords
particle swarm optimization, inertia weight

1. INTRODUCTION
Early simulations of movement of individual entities in

animal societies, such as simulated bird flocks [18, 9] and fish
schools [10], demonstrated that collective behaviour and self-
organization in such systems emerge from local interactions
between these simple entities, rather than from centralized
control.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’09, July 8–12, 2009, Montréal Québec, Canada.
Copyright 2009 ACM 978-1-60558-505-5/09/07 ...$5.00.

Particle swarm optimization (PSO) is a stochastic, global
optimization technique that exploits this empirical observa-
tion, for the purposes of problem solving [12]. As such, the
progression of the swarm towards finding better solutions
is not expressed algorithmically but, rather, emerges as a
result of simple particle interactions.

Despite the fact that what can be considered as a general,
standard PSO version [2] is, essentially, parameter free, there
have been numerous efforts to investigate the behaviour of
the algorithm under different parametric conditions. Two of
the most studied aspects of PSO are the swarm communi-
cation topology and the inertia weight parameter.

The swarm’s communication topology defines neighbor-
hoods, where information concerning discovered solutions is
shared among particles and is used to calculate their subse-
quent positions in the search space.

The inertia weight parameter, introduced in [19], defines
the impact of each particle’s previous velocity to the current
one and, according to Poli et al., it can be interpreted as the
fluidity of the medium in which particles move [17].

The inertia weight effectively controls the scope of the
search [20], what is frequently referred to as the balance
between searching for an optimal region (exploration) and
searching for an optimal point within the region (exploita-
tion) [13].

In this paper, we investigate the impact of a non-monoto-
nic, time varying inertia weight parameter to the objective of
guiding the search process, so as to reduce the likelihood of
premature convergence by controlling the dynamics of the
balance between global and local search, exploration and
exploitation.

Two sinusoidal inertia weight functions of time are pro-
posed; one with a constant amplitude and one with a linearly
decreasing amplitude. Also the usage of a step function with
the same frequency characteristics as the sinusoidal func-
tions is explored.

The performance of the proposed inertia weight functions
of time is assessed by optimizing six well-known benchmark
functions. Results are also provided using standard methods
of adapting the inertia weight, for the purpose of compari-
son.

Similar approaches have been implemented in the context
of simulated annealing [14], a stochastic global optimiza-
tion technique inspired by the physical process of annealing,
i.e. the heating and subsequent cooling of solid materials
with the objective of coercing them into a high order, low
energy state. The behaviour of the algorithm depends on
the temperature parameter, which typically decreases over

Description Name Function

Constant ω (value from [19]) const ω(t) = 0.7298

Linearly decreasing ω [20] lin dec ω(t) = ωmin + (ωmax − ωmin)
S−t
S

Nonlinearly decreasing ω [3] nonlin dec ω(t) = ωmin + (ωmax − ωmin)
[

S−t
S

]n
with n = 1.2

Linearly increasing ω [22] lin inc ω(t) = ωmax − (ωmax − ωmin)
S−t
S

Random ω [7] rnd ω(t) = U(ωmin, ωmax)

where U(a, b) a random number drawn from a uniform distibution in [a, b].

Table 1: The inertia weight update functions ωi(t) from the literature, that were also tested in the experiments.
PSO iterations are denoted by t and the total number of iterations for which the inertia weight is allowed to
vary, by S.

time, as is the case with the inertia weight in PSO. However,
non-monotonic, time-varying cooling schedules have been
proposed and evaluated [8, 16, 15], as well as a sinusoidal
temperature update function [1], demonstrating improved
results compared to standard, decreasing cooling schedules.
The next section gives a summary of the PSO algorithm

and reviews existing inertia weight update strategies. In
section 3, the rationale behind our approach is presented
and three oscillating inertia weight functions are proposed
and explained. The experimental framework is laid out in
section 4 and the results are discussed in section 5, before a
conclusion is reached in section 6.

2. BACKGROUND
A swarm is a collection of candidate solutions (particles)

to a well-defined problem, that are represented as points in
the N -dimensional Euclidean space. The quality (fitness) of
a particle is determined by evaluating its position using the
problem-specific objective function.
Each particle i is characterized by a position vector ~xi, a

velocity vector ~vi and a vector ~pi that serves as memory of
the best position in terms of fitness that the particle has,
thus far, encountered.
Particles interact by communicating their best discovered

positions, to other particles within a neighborhood. In what
is referred to as a global best (gbest) topology, this neigh-
borhood comprises the entire swarm population, while in a
local best (lbest) topology, the swarm forms a ring lattice
and each particle communicates with its K adjacent neigh-
bours.
Swarms connected using the gbest topology tend to con-

verge faster than those using the lbest topology, but the
latter tends to provide more flexibility in terms of escap-
ing local optima and avoiding premature convergence [11].
In general, particle connectivity greatly affects the perfor-
mance of PSO, since it defines the way information flows
within the swarm. However the consensus seems to be that
no topology can be clearly characterised as being optimal
for all problems.
Particles move in the search space by stochastically up-

dating their velocity and position vectors, attracted by their
own best position ~pi, as well as their neighborhood’s best

position ~pg, according to the equations:

~vt+1 = ω~vt + ~U(0, φ1)⊗ (~pi − ~xt)+ ~U(0, φ2)⊗ (~pg − ~xt) (1)

~xt+1 = ~xt + ~vt+1 (2)

where ω is the inertia weight parameter and φ1 and φ2

are the particle’s acceleration coefficients that control the
magnitude of stochastic attraction towards ~pi and ~pg re-

spectively. Vector ~U(0, φi) contains random numbers drawn
from a uniform distribution in [0, φi]. The operator ⊗ de-
notes element-wise multiplication.

In an attempt to elucidate the process of convergence and
eliminate the need for particle velocity constraints, Clerc and
Kennedy [5] proposed and analysed the use of a constriction
coefficient χ, instead of ω, which multiplies all three compo-
nents of the velocity update equation:

~vt+1 = χ
(

~vt + ~U(0, φ1)(~pi − ~xt) + ~U(0, φ2)(~pg − ~xt)
)

(3)

χ =
2

φ− 2 +
√

φ2 − 4φ
(4)

where φ = φ1 + φ2, with φ > 4. Setting φ1 = φ2 = 2.05, the
value χ = 0.7298 is derived.

It is worth noting that the constricted version is equivalent
to the inertia weight version, since equations 1 and 3 can be
transformed to one another by mapping ω to χ and φi to
χφi [6]. Therefore, the corresponding values for the inertia
weight version, as expressed by equation 1, are ω = 0.7298
and φ1 = φ2 = 2.05× 0.7298 = 1.496.

A widely used strategy for the inertia weight ω is to main-
tain a constant value over the algorithm’s iterations, as de-
rived from Clerc and Kennedy’s analysis. However, Shi and
Eberhart [20] argued that the inertia weight effectively con-
trols the balance between exploration and exploitation in
searching and, therefore, it is reasonable for this balance to
be adjusted during the course of optimization.

For this reason, they proposed the use of a linearly de-
creasing time-varying inertia weight, where a relatively large
value of ω promotes search space exploration during the
early stages of the algorithm, by encouraging particles to
cover wider search areas. As the value of ω decreases, the
search is guided from this initial, exploratory phase, towards

Figure 1: On the left, the behaviour of equation 5 for different values of k. On the right, the behaviour of the
three oscillating inertia weight functions of time, as detailed in equations 5 (osc), 8 (osc dec) and 9 (step),
for k = 3. For both figures, ωmin = 0.3, ωmax = 0.9 and S = 10000.

the refinement of discovered solutions (local search) near the
end.
The same authors also showed that a PSO algorithm with

a random inertia weight component was able to track a
nonlinear dynamic system [7]. In optimizing such systems,
an informed decision can not be made on whether explo-
ration or exploitation is preferable at any given time. As
such, a random inertia weight, uniformly distributed within
a proper range, makes this decision stochastic.
A somewhat different interpretation suggests that the value

of the inertia weight is not associated with the scope but
rather with the stability of the search [22]. A linearly in-
creasing time-varying inertia weight, in this context, serves
to guide the algorithm from an initial turbulent state (low in-
ertia weight) towards stability (high inertia weight) at later
stages.
Other approaches to adjusting the inertia weight include

a nonlinearly decreasing ω function [3] and a fuzzy system
for dynamic adaptation of ω [21].

3. APPROACH
The concept of an oscillating inertia weight implements

a strategy whereby a wave of exploration (global search),
followed by a wave of exploitation (local search), form a cycle
which is repeated during the optimization process. This
way, the swarm periodically transitions from exploratory to
exploitatory states of search.
This temporal behaviour can be implemented by means

of an inertia weight function ω(t), where t denotes PSO it-
erations, that oscillates between an upper bound ωmax and
a lower bound ωmin.
In this paper, we propose and investigate the behaviour of

three such functions: a sinusoidal function with a constant
amplitude, a sinusoidal function with a linearly decreasing
amplitude and a step function with the same frequency char-
acteristics as the sinusoidal functions.
The first of the three, a sinusoidal with a constant ampli-

tude is expressed by the following equation:

ω(t) =
ωmin + ωmax

2
+

ωmax − ωmin

2
cos

(2πt

T

)

(5)

As implied in the previous section, a typical requirement
is that the algorithm starts at ωmax with high exploration
capabilities and ends at ωmin with high exploitation ten-
dencies, hence such a wave function should complete 3

2
+ k

cycles within a PSO run, where k ∈ N is a parameter that
controls the frequency of oscillation.

Consequently, the period T of oscillation, i.e. the number
of PSO iterations within which the inertia weight function
completes a full cycle, is given by:

T =
2S1

3 + 2k
(6)

where S1 is the number of iterations for which the inertia
weight is allowed to oscillate. We set S1 = 3S/4 iterations,
where S is the total number of iterations for a single PSO
run. During the final S2 = S/4 iterations, the inertia weight
value is kept constant at ω(t) = ωmin, in order to promote
the refinement of discovered solutions. This behaviour is
displayed in figure 1 (on the left).

The second proposed function is a sinusoidal with a lin-
early decreasing amplitude, so that the swarm’s transition
between global and local search becomes subtler over the
course of optimization. Effectively, ωmax in equation 5, be-
comes a linearly decreasing function ω′

max of time:

ω′
max(t) =

(

1−
t

S

)

wmax (7)

and the value of inertia weight now oscillates between a
static ωmin and a dynamic ω′

max(t), according to the equa-
tion:

ω(t) =
ωmin + ω′

max(t)

2
+

ω′
max(t)− ωmin

2
cos

(2πt

T

)

(8)

The third proposed inertia weight function is a step func-
tion with the same frequency characteristics as in the sinu-
soidal case. In this case, exploration and exploitation ten-
dencies are discretely modelled, according to the equation:

ω(t) =

{

ωmax if cos
(

2πt
T

)

≥ 0

ωmin otherwise
(9)

Name Function Feasible Bounds Initialization D Goal

sphere f1 =
∑D

i=1 x
2
i (−100, 100)D (50, 100)D 30 0.01

rosenbrock f2 =
∑D−1

i=1 {100(xi+1 − x2
i)

2 + (xi − 1)2} (−30, 30)D (15, 30)D 30 100

rastrigin f3 =
∑D

i=1{x2
i − 10 cos(2πxi) + 10} (−5.12, 5.12)D (2.56, 5.12)D 30 100

griewank f4 = 1
4000

∑D
i=1 x

2
i −∏D

i=1 cos(
xi√
i
) + 1 (−600, 600)D (300, 600)D 30 0.05

schaffer’s f6 f5 = 0.5 +
(sin(

√
x2+y2)2−0.5

(1+0.001(x2+y2))2
(−100, 100)2 (50, 100)2 2 10−5

schwefel 1.2 f6 =
∑D

i=1(
∑i

j=1 xj)
2 (−100, 100)D (50, 100)D 30 100

Table 2: The six benchmarks functions that were used in the tests.

The temporal behaviour of the three proposed functions
is depicted in figure 1 (on the right).

4. METHODS
The conducted tests investigate the influence of the pro-

posed oscillating inertia weight functions, described by equa-
tions 5 (osc), 8 (osc dec) and 9 (step) to PSO. For compar-
ison purposes, five inertia weight functions from the liter-
ature, summarized in table 1, were included in the tests.
These tests consist of optimizing six standard benchmark
functions, presented in table 2.
For the experiments, the swarm population size was set to

20 particles, particle positions were assymetrically initialized
and PSO was allowed to run for S = 10000 iterations. For
the first S1 = 3S/4 = 7500 iterations, the inertia weight was
allowed to vary according to the equation under considera-
tion, while during the final S2 = S/4 = 2500 iterations, the
inertia weight was kept constant at its last assumed value
(except for the random inertia weight function where the
value ωmin was used for this final stage).
The empirical values ωmin = 0.3 and ωmax = 0.9 were

chosen as the range of the inertia weight. The acceleration
coefficients were set to φ1 = φ2 = 1.496, following Clerc and
Kennedy’s recommendation [5].
Enforcement of xmax was also performed, according to

which if a particle position vector component exceeds the
objective function’s feasible bounds, it is brought back to the
exceeded boundary and the corresponding velocity vector
component is set to zero.
Two different sets of experiments were conducted, each

varying the swarm topology in use. The first set uses a static
local best topology, considered as standard [2], according
to which the swarm forms a ring lattice and each particle
communicates with its K = 2 adjacent particles.
The second set uses a dynamic random neighborhood se-

lection strategy, whereby at each iteration, a particle ran-
domly chooses K other particles to form its information
neighborhood. For the results presented here, the value
K = 3 is used.
Table 3 summarizes the results, which are averaged across

50 independent PSO runs. The table records the average
optimization success rate according to the function goals
defined in table 2, as well as the average number of iterations
needed to satisfy these goals. Parameter k of equation 6 has

been set to k = 7 for the three oscillatory inertia weight
functions (osc, osc dec and step).

Ring topology

const lin dec nonlin dec lin inc
f1 100% (700) 100% (620) 100% (610) 100% (560)
f2 98% (900) 96% (880) 100% (825) 100% (1060)
f3 12% (2440) 2% (480) 2% (770) 0% (-)
f4 100% (685) 100% (630) 100% (610) 30% (500)
f5 92% (1225) 98% (740) 98% (900) 20% (8645)
f6 52% (2855) 68% (2230) 80% (2085) 64% (3130)

osc osc dec step rnd
f1 98% (520) 100% (500) 100% (830) 100% (365)
f2 100% (1130) 100% (940) 90% (1420) 98% (660)
f3 28% (1725) 22% (970) 72% (2075) 0% (-)
f4 86% (490) 88% (495) 40% (620) 88% (365)
f5 96% (750) 98% (650) 94% (800) 66% (820)
f6 80% (2920) 80% (2295) 70% (5790) 78% (1750)

Random neighborhood topology

const lin dec nonlin dec lin inc
f1 96% (1600) 100% (1070) 98% (1000) 100% (1480)
f2 96% (2240) 98% (1360) 100% (1200) 96% (2225)
f3 72% (3055) 78% (1660) 80% (1445) 2% (250)
f4 94% (1680) 96% (1050) 98% (1020) 10% (1400)
f5 100% (410) 100% (365) 100% (410) 58% (310)
f6 22% (8800) 82% (3340) 84% (3170) 52% (2475)

osc osc dec step rnd
f1 100% (565) 100% (570) 74% (2100) 100% (360)
f2 96% (1120) 98% (1140) 54% (4710) 98% (480)
f3 96% (530) 96% (505) 100% (415) 46% (830)
f4 72% (565) 72% (495) 20% (1630) 88% (350)
f5 100% (535) 100% (440) 100% (555) 92% (325)
f6 80% (2330) 80% (2185) 80% (3935) 76% (1730)

Table 3: Average optimization success rates across
50 PSO runs, for the function goals defined in ta-
ble 2. The average number of iterations required to
reach the optimization goal is shown in parentheses.
For the results shown at the top panel, a local best
(ring) topology is used. For the results shown at
the bottom panel, a random neighborhood topology
of size 3 is used. The frequency parameter k from
equation 6 is set to k = 7 for the oscillating functions.

5. DISCUSSION

Figure 2: Examples that showcase the effects of different non-monotonic inertia weight functions on the
average particle velocity vector magnitude, for the rosenbrock function. From left to right and from top to
bottom, parameter k from equation 6 is set to 1, 3, 5 and 7 respectively.

The results indicate that the performance of the oscillat-
ing functions is generally competitive to the inertia weight
functions from the literature that were also tested. Among
the latter, the constant (const) and decreasing (lin dec and
nonlin dec) functions achieve satisfactory success rates with
good convergence speeds, especially when the ring topol-
ogy is in use (with the exception of the rastrigin function).
Among the decreasing functions, the nonlinear version is
slightly better than the linear one. The behaviour of the
linearly increasing function is somewhat erratic, while the
random inertia weight appears to be more succesful when
the random neighborhood topology is deployed.
Among the oscillating functions, the performance of osc

and osc dec are quite comparable and competitive to the
decreasing functions. The step function is less consistent
in its success rates but performs particularly well on the
rastrigin problem, unlike all other inertia weight functions,
especially when using the ring topology.
The switch from the ring topology to the random neigh-

borhood has the effect of generally enhancing the consis-
tency of optimization success rates across all benchmark
functions. The success rates for the rastrigin function in
particular are significantly increased, compared to those us-
ing the ring topology.

Considering the trade-offs between optimization success
rates, speed of convergence and consistency of performance
across all benchmark functions, the sinusoidal inertia weight
function with a constant amplitude and the nonlinearly de-
creasing function produce the best set of results, when using
a random neighborhood topology, with the sinusoidal func-
tion converging rather faster.

A comparison between the number of iterations required
to satisfy the set goals (shown in parentheses in table 3) and
the inertia weight oscillation cycles in figure 1 reveals that, in
many cases, these goals are achieved before the oscillatory
function completes a full cycle. Indeed, in such cases, an
oscillation half-cycle corresponds to a rapid nonlinear inertia
weight decrease (exploitation), which appears to be enough
to satisfy the required objective function goal.

The influence of the repeated oscillation cycles to the aver-
age best particle fitness is displayed in figure 3, for all bench-
mark functions. In addition to the oscillating functions, the
average best particle fitness using the nonlinearly decreasing
function has also been plotted for comparison purposes.

The inertia weight adaptation strategy is one the factors
influencing the momentum of particles as they fly in the
search space attracted by their own and their neighborhood’s
best solutions. In this context, an oscillating inertia weight

Figure 3: Average best particle fitness across 50 PSO runs for the six benchmark functions, using the random
neighborhood topology, for selected inertia weight functions. The frequency parameter k from equation 6 is
set to k = 7 for the oscillating functions.

serves the purpose of periodically promoting and suspending
particle momentum, or driving the swarm towards global
and local search, respectively. This accelerate/decelerate
effect is demonstrated in figure 2, where average particle
velocity vector magnitude cycles can be seen to correspond
to inertia weight function cycles.
Different frequency settings of inertia weight oscillation,

by adjusting parameter k in equation 6, were tested but no
definite conclusions could be drawn. Variations to the value
of k did not appear to have a noticeable impact to the re-
sults, as presented in table 3. Only the step inertia weight
function benefited from a frequency increase and improved
its success rates considerably, when the random neighbor-
hood topology was in use.
Naturally, the momentum of particles is also dependent on

the structure and possible dynamics of the swarm’s topol-
ogy, i.e. the kind of information communicated between
particles within a neighborhood, what Kennedy and Mendes
call neighborhood consensus [13]. Inertia weight adaptation
strategies can, thus, be viewed as a set of global, secondary
filters that scale the results of individual particle interactions
in different ways.
Finally, we note that none of the adaptation strategies

presented and tested in this paper can be considered as be-
ing intelligent, in the sense that they do not dynamically
respond to particular conditions that would suggest a shift
between a local and a global mode of search, but rather en-
force a scheme of a globally predefined balance between the
two.

6. CONCLUSION
Inertia weight adaptation during the course of optimiza-

tion is a significant aspect affecting the behaviour of PSO,
both in terms of the ability to satisfy set goals and the speed
of convergence.
In this paper, we proposed a set of three oscillating inertia

weight functions of time that periodically alternate between
global and local search waves, implementing a different kind
of balance between the swarm’s tendencies towards explo-
ration and exploitation of the search space.
The proposed functions, as well as a number of inertia

weight functions from the literature, were tested on the op-
timization of six standard benchmark problems. The os-
cillating functions were found to be generally competitive
and, in some cases, outperformed established inertia weight
adaptation schemes. When considering particular experi-
mental settings, such as a random neighborhood communi-
cation topology, the sinusoidal functions achieved very good
success rates and convergence speeds, consistently across all
benchmark functions.
Further work is needed to investigate how and why the

swarm responds to different inertia weight frequency set-
tings, as regulated by parameter k in equation 6. In the
suite of tests performed for the purposes of this paper, no
definite conclusions could be drawn regarding this issue.
Other non-monotonic inertia weight functions, perhaps os-

cillating between dynamic upper and lower bounds can also
be developed with the possible incorporation of heuristics
such as gradient estimations [4] or best performance evalua-
tions [21], so that the inertia weight can adapt according to
emerging swarm conditions.
As is the case with the swarm’s communication topology,

there seems to be no one-size-fits-all, optimal strategy of

adapting the inertia weight during the course of optimization
and problem-specific characteristics have to be considered
before a decision regarding the selection of a such strategy
is made.

7. REFERENCES
[1] A. Bolte and U. W. Thonemann. Optimizing

simulated annealing schedules with genetic
programming. European Journal of Operational

Research, 92(2):402–416, 1996.

[2] D. Bratton and J. Kennedy. Defining a standard for
particle swarm optimization. In IEEE Swarm

Intelligence Symposium, pages 120–127, 2007.

[3] A. Chatterjee and P. Siarry. Nonlinear inertia weight
variation for dynamic adaptation in particle swarm
optimization. Computers & Operations Research,
33(3):859–871, March 2006.

[4] M. Clerc. The swarm and the queen: towards a
deterministic and adaptive particle swarm
optimization. In Congress on Evolutionary

Computation, volume 3, pages 1951–1957, 1999.

[5] M. Clerc and J. Kennedy. The particle swarm -
explosion, stability and convergence in a
multidimensional complex space. IEEE Transactions

on Evolutionary Computation, 6(1):58–73, 2002.

[6] R. C. Eberhart and Y. Shi. Comparing inertia weights
and constriction factors in particle swarm
optimization. In Proceedings of the 2000 Congress on

Evolutionary Computation, volume 1, pages 84–88,
2000.

[7] R. C. Eberhart and Y. Shi. Tracking and optimizing
dynamic systems with particle swarms. In Proceedings

of the 2001 Congress on Evolutionary Computation,
volume 1, pages 94–100, 2001.

[8] B. Hajek and G. Sasaki. Simulated annealing–to cool
or not. Syst. Control Lett., 12(4):443–447, 1989.

[9] F. Heppner and U. Grenander. A stochastic nonlinear
model for coordinated bird flocks. In E. Krasner,
editor, The ubiquity of chaos, pages 233–238. AAAS
Publications, 1990.

[10] A. Huth and C. Wissel. The simulation of the
movement in fish schools. Journal of Theoretical
Biology, 156(7):365–385, 1992.

[11] J. Kennedy. Small worlds and mega-minds: effects of
neighborhood topology on particle swarm
performance. In Proceedings of the IEEE Congress on

Evolutionary Computation, volume 3, pages
1931–1938, 1999.

[12] J. Kennedy and R. Eberhart. Particle swarm
optimization. In IEEE International Conference on

Neural Networks, volume 4, pages 1942–1948, 1995.

[13] J. Kennedy and R. Mendes. Neighborhood topologies
in fully informed and best-of-neighborhood particle
swarms. IEEE Transactions on Systems, Man, and

Cybernetics, Part C: Applications and Reviews,
36(4):515–519, 2006.

[14] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi.
Optimization by simulated annealing. Science,
220(4598):671–680, 1983.

[15] J. W. Mann and G. D. Smith. A comparison of
heuristics for telecommunications traffic routing. In
V. J. Rayward-Smith, I. H. Osman, C. R. Reeves, and

G. D. Smith, editors, Modern Heuristic Search

Methods, pages 235–254. Wiley, 1996.

[16] I. H. Osman and N. Christofides. Capacitated
clustering problems by hybrid simulated annealing and
tabu search. International Transactions in Operational

Research, 1(3):317–336, 1994.

[17] R. Poli, J. Kennedy, and T. Blackwell. Particle swarm
optimization. Swarm Intelligence, 1(1):33–57, 2007.

[18] C. W. Reynolds. Flocks, herds and schools: a
distributed behavioral model. Computer Graphics,
21(4):25–34, 1987.

[19] Y. Shi and R. Eberhart. A modified particle swarm
optimizer. In Evolutionary Computation Proceedings,

IEEE World Congress on Computational Intelligence,
pages 69–73, 1998.

[20] Y. Shi and R. Eberhart. Parameter selection in
particle swarm optimization. In Evolutionary

Programming VII, pages 591–600. Springer, 1998.

[21] Y. Shi and R. C. Eberhart. Fuzzy adaptive particle
swarm optimization. In Congress on Evolutionary

Computation, volume 1, pages 101–106, 2001.

[22] Y. L. Zheng, L. H. Ma, L. Y. Zhang, and J. X. Qian.
On the convergence analysis and parameter selection
in particle swarm optimization. In International

Conference on Machine Learning and Cybernetics,
volume 3, pages 1802–1807, 2003.

