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Abstract This paper proposes a novel method for 

controlling the convergence rate of a particle swarm 

optimization algorithm using fractional calculus (FC) 

concepts. The optimization is tested for several well- 

known functions and the relationship between the frac- 

tional order velocity and the convergence of the algo- 

rithm is observed. The FC demonstrates a potential for 

interpreting evolution of the algorithm and to control 

its convergence. 

 

Keywords Particle swarm optimization · Fractional 
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1 Introduction 
 

In the last decade, particle swarming optimization 

(PSO) has been applied in a plethora of fields such as 

social modelling, computer graphics, simulation and 

animation of natural flocks or swarms, pattern recogni- 

tion, color image quantisation, and computational bi- 

ology [1]. PSO has seduced considerable interest from 

the natural computing research, where important work 

has been enforced in the study of its convergence. 

Fractional Calculus (FC) is a natural extension of 

the classical mathematics. In fact, since the beginning 

of theory of differential and integral calculus, several 

mathematicians investigated the calculation of nonin- 

teger order derivatives and integrals. Nevertheless, the 

application of FC has been scarce until recently, but 

the recent scientific advances motivated a renewed in- 

terest in this field. 

Bearing these ideas in mind, this work uses a frac- 

tional derivative to control the convergence rate of the 

PSO. The article is organized as follows. Section 2 in- 

troduces the FC. Section 3 presents the PSO and its 

working principles. Based on this formulation, Sect. 4 

generalizes the PSO to a fractional order. Section 5 

presents the results for the PSO with fractional veloc- 

ity. Finally, Sect. 6 outlines the main conclusions. 

 

 

2 Fractional calculus 
 

FC goes back to the beginning of the theory of dif- 

ferential calculus. Nevertheless, the application of FC 



 

  
 

 

 

just emerged in the last two decades, due to the prog- 

resses in the area of nonlinear and complex systems 

that revealed subtle relationships with the FC con- 

cepts. In the field of dynamical systems theory, some 

work has been carried out, but the proposed models 

and algorithms are still in a preliminary stage of estab- 

lishment. 

The fundamentals aspects of FC theory are ad- 

dressed in [2–5]. Concerning FC applications research 

efforts can be mentioned in the area of viscoelasticity, 

chaos, fractals, biology, electronics, signal process- 

ing, diffusion, wave propagation, percolation, model- 

ing, physics, control, and irreversibility [6–14]. 

FC is a branch of mathematical analysis that ex- 

tends to real or even complex numbers the order of 

the differential and integral operators. Since its foun- 

dation, the generalization of the concept of derivative 

and integral to a noninteger order α has been the sub- 

ject of distinct approaches. Due to this reason there are 

several alternative definitions of fractional derivatives. 

For example, the Laplace definition of a derivative of 

fractional order α ∈ C of the signal x(t), Dα [x(t)], is 
a ‘direct’ generalization of the classical  integer-order 

scheme yielding: 

  

for zero initial conditions. This means that frequency- 

based analysis methods have a straightforward adapta- 

tion. An alternative approach, based on the concept of 

fractional differential, is the Grünwald–Letnikov defi- 

nition given by the equation: 

where T is the sampling period and r is the truncation 

order. 

The characteristics revealed by fractional-order 

models make this mathematical tool well suited to 

describe phenomena such as irreversibility and chaos 

because of its inherent memory property. In this line 

of thought, the propagation of perturbations and the 

appearance of long-term dynamic phenomena in a 

population of individuals subjected to an evolution- 

ary process configure a case where FC tools fit ade- 

quately [15]. 

 

 
3 Particle swarm optimization algorithm 

 
Evolutionary algorithms have been successfully ap- 

plied to solve many complex optimization engineering 

problems. Together with genetic algorithms, the PSO 

algorithm, proposed by Kennedy and Eberhart [16], 

has achieved considerable success in solving optimiza- 

tion problems. 

The PSO algorithm was proposed originally in [16]. 

This optimization technique is inspired in the way 

swarms behave and its elements move in a synchro- 

nized way, both as a defensive tactic and for searching 

food. An analogy is established between a particle and 

a swarm element. The particle movement is character- 

ized by two vectors, representing its current position x 

and velocity v. Since 1995, many techniques were pro- 

posed to refine and/or complement the original canon- 

ical PSO algorithm, namely by analyzing the tuning 

parameters [17] and by considering hybridization with 
other evolutionary techniques [18]. 

  

  
 

 
In literature, some work embedding FC and PSO 

algorithms can be found. Pires et al. [19] studies the 

fractional dynamics during the evolution of a PSO. 

Reis et al. [20] proposes a PSO, for logic and   circuit 
An important property revealed by expression  (2) 

is that while an integer-order derivative just   implies 

a finite series, the fractional-order derivative requires 

an infinite number of terms. Therefore, integer deriva- 

tives are “local” operators in opposition with fractional 

derivatives which have, implicitly, a “memory” of all 

past events. 

Often, in discrete time implementations expres- 

sion (3) is approximate by 

design, where a proportional-derivative fitness func- 

tion is implemented to guide the optimization. 

Algorithm 1 illustrates a standard PSO algorithm. 

The basic algorithm begins by initializing the swarm 

randomly in the search space. As it can be seen in the 

pseudo-code, were t and t + 1 represent two consec- 

utive iterations, the position x  of each particle is  up- 

dated during the iterations by adding a new velocity v. 

This velocity is evaluated by summing an increment to 

 
 
  

 
 

 the previous velocity value. The increment is a func- 

tion of two components representing the cognitive and 

the social knowledges. 



 

  

 
Algorithm 1 Particle swarm optimization 

Initialize Swarm; 

repeat 

forall particles do 

calculate fitness f 

end 

forall particles do 

vt +1 = vt + φ1(b − x) + φ2(g − x); 

 
early to 0.4, during the evolution, would allow initial 

exploration toward a local search as iterations follow. 

An alternative technique, to prevent velocity explo- 

sion, proposed by Clerc and Kennedy [24] uses a con- 

striction χ in place of clamping the velocity: 

 
  

xt +1 = xt + vt +1; 
end 

  

t = t + 1 

until stopping criteria; 
 

 

 

The cognitive knowledge of each particle is in- 

cluded by evaluating the difference between its best 

position found so far b and the current position x. On 

the other side, the social knowledge, of each particle, 

is incorporated through the difference between the best 

swarm global position achieved so far g and its current 

position x. The cognitive and the social knowledge 

factors are multiplied by randomly uniformly gener- 

ated terms φ1  and φ2, respectively. 

PSO is a optimization algorithm that proves to   be 

efficient, robust and simple. However, if no care is 

taken the velocities may attain large values, particu- 

larly when particles are far away from local and global 

bests. Some approaches were carried out in order to 

eliminate this drawback. Eberhat et al. [21] proposed 

a clamping function (4) to limit the velocity, through 

the expression: 

 

 

 
4 PSO with fractional velocity 

 
In this section, a new method to control the PSO al- 

gorithm is introduced. Initially, the original velocity 

equation (7) is rearranged in order to modify the order 

of the velocity derivative, namely 

 

  

This expression can be rewritten as: 

  

 

 

  
   

    
The order of the velocity derivative can be general- 

ized to a real number 0 ≤ α ≤ 1, if the FC perspective 
     is considered, leading to a smoother variation and    a 

  

 

Later, a constant, the inertia weight, was introduced 

[17] to control the velocity from exploding (5). The in- 

ertia weight ω is very important to ensure convergence 

behavior over evolution by adopting the equation: 

longer memory effect. In order to study the  behavior 

of this new PSO strategy, a set of simulations are car- 

ried on testing values of α ranging from α = 0 up  to 

α = 1, with increments of �α = 0.1. Therefore, (9) 

can be written as (10) considering the first r = 4 terms 
of differential derivative given by (3), yielding 

 

  

Some empirical and theoretical studies were made 

 

to determine the best inertia value [22] in order to ob- 

tain better PSO behavior. Later the same authors [23] 

indicated that initializing ω to 0.9 and reducing it lin- 

 

  



 

  
 

 

 

 Rastrigin function: 

  

 
 

  

 

Larger values of r were tested leading to results of the 

same type. 

 

 
5 Test functions 

 
This section introduces the optimization functions 

that are adopted during the tests of PSO with frac- 

tional velocity update. The objective function consists 

in minimizing several well known functions namely: 

Bohachevsky 1, Colville, Drop wave, Easom, and 

Rastrigin represented in expressions (12–16), respec- 

tively [22]: 

 
Bohachevsky 1 function: 

 

 

 

 

These functions have n parameters, i = {1,..., n} 

and their global optimum value is f ∗. The algorithm 

adopts a real encoding scheme. 

 

 

6 Simulation results 

 
To study the influence of the fractional velocity in 

the algorithm, several tests are now developed. A 10- 

population size PSO is executed during a period of 200 

iterations with {φ1, φ2}∼ U [0, 1]. The fitness evolu- 

tion of the best global particle is taken as the   system 

output. 

Since PSO is a stochastic algorithm, every time it is 

executed it leads to a different trajectory convergence. 

Therefore, a test group of 201 simulations was consid- 
ered, and the median was taken as the final output, for 

  

 

Colville function: 

each value in the set α = {0, 0.1,..., 1}. In Figs. 1–5, 

the results can be seen for the adopted optimization 

functions fj , j = {1,..., 5}. 

From the figures, it can be verified that the conver- 

gence of the algorithm depends directly upon the frac- 

tional order α. With exception of the Easom function, 
  as α value increases the speed of convergence of   the 

  
 

 

 

Drop 

wave 

function: 
) 

 

 

 

 

Easom function: 
 

  

Fig.   1   Evolution   of   the   Bohachevsky   1   function     for 

α = {0,..., 1}, with best value of α = 0.19 



 

  

 

 

 

 

 
Fig. 2 Evolution of the Colville function for α = {0,... , 1}, 

with best value of α = 0.84 

 

 

 

 

 
Fig. 4 Evolution of the Easom function for α = {0,..., 1}, with 

best value of α = 0.33 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3 Evolution of the Drop wave function for α = {0,... , 1}, 

with best value of α = 0.18 

 

PSO decreases. However, with low values, the prob- 

ability that the population can be trapped in a local 

optimum becomes higher. For the Easom function, the 

fastest convergence is obtained when α = 0.33. As the 

α differs from this value, the convergency is slower. In 

both cases, convergence varies in a consistent form. 

Additional  experiments  were  carried  out  for the 

Ackley, De Jong, and Rosenbrock functions. In these 

experiments, the convergence behavior was similar 

with the Bohachevsky 1, Colville, Drop wave, and 

Rastrigin functions. 

In all functions, faster optimization convergence 

was obtained for values of α in the range [0.18, 0.84]. 
The value drawn varies according with the  optimiza- 

tion function used. In all cases, fractional PSO out- 

Fig. 5 Evolution of the Rastrigin function for α = {0,... , 1}, 

with best value of α = 0.81 

 
performs standard PSO in the convergence perspective 

point of view. 

In the sequel, several experiments are developed 

where the fractional-order of the velocity derivative, α, 

varies linearly during the swarm evolution. The results 

are compared when adopting the alternative scheme of 

varying the inertia factor ω. 

In this line of thought, the value of α varies linearly 

from 0.9 (t = 0) up to 0.3 (t = 200) according to the 
expression: 

 

 

  

Figures 6–10 show the time evolution of the best 

swarm element fitness. Additionally in the figures, are 



 

  
 

 

 

 

 

 

 

 
 

 
Fig. 6   Evolution of the Bohachevsky 1 function, with variable 

α and ω 

Fig. 9  Evolution of the Easom function, with variable α and ω 

 

 

Fig. 7  Evolution of the Colville function, with variable α and ω
 

 

 

 
 

 

 
 

 



 

 

 
 

 

 

 

 
Fig. 8   Evolution of the Drop wave  function, with variable   α 

and ω 

Fig. 10   Evolution of the Rastrigin function, with variable     α 

and ω 

 

depicted the results obtained with PSO when (5) is 

used and ω varies also linearly: 

t 

ω(t) = 0.9 − 0.6
200 

,    t = 0, 1, .. . , 200 (18) 

Comparing the tests results, it can be observed that 

both simulations reveal similar behavior. However, the 

use of fractional velocity contributes to an alternative 

understanding of the convergence dynamics. In fact, 

while the decrease in ω in (18) represents only higher 

accelerations and higher volatility, the decrease in α 

in (17) indicates the presence of a long term behavior, 

by incorporating a more significant amount of past in- 

formation, which in not attained for the case of α = 1. 

Bearing this fact in mind, it is verified that FC rep- 

resents a natural tool which permits to model nonlo- 

cal phenomena in time evolution, and points to future 

promising developments based on a new viewpoint. 



 

  

 
7 Conclusions 

 

FC is a well-developed mathematical tool which per- 

mits to understand the local and global velocity char- 

acteristics of the PSO behavior. 

The fractional order velocity was analyzed. It was 

shown that it directly influences the speed of conver- 

gence of the algorithm. Moreover, the results are con- 

sistent representing an important step to understand 

the relationship between velocity memory and the con- 

vergence behavior. 

The FC concepts open new perspectives toward the 

development of more efficient swarm optimization. 
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