
Particle Systems A Technique for
Modeling a Class of Fuzzy Objects

WILLIAM T. REEVES

Lucasfilm Ltd

This paper introduces particle systems--a method for modeling fuzzy objects such as fire, clouds, and
water. Particle systems model an object as a cloud of primitive particles that define its volume. Over
a period of time, particles are generated into the system, move and change form within the system,
and die from the system. The resulting model is able to represent motion, changes of form, and
dynamics that are not possible with classical surface-based representations. The particles can easily
be motion blurred, and therefore do not exhibit temporal aliasing or strobing. Stochastic processes
are used to generate and control the many particles within a particle system. The application of
particle systems to the wall of fire element from the Genesis Demo sequence of the film Star Trek II:

The Wrath of Khan [10] is presented.

Categories and Subject Descriptors: 1.3.3 [Computer Graphics]: Picture/Image Generation; 1.3.5
[Computer Graphics]: Computational Geometry and Object Modeling; 1.3.7 [Computer Graph-
ics]: Three-Dimensional Graphics and Realism

General Terms: Algorithms, Design

Additional Key Words and Phrases: Motion blur, stochastic modeling, temporal aliasing, dynamic
objects

1. INTRODUCTION

Model ing p h e n o m e n a such as clouds, smoke, water , a n d fire has p roved diff icult

wi th the exist ing t e c h n i q u e s of c o m p u t e r image synthes is . T h e s e "fuzzy" ob jec t s

do no t have smooth , wel l -def ined, a n d sh iny surfaces; i n s t ead the i r surfaces are

i rregular , complex, a n d ill def ined. We are i n t e r e s t ed in the i r d y n a m i c a n d fluid

changes in shape a n d appea rance . T h e y are no t rigid ob jec t s no r can the i r

mo t ions be descr ibed by the s imple affine t r a n s f o r m a t i o n s t h a t are c o m m o n in

c o m p u t e r graphics.

Th i s pape r p re sen t s a m e t h o d for the mode l ing of fuzzy objec ts t h a t we call

par t ic le sys tems. T h e r e p r e s e n t a t i o n of par t ic le sys t ems differs in t h ree basic

ways f rom r e p r e s e n t a t i o n s n o r m a l l y used in image synthes is . First , a n ob jec t is

r ep resen ted n o t by a set of p r imi t ive surface e lements , such as po lygons or

patches, t h a t def ine its b o u n d a r y , b u t as c louds of p r imi t ive par t ic les t h a t def ine

its volume. Second, a par t ic le sy s t em is n o t a s ta t ic en t i ty . I t s par t ic les change

form and move wi th the passage of t ime. New par t ic les are " b o r n " a n d old

Author's address: William T. Reeves, Lucasfilm Ltd, P.O. Box 2009, San Rafael, CA 94912.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
© ACM 0-89791-109-1/83/007/0359 $00.75

Reprinted From acm Transactions On Graphics--April 1983--Vol. 2, No. 2

359

William T. Reeves

particles "die." Third, an object represented by a particle system is not determin-

istic, since its shape and form are not completely specified. Instead, stochastic

processes are used to create and change an object's shape and appearance.

In modeling fuzzy objects, the particle system approach has several important

advantages over classical surface-oriented techniques. First, a particle (for now,

think of a particle as a point in three-dimensional spdce) is a much simpler

primitive than a polygon, the simplest of the surface representations. Therefore,

in the same amount of computation time one can process more of the basic

primitives and produce a more complex image. Because a particle is simple, it is

also easy to motion-blur. Motion-blurring of fast-moving objects for the removal

of temporal aliasing effects has been largely ignored in computer image synthesis
to date. A second advantage is that the model definition is procedural and is

controlled by random numbers. Therefore, obtaining a highly detailed model does

not necessarily require a great deal of human design time as is often the case with

existing surface-based systems. Because it is procedural, a particle system can

adjust its level of detail to suit a specific set of viewing parameters. As with fractal
surfaces [5], zooming in on a particle system can reveal more and more detail.

Third, particle systems model objects that are "alive," that is, they change form
over a period of time. It is difficult to represent complex dynamics of this form

with surface-based modeling techniques.

Modeling objects as collections of particles is not a new idea. Fifteen years ago,

the earliest computer video games depicted exploding spaceships with many little

glowing dots that filled the screen. Point sources have been used as a graphics

data type in many three-dimensional modeling systems (e.g., the early Evans and

Sutherland flight simulators), although there are few real references to them in

the literature. Roger Wilson at Ohio State [4] used particles to model smoke

emerging from a smokestack. There were neither stochastic controls nor dynamics

in his model. Alvy Ray Smith and Jim Blinn used particles to model star creation

and death in galaxies for the Cosmos series [11]. Alan Norton [9] used particles

to generate and display three-dimensional fractal shapes. Jim Blinn [3] discussed

light reflection functions for simulating light passing through and being reflected

by layers of particles. His technique was used to produce images of the rings of

Saturn. Blinn did not address the fuzzy object modeling problem which is the

topic of this paper. Volumetric representations have also been proposed as viable

alternatives to surface representations. Solid modeling [13] is a form of volumetric

representation, as is the work of Norm Badler and Joe O'Rourke on "bubble-

man" [2]. The use of stochastic modeling relates our work to the recent ad-

vances in fractal modeling [5].
Section 2 decribes the basic framework of particle systems in more detail.

Section 3 examines how particle systems were used to produce the fire element

in the Genesis Demo sequence from the movie Star Trek H: The Wrath of

Khan [10]. Section 4 presents several other applications of particle systems, and

Section 5 discusses ongoing and future research in this area.

2. BASIC MODEL OF PARTICLE SYSTEMS

A particle system is a collection of many minute particles that together represent

a fuzzy object. Over a period of time, particles are generated into a system, move

and change from within the system, and die from the system.

Reprinted From acm Transactions On Graphics--April 1983--Vol. 2, No. 2

36O

Particle Systems

To compute each frame in a motion sequence, the following sequence of steps

is performed: (1) new particles are generated into the system, (2) each new

particle is assigned its individual attributes, (3) any particles tha t have existed

within the system past their prescribed lifetime are extinguished, (4) the remain-

ing particles are moved and t ransformed according to their dynamic attr ibutes,

and finally (5) an image of the living particles is rendered in a frame buffer. Th e

particle system can be programmed to execute any set of instructions at each

step. Because it is procedural, this approach can incorporate any computat ional

model tha t describes the appearance or dynamics of the object. For example, the

motions and transformations of particles could be tied to the solution of a system

of partial differential equations, or particle at t r ibutes could be assigned on the
basis of statistical mechanics. We can, therefore, take advantage of models which

have been developed in o ther scientific or engineering disciplines.

In the research presented here, we use simple stochastic processes as the

procedural elements of each step in the generation of a frame. To control the

shape, appearance, and dynamics of the particles within a particle system, the

model designer has access to a set of parameters . Stochastic processes tha t

randomly select each particle's appearance and movement are constrained by

these parameters. In general, each parameter specifies a range in which a particle 's

value must lie. Normally, a range is specified by providing its mean value and its

maximum variance.

The following subsections describe in more detail the basic model for particle

systems, and how they are controlled and specified within the software we have

written.

2.1 Particle Generation

Particles are generated into a particle system by means of controlled stochastic

processes. One process determines the number of particles entering the system

during each interval of time, tha t is, at a given frame. Th e number of particles

generated is impor tant because it strongly influences the density of the fuzzy

object.

The model designer can choose to control the number of new particles in one

of two ways. In the first method, the designer controls the mean number of

particles generated at a frame and its variance. The actual number of particles

generated at frame f is

NPartsf = MeanPartsf + Rand() × VarPartsf,

where Rand is a procedure returning a uniformly distr ibuted random number

between -1 .0 and + 1.0, MeanPartsf the mean number of particles, and VarPartsf
its variance.

In the second method, the number of new particles depends on the screen size

of the object. The model designer controls the mean number of particles generated

per unit of screen area and its variance. The procedural particle system can

determine the view parameters at a part icular frame, calculate the approximate

screen area that it covers, and set the number of new particles accordingly. Th e

corresponding equation is

NPartsf = (MeanPartssa r + Rand() × VarPartssa r) X ScreenArea,

Reprinted From acm Transactions On Graphics--April 1983--Vol. 2, No. 2

361

William T. Reeves

where MeanPar t s sa is the mean per screen area, VarParts~a I its variance, and

S c r e e n A r e a the particle system's screen area. This me thod controls the level of

detail of the particle system and, therefore, the t ime required to render its image.

For example, there is no need to generate 100,000 particles in an object tha t

covers 4 pixels on the screen.
To enable a particle system to grow or shrink in intensity, the designer is able

to vary over t ime the mean number of particles generated per f rame (i.e.,

M e a n P a r t s f and MeanPar ts~a r are, as used above, functions of f rame number) .

Currently, we use a simple linear function

M e a n P a r t s f = I n i t i a l M e a n P a r t s + D e l t a M e a n P a r t s x (f - fo)

o r

MeanParts~a r = In i t ia lMeanPar t s~a + D e l t a M e a n P a r t s ~ , x (f - fo),

where f is the current frame, fo the first frame during which the particle system

is alive, I n i t i a l M e a n P a r t s the mean number of particles at this first frame, and

D e l t a M e a n P a r t s its rate of change. Th e variance controls, V a r P a r t s f and

VarParts~ m are current ly constant over all frames. More sophisticated quadratic,

cubic, or perhaps even stochastic variations in both the mean and variance

parameters would be easy to add.

To control the particle generation of a particle system, therefore, the designer

specifies/Co and either the parameters I n i t i a l M e a n P a r t s , D e l t a M e a n P a r t s , and

VarPar t s , or the parameters I n i t i a l M e a n P a r t s ~ , , De l taMeanPar t s~a , and

VarPartssa.

2.2 Part icle Att r ibutes

For each new particle generated, the particle system must determine values for

the following attributes:

(1) initial position,

(2) initial velocity (both speed and direction),

(3) initial size,

(4) initial color,

(5) initial t ransparency,

(6) shape,

(7) lifetime.

Several parameters of a particle system control the initial position of its particles.

A particle system has a position in three-dimensional space tha t defines its origin.

Two angles of rotat ion about a coordinate system through this origin give it an

orientation. A particle system also has a g e n e r a t i o n s h a p e which defines a region

about its origin into which newly born particles are randomly placed. Among the

generation shapes we have implemented are: a sphere of radius r, a circle of

radius r in the x - y plane of its coordinate system, and a rectangle of length l and

width w in the x - y plane of its coordinate system. Figure 1 shows a typical

particle system with a spherical generation shape. More complicated generat ion

shapes based on the laws of nature or on chaotic a t t ractors [1] have been

envisioned but not yet implemented.

Reprinted From acm Transactions On Graphics--April 1983--Vol. 2, No. 2

362

Particle Systems

yt Z t

origin of
particle ~ - ~
system ~ X'

~ ~ ! - i"!.i 'il ! : . : ~ ~ n t a t io n
les

/ x
origin of
world coordinate
space

Fig. 1o Typical particle system with spherical generation shape.

The generation shape of a particle system also describes the initial direction in

which new particles move. In a spherical generation shape, particles move

outward away from the origin of the particle system. In a circular or rectangular

shape, particles move upward from the x-y plane, but are allowed to vary from

the vertical according to an "eject ion" angle, which is another pa ramete r (see

Figure 3). The initial speed of a particle is determined by

In i t ia lSpeed = Mea n S p eed + R a n d () × VarSpeed,

where MeanSpeed and VarSpeed are two other parameters of the particle system,

the mean speed and its variance.

To determine a particle's initial color, a particle system is given an average

color, 1 and the maximum deviation from tha t color. Part icle t ransparency and

particle size are also determined by mean values and maximum variations. Th e

equations are similar to the one given above for initial speed.

A particle system has a parameter tha t specifies the shape of each of the

particles it generates. The particle shapes implemented so far are spherical,

rectangular, and streaked spherical. The lat ter is used to motion-blur par t ic les- -

a very impor tant feature when modeling fast-moving objects. We discuss streaking

particles in more detail in Sections 2.5 and 3.

The number of possible a t t r ibute control parameters and their variants is

endless. We are presenting those tha t we have found to be most useful and

interesting.

2.3 Particle Dynamics

Individual particles within a particle system move in three-dimensional space and

also change over t ime in color, t ransparency, and size.

In more detail, average red, green, and blue values are specified.

Reprinted From acm Transactions On Graphics--April 1983--Vol. 2, No. 2

363

William T. Reeves

To move a particle f rom one f rame to the next is a s imple m a t t e r of adding its

velocity vector to its posit ion vector. To add more complexity, a part icle sys t em

also uses an accelerat ion factor to modify the veloci ty of its part icles f rom f rame

to frame. With this p a r a m e t e r the model designer can s imulate gravi ty and cause

particles to move in parabolic arcs ra ther than in straigh~ lines.

A part ic le 's color changes over t ime as prescr ibed by the ra te-of-color-change

parameter . The t ransparency and size of part icles are controlled in exact ly the

same way. In our implementa t ion , these ra tes of change are global for all part icles

in a particle system, but one can easily imagine making this p a r a m e t e r s tochast ic

too.

2 . 4 Particle Extinction

When it is generated, a particle is given a l ifetime measured in frames. As each

f rame is computed, this lifetime is decremented . A particle is killed when its

l ifetime reaches zero.

Other mechanisms, if enabled, arrange for part icles to be killed because they

can contr ibute nothing to the image. I f the intensi ty of a particle, calculated f rom

its color and t ransparency, drops below a specified threshold, the part icle is killed.

A particle tha t moves more than a given distance in a given direct ion f rom the

origin of its pa ren t particle sys tem m a y also be killed. Th is mechan i sm can be

used to clip away part icles tha t s t ray outside a region of interest. 2

2.5 Particle Rendering

Once the position and appearance p a r a m e t e r s of all part icles have been calculated

for a frame, the rendering a lgor i thm makes a picture. T h e general part icle-

rendering problem is as complicated as the rendering of objects composed of the

more common graphical primitives, such as polygons and curved surfaces. Par t i -

cles can obscure o ther part icles tha t are behind t hem in screen depth. T h e y can

be t r ansparen t and can cast shadows on o ther particles. Fur thermore , part icles

can coexist in a scene with objects modeled by surface-based primit ives, and

these objects can intersect with the particles.

In our existing system, two assumpt ions allow us to simplify the render ing

algorithm. First, we assume tha t particle sys tems do not intersect with o ther

surface-based modeling primitives, and hence our rendering a lgor i thm need only

handle particles. Objects modeled using o ther techniques are composi ted toge ther

with particle sys tem objects in a post render ing composi t ing stage. In order for a

particle sys tem to intersect or be behind o ther objects, the rendering sys tem will

split the image of a particle sys tem into subimages based on clipping planes

defined in the model coordinate space. These subimages are then combined with

other images in the composi t ing stage.

The other simplifying assumpt ion made in our current rendering sys tem is t ha t

each particle can be displayed as a point light source. 3 With this assumpt ion ,

2 Note that this clipping is performed in modeling space--to a given plane for example. Clipping to
the viewing frustum occurs later in the rendering stage and is discussed below.
3 Explosions and fire, the two fuzzy objects we have worked with the most, are modeled well with this
assumption. Other fuzzy objects, such as clouds and water, are not. Section 5 discusses rendering
algorithms for these objects.

Reprinted From acm Transactions On Graphics--April 1983--V01.2, No. 2

364

Particle Systems

determining hidden surfaces is no longer a problem. Each particle adds a bit of

light to the pixels that it covers. A particle behind another particle is not obscured

but rather adds more light to the pixels covered. The amount of light added, and

its color depend on the particle's transparency and color. Currently, the amount

of light added does not depend on the distance between the particle and the

viewing position, but that would be an easy extension. The viewing transforma-

tion, the particle's size, and its shape determine which pixels are covered. All

particle shapes are drawn antialiased in order to prevent temporal aliasing and

strobing. Light may be added to a pixel by many particles, so the rendering

algorithm clamps the individual red, green, and blue intensities at the maximum

intensity value of the frame buffer instead of letting them wrap around.

With this algorithm and assumptions, no sorting of the particles is needed.

They are rendered into the frame buffer in whatever order they are generated.

Shadows'are no longer a problem, since particles do not reflect but emit light.

2.6 Particle Hierarchy

Our system has a mechanism that supports the formation and control of particle

system hierarchies. The model designer creates a particle system in which the

particles are themselves particle systems. When the parent particle system is

transformed, so are all of its descendant particle systems and their particles. The

parent particle system's mean color and its ~ariance are used to select the mean

color and variance of the offspring particle systems using the same equations

presented earlier. The number of new particle systems generated at a frame is

based on the parent's particle generation rate. The other parameters of the parent

similarly affect those of its children. The data structure used to represent the
hierarchy is a tree.

A hierarchy can be used to exert global control on a complicated fuzzy object

that is composed of many particle systems. For example, a cloud might be

composed of many particle systems, each representing a billowing region of water

particles. A parent particle system could group these all together and control the

cloud's global movement and appearance as influenced by the wind and terrain.

3. USING PARTICLE SYSTEMS TO MODEL A WALL OF FIRE AND

EXPLOSIONS

The Genesis Demo sequence [14] from the movie Star Trek II: The Wrath of

Khan [10] was generated by the Computer Graphics project of Lucasfilm Ltd.

The sequence depicts the transformation of a dead, moonlike planet into a warm,

earthlike planet by an experimental device called the Genesis bomb. In a com-

puter-simulated demonstration, the bomb hits the planet's surface and an ex-

panding wall of fire spreads out from the point of impact to eventually "cleanse"

the entire planet. The planet's surface begins to buckle, mountains grow, and

oceans, vegetation, and an atmosphere form to produce an earthlike environment.

The wall-of-fire element in the Genesis Demo was generated using a two-level

hierarchy of particle systems. The top-level system was centered at the impact
point of the genesis bomb. It generated particles which were themselves particle

systems. Figure 2 illustrates the positions of these second-level particle systems

and how they formed expanding concentric rings on the surface of the planet.

Reprinted From acm Transactions On Graphics--April 1983--V01.2, No. 2

365

William T. Reeves

Fig. 2.

point

Distribution of particle systems on the planet's surface.

The number of new particle systems generated in each ring was based on the
circumference of the ring and a controlling density parameter. New particle

systems were spaced randomly around the ring. Particle systems overlapping

others in the same or adjacent rings gave the ring a solid, continuous look.

The second-level particle systems began generating particles at varying times

on the basis of their distance from the point of impact. By varying the starting

times of the particle systems, the effect of an expanding wall of fire was produced.

The second-level particle systems were modeled to look like explosions. Figure

3 shows an example. The generation shape was a circle on the surface of the

planet. Each particle system was oriented so that particles, generated at random

positions within the circle, flew upward away from the planet's surface. The

initial direction of the particles' movement was constrained by the system's

ejection angle to fall within the region bounded by the inverted cone shown in

Figure 3. As particles flew upward, the gravity parameter pulled them back down

to the planet's surface, giving them a parabolic motion path. The number of

particles generated per frame was based on the amount of screen area covered by

the particle system.

The individual particle systems were not identical. Their average color and the

rates at which the colors changed were inherited from the parent particle system,

but varied stochastically. The initial mean velocity, generation circle radius,

ejection angle, mean particle size, mean lifetime, mean particle generation rate,

and mean particle transparency parameters were also based on their parent's

Reprinted From acm Transactions On Graphics--April 1983--V01.2, No. 2

366

Particle Systems

a typica l
part ic le 's
in i t ia l
speed &
direc

e j e c t i o n /

/ c a typ ica l
/ partic le 's i n i t i a l

/ p o s i t i o n

Fig. 3. Form of an explosion-like particle system.

parameters, but varied stochastically. Varying the mean velocity pa ramete r

caused the explosions to be of different heights.

All particles generated by the second-level particle systems were predominate ly

red in color with a touch of green. Recall from Section 2.5 tha t particles are

t reated as point light sources and tha t colors are added, not matted, into a pixel.

When many particles covered a pixel, as was the case near the center and base of

each explosion, the red component was quickly clamped at full intensi ty and the

green component increased to a point where the resulting color was orange and

even yellow. Thus, the hear t of the explosion had a hot yellow-orange glow which

faded off to shades of red elsewhere. Actually, a small blue component caused

pixels covered by very many particles to appear white. The rate at which a

particle's color changed simulated the cooling of a glowing piece of some hypo-

thetical material. The green and blue components dropped off quickly, and the

red followed at a slower rate. Particles were killed when their lifetime expired,

when their intensity fell below the minimum intensity parameter , or if they

happened to fall below the surface of the planet.

A quickly moving object leaves a blurred image on the ret ina of the human

eye. When a motion picture camera is used to film live action at 24 frames per

second, the camera shut ter typically remains open for 1/50 of a second. Th e

image captured on a frame is actually an integration of approximately half the

motion that occurred between successive frames. An object moving quickly

appears blurred in the individual still frames. Computer animation has tradition-

ally imaged scenes as individual instants in t ime and has ignored motion blur.

The resulting motion often exhibits temporal aliasing and strobing effects tha t

are disconcerting to the human eye. Motion blur is a complex topic tha t is

beginning to appear in the l i terature [7, 12].

The particles in our wall-of-fire e lement are motion-blurred. Three-dimensional

positions are calculated for a particle at the beginning of a frame and about

halfway through the frame, and an antialiased straight line is drawn between the

Reprinted From acm Transactions On Graphics--April 1983--Vol. 2, No. 2

367

William T. Reeves

corresponding screen coordinate positions in the frame buffer. 4 Antialiased lines

are used to prevent staircasing (moving jaggies) and strobing (popping on and

off) effects. To be perfect ly correct, screen motion due to movemen t of the

camera should be considered when calculating where to blur a particle. One can

also argue that simulating the imperfect temporal sampling of a movie camera is

not ideal and tha t motion blur should really simulate what. happens in the h u m an

eye. This is a good area for future research.

In the finished sequence, the wall of fire spread over the surface of the planet

both in front of and behind the planet 's limb (outer edge). Th e rendering

algori thm generated two images per f r ame- -one for all particles between the

camera 's position and the si lhouette plane of the planet, and one for all particles

on the other side of this clipping plane. These two elements were composi ted

with the barren moonlike planet e lement and the stars e lement in back-to-front

order--s tars , background fires, planet, and foreground fires.

Because the wall of fire was modeled using many small l ight-emitting particles,

light from the fire should have reflected off the planet 's surface. Our cur rent
implementat ion of particle systems does not handle light reflection on surface-

based objects. To achieve this effect, Lucasfilm team member T o m Duff added

an additional strong local light source above the center of the rings of fire when

he rendered the planet 's surface. This produced the glow tha t circles the ring of

fire on the planet 's surface. {This glow is visible in Figure 5.)

Figure 4 is a frame showing the initial impact of the Genesis bomb. It was

generated from one very large particle system and about 20 smaller ones about

its base. About 25,000 particles exist in this image. Figure 5 occurs par tway

through the first half of the sequence. It contains about 200 particle systems and

75,000 particles. Figure 6 shows the ring of fire extending over and beyond the

limb of the planet. It is formed from about 200 explosions and 85,000 particles.

Figure 7 shows the wall of fire just before it engulfs the camera; in Figure 8 the

camera is completely engulfed. Both employ about 400 particle systems and

contain over 750,000 particles. The textures in Figure 8 are completely synthet ic

and yet have a "natura l" and highly detailed appearance tha t is uncommon in

most computer graphics images. These images are interesting statically, but they

only really come alive on the movie screen. It is interesting to note tha t this is

also the case for many of the best tradit ional (i.e., non-computer-generated)

special effects shots where motion blur is an impor tan t factor.

A few points concerning random numbers are of interest from a product ion

point of view. The random number routine we use is based on [6], and generates

numbers uniformly in the range [0.0, 1.0]. It is an incremental algori thm based on

updating a table of seed values. To checkpoint a production, all tha t need be

saved is this random number tab le - -we do not save all the parameters of 750,000

particles. To restar t a computa t ion at frame n, the closest preceding frame p is

found tha t cannot contr ibute particles to frame n (this is de termined from the

lifetime parameters of all the active particle systems). Frame p + l ' s r andom

number table is then read, and particle generat ion can begin from there. No

4 A particle 's t rajectory is actually parabolic, but the straight-line approximation has so far proved

sufficient.

Reprinted From acm Transactions On Graphics--April 1983--Vol. 2, No. 2

368

Part ic le Sys tems

Fig. 4. Initial explosion.

Fig. 5. Expanding wall of fire.

Reprinted From acm Transactions On Graphics--April 1983--Vol. 2, No. 2

369

William T. Reeves

Fig. 6. Wall of fire over l imb of planet.

Fig. 7. Wall of fire abou t to engulf camera.

Reprinted From acm Transactions On Graphics--April 1983--Vol. 2, No. 2

370

Particle Systems

Fig. 8. Wall of fire completely engulfing camera.

particles are drawn until the simulation reaches frame n, so this backing up and
restarting usually takes only a few minutes.

Particles moving off screen or being extinguished for any reason do not affect

the randomness of other particles. This is because all stochastic decisions con-

cerning a particle are performed when it is generated. After that, its motion is

deterministic. If stochastic elements were to be used to per turba te the dynamics

of a particle (e.g., to simulate turbulence), more care would have to be taken

when checkpointing a frame and killing particles. In tha t case, it would probably

be bet ter to use a more deterministic and reproducible random number generator.

4. OTHER APPLICATIONS OF PARTICLE SYSTEMS

4.1 Fireworks

We are current ly using particle systems to model fireworks. The fireworks differ

from the Genesis Demo in that the control parameters of the particle systems

vary more widely, and streaking is more predominate. Figure 9 shows two red

explosions superimposed. One explosion is tall, thin, and near the end of its

lifetime, and the other is short, fat, and building up to full steam. Figure 10 shows

several green explosions dying off and blue spherical explosion starting up. Figure

11 contains overlapping, multicolored explosions formed with different generation

shapes and ejection angles. Again, these images only really come alive when

projected at 24 frames per second.

Reprinted From acm Transactions On Graphics--April 1983--Vol. 2, No. 2

371

William T. Reeves

Fig. 9. Two red fireworks.

Fig. 10. Green and blue fireworks.

Reprinted From acm Transactions On Graphics--April 1983--Vol. 2, No. 2

372

Particle Systems

Fig. 11. Multicolored fireworks.

4.2 Line Drawing Explosions

Part icle sys tems are being used to model exploding objects in a computer -

s imulated tactical display for a scene f rom the movie Return of the Jedi [8]. In

this case, the particle sys tems are implemented on a l ine-drawing display. In

order to s imulate mot ion blur, the particles are drawn as very small s t ra ight lines

instead of as points. The texturing effects tha t are evident in the previous

examples are lost on a l ine-drawing display, and ye t the mot ion still looks real

and the sequence gives the viewer the impression tha t something is exploding.

This is because the model is d y n a m i c - - i t moves well.

4.3 Grass

To model grass, we use an explosive type of particle system, similar to t ha t used

in the Genesis Effect. Ins tead of drawing part icles as little s treaks, the parabol ic

t ra jec tory of each particle over its entire l ifetime is drawn. Thus, the t ime-domain

mot ion of the particle is used to make a static shape. Grasslike green and dark

green colors are assigned to the part icles which are shaded on the basis of the

scene's light sources. Each particle becomes a simple represen ta t ion of a blade of

grass and the particle sys tem as a whole becomes a c lump of grass. Par t ic le

systems randomly placed on a surface and overlapping one ano ther are used to

model a bed or pa tch of grass.

Figure 12 is a picture enti t led white.sand by Alvy R a y Smi th of Lucasfilm. T h e

grass e lements of this image were genera ted as described above. T h e p lant

Reprinted From acm Transactions On Graphics--April 1983--Vol. 2, No. 2

373

I I William T. Reeves

F

4 ¸

S

Fig. 12. white.sand.

elements were generated using a partially stochastic technique similar to particle

systems.

5. ONGOING RESEARCH IN PARTICLE SYSTEMS

A logical extension of this research will be to use particle systems to model fuzzy

objects in which the individual particles can not be rendered as point light

sources, but must be rendered as individual light-reflecting objects.
To this end, we have begun to investigate the modeling of clouds. Clouds are

difficult for several reasons. First, the shape and form of clouds are complex,

depending on many factors such as wind direction, temperature, terrain, and

humidity. The atmospheric literature abounds with cloud models that are simple

in concept but computationally difficult, since most are based on partial differ-

ential equations. Second, clouds are difficult because they can throw shadows on

themselves. This property is very important in making a cloud look like a cloud.

Third, the number of particles needed to model a cloud will be very large. This

will require an efficient rendering algorithm.

8. CONCLUSIONS

We have presented particle systems, a method for the modeling of a class of fuzzy

objects, and have shown how they were used in making the fire element of the

Genesis Demo sequence for the movie Star Trek H: The Wrath of Khan. Particle

systems have been used as a modeling tool for other effects and appear promising

for the modeling of phenomena like clouds and smoke.

Reprinted From acm Transactions On Graphics--April 1983--Vol. 2, No. 2

374

"Particle Systems

Particles, especially when modeled as point light sources or as streaks of light,

have proved efficient to r e n d e r - - t h e y are merely antialiased lines. Because they

are so simple, they lend themselves to a hardware or firmware implementat ion.

With a hardware antialiased line-drawing routine, the computa t ion of our wall-

of-fire e lement would have been two to three t imes faster.

Particle systems are procedural stochastic representat ions controlled by several

global parameters. Stochastic representat ions are capable of producing minute

detail without requiring substantial user design time. Th e textures in the fire

sequence could not have been modeled with other existing methods. Fire images,

scanned in from a photograph or painted, could have been texture mapped, but

they would still have been static. Another advantage of a procedural represen-

tat ion is its ability to adapt to several different viewing environments . For

example, procedural representat ions can generate only as much detail as is needed

in a frame, potential ly saving significant amounts of computa t ion time.

Having finally come to grips with spatial aliasing, it is now time for computer

image synthesis to being to investigate and solve temporal aliasing problems. T h e

Genesis Demo is the first "big screen" computer-synthesized sequence to include

three-dimensional dynamic motion blur. The particles in a particle system can

easily be motion-blurred because they are so simple. A great deal of work remains

to be done in this area--b lurr ing particles is much easier than blurring curved

surface patches.

Part icle systems can model objects tha t explode, flow, splatter, puff up, and

billow. These kinds of dynamics have not been produced with surface-based

representations. The most impor tant aspect of particle systems is tha t they move:

good dynamics are quite often the key to making objects look real.

7. A C K N O W L E D G M E N T S

The author gratefully acknowledges the suggestions and encouragement of all

members of the graphics project at Lucasfflm Ltd, especially those who worked

on the Genesis Demo sequence: Loren Carpenter, Ed Catmull, Pa t Cole, Rob

Cook, David DiFrancesco, T o m Duff, Rob Poor, T o m Porter , and Alvy Ray

Smith. The crusade for motion blur and antialiasing in computer image synthesis

is a goal of the entire graphics project and Lucasfilm as a whole. One of the

referees deserves credit for pointing out several extensions and improvements to

the motion blurring discussion. Finally, thanks to Ricki Blau for editorial and

photographic assistance.

REFERENCES

1. ABRAHAM, R., AND SHAW, C. DYNAMICS--The Geometry of Behavior. City on the Hill Press,
Santa Cruz, Calif., 1981.

2. BADLER, N. I., O'ROURKE, J., AND TOLTZIS, H. A spherical human body model for visualizing
movement. Proc. IEEE 67, 10 (Oct. 1979).

3. BLINN, J. F. Light reflection functions for simulation of clouds and dusty surfaces. Proc.
SIGGRAPH '82. In Comput. Gr. 16, 3, (July 1982), 21-29.

4. CsuaI, C., HACKATHORN, R., PARENT, R., CARLSON, W., AND HOWARD, M. Towards an inter-

active high visual complexity animation system. Proc. SIGGRAPH 79. In Comput. Gr. 13, 2 (Aug.
1979), 289-299.

5. FOURNIER, A., FUSSEL, D., AND CARPENTER, L. Computer rendering of stochastic models.
Commun. ACM25, 6, (June 1982), 371-384.

Reprinted From acm Transactions On Graphics--April 1983--Vol. 2, No. 2

375

