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[1] Particle tracking algorithms are very useful methods to model conservative transport
in surface and subsurface hydrological systems. Recently, a novel ad hoc particle-based
method was proposed to account for multicomponent reactive transport by Benson and
Meerschaert (2008). This one-dimensional particle method has been shown to match
theoretical predictions, but, to date, there has been no rigorous demonstration that the
particle method actually matches the governing equations for chemical transport. We
generalize this particle method to two-dimensional and three-dimensional systems and
rigorously demonstrate that this particle method converges to the diffusion-reaction
equation at the limit of infinitely small time step. We also investigate the numerical error
associated with the method.
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1. Introduction

[2] Water that flows through aquifer and surface water
bodies typically changes in chemical composition along a
flow path. One of the mechanisms for this is chemical reac-
tion, either with neighboring solids and biota or with other
dissolved constituents. An accurate prediction of the chem-
ical evolution of a system requires models (e.g., governing
equations) that correctly describe the chemistry and physics
of the reactions across many spatial and temporal scales.
Examples of these systems include radionuclide transport
[Ma et al., 2010; Greskowiak et al., 2010; Hammond and
Lichtner, 2010], CO2 sequestration [Strazisar et al., 2006;
Audigane et al., 2007; Han et al., 2010], ore body genera-
tion [Raffenspreger, 1997; Schardt et al., 2001], hydrother-
mal systems [Lichtner, 1985; Steefel and Lasaga, 1994],
chemical and biochemical remediation of contaminated
aquifers [Molz and Widdowson, 1988; Knutson et al., 2005,
2007; Steefel et al., 2005; Mayer et al., 2001, 2002, 2006],
and basin-scale diagenesis, reservoir rock, and petroleum
generation [Lee, 1997; Morse et al., 1997; Wilson et al.,
2000; Jones and Xiao, 2006] to name a few, but the prob-
lem is not restricted to aqueous environments [Searle et al.,
1998a, 1998b; Monson and Kopelman, 2000]. In many nat-
ural systems, the rate of reactions between the chemical spe-
cies is limited by their mixing, because the molecules can
only react when they come into physical contact. In systems

that are well mixed, like a stirred laboratory beaker, the
fluctuations in concentrations of the chemical species are
negligible, and the rate of reaction is spatially uniform.
However, if the mixing is slow in comparison to the rate of
the reaction, a mixing-limited regime will emerge. In this
regime, the fluctuations in concentrations possess a signifi-
cant magnitude, and, gradually, we may begin to observe
areas of the domain where one reacting species is depleted
relative to the others. From a mathematical point of view,
the fluctuations of concentrations become anticorrelated
[Bolster et al., 2012; Tartakovsky et al., 2012].

[3] This segregation of the system into such ‘‘islands,’’ in
which the overall reaction rate is dictated by the reduced area
of contact between reactants, was described from theoretical
and numerical viewpoints several decades ago [Ovchinnikov
and Zeldovich, 1978; Toussaint and Wilczek, 1983; Kang
and Redner, 1984]. These authors showed that, in a simple
chemical system that was dominated by diffusive transport,
the segregation into islands was self-generated. The depletion
of one of the reacting species inside the islands largely limits
the reactions to island interfaces. As a result, the overall reac-
tion rate is slower than the one anticipated for a well-mixed
system. A small-scale experiment confirmed these results
[Monson and Kopelman, 2004]. The slowdown of reaction
rate has practical importance, especially in the groundwater
remediation context, where the choice of remediation strat-
egy is based on accurate modeling of the anticipated decay
rate of the contaminants. To this end, a Lagrangian technique
was proposed that could be implemented at any scale
[Benson and Meerschaert, 2008]. The algorithm accounts for
the increased probability that nearby particles will have for
colocation (mixing) and reaction. It is the exact calculation
of reaction probability that allows explicit simulation of poor
mixing and reactant segregation. These numerical results
were shown to correspond to perturbed continuum reaction-
diffusion equations [Bolster et al., 2012; Tartakovsky et al.,
2012]. However, to date, the Lagrangian method has never
been shown to converge to a specific governing equation.
It is therefore a phenomenological procedure: the particle
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methods can be used to solve for diffusion-limited reaction,
but exactly what is being solved? And what do changes in
the numerical parameters represent in terms of physical prop-
erties and numerical error? Our goal here is to show that the
Lagrangian method proposed by Benson and Meerschaert
[2008] does correspond to a continuum equation of transport
and reaction and that the numerical errors can be quantified
and controlled by the user.

[4] The classical (continuum) approach to describe the
fate and transport of a chemical species is the advection-
diffusion-reaction equation (ADRE). In the special case of
constant advection, the system can be transformed by a Gali-
lean transformation and described by the simpler DRE:

@Ci

@t
¼ r � ðDrCiÞ � ri: (1)

where Ci is the concentration of the chemical species i
[mol/md], D is the diffusion coefficient [m2/s], and ri is the
net rate of decay of the species [mol/mds]. Here, d is the
dimension of the system (d ¼ 1, 2, 3).

[5] For the case of radioactive decay, A! C, the rate is
typically described by the linear expression ri ¼ kdCA, and
the equation can be solved by means of Lagrangian particle
tracking (PT) in a straightforward manner [Sherman and
Peskin, 1986; Kinzelbach, 1987]. In the context of this
paper, we are interested in more complicated case of a
bimolecular reaction described by the following equation:

Aþ B! C: (2)

[6] For this type of reaction, the rate is usually modeled
by the (nonlinear) law of mass action, i.e.,

ri ¼ kCACB; (3)

where i ¼ A, B, and k is the constant rate coefficient
[md/mol s].

[7] The modeling of coupled advection-diffusion-reaction
equations with bimolecular reaction rate (3) is the subject of
extensive research [Dentz et al., 2011]. Benson and Meer-
schaert [2008] described a novel PT approach for bimolecu-
lar reactive flow in a one-dimensional case with zero
advection and a constant diffusion coefficient and demon-
strated that the PT approach is capable of capturing the con-
tinuum of well-mixed to incomplete mixing regimes. In
short, within each time step, the PT approach moves particles
by random walk and then annihilates part of them at a proba-
bility related to their distance apart. A novel feature of the
PT approach is that it is purely Lagrangian and grid-less. As
such, it can accurately model incomplete mixing at all scales.
This is in contrast with approaches that assume complete
mixing within the domain [Gillespie, 2000] or within volume
elements [Isaacson, 2008]. In addition, the PT approach has
an advantage over the particle-grid approach of Tompson
and Dougherty [1992], because the latter involves calcula-
tion of the concentrations at grid points at every time step to
compute the reaction term. This is no longer needed within
the purely PT scheme, and the interpolation error involved
with such a calculation is avoided. The analogy between a
random walk and the diffusion equation is well known [e.g.,

Einstein, 1906; Chandrasekhar, 1943; Kinzelbach, 1987].
It remains to be shown that the addition of the particle anni-
hilation within the PT approach reflects the reaction term
correctly. In other words, we need to show that there is a
mathematical analogy between the PT approach and the
DRE (1) in the limit of an infinitely small time step. Further-
more, we generalize the PT approach to arbitrary dimension
d and try to clarify some of the aspects of the PT approach,
with special care regarding numerical errors and the meaning
of the initial condition, namely, the initial particle numbers.

2. Description of the PT Simulation

[8] The PT approach purports to solve (1) for a specified
domain with appropriate initial and boundary conditions. In
the PT approach, the particles of species A represent the
concentration of that species, CA, in a statistical manner. In
other words, the specific locations of the particles in a spe-
cific simulation are usually meaningless ; it is the ensemble
average and other spatial and temporal statistical properties
that are investigated.

2.1. Initialization of the PT

[9] The primary advantage of the PT approach over deter-
ministic approaches is in cases where the initial condition is
nondeterministic and is given in terms of statistical parame-
ters. A good example for this case is a system with an initial
condition of a uniform mean concentration with some noise
around it. Suppose that the mean concentration is equal for
both species and given by the following equation:

hCiðx; t ¼ 0Þi ¼ C0; (4)

where h� � �i denotes the ensemble average, i ¼ A, B, and C0 is
a uniform prescribed initial concentration over the entire do-
main �d. Initially, the concentration fluctuations over the en-
semble average, i.e., Ci

0 ¼ Ci � hCii, are assumed to have a
short-range correlation that can be mathematically described
by a Dirac-delta function:

hCi
0ðx; t ¼ 0ÞCi

0ðy; t ¼ 0Þi ¼ �2ld�ðx� yÞ: (5)

[10] In the above expression, the cross correlation of the
fluctuations is determined by the constant �, denoting the
magnitude of the concentration fluctuations [mol/md], and
the constant l, denoting the length scale of these fluctua-
tions [m]. The use of Dirac-delta function is known to be a
good approximation of short-range correlations, such as
Gaussian correlation and exponential correlation [Neu-
weiler et al., 2003; Bolster et al., 2009; Tartakovsky et al.,
2012].

[11] For a domain of volume �d, this initial condition is
modeled in the PT system by spreading N0 particles in the
domain in a random manner. It is straightforward to show
by statistical analysis that the initial conditions ((4) and
(5)) dictate the initial density of the particles:

N0

�d
¼ C2

0

�2ld
: (6)

[12] In other words, the total number of particles is
correlated to the initial condition: the more noise in the
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initial condition, the less particles need to be spread. Note
that if the system is always completely smooth (i.e., per-
fectly mixed), then �! 0, and the problem may not be sat-
isfactorily solved using the PT approach, because the large
number of particles can be impractical. We define the mass
of a single particle (the amount of moles described by a sin-
gle numerical particle) by mp [mol]. As all particles carry
the same mass, it is given by the total mass in the system
divided by the number of particles :

mp ¼
C0�d

N0
: (7)

[13] Because we spread N0 particles for each species, we
end up with a total number of 2N0 particles in the domain.
Due to the random nature of the spread of the particles, there
is no correlation initially between the locations of the A par-
ticles and the B particles, reflecting the initial condition:

hC0Aðx; t ¼ 0ÞC0Bðy; t ¼ 0Þi ¼ 0: (8)

2.2. Description of PT Steps

[14] A single simulation time step in the PT approach
describes the change of state of the system between t and
t þ �t. It is composed of two substeps: random walk and
reaction.

[15] The random walk is an implementation of a Lange-
vin equation:

xjðt þ�tÞ ¼ xjðtÞ þ �j

ffiffiffiffiffiffiffiffiffiffiffiffi
2D�t
p

; (9)

where xj is the jth component of the particle location
(j ¼ 1; . . . ; d), and �j is a random number of standard nor-
mal distribution, with zero mean and unit variance, i.e.,
�j � Nð0; 1Þ. Thus, for each particle, its location is updated
in all d dimensions by random values that account for the
diffusion in this time step.

[16] The reaction is then implemented by sequentially
looping through all possible AB couples of particles in the
system. Here, an AB couple is any combination of one A
particle and one B particle (order being immaterial). For
each such couple, a probability of forward reaction during
the time step between those particles is then given by

pf ¼ kmp�tvðsÞ; (10)

where s is the distance between the particles, and v(s) is the
colocation probability density function (pdf). This is the
pdf for two particles to colocate over the time step, which,
for Brownian motion diffusion with a constant coefficient
D, is given by Benson and Meerschaert [2008]:

vðsÞ ¼ 1

ð8�D�tÞd=2
e�

s2

8D�t: (11)

[17] The probability of reaction, calculated by (10), is
the probability of the AB couple to annihilate in this time
step. Technically, this is done by producing a random num-
ber of uniform distribution � � Uð0; 1Þ and comparing

these probabilities. Then, if pf > �, the particles are annihi-
lated, i.e., removed from the system. The choice of time
step must be such that pf < 1 is assured.

[18] If one is interested in the fate of the product of the
reaction (or in the case of backward reaction), a single C
particle is placed into the domain. The location of this par-
ticle is randomly distributed, with the mean location at the
mid point between the annihilated A and B particles and
with a variance of D�t. It may be advected and diffused by
a Langevin equation just as the A and B particles and,
depending on the reversibility of reaction, have a certain
probability to decay back into A and B particles in some
future time step.

[19] The PT steps are repeated until the time for simula-
tion end is approached or, in the case of irreversible reac-
tion, until all particles are consumed by the reaction. The
PT simulation is repeated in a Monte Carlo fashion so that
results can be statistically analyzed with any specified degree
of confidence. Typically, one would be interested in deter-
mining the average concentration in the system as a function
of time, but other parameters, such as the concentration var-
iance, or higher moments, can be computed as well.

3. Analogy of the PT Approach with the DRE

[20] We now show the analogy between the numerical
PT scheme and the DRE equation. Start by defining
WAðx; tÞdx as the expected number of A particles in the
infinitesimal volume dx centered at x. The expected density
of particles is then given by WAðx; tÞ, such thatR

�d WAðx; tÞdx ¼ NðtÞ, where N is the total number of the A
particles. For t ¼ 0, N(t) ¼ N0.

[21] An initial distribution WAðx; t ¼ 0Þ in a specific sim-
ulation is the sum of N0 delta functions, positioned ran-
domly in the domain �d. At later times, the distribution is
smeared by the diffusion and reduced by the reactions. It is
worth noting that the density distribution is similar in
essence to a pdf, in the sense that it is nonnegative, but dif-
ferent in the sense that the integration over the distribution
does not sum to unity, but rather to N(t).

[22] After the particles have moved by the random walk,
the expected particle density is the sum of the densities of all
particles multiplied by the probability that they jump to loca-
tion x. This sum, neglecting boundary effects, is given by

W �
Aðx; t þ�tÞ ¼

Z
WAðy; tÞ

1

ð4�D�tÞd=2
e�
ðx�yÞ2
4D�t dy; (12)

where the star denotes the resulting intermediate distribu-
tion, before the reaction substep takes place. A similar
expression is found for W �

B , by replacing A by B in (12).
[23] Next, the reaction takes place and is expected to an-

nihilate a fraction of this particle density, such that the new
distribution is given by

WAðx; t þ�tÞ ¼ W �
Aðx; t þ�tÞ ��W �

Aðx; t þ�tÞ; (13)

where �W �
Aðx; t þ�tÞ is the annihilated density. To express

this density, we consider �W �
Aðx; t þ�tÞ�x, the number of

particles in the volume ½x; xþ�xÞ that will be annihilated.
Clearly, if one A particle existed in this segment, and only
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one B particle would have been in its proximity, this proba-
bility would have been simply pf, the forward reaction prob-
ability between two particles (10). However, neither the
number of A particles in this segment nor the number of
nearby B particles is necessarily unity. Therefore, we need to
multiply pf by the actual number of A and B particles and
sum over the whole domain by means of integration. We can
now write

�W �
Aðx; t þ�tÞ ¼ W �

Aðx; t þ�tÞ
Z

pf ðx� x0ÞW �
Bðx0; t þ�tÞdx0;

(14)

with pf ðx� x0Þ ¼ kmpvðx� x0Þ�t. Substituting (12) and
(14) into (13), we get

WAðx; t þ�tÞ

¼ W �
Aðx; t þ dtÞ 1� kmp�t

Z
W �

Bðx0; t þ�tÞvðx� x0Þdx0
� �

¼
Z

WAðy; tÞ
1

ð4�D�tÞd=2
e
�
ðx� yÞ2

4D�t dy

�
"

1� kmp�t

Z
vðx� x0Þdx0

Z
WBðy0; tÞ

1

ð4�D�tÞd=2
e
�
ðx0 � y0Þ2

4D�t dy0
#
:

(15)

Expanding in a Taylor series for WAðx; tÞ we get, for the
one-dimensional case,

WAðy; tÞ ¼ WAðx; tÞ þ�x
@WA

@x
þ ð�xÞ2

2!

@2WA

@x2
þ . . . : (16)

For the two-dimensional case, we get

WAðy; tÞ ¼ WAðx; tÞ þ�x1
@WA

@x1
þ�x2

@WA

@x2
þ

1

2!
ð�x1Þ2

@2WA

@x2
1

þ 2�x1�x2
@2WA

@x1@x2
þ ð�x2Þ2

@2WA

@x2
2

� �
þ . . . ;

(17)

where �x ¼ y� x ¼ ð�x1;�x2Þ. For the three-dimensional
case,

WAðy; tÞ ¼ WAðx; tÞ þ�xj
@WA

@xj
þ 1

2!
ð�xjÞ2

@2WA

@x2
j

"

þ 2�x1�x2
@2WA

@x1@x2
þ 2�x1�x3

@2WA

@x1@x3

þ 2�x2�x3
@2WA

@x2@x3

#
þ . . . ;

(18)

where Einstein notation is applied and �x ¼ ð�x1;�x2;
�x3Þ ¼ y� x.

[24] Substitution of the appropriate Taylor expansion
(16)–(18) into the integral in (15) yields

Z
WAðy; tÞ

1

ð4�D�tÞd=2
e�
ðx�yÞ2
4D�t dy ¼ WAðx; tÞ þ D�t

@2WA

@xj@xj

þOððD�tÞ2Þ;
(19)

and, similarly,

Z
WBðy0; tÞ

1

ð4�D�tÞd=2
e�
ðx0�y0 Þ2

4D�t dy0

¼ WBðx0; tÞ þ D�t
@2WB

@xj@xj
þOððD�tÞ2Þ:

(20)

[25] By substituting (19) and (20) into (15), we get

WAðx; t þ�tÞ ¼ WAðx; tÞ þ D�t
@2WA

@xj@xj
þ . . .

� �

� 1� kmp�t

Z
vðx� xÞdx0 WBðx0; tÞ þ D�t

@2WB

@xj@xj
þ . . .

� �� �

¼ WAðx; tÞ þ D�t
@2WA

@xj@xj

� kmp�tWAðx; tÞ
Z

vðx� x0ÞWBðx0; tÞdx0 þ Oðð�tÞ2Þ:

(21)

[26] Taking the integral on the right-hand side of (21),
expanding WB once more in a Taylor series as in (16)–(18),
and using (11), we find

Z
vðx� x0ÞWBðx0; tÞdx0 ¼

Z
1

ð8�D�tÞd=2
e
�
ðx� x0Þ2

8D�t WBðx0; tÞdx0

¼ WBðx; tÞ þ 2D�t
@2WB

@xj@xj
þ . . . :

(22)

[27] Substituting (22) into (21), subtracting WAðx; tÞ from
both sides and dividing by �t, we find

WAðx; t þ�tÞ �WAðx; tÞ
�t

¼ D
@2WA

@xj@xj
� kmpWAðx; tÞWBðx; tÞ

þ Oð�tÞ:
(23)

[28] As �t! 0, this equation becomes

@WA

@t
¼ D

@2WA

@xj@xj
� kmpWAWB: (24)

[29] Finally, we recognize that the density of the par-
ticles WA (of units [m�d]) can be expressed in terms of
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concentration of the species (of units [mol/md]) by simply
multiplying it by the mass of a single particle mp, i.e.,

CA ¼ WAmp: (25)

[30] Hence, multiplying both sides of (24) by mp, we get
the one-dimensional DRE for constant D :

@CA

@t
¼ Dr2CA � kCACB: (26)

[31] Thus, we have shown that the PT approach, at the
limit of �t! 0, converges to the DRE.

4. Discussion and Conclusions

[32] The utility of the PT approach for nonreactive par-
ticles is clear: the approach does not suffer from numerical
dispersion and is potentially highly parallelizable. The prob-
lem of using the approach for reactive particles was first
addressed by Tompson and Dougherty [1992], who discretize
space into bins, count particles, convert to concentrations,
calculate classical reactions, and reconvert concentrations to
particles. The PT method of Benson and Meerschaert [2008]
obviates the particle/concentration conversion at each time
step and eliminates the assumption of perfect mixing at the
bin (or Eulerian block) scale. On the other hand, the PT
approach had not been linked definitively to a differential
equation of transport and reaction. In this work, we were
able to show the analogy between the DRE and the PT
approach. This was done at the limit of �t! 0, i.e., an
infinitely small time step. To this aim, we defined a density
function of the particles and described its evolution over
time due to random walks and reaction between particles.
Using Taylor series expansions and basic mathematical con-
cepts, we were able to show that the density is described by
the DRE at the �t! 0 limit. This was done for an arbitrary
physical dimension (d ¼ 1, 2, 3). We also showed that the
error induced by the scheme isOð�tÞ.

[33] This analysis strictly speaking is limited to zero (or
spatially constant) advection, whereas transport in natural
porous media is typically characterized by a velocity field
that can vary in space. Derivation of a PT approach for
solving the advection-diffusion-reaction in porous media is
therefore a very important next step that is beyond the
scope of this paper. It appears that the appropriate approach
for this problem is to perform operator splitting, i.e., take
the advective, diffusive, and reactive steps sequentially. As
shown theoretically and experimentally by Taylor [1953],
advection, even when heterogeneous, does not cause mix-
ing of solutes, only diffusion does. Therefore, as long as
the time step is sufficiently small that any errors induced
by operator splitting are small, it should be sufficient to
show that the reaction-diffusion part of the particle
approach is correctly modeling the equation. This remains
to be proven.
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