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Abstract The velocity field in the vicinity of a laser-

generated cavitation bubble in water is investigated by

means of particle tracking velocimetry (PTV). Two situa-

tions are explored: a bubble collapsing spherically and a

bubble collapsing aspherically near a rigid wall. In the first

case, the accuracy of the PTV method is assessed by

comparing the experimental data with the flow field around

the bubble as obtained from numerical simulations of the

radial bubble dynamics. The numerical results are matched

to the experimental radius–time curve extracted from high-

speed photographs by tuning the model parameters. Tra-

jectories of tracer particles are calculated and used to

model the experimental process of the PTV measurement.

For the second case of a bubble collapsing near a rigid

wall, both the bubble shape and the velocity distribution in

the fluid around the bubble are measured for different

standoff parameters c at several instants in time. The

results for c[ 1 are compared with the corresponding

results of a boundary-integral simulation. For both cases,

good agreement between simulation and experiment is

found.

1 Introduction

Particle image velocimetry (PIV) and particle tracking

velocimetry (PTV) are nowadays routinely used to exam-

ine small-scale flow fields in microfluidic systems, for

example in lab-on-a-chip devices (Santiago et al. 1998;

Devasenathipathy et al. 2003; Bown et al. 2006). These

systems typically feature small geometrical dimensions and

flow velocities, thus low Reynolds numbers, and can be

well investigated using conventional microscopic setups. In

this work, the flow field around a single cavitation bubble

collapsing in water is measured using a PTV technique.

This flow is characterized by a large dynamic range of

velocities, and quite different time scales and spatial scales,

and therefore poses problems for particle-based velocime-

try. Furthermore, a relatively large observation distance is

needed so as not to disturb the bubble dynamics.

The collapse of cavitation bubbles has been studied

extensively over the past few decades both experimentally

and numerically (Lauterborn et al. 1999). Special attention

has been paid to bubbles collapsing near boundaries (Blake

and Gibson 1987), due to their major role in ultrasonic

cleaning and cavitation erosion (Philipp and Lauterborn

1998; Krefting et al. 2004). Their shape dynamics has been

investigated using high-speed photography in a variety of

experimental situations, for example at different distances

from a plane rigid boundary (Lauterborn and Bolle 1975;

Vogel et al. 1989; Lindau and Lauterborn 2003; Isselin

et al. 1998), in front of a convex or concave solid wall

(Tomita and Shima 1990), a composite (Tomita and Kod-

ama 2003), an elastic (Brujan et al. 2001) or a free surface

(Blake and Gibson 1981). The main physical features of

bubble collapse near a wall are shock wave emission and

the formation of a liquid jet that penetrates the bubble. If

the bubble is close, the jet hits the boundary with a velocity

that can exceed 100 m/s (Lauterborn and Bolle 1975;

Vogel et al. 1989; Lauterborn 1974). Shock waves emitted

upon collapse have been characterized by means of

hydrophone measurements and visualization techniques

like shadowgraph imaging (Vogel et al. 1989; Lindau and

Lauterborn 2003; Isselin et al. 1998; Vogel and Lauterborn

1988a; Shaw et al. 1996). Also, erosion and pit formation
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on surfaces caused by collapsing bubbles have been studied

by correlating their dynamics with damage spots on the

surface (Philipp and Lauterborn 1998; Isselin et al. 1998;

Tomita and Shima 1986). Numerical work on the interac-

tion of a bubble with nearby boundaries using the bound-

ary-integral method (Blake et al. 1986; Best and Kucera

1992; Robinson et al. 2001) has generally shown good

agreement with experimental observations. Computations

were performed up to the last stages of collapse (Best 1993;

Zhang et al. 1993; Brujan et al. 2002) and beyond (Lee

et al. 2007).

A direct measurement of the flow field around a collapsing

bubble was presented by Vogel et al. (1989), Vogel and

Lauterborn (1988b). They used focused laser pulses to gen-

erate bubbles near a solid boundary in water and measured

the velocity field by means of a rotating drum camera with up

to 10,000 frames per second, which recorded the light scat-

tered from marker particles. The particles with a diameter of

25 lm were illuminated five times per frame with consecu-

tive light pulses of 1 ls duration and 3 ls separation. This

work already made use of the reproducibility of the event to

interlace image series for better time resolution. With image

acquisition by fast CCD cameras and digital image pro-

cessing, a better spatial coverage is now possible. An

improved spatial resolution is obtained here by digitally

overlaying frames from separate recordings to increase the

density of fluid velocity vectors, again making use of the

reproducibility of the bubble experiments.

The flow field around laser-induced bubbles in micro-

fluidic devices has been examined recently (Zwaan et al.

2007). In this case, the observed flow dynamics is mainly

two dimensional, due to the strong confinement in the

direction of observation.

The objective of this work is twofold. First, the accuracy

of a modern particle tracking velocimetry setup in measuring

the flow field around collapsing cavitation bubbles is asses-

sed. The motion of the tracer particles is modeled for the test

case of spherical bubble collapse for which the fluid motion

is known well enough to determine the measurement error

caused by the tracers’ velocity lag. Furthermore, PTV mea-

surements of this flow are compared to numerical results to

check the overall error. Second, the collapse of a bubble in

front of a solid wall is investigated by a combination of short-

exposure photography and PTV. Local modeling of the data

allows us to interpolate them on a grid to facilitate compar-

ison with numerical simulations and to further analyze the

flow data quantitatively (Kröninger 2008).

2 Methods

To obtain comprehensive data on flow field and bubble

dynamics, the experiment utilizes a combination of dual-

frame imaging of fluorescent particles (PTV) and short-

exposure photography of bubbles.

2.1 High-speed photography

The experimental arrangement is shown in Fig. 1. A laser

pulse with energy of a few mJ (wavelength k = 1,064 nm,

duration 8 ns) is focused into a water-filled cuvette

(50 9 50 9 50 mm3) by a lens system mounted at the

center of one face. The bubble generated at the laser focus

is observed with a sensitive Interline-CCD camera (PCO

Sensicam qe) equipped with a 60-mm lens (f# = 2.8) and

spacer rings, resulting in a magnification of about 1.7. The

filter protects the camera from scattered laser radiation. A

flash lamp placed behind a ground glass is used for back-

light illumination. As an alternative, a nanosecond LED-

flash can be employed to take shadowgrams of possible

shock waves. The laser system, flash lamp and the camera

electronics are synchronized in order to take pictures

(exposure time 500 ns) at well-defined times after bubble

generation. By repeating the image acquisition at different

time delays, a picture series of the bubble dynamics is

compiled. An example of a bubble collapse obtained that

way is shown in Fig. 2. Because of an elongated form of

the laser plasma, the bubble is slightly asymmetric shortly

after the breakdown, but becomes nearly spherical after

about 70 ls (first image), when it reaches its maximum

radius of approximately 750 lm. The first bubble collapse

takes place at t = 140 ls. In the course of the violent

collapse and rebound, the onset of shape instabilities gen-

erally leads to the bubble’s destruction after the second

collapse.

Due to fluctuations of the maximum radius the collapse

time of the bubbles generated during one run of the

experiment may vary within a few percentage. To select

images that belong to bubbles of nearly the same size only,

a hydrophone is positioned in a corner of the cuvette

beneath the water surface to record the shock waves that

are emitted at cavity generation and collapse. In this way,

Fig. 1 Experimental setup for bubble generation and short-exposure

photography

396 Exp Fluids (2010) 48:395–408

123



the time between bubble inception and first collapse is

measured, which is uniquely related to the maximum

bubble radius. After recording and digital image processing

(equalization of levels), the bubble volume and an effective

radius are extracted from the selected images (Geisler

2003).

2.2 Particle tracking velocimetry

Conventional PIV methods that are based on correlation

analysis of small interrogation areas cannot be used with

this experiment. They require a large number of tracer

particles in each area (Raffel et al. 1998) that, given the

high magnification needed to capture the flow details,

would lead to a prohibitively large density of tracers in the

liquid. A high concentration of tracers would deteriorate

the image quality and adversely affect the bubble genera-

tion by laser breakdown.

With a lower density of tracer particles, these problems

are alleviated. Then, however, few tracer particles are

visible in an image, which have to be located and traced

individually by a PTV algorithm. The resolution of velocity

measurements is limited by the displacement of the parti-

cles between exposures.

The setup used for the particle tracking measurements is

outlined in Fig. 3. It differs slightly from the one shown in

Fig. 1. To trace the flow, monodisperse rhodamine-B-

labeled polystyrene particles with a diameter of 4.9 lm are

suspended in the water. They have a density of

qp = 1.05 g/cm3, very near to that of water to follow the

flow closely. Their dynamics is modeled in Sect. 2.3.2.

Fluorescent particles are used since they allow for better

background filtering with respect to the exciting laser light.

That way, the camera sensor can be protected effectively

from laser light reflected by the bubble surface.

The fluorescent particles are excited by two successive

laser pulses (wavelength k = 532 nm, pulse duration = 8

ns) generated by a twin Nd:YAG laser system (PIV 400

Quanta Ray) and recorded on two separate CCD frames.

The PIV laser is synchronized with the laser that generates

the bubbles. In this way, the instant of flow field obser-

vation can be timed accurately relative to the time of

bubble nucleation. The number density of tracer particles is

chosen to give a maximum change in the particles’ posi-

tions that is smaller than the average distance between the

particles. The separation of the illuminating laser pulses is

adjusted between 1 and about 10 ls, depending on the flow

velocities to be measured.

The illuminating laser light, entering at the top, is

shaped into a light sheet with a minimum thickness of

about 90 lm by a Galilean-type beam compressor and a

cylindrical lens (Dantec light sheet optics model 80X70).

The waist of the light sheet is centered at the bubble’s

position. The depth of field of the camera lens is slightly

smaller than the waist thickness. With a diffraction-limited

spot size of diameter

ddiff ¼ 2:44f#ðM þ 1Þk; ð1Þ

giving ddiff & 11 lm at k = 584 nm for the lens used, the

theoretical depth of field is

dZ ¼ 2f#ddiffðM þ 1Þ=M2; ð2Þ

Fig. 2 Images of an undisturbed bubble collapse. The first picture is

taken 70 ls after bubble generation and corresponds to the state of

maximum expansion. The time between frames is 10 ls. The series

is arranged left to right, top to bottom

Fig. 3 Experimental setup for the particle tracking velocimetry

measurements
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which yields dZ & 57 lm. Here, M denotes the magnifi-

cation and f# is the f-number of the imaging optics.

The filter mounted in front of the camera lens protects

the CCD chip from damage by scattered laser radiation (at

532 and 1,064 nm), while the tracers’ fluorescence emis-

sion around 584 nm is able to pass the filter without sig-

nificant absorption.

An example of raw image data acquired with this setup

is given in Fig. 4. Only two small, equal sections of size

0.55 mm 9 0.74 mm from the total images of a dual-frame

set are shown for better visibility of the tracer particles in

print. The interframe time is 3 ls. Clearly, the patterns of

bright spots appear to be quite similar to the unaided eye,

though, e.g., the spot brightness may vary between the two

frames, and some defocused particle images appear in the

second frame. These features have to be equalized or

removed by proper preprocessing of the images.

Particle localization and tracking is performed with a

Matlab code by Blair and Dufresne. It is an adaptation of

an IDL algorithm written by Crocker and Grier (1996). The

PTV analysis proceeds in a number of steps. The first step

is bandpass filtering of the images, which brings out fea-

tures that have the size of a well-focused particle image

(&3 pixels). Second, to avoid artefacts, certain image

regions are masked, in particular the region where the

bubble is located. Reflections of the fluorescing tracers at

the bubble surface could otherwise lead to spurious particle

detections and false trajectories. Next, the location of the

tracer particles is determined with sub-pixel accuracy by

searching for local brightness maxima and calculating the

center of the intensity distribution at this point.

To determine the tracers’ trajectories, every particle

identified on the first frame of a dual-frame set is assigned a

particle on the second frame. For every list of assignments

thus obtained, the sum of all squared displacements is

calculated. The assignment list that minimizes this quantity

is assumed to yield the true flow motion. The computation

time is reduced by permitting only those assignments that

give a displacement smaller than a specified length.

To obtain a comprehensive view of the instantaneous

flow field with a sufficiently high density of displacement

vectors, the data from several acquisitions with the same

timing parameters are combined. Finally, a median vali-

dation filter is applied. It removes displacement vectors

that deviate too much in length or direction from the

median vector, calculated for a circular neighborhood at

the considered point. For a better presentation of the

results, the dataset can then be interpolated for a uniform

grid. The two components of the velocity vectors are

treated separately, so that the problem is reduced to mod-

eling a scalar quantity in two dimensions. A fixed number

of next neighbors are used to perform a weighted local fit

of a linear model for each grid point. The biweight function

wk ¼ 1� ak

amax

� �2
 !2

ð3Þ

is chosen as the weighting function, where wk denotes the

weighting factor for the neighbor at distance ak to the grid

point and amax is the largest distance found in the set of

neighbors. To optimize the number of next neighbors and

to check which polynomial order is suited best for the

interpolation, a leave-one-out cross-validation is performed

on different datasets. Although zero- or second-order

polynomial fits give slightly smaller errors in some cases,

the linear model performs quite well in all cases. It has the

advantage that, compared to the other models, the quality

of the fit is nearly constant over a wide range of numbers of

next neighbors. In this study, around 20–30 neighbors are

used for the fit. Grid points that are farther away from the

next data point than the grid spacing are not considered for

interpolation.

2.3 Numerical simulations

Numerical simulations of bubble dynamics and of fluid

flow around the bubble are compared with the experimental

results. In the case of spherically symmetric bubble motion,

this comparison allows to assess the accuracy of the PTV

method, while in the case of asymmetric bubble collapse,

the experimental data serve to validate the simulations.

2.3.1 Spherical bubble dynamics

The radial dynamics of a bubble sufficiently far away from

boundaries or obstacles that may disturb the spherical

Fig. 4 Sections of two raw images of the tracer particle field around a

bubble collapsing near to a solid boundary taken with a time

separation of 3 ls. The bubble’s collapse time is 300 ls; the images

are taken 20 ls before collapse. The field of view is about

0.55 mm 9 0.74 mm. In the lower right part of the image, the

bubble is visible
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symmetry of the flow can be described by the model of

Keller and Miksis (1980), Prosperetti and Lezzi (1986),

Parlitz et al. (1990):

1� Ub

C

� �
Rb

_Ub þ
3

2
U2

b 1� Ub

3C

� �

¼ 1þ Ub

C

� �
PR � p0

q
þ Rb

qC

dðPR � p0Þ
dt

; ð4Þ

where Rb and Ub ¼ _Rb denote the bubble’s radius and wall

velocity, respectively, p0 is the ambient pressure and q is

the density of the liquid. The speed of sound in the liquid,

C, is assumed to be constant. This model is of first order in

the Mach number, so weak compressibility effects are

taken into account. The gas inside the bubble is modeled by

the van der Waals law. Thus, the pressure in the liquid at

the bubble wall, PR, is given by

PR ¼ p0 � pv þ
2r
R0

� �
R3

0 � bR3
0

R3
b � bR3

0

� �j

� 2r
Rb

� 4lUb

Rb

þ pv; ð5Þ

where R0 is the equilibrium radius of the bubble. The

model takes account of vapor pressure pv, viscosity l and

surface tension r of the liquid. The van der Waals

parameter is chosen as b = 0.0016, the polytropic expo-

nent as j = 4/3.

A numerical solution of Eqs. 4 and 5 for initial condi-

tions that yield minimum RMS deviation of the radius–

time curve from the experimental data is shown in Fig. 5.

As expected, it shows good agreement with the experiment,

in particular for the well-measurable large-excursion part

of the bubble dynamics. The flow is subsonic during the

cycle up to the final moment of collapse. This justifies to

treat the liquid as incompressible in the subsequent analysis

of the spherically symmetric flow situation. The curve

brings out the specific features of bubble dynamics that

pose a challenge to particle-based flow measurements: (1)

the high dynamic range of flow velocities encountered over

time (and over space) and (2) the large acceleration of the

fluid on a small time and spatial scale.

2.3.2 Dynamics of the tracer particles

Given the radius–time curve of a spherical bubble centered

at r = 0 (see Fig. 5) and assuming incompressible flow,

the velocity of the fluid, Uf, is given by:

Ufðr; tÞ ¼
UbðtÞRbðtÞ2

jrj2
er; ð6Þ

with er being the unit vector in the radial direction.

With this information on the flow field, the motion of

the tracer particles is calculated numerically using the

Basset–Boussinesq–Oseen (BBO) equation. The model

assumes that the particles are small, spherical and non-

deformable, which is the case in the experiments pre-

sented. In the notation of Soo (1967), the BBO equation

reads

4p
3

a3
pqp

dUp

dtp
¼ 4p

3
a3

pqpGðUf � UpÞ �
4p
3

a3
p

oP

or

þ 1

2

4p
3

a3
pqf

d

dtp
ðUf � UpÞ þ Fext

þ 6a2
p

ffiffiffiffiffiffiffiffiffiffi
pqfl
p Ztp

tp0

ðd=dsÞðUf � UpÞffiffiffiffiffiffiffiffiffiffiffiffi
tp � s
p ds ð7Þ

with

G ¼ 3

8
CD

qf

qp

1

ap

jUf � Upj: ð8Þ

where Up denotes the particle velocity, ap denotes the

particle radius, and P denotes the pressure. The density of

the particle and the fluid are denoted by qp and qf,

respectively. The derivatives d/dtp refer to the frame of

reference moving with the particle, so that

dUf

dtp

¼ oUf

ot
þ Up

oUf

or

� �
: ð9Þ

The influence of external forces (Fext) and the history force

(integral term in Eq. 7) is neglected. The equation can be

used in scalar form due to the spherical symmetry of the

system.

Because the Reynolds number Re = 2apqf|Uf - Up|/l
may reach values up to the order of 10 in the present

experiment, Olson’s parametrizing formula (Graf 1971) is

used for the drag coefficient CD:
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Fig. 5 Experimentally measured effective bubble radius (circle), see

Fig. 2, and numerical solution of the Keller–Miksis model with initial

conditions that give the best fit with the experimental data (solid line)
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CD ¼
24

Re
1þ 3

16
Re

� �0:5

: ð10Þ

This empirical formula is expected to be valid up to

Re & 100.

According to Maxey (1983), the pressure-gradient term

in Eq. 7 is given by the acceleration of the fluid:

�oP

or
¼ dUf

dt
qf : ð11Þ

The extra term proportional to r2Uf in his equation is

negligible in our case.

Equation (7) is coupled to the bubble model via Eq. 6.

The motion of tracers starting at different distances from

the bubble wall is computed. In Fig. 6 (top), some rep-

resentative results are shown together with the trajectories

of ideal fluid elements having the same starting coordi-

nates. As can be seen, the tracers (of diameter 4.9 lm)

follow the fluid elements rather well, except those starting

in the immediate vicinity of the bubble wall. In the lower

plot, the relative error of the tracer velocity compared to

the fluid velocity at the tracer’s current position is shown.

In all cases, the error remains smaller than 4% up to the

short moment of collapse. There, the fluid velocity

switches direction and at the moment, when it reaches

zero, the error has to diverge. Although it exceeds 4% for

a few ls after collapse, the absolute error is quite small

and stays below 2.5 m/s for the tracers starting at the

bubble wall and below 1 m/s for those farther away.

Smaller particles would follow the flow even better but

cannot be used in our experiment due to their insufficient

fluorescence intensity.

The computation of the tracer positions makes it pos-

sible to simulate the experimental conditions. Several tra-

jectories of model tracer particles were computed by means

of Eq. 7. The radial positions r1 and r2 at the times of

illumination in the real experiment, t1 and t2, yield the

velocity (r2 - r1)/(t2 - t1), which is compared with the

fluid velocity. In this way, systematic errors resulting from

the sampling of the flow field and the inertia of the tracer

particles are identified. The sampling time, t2 - t1, was

chosen to yield acceptably small errors. The experience

gained for the spherical bubble collapse is used to adjust

the sampling times for the aspherical bubble collapse.

2.3.3 Boundary-integral method

A frequently used method to calculate the flow around a

bubble collapsing near a surface is the boundary-integral

method described by Blake et al. (1986). The fluid sur-

rounding the bubble is treated as incompressible, free of

vortices and non-viscous. Therefore, the velocity potential

/ obeys the Laplace equation

D/ ¼ 0: ð12Þ

The content of the bubble is assumed to be an ideal,

homogeneous gas described by an adiabatic pressure law.

If the boundary conditions are known, the solution of the

Eq. 12 yields the velocity of the fluid v(x) = -r/(x).

The temporal evolution of the velocity field is given by

the time-dependent Bernoulli equation

q
o/
ot
þ 1

2
qjvj2 ¼ �p ð13Þ

with the boundary conditions at infinity (x ? ?)

v! 0; p! 0; /! 0: ð14Þ

Using this equation, the temporal evolution of a fluid

element and its potential are given by

dy

dt
¼ vðyÞ; d/

dt
¼ �p

q
þ 1

2
jvj2: ð15Þ

The motion of the bubble wall is calculated by

alternately performing the following two steps: the

Fig. 6 Tracer dynamics near a spherically collapsing bubble. The

gray curve represents the motion of the bubble wall as shown in

Fig. 5. Solid curves refer to trajectories of ideal fluid elements for

different starting radii from bubble center. In comparison, calculated

trajectories of tracer particles are shown (dashed black curves)
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velocity on the boundary is determined by solving Eq. 12

with the known shape of the bubble wall and the potential

on this boundary. Then, the temporal evolution of the

boundary and the potential are computed using Eq. 15.

The solution of Laplace’s equation in the domain X can

be obtained using the boundary-integral equationZ
oX

o/
on
ðyÞGðx; yÞ � /ðyÞoG

on
ðx; yÞ

� �
dSðyÞ

¼ /ðxÞ �
2p x 2 oX;

4p x 2 X n oX:

�
ð16Þ

G(x, y) denotes Green’s function of the Laplace operator

and qX denotes the domain’s boundary.

If / is given on the boundary, Eq. 16 is a Fredholm

integral equation of the first kind with respect to the

unknown quantity q//qn. This equation is solved numeri-

cally using a discretization of the boundary in axisym-

metric coordinates. The collocation method is applied and

an appropriate interpolation of the boundary is imple-

mented. This yields a linear system of equations that can be

solved by standard methods. In the case of a flat, rigid

boundary, a simple way to avoid parametrizing the wall is

to create an image bubble. This second bubble acts as if a

wall were present, localized exactly half way between the

bubbles.

In order to compare the results of the calculations with

the PTV measurements, the fluid velocity at points within

the domain X is determined. This is done by calculating the

velocity potential at any desired point using Eq. 16 with the

quantities on the surface already known. The initial state of

the bubble is taken to be spherical. Initial radius, initial

velocity and the equilibrium radius are obtained from the

experiment as described earlier.

3 Results and discussion

3.1 Spherical bubble collapse

In order to assess the accuracy of the PTV method,

spherical bubble collapse was investigated first. A bubble

with a collapse time of 140 ls, as shown in Fig. 2, was

chosen as the test object.

Figure 7 gives the outcome of 10 PTV measurements of

the flow velocity at 9 ls before collapse, measured with an

interframe time of 8 ls. The magnitude of the velocity is

plotted versus the distance r from the bubble’s center (top).

The local velocity of the water at time (t2 - t1)/2 is given

for comparison. It is derived with Eq. 6 from the data on

bubble wall velocity and radius (see Fig. 5). The bottom

figure shows the RMS deviation of the experimental data

from the numerical values, calculated at 100 ls intervals. It

can be stated that the experimental values are in good

agreement with the simple incompressible flow model.

Even close to the bubble wall the RMS deviation is smaller

than 1 m/s. At higher distances, it drops to a plateau of

about 0.07 m/s.

Figure 8 shows the result of a second set of measure-

ments carried out at 2 ls before collapse (t1 = 137 ls,

Fig. 7 Flow velocity field at a time 9 ls before collapse (interframe

time 8 ls). The magnitudes of the measured velocity vectors (circle)

are plotted versus the distance r to the bubble center. They virtually

coincide with the numerical results for ideal fluid elements (solid
line). The dashed line denotes the position of the bubble wall
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t2 = 139 ls). The same analysis procedures are applied. In

this case, the spread of the data is considerably larger. The

velocities encountered are higher and the interframe time

had to be chosen much smaller to cope with the high

acceleration near the wall. Thus, the tracer images are

shifted between the frames by a few pixels only, and the

limited accuracy of the tracer localization gives rise to a

higher noise level. At distances greater than about 1 mm

from the bubble center, the displacement gets smaller than

1 pixel, resulting in a bias toward larger velocities. This

corresponds to the plateau in the standard deviation of

about 0.27 m/s.

To obtain an estimate of the quality of the tracer

localization by the algorithm, a PTV measurement was

performed at a small interframe time with the water being

at rest. The displacement values were examined to deter-

mine the range that contains 68% of all data vectors. A

value of 0.13 pixels was found. This corresponds to

velocities of 0.24 and 0.06 m/s for interframe times of

2 and 8 ls, respectively, which is nearly exactly the height

of the plateaus seen in the corresponding graphs for the

RMS deviation.

In the vicinity of the bubble wall, a systematic error

becomes prominent, see Fig. 8. At the time of observation,

the bubble radius is of the order of the light sheet size.

Hence , tracers that are not exactly in the center plane of

the illuminated volume have a non-negligible out-of-plane

velocity component. Since this component cannot be

measured, it biases the results toward smaller velocities.

Also, due to the projection effect, the positions of the

tracers appear to be closer to the bubble. This explains the

large deviations encountered for r B 0.5 mm.

3.2 Bubble in front of a wall

If a bubble is generated in the vicinity of a solid wall, its

dynamics can be strongly influenced, depending on its

distance d from the boundary and its maximum volume. A

frequently used parameter to characterize the collapse

geometry is the standoff parameter:

c ¼ d

Rmax

; ð17Þ

where Rmax denotes the maximum equivalent radius of the

bubble, i.e., the maximum radius of a sphere with the same

volume as the cavity. A scaled time, that is commonly used

with the boundary-integral method, is introduced for easy

comparison of experimental results with calculations:

T ¼ t

Rmax

p0

qf

� �1=2

ð18Þ

The main feature of bubble collapse near to a solid wall is

the formation of a liquid jet directed toward the boundary

that eventually leads to the generation of a vortex ring. A

simple explanation for this behavior is given by Benjamin

and Ellis (1966), who argued that the only way for the

bubble–fluid system to conserve its Kelvin impulse is to

generate vorticity. An example for the formation of a jet is

given in Fig. 9.

On the left-hand side, photographs of the last stages of a

bubble collapse near a solid boundary are shown, starting

150 ls after bubble generation with an interframe time of

Fig. 8 As in Fig. 7, except the time is 2 ls before collapse, and the

interframe time is 2 ls
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5 ls. The location of the wall, made of glass, is at the

bottom of each picture. Shortly after bubble generation,

the bubble center has a distance of d = 1.07 mm from the

wall. With Rmax value of 0.81 mm, c is 1.32 for the

given data, and the collapse time is tc = 170 ls (Tc = 2.1).

On the right-hand side, with the same scaling and for the

same times, the outcome of the boundary-integral simula-

tion is shown. The initial parameters are chosen in a way

that the simulation yields the same maximum radius and

collapse time as found in the experiment. The dynamics of

the phase boundary and the bubble position are in good

agreement with the experiment. A similar comparison for

c = 1 can be found in Vogel et al. (1989). There, the

experimentally obtained bubble shapes are compared to

results from Plesset and Chapman (1971) and Blake et al.

(1986). In the latter case, also utilizing the boundary-inte-

gral method, good accordance with experiment is found.

Experimental PTV data are compared with the simulated

flow field in Figs. 10 and 11. The simulation was run with

the same initial values as used before. In Fig. 10, the

results of a measurement (gray vectors), performed 10 ls

before collapse (t1 = 156 ls, t2 = 164 ls), are plotted

along with the velocity vectors computed with the bound-

ary-integral method (black) at the same points in space and

in time. The bubble shape is also shown in the figure for

better orientation. The solid boundary is located on the x-

axis. At this stage, the bubble has already moved

*0.25 mm toward the boundary and a jet is starting to

form at the top of the bubble. A very good match between

the experimental and simulation results is found in the

whole domain. Note that the averaging process due to the

temporal sampling is not taken into account by the num-

erics, but the averaging does not introduce a significant

systematic error in this situation. Near the bubble’s

indentation, velocities of up to 6.3 m/s are measured,

which is roughly the method’s limit for the given particle

density, magnification and interframe time of 8 ls. Possi-

ble displacements higher than the mean spacing of the

tracer particles have to be filtered out.

The outcome of a second measurement at 5 ls before

collapse (t1 = 163 ls, t2 = 167 ls) is shown in Fig. 11. At

Fig. 9 Photographs (left) and results of the boundary-integral sim-

ulation (right) of a bubble generated in the vicinity of a glass wall

(located at the bottom of each picture). The first picture at the top
corresponds to a time 150 ls after the bubble is generated, whereas

the collapse occurs at t = 170 ls. The time between the frames is

5 ls

Fig. 10 Comparison of experimentally measured velocities (gray
vectors) with a boundary-integral simulation (black vectors) for a

bubble collapsing in front of a solid boundary (at y = 0 mm) at time

t = 160, 10 ls before collapse. The vectors are anchored at their tail

points. The shape of the bubble is shown in gray (see Fig. 9)
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this instant, shortly before collapse, the jet has formed and

is about to hit the lower bubble wall. Jet formation is

indicated also by the fact that the velocity vectors near the

upper bubble wall are all directed to a point above the

bubble’s center. This point is the position of the jet funnel

in the numerical results. Due to the smaller interframe time

of only 4 ls, it was possible to measure velocities up to

12.1 m/s. Again, the experimental values match the

numerical output very well.

In conclusion, the boundary-integral method is able to

simulate the given problem for c & 1.3. Pearson et al.

(2004) show that it still yields qualitatively good results

down to c = 0.8. For smaller distances to the wall, the

calculations suffer from strong instabilities. Therefore,

simulations were not performed for the cases c = 0.7 and

c = 0.5 now presented.

Figure 12 shows shadowgrams of these bubbles in their

state of maximum expansion. The distance of the laser focus

(which is still visible on all the images as a bright spot at the

center) to the glass wall is the same in both cases. Only the

laser energy is changed, resulting in maximum radii of

Rmax = 0.93 mm (c = 0.7) and Rmax = 1.3 mm (c = 0.5).

Although the collapse times, tc = 220 ls and tc = 300 ls,

are quite different, the scaled collapse times, Tc = 2.37 and

Tc = 2.31, are close. In both the images, the bubble has

already touched the glass wall, but the contact angles are

different. Apart from the flattening at the surface side, the

bubble remains more or less spherical in the case c = 0.7.

For c = 0.5, however, the bubble attaches to the surface, its

bottom part attaining a cone-like shape, while the upper part

has a nearly constant curvature. Also, the lower rim of the

bubble wall has a much sharper edge. This may be attributed

to the fact that the fluid is pushed aside earlier and with a

greater pressure from the growing bubble.

In Fig. 13 (c = 0.7) and Fig. 14 (c = 0.5), image

sequences of the bubble collapse are shown, taken with a

constant interframe time of 5 ls. In Fig. 13, for c = 0.7,

the bubble has a cone-like shape with a rounded top (first

row) at about 50 ls before collapse. The contact angle

between the bubble rim and the glass wall has steepened,

compared with Fig. 12. This feature is even more pro-

nounced for c = 0.5 (Fig. 14). Here, the rim of the bubble

starts to move more slowly along the glass wall early

during the shrinking phase (second row) leaving a bulge.

Theory predicts this behavior from the jet flow directed

radially outwards after impact of the jet on the glass wall.

At 25 ls (Fig. 13, 5th frame) and 40 ls (Fig. 14, 3rd

frame) before collapse, an indentation appears that indi-

cates the formation of a jet. During the last few micro-

seconds before collapse, the bubble shape becomes

unstable. Then the bubble splits into many fragments that

collapse and emit shock waves separately. This was also

found in other investigations (Philipp and Lauterborn

1998; Lindau and Lauterborn 2003).

In order to clearly visualize the flow field around the

bubble for these two values of the standoff parameter,

the results of several PTV flow measurements made at the

same time before collapse were merged and interpolated on

a regular grid. The resulting vector fields are shown in

Fig. 15 for c = 0.7 and in Fig. 16 for c = 0.5 as an overlay

of the corresponding bubble image.

For c = 0.7, the highest velocities are measured at 20 ls

before the collapse (Fig. 15, first image). A maximum

value of about 30 m/s is found at the entrance of the jet

funnel. The velocity of the tip of the jet must be higher,

though. Philipp and Lauterborn (1998) obtained a value of

100–140 m/s.

At 10 ls later (Fig. 15, second image), the funnel has

broadened. The jet has probably already reached the glass

wall so that the inflow is reduced. In contrast, the lateral

inflow has increased its velocity. For c [ 0.6, Lindau and

Lauterborn (2003) report the occurrence of a liquid splash.

A splash for c = 0.9 was also predicted by Tong et al.

(1999) and observed by Brujan et al. (2002). The lateral

Fig. 11 As in Fig. 10, except t = 165, 5 ls before collapse

Fig. 12 Shadowgrams of two bubbles in front of a glass wall

(indicated by the white dotted line) in the state of maximum

expansion; left c = 0.7, right c = 0.5
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inflow beneath the bubble hits the outward flow from the

jet. A splash is formed and moves radially outward,

roughening the bubble wall along its way.

Another 10 ls later, when the toroidal bubble has col-

lapsed (Fig. 15, third image), the velocity of the central

inflow has dropped to about 10–12 m/s. The velocity does

not vary much over the inner torus cross section.

A similar flow dynamics is observed for the case

c = 0.5. Here, the maximum inflow velocity occurs at

10 ls before collapse (Fig. 16, second image). The same

maximum velocity of about 30 m/s is found above the jet

funnel. Note that the velocity at the center of the funnel is

slightly smaller than at its edges. This could mean that the

tip of the jet has already hit the glass wall, whereas its outer

parts did not make contact yet. At collapse (Fig. 16, third

image), the velocity of the vertical inflow at the center of

the torus bubble has dropped significantly compared to the

lateral inflow that still has a velocity of about 15 m/s.

In Fig. 17, path lines of fluid elements are presented. They

are calculated using the PTV data of measurements per-

formed at 20, 10, 2 and 0 ls before collapse. The velocity

field is interpolated spatially and temporally and used to

calculate a smooth trajectory for a number of fluid elements.

Again, the corresponding bubble outlines are shown for

Fig. 13 Shadowgrams of a bubble collapsing in front of a glass wall (indicated by the white dotted line); standoff parameter: c = 0.7; maximum

radius: Rmax = 0.93 mm; collapse time: tcol = 220 ls; first frame at 50 ls before collapse, time between frames: 5 ls

Fig. 14 Shadowgrams of a bubble collapsing in front of a glass wall (indicated by the white dotted line); standoff parameter c = 0.5; maximum

radius: Rmax = 1.3 mm; collapse time: tcol = 300 ls; first frame at 50 ls before collapse, time between frames: 5 ls

Exp Fluids (2010) 48:395–408 405

123



better orientation. The jet formation is clearly visible at both

standoff parameters: the fluid lines above the bubble are

delimited by a bell-like shape, its tip pointing in the direction

of the bubble indentation. For c = 0.5, a much broader,

stem-like jet profile is seen in the pathline portrait. Because

of the high water hammer pressure building up at the center,

the fluid is driven radially outward, indicated by the outer

path lines being slightly curved to the outside near their

termination.

4 Conclusions

It is shown that particle tracking velocimetry is a viable

method to measure the flow field around collapsing cavi-

tation bubbles. By a proper choice of the tracer particle

diameter and interframe time, a good accuracy of the

measurements can be achieved. Thus, the experimental

data may serve to validate numerical simulations of this

two-phase flow problem in a quantitative way.

With PTV, the collapse of a laser-generated bubble close

to a solid wall has been investigated for different values of

the standoff parameter, c. For the case of c & 1.3, a good

agreement between experiment and a boundary-integral

simulation is found. Furthermore, the collapse at small c
values, that can hardly be treated numerically by this method,

has been studied in detail for the two cases c = 0.7 and

c = 0.5. The shape dynamics and the interpolated velocity

field shortly before collapse as obtained by PTV are pre-

sented. They can be processed further to obtain character-

istics of the flow field like the vorticity (Kröninger 2008).

Fig. 15 Interpolated PTV data of the flow field around the bubble

shown in Fig. 13 (c = 0.7), at times 20 ls before collapse (top),

10 ls before collapse (middle) and immediately at collapse (bottom)

Fig. 16 Interpolated PTV data of the flow field around the bubble

shown in Fig. 14 (c = 0.5), at times 20 ls before collapse (top),

10 ls before collapse (middle) and immediately at collapse (bottom)
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The results clearly indicate the presence of a ring vortex in

the vicinity of the bubble wall shortly before collapse.

A shortcoming of the method presented is that at small

bubble diameters comparable to the light sheet thickness,

velocities may be underestimated, as the analyzed particles

may have a significant out-of-plane velocity component.

Further development of the experiment thus aims at ste-

reoscopic observation of the flow to obtain fully three-

dimensional information on the velocity. Bubble collapse

in more complex, non-axisymmetric geometries can then

be studied. Also, the hydrodynamic interaction between

two or more bubbles, the generation of streaming motion

by bubble pulsations, or flow-bubble interaction in shearing

flows, for example, are accessible to experimental inves-

tigation by this method. Flows in hydraulic machineries

with sufficient repeatability should become measurable

with higher spatial resolution, for instance flows in pumps,

turbines or around propellors.
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