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Particle Trajectories in Model Current Sheets 

1. Analytical Solutions 

T. W. SPEISER 1 

Goddard Space Flight Center, Greenbelt, Maryland 

Abstract. Approximate analytical solutions are found for two model current sheets. In the 
first the magnetic field is linear and reverses across a neutral sheet, and the electric field is 
everywhere uniform, perpendicular to the magnetic field and parallel to the neutral sheet. 
Charged particles of either sign never come out of the neutral sheet, and their energies increase 
without bound. In the second model a small component of the magnetic field perpendicular 
to the neutral sheet is added. This component not only serves to bring particles out of the 
sheet, but turns protons and electrons toward the same direction, 90 ø away from the 
accelerating electric field. The particles are accelerated and then ejected when they have been 
turned 90 ø, and the emergent pitch angles to a magnetic line of force will be small if the 
perpendicular magnetic field component is small. 

Introduction. Ness [1965] has reported the 
discovery of a magnetically neutral sheet in the 

ß 

earth's geomagnetic tail, with measurements 
taken on board the Imp i satellite. A somewhat 
uniform magnetic field of about 20 y(1 y = 10 -5 
gauss = 10 -9 weber/m 2) is found from about 
10R6 (earth radii) to at least 30R6 in the antisolar 
direction. This field is predo •minantly in the solar 
direction above a plane (roughly identified as 
the magnetic equatorial plane), and in the anti- 
solar direction below this plane. The magnetic 
field reverses across a sheet of thickness about 

0.1R• and goes to zero within this neutral sheet. 
Other neutral, or more generally current, 

sheets may occur in other situations, such as a 
day-side magnetospheric current sheet, neutral 
sheets occurring in interplanetary space, and 
neutral sheets associated with solar flares. 

It is of interest to look at charged particle 
trajectories about such sheets. Adiabatic theory 
cannot be used across such a neutral sheet, 
because the magnetic field changes significantly 
in distances much less than a gyroradius. The 
charged particle equations of motion must there- 
fore be either solved analytically or computed 
numerically. 

This paper is concerned with analytical solu- 
tions in two model current sheets. Part 2 [Speiser, 
1965] applies these results to a magnetospheric 
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tail model and also discusses numerical results. 

A simple linear model. The simplest model for 
the fields about a neutral sheet that can be 

discussed analytically is 

B: --,•(•/•)• (•) 

r = (2) 

where b is the strength of the magnetic field 
when z = d, the sheet half-thickness, and a is 
the strength of the electric field. The physical 
significance of such an electric field will be 
discussed in part 2 [Speiser, 1965]. This field will 
merely be assumed for the present treatment. 

The coordinate system being used is sketched 
in Figure 1, as are the magnetic and electric 
fields. 

The equations of motion for a particle in the 
neutral sheet, using these fields, are 

• = Cx•x (3) 

= 0 

where C, = (q/m)(b/cO, and Ca = (q/m) a; mks 
units are used. 

Speiser [1964a, b] has given the solution to 
these equations for large time (see appendix A). 
The result is that the particle executes a damped 
oscillation about x = 0 (the amplitude going as 
1It TM) while accelerating in the q-• direction 
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The equations of motion become 

= (s) 

2d •'- --Ca -- C•x:2- C2•q• (10) 

i I 

Fig. 1. Simple model. 

for electrons and the --• direction for protons. 
This can be understood as follows. The electric 

field in (5) accelerates a proton in the --• 
direction. Then, ignoring the term --C• x• for 
the moment, we see that 2 becomes proportional 
to --t. Equation 3 then becomes 

- (6) 
where - or - (q/m) •. (ab/d) t. 

Equation 6 is just the equation for oscillatory 
motion, with spring constant k. However, k gets 
larger with time, implying that the spring gets 
stiffer with time;thus the amplitude of oscillation 
decays. 

The term--C•x• in (5) is approximately con- 
stant (x goes like 2-•4; • goes like 2 +•4) and can 
modulate the oscillation but will not stop it. 
k is proportional to q2, and so particles of either 
sign will oscillate. 

The oscillation in x(t) is due to the V X B 
force that is always toward x = 0 for x either 
positive or negative, because of the reversal of 
the magnetic field. 

The net result of this simple model is that 
charged particles of either sign never come out 
of the neutral sheet, and their energy increases 
without bound. Figure 2 is a sketch of the 
results of this simple model. 

The linear model with small perpendicular field 
added. Consider now the addition of a small 

magnetic field component perpendicular to the 
neutral sheet, i.e. in the -+-• direction in the 
coordinate system of Figure 1. The magnetic 
field of (1) now becomes 

where V is assumed to be small. 

where C• = (q/m)(b/d), C•. = (q/m)b, Ca 
(q/m)a, C• and C a being the same as for the 
simple model. When V - 0, the simple model 
results. 

Even without solving these equations, the 
particle motion can be understood qualitatively 
as was done for the simple model. 

Consider a proton (the arguments also hold 
for electrons, with appropriate changes in sign) 
incident on this neutral sheet with small velocity. 
(Strictly speaking, the sheet is not now a neutral 
sheet.) The proton will be accelerated initially 
in the negative z direction (see equation 10), 
gaining a velocity 2 proportional to --t as for 
the simple model. From (9) there will then be 
an acceleration in the --y direction proportional 
to 2 or --t, and thus 7) will be proportional to --t 2. 
(Nbte that •7 m C•.C3 o: (q/m) •., so that either 
protons or electrons are turned toward the 
direction.) 

As long as 2 is negative, (8) will imply oscil- 
latory motion in x(t) by the same arguments 
in the previous section on the simple model. 
Thus, as long as 2 is negative, the term --C•x• 
in (10)'will be assumed to be small as a first- 
order approximation. The oscillations can now 
be either damped or growing, depending on 
whether 2 increases or decreases with time. The 

last term in (10) grows as q-t •', so that 2 will 
grow negatively until • goes to zero, and 2 will 
then diminish in absolute value going to zero 
and even becoming positive after some time. 
Thus x(t) will execute damped oscillatory motion 
until • = 0 (the spring gets stiffer). After 
becomes positive and until 2 - 0, x(t) will 
execute growing oscillatory motion. After 2 goes 
positive, however, x(t) will no longer oscillate 
but will increase exponentially, thus ejecting the 
particle from the neutral sheet. Figure 3 is 
sketch of the particle trajectories in this model. 

Results o[ the approximate theory. The detailed 
calculations are contained in appendix B (equa- 
tion numbers in the appendixes bear the prefix 
A). First integrals of the equations of motion 
(equations 8, 9, and 10) are obtained exactly 
(equations A9, A10, and A14). A first approxi- 
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B = - b •- •y, in the sheet 
B is uniform outside the sheet 

E = -a•,. 

Fig. 2. Sketch of particle trajectories using the fields of the simple model (linear reversal 
of the magnetic field across the neutral sheet, no magnetic field component perpendicular to 
the sheet, and a uniform electric field in the --• direction). Electrons are accelerated in the 
-]-•, direction, protons in the --• direction. The amplitude of oscillation decays, and so 
particles never come out, and their energy goes to infinity. 

marion is used to obtain the time of ejection •, 
which turns out to be inversely proportional to 
•b(q/m) (equation A19). Electrons are therefore 
ejected from the neutral sheet much sooner than 
protons. The velocity in the --•, direction at 
the time of ejection is found to be independent 
of (q/m) (equation A23), and the maximum 
pitch angle of the emergent particles (equation 
A26) is proportional to 7, and to I:•o/U -- el, 
where u is the bulk flow velocity exterior to the 
neutral sheet, and c is a number that is not very 
different from 1. This result implies that a = 0 
for • = 0, which means that the particles would 
never come out of the neutral sheet if the small 

perpendicular field were not added. This agrees 
with the result of the simple model, and implies 

that a will be small if • is small. Since a is also 
proportional to J•o/U -- cJ, particles incident on 
the current sheet with •0 • u will all emerge 
with pitch angles close to zero. 

J. W. Dungey (private communication, 1965) 
suggested that the electric field can be trans- 
formed away in this model. Calculations using 
such a transformation are made in appendix C. 
The particle motion in the moving (transformed) 
system is easily visuahzed, since only a magnetic 
field is involved. The perpendicular magnetic 
field component causes a circular drift in the 
current sheet while the x coordinate is oscillating 
due to the magnetic field reversal (B,) (see, for 
example, equations A29, A37, and A38). The 
ejection time is seen to be just a half-period of 
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x • )in the sheet B=b (q•x-7 Y 
B is cJtqi•Olnl outside the sheet 
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Fig. 3. Sketch of particle trajectories using the fields of the simpl. e model plus a small 
component perpendicular to the neutral sheet. Both protons and electrons oscillate about the 
sheet accelerating in opposite directions and are turned toward the same direction by the 
small magnetic field component perpendicular to the sheet. When the particles are turned 
90 ø, they are ejected from the neutral sheet. Electrons come out much sooner than protons, 
hence gain less energy. Electrons also make fewer oscillations than protons before ejection. 
The above sketch is illustrative and not to scale. 

the circular drift (equation A39) and corresponds 
closely to the approximate result in appendix B. 

The particle energy in the transformed system 
is a constant, with the initial velocity given by 
the transformation velocity (in the simple case 
where the initial velocities are approximately 
zero in the stationary system). It is therefore 
apparent that protons and electrons will be 
ejected with the same velocity, a result which 
was found before (appendix B) only for the first 
and second approximations. 

An oscillation frequency about the neutral 
sheet is found approximately (equation A42), 
and the number of oscillations before ejection is 
determined (equation A43). It is seen that this 
number is proportional to the square root of the 
mass, and so electrons will execute about 1/40 
the number of proton oscillations before ejection. 

Summary. Two models of possible current 
sheets are considered, and approximate analytical 
results of charged particle trajectories about 
these sheets are found. 



PARTICLE TRAJECTORIES IN CURRENT SHEETS, 1 

In the simplest model, where the magnetic 
field varies linearly across a neutral sheet, and 
there is an electric field perpendicular to the 
magnetic field and parallel to the current sheet, 
charged particles of either sign execute damped 
oscillations about the sheet, accelerating along 
the sheet. Thus for this simple model particles 
never come out of the sheet and their energies 
go to infinity. 

A new model is constructed by adding a small 
component of the magnetic field perpendicular 
to the sheet. The addition of this small com- 

ponent not only turns both protons and electrons 
toward the same direction 90 ø away from the 
accelerating electric field, but serves to eject the 
particles from the sheet. Protons and electrons 
are thus accelerated and are then ejected with 
the same velocity, the electrons being turned 
much faster and being ejected sooner than the 
protons. 

The pitch angle of ejected particles about a 
line of force is proportional to the size of the 
small perpendicular component of magnetic field. 
Thus, if this component is small, all particles 
will be ejected nearly along lines of force. 

The energy gained is inversely proportional 
to the square of the perpendicular component of 
magnetic field (see equation A23). Therefore, in 
agreement with the simple model, the energies 
go to infinity when this component is zero. 
Moreover, the energies of the ejected particles 
can be large if this component is small. 

In the moving frame (where tg • = D) neglect 
of the term --Cxx'a•' essentially decouples the 
circular motion due to B• from the oscillatory 
motion about the neutral sheet. The oscillatory 
motion about the neutral sheet is, however, 
still coupled to 2', and indeed the particle is 
ejected when 2' changes sign. 

A few computer solutions of equations 8, 9, 
and 10 have been made, and the results agree 
in general with these analytical results. The 
velocity at ejection may have a larger x-com- 
ponent than indicated in (A24) and the z-com- 
ponent may be non-zero. In two cases, the 
emergent pitch angles were about a factor of 10 
larger than (A26) predicts. (a •--• 5 ø rather than 
..• «ø for V • 0.01.) 

ArrENmX A 

The first integrals of equations (3) and (5) are 

• = •o- c.•t- «C•(x"- Xo •) (•) 
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«(• + •) + C•z = «(•o • + •o •) + C•Zo (•2) 
Equation A2 is just the equation of conservation 
of energy. The zero subscripted values refer to 
initial values. Equation 3 becomes, using (A1), 

• = -clX(-•o + «cl(x • - Xo •) + c.•t) (•) 

For large enough time, the quantity in paren- 
thesis on the right-hand side of (A3) •ll be 
positive and monolo•cally increasing, impl•ng 
oscillatory, bounded motion in x(t). Thus for 
large time (A3) is approximately 

• • --C•C•xt = -- -- xt (A4) 

The solution to (A4) is given by Jahnke and 
Emde [1945, p. 147] as 

x = x/• z•(•t • 
where 

(AS) 

and Z•/• is a linear combination of Bessel func- 
tions of the first and second kinds, of order 
one-third. Approximating (A5) for large time 
[Jahnke and Ernde, 1945, p. 138], 

X N 

(A6) 

A and B are constants depending on the initial 
values. 

We can obtain z(t) as a function of time by 
integrating (A 1)' 

t -l- Zo 

smaller oscillatory terms 

(A7) 

From (A6), after large time the amplitude of 
oscillation decays as 1/t•% and from (A7) and 
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(A2) it is seen that the kinetic energy increases 
as t% 

APPENDIX B 

First integrals of (8), (9), and (10) are easily 
obtained. They are' 

1 .2 •(x - •o •) = - C•(z - Zo) 

1 .2 f0 t - •(z - •o •) - c• • •t (AS) 

• - •o = c•,(z - Zo) (A•) 

C• 
(• - •o) = -c•t- • (x • - Xo •) 

-- C•..(y- Yo) (A10) 

Equation A10 becomes, on another integration, 

(Z -- ZO) = C3t2 C1 x 2 dt 
2 2 

-- C•.V y dt-• C4t (All) 

where 

ClX0 2 
c• = •o + --2-- + C•yo 

Using (All) with (A9), we have 

• = •o -• v(--C•t •' -• C•t 
fo io ) C7 x • dt -- -- y dt (A12) 

where 

C•C• C1C• 
C• = C• = C•C• C•- 

2 2 

From (9) we have 
t 

• i .2 . 2 c•. 9• •t = •(y - yo ) (A13) 

So that (AS) becomes the energy integral 

I .2 •2 

= •(•o • + •o • +•o •) + c•zo - •ø (A14) 
m 

Using (A10), we obtain for (8) 

• = -•(t. x. y. ,)x (AI•) 

where 

•(•, x, y, •) 

C1 X 2 
= c•t+•-+C•y+C• 

2 

C1Xo 
Cs = 2 C•.Vyo -- 20 = -- C4 

(A16) 

k goes to zero when 

) t= C3 -•- C2vy-•- Cs = r (A17) 
r is therefore the critical time when k goes to 
zero and then becomes negative ejecting the 
particle (• becomes positive). 

Approximations. Integrating (A12), we obtain 

C6t 2 t a vC• 
y = yo -{- ?)or -{- 2 3 (A18) 

where the integral over x •- in (A12) is assumed to 
be small, since x(t) is oscillating, and the integral 
over y in (A12) is multiplied by v •-, and so it will 
also be neglected in this first approximation. 
To facilitate finding the critical time of ejection 
r, initial conditions are chosen such that 
Y0 = ?)0 = 0 and •0 = --C•xo•/2, which implies 
that C4 = C6 = Cs = 0. Using (A17) and (A18) 
with these initial conditions, r becomes 

(A19) r- v(q/m)b 
From (A18) 

y(t) = --vC•tS/3 (A20) 

•(t) = --vCat 2 (A21) 
At t - r, equations A20 and A21 become 

•-•a 
y(r) -- --(vb)•(q/m) (A22) 

•?(r) -- -- 3a/vb (A23) 

Thus, in this first approximation, the ejection 
velocity is independent of (q/m) because electrons 
are ejected much sooner than protons. (As the 
next approximation, if y(t) from (A20) is used 
in the integral over y from (All), it is found 
that r is increased by about 30%, I•)(r)l is 
decreased by about 50%, and the ejection 
velocity is still independent of (q/m). The first 
approximation should' therefore give the right 
order of magnitude. See also Appendix C.) 
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Pitch angle distributions o! emergent particles. 
In order to calculate the pitch angle of an 
emergent particle, we must estimate the maxi- 
mum value • can have at the time of ejection. 
Since x(t) oscillates until t - •, it is reasonable 
to assume that •m-x • •0. Using this assumption 
and (A23) with (7) for the magnetic field with 
x -- d, we have 

v = (x4) 

and the cosine of the pitch angle a becomes 

COS ot -- 
(B.V) 

BV 

-- I -- 2ri•"[(•ø/u) -- 3]2 (A25) 
36 

where u = a/b, the bulk flow velocity exterior 
to the neutral sheet, and only terms of the 
order of v• are kept. For small a, cos a• 1 --a•/2, 
so that 

a • ri [(•ø/u) -- 31 (A26) 
3 

The number 3 in (A26) comes from the 3 in 
(A23). This would be decreased to 3/2 by the 
second approximation mentioned above. The 
following results (A40) imply that the 3 should 
be replaced by 2. 

APPENd)ix C 

A Lorentz transformation can be made using 
the fields given by (2) and (7) to a system where 
the electric field is zero. This is possible for the. 
present model, because of the form of the fields 
and because Bx (equation 7) is a constant. If the 
transformation velocity is chosen to be 

v = (--a/rib)Oy (A27) 

then the fields become, in the transformed 
system, 

E' = 0 

B' = b[ri%/1 -- va/c 2 Ox, -- (x'/d)8,,] (*28) 

where the primes refer to the transformed system. 
The equations of motion corresponding •o (8), 

(9), and (10) are 

•'= C•x'•' (A2O) 

•' = -- C•x'•' -- C•.ri'•' (A31) 

where 

ri' = ri %/1 -- v•'/c •' 
If we borrow the previous result that the x 

coordinate oscillates until t = •, then the term 
--C•x'•' in (A31) •11 be assumed to be small 
initially. Equations A30 and A31 then become 

•' = •' (A32) 

• = --•' (A33) 

where • • C•V •. These are just the coupled 
equations for simple harmonic motion, and the 
solutions are' 

•' = •o' cos wt' • 20' sin wt' (A34) 

2'= 20' cos o•t' -- •o' sin o•t' (A35) 

For transformation velocities small compared 
with the speed of light, the previous boundary 
conditions (appendix B) become, in the trans- 
formed system, 

•o,= +a , rib 20 = --C•xo"/2 (A36) 
For small 7, •0' can be large compared to 
and so (A34) and (A35) are approximately 

:f= •o' cos cot' (A37) 

2' = -- •o' sin cot' (A38) 

implying a circular drift in these components. 
Thus 2' starts at zero and grows negatively 
until •t' = •/2 and then decreases in absolute 
value, going to zero a• •t' = •. •' becomes 
positive thereafter, and so by the same arguments 
in the preceding section and by (A29) we see 
•hat this time is the ejection time. 

'r -- -- (A39) 
,o ( q/ m) 

For velocities small compared to the speed of 
light, this time is about the same in the two 
systems. The second approximation mentioned 
in appendix B replaced 6 TM in (A19) by 10•% 
which is very close to 7r from (A39). From (A37) 
at the time of ejection (cot' = •r), •)'(•) = --?)0'. 
Transforming back to the unprimed system gives 

•(•') = -- 2a/•lb (A40) 
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rather than the factor of 3 (first approximation, 
appendix 13) or 3/2 (second approximation, 
appendix 13). 

More information can now be obtained than 

in appendix 13 by approximating •t from (A38) as 

2' ,,0• -- •7o'/2 (A41) 

Using (A41) with (A29), we see that the x • 
coordinate will oscillate with frequency 

_ __ w• 2vd 
and the number of oscillations about the neutral 

sheet before the particle is ejected is 

1 a 

The above results can be ex•ended •o larger 
velocities (larger a/vb) by no• making •he 
approximation • << c, and keeping all of •he 
•erms from [he Loren[• [ransformafion. 

T. W. SPEISER 
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