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We show how particle-vortex duality in d ¼ 2þ 1 dimensions arises as part of an intricate web of
relationships between different field theories. The starting point is “bosonization,” a conjectured duality
that uses flux attachment to transmute the statistics of relativistic particles. From this seed, we derive many
old and new dualities. These include particle-vortex duality for bosons as well as the recently discovered
counterpart for fermions.
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I. INTRODUCTION: A COLLECTION
OF DUALITIES

Many quantum field theories in d ¼ 2þ 1 dimensions
enjoy a beautiful property known as particle-vortex duality.
This relates two different theories, with the fundamental
fields of one theory mapped to vortices—or, more pre-
cisely, monopole operators—of the other. The duality has
proven to be a powerful tool in a number of different
settings, ranging from condensed matter physics to string
theory.
Particle-vortex duality for bosonic systems was estab-

lished long ago [1,2]. In the simplest version, the duality
relates the theory of a complex scalar field (the XY model),

S ¼
Z

d3xjð∂μ − iAμÞϕj2 − VðϕÞ; ð1:1Þ

to the Abelian-Higgs model

S ¼
Z

d3xjð∂μ − iaμÞΦj2 − ~VðΦÞ þ 1

4g2
fμνfμν

þ 1

2π
ϵμνρAμ∂νaρ: ð1:2Þ

The potentials VðϕÞ and ~VðΦÞ are initially chosen so that
the theories lie at the Wilson-Fisher fixed point. In the
infrared limit (g2 → ∞), these two theories describe the

same physics. In the actions above, Aμ is a background
gauge field. Its coupling to the currents in the two theories
reveals that the particle density of ϕ in Eq. (1.1) is equated
to the flux density f=2π ¼ da=2π in Eq. (1.2). This is the
essence of particle-vortex duality.
More recently, an analogous duality was proposed for

fermions. The free Dirac fermion with action

S ¼
Z

d3x iψ̄γμð∂μ − iAμÞψ ð1:3Þ

is conjectured to be dual to QED3 with a single species of
fermion,

S ¼
Z

d3x iΨ̄γμð∂μ − iaμÞΨþ 1

4π
ϵμνρAμ∂νaρ: ð1:4Þ

This is more subtle, not least because a single Dirac
fermion in d ¼ 2þ 1 dimensions flirts with the parity
anomaly. This is avoided in the above theories by changing
the flux quantization conditions of the gauge field; ulti-
mately, this seems to be sensible only when the theories
are viewed as living on the boundary of a d ¼ 3þ 1-
dimensional system.
The proposed fermionic particle-vortex duality lies at the

heart of a number of inter-related topics in condensed
matter physics. The duality first arose in Son’s suggestion
that the correct description of the half-filled Landau level
involves an emergent (“composite”) Dirac fermion [3].
Shortly afterwards, it was realized that the duality plays an
important role in describing the surface states of interacting
topological insulators [4,5]. These ideas have subsequently
been extended in a number of different directions [6–10],
including a derivation of the duality starting from an array
of d ¼ 1þ 1-dimensional wires [11].
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A. Flux attachment

There is a second, seemingly unrelated, operation that
one can perform in d ¼ 2þ 1 dimensions. This is statistical
transmutation of particles through flux attachment [12].
Attaching a single quantum of flux to a particle turns a
boson into a fermion and vice versa, while adding two
quanta of flux leaves the statistics unchanged. This process
underlies the original concept of composite fermions as
emergent particles in the lowest Landau level [13].
The idea of flux attachment was first applied to non-

relativistic particles. However, there also exist versions of
flux attachment for relativistic particles. These take the
form of dualities between bosonic and fermionic field
theories, where one side is coupled to a Chern-Simons
interaction to implement the statistical transmutation. See,
for example, Refs. [14–19]. These dualities are sometimes
referred to as 3D bosonization and will be the starting point
of the present paper.
As an aside, we note that there has recently been a revival

of this idea in the context of non-Abelian UðNÞ gauge
theories [20–23], where the 1=N expansion allows a number
of very impressive checks of the duality [24–27]. This too
leads to a compelling story for finite N and, ultimately, for
theUð1Þ gauge theories of interest in this paper. Combining
studies of supersymmetric theories [28–31], RG flows
[32,33], operator maps [34], and level-rank dualities [35]
results in a consistent picture. These different threads were
tied together in a careful analysis by Aharony [23].

1. Synthesis

In this paper, we need only the Abelian version of the
3D bosonization duality. This is the simplest relativistic
generalization of the standard flux attachment story: A
scalar coupled to a Uð1Þ Chern-Simons term at level 1 is
equivalent to a fermion. We will describe this in more detail
in Sec. II.
From this conjectured bosonization duality, all else

follows. This is the topic of Sec. III. By manipulating
the path integral, we derive a web of further dualities. These
include both the bosonic and fermionic versions of particle-
vortex dualities presented above, as well as many more. All
these derivations hold at the level of the partition function,
viewed here as a function of background gauge fields (i.e.,
Aμ in the examples above). This means that all correlation
functions of currents agree on both sides.

2. Supersymmetry

There is one further ingredient that wewould like to add to
themix. This is the supersymmetric version of particle-vortex
duality, known also as mirror symmetry. First discovered in
Ref. [36], there are now many examples that differ in their
gauge symmetry, matter content, and amount of supersym-
metry; seeRefs. [37–41] for a small sample.Mirror symmetry
was applied to the problem of the half-filled Landau level in

Ref. [42], although the existence of a pair of Dirac fermions
means that the resulting physics is rather different from the
fermionic duality of Eqs. (1.3) and (1.4).
The power of supersymmetry provides greater control

over the strong coupling regions of these theories. This
means that one can be muchmore precise about the operator
map between theories and, in certain cases, one can
effectively prove the duality by showing that the monopole
operator is indeed a free field [43]. Particularly pertinent for
the present paper are the path integral manipulations
developed in Ref. [44] for supersymmetric theories. We
will borrow heavily from these ideas.
Since the supersymmetric mirror pairs involve both

bosons and fermions, one might imagine that they can
be constructed by combining the bosonic and fermionic
dualities described in Eqs. (1.1)–(1.4). However, the way
the parity anomaly plays out in the supersymmetric theories
is rather different from the way it works in the purely
fermionic duality of Refs. [3–5]. Instead, following the
large N analysis of Refs. [32,33], we suggest that one
should think of mirror symmetry more as a bosonization,
with bosonic currents in one theory mapped to fermionic
currents in the other. We discuss this in Sec. IV.

II. BOSONIZATION IN d = 2þ 1

We start in this section by describing the relativistic
generalizations of flux attachment that we will need
[14,17–19,23].

A. Building blocks

Throughout this paper, we work with three types of
fields: complex scalars ϕ, two-component Dirac spinors ψ ,
and Abelian gauge fields. The latter fall into two categories:
background gauge fields, which we initially denote as Aμ,
and dynamical gauge fields aμ. In the condensed matter
context, Aμ is usually thought of as electromagnetism,
while aμ is an emergent gauge field.
All gauge fields, whether background or dynamical, are

compact in the sense that the fluxes are quantized. It will be
somewhat easier to discuss this flux quantization if we take
our spatial slices to be S2 rather thanR2. The precise choice
of the quantization condition will be an important part of
the story, and we will specify it afresh for each theory. For
now, we recall the standard story of Dirac quantization: If
fundamental fields have unit charge, then the flux is
quantized as

Z
S2

F
2π

∈ Z; ð2:1Þ

where F ¼ dA.
We insist that our partition functions are gauge invariant.

Of course, this has to be the case for the dynamical gauge
fields a; however, we also insist that our partition functions

ANDREAS KARCH and DAVID TONG PHYS. REV. X 6, 031043 (2016)

031043-2



are gauge invariant for the background gauge field A. This
is particularly relevant in the presence of Chern-Simons
terms1

SCS½A� ¼
1

4π

Z
d3x ϵμνρAμ∂νAρ: ð2:2Þ

This term appears in the path integral as eik SCS½A�, where
the coefficient k is referred to as the level. If A obeys
the standard quantization condition (2.1), then gauge
invariance requires

k ∈ Z:

Since this argument is important, let us remind ourselves of
the key elements. We work on Euclidean spacetime
S1 × S2. This allows us to introduce a new ingredient:
large gauge transformations of the form g ¼ eiθ, where θ ∈
½0; 2πÞ is the coordinate of the S1. When evaluated on a flux
background, the Chern-Simons action shifts under such a
large gauge transformation: ΔSCS½A� ¼ 2π

R
S2 F=2π. With

the usual Dirac quantization condition (2.1), we learn that
eikSCS½A� is gauge invariant only when k ∈ Z, as advertised.
We also need a coupling between different Abelian

gauge fields. This is achieved by a mixed Chern-Simons
term, also known as a “BF coupling,”

SBF½a;A� ¼
1

2π

Z
d3x ϵμνρaμ∂νAρ: ð2:3Þ

The coefficient is chosen so that a flux
R
F ¼ 2π has unit

charge under a. The same arguments given above show
that, if both f ¼ da and F ¼ dA have canonical normali-
zation (2.1), then the BF coupling must also come with an
integer-valued coefficient. Note that, up to a boundary
term, SBF½a;A� ¼ SBF½A; a�.
The action for the scalar fields takes the usual form

Sscalar½ϕ;A� ¼
Z

d3xjð∂μ − iAμÞϕj2 þ � � � ; ð2:4Þ

where … denote possible potential terms. We focus our
attention on critical (gapless) theories, which leaves two
choices: We could work with a free scalar, or we could
work with a Wilson-Fisher scalar, viewed as adding a ϕ4

deformation and flowing to the infrared while tuning the
mass to zero. Both of these possibilities will arise below.

The fermion is governed by the Dirac action

Sfermion½ψ ;A� ¼
Z

d3x iψ̄γμð∂μ − iAμÞψ þ � � � ð2:5Þ

We are interested in gapless fermions which, again, leaves
two choices. One of these is a free fermion. The other is
best thought of as introducing an auxiliary field σ and
adding the term σψ̄ψ to the action, tuning the mass to zero.
(One can use the same method to reach the Wilson-Fisher
fixed point for the boson.)
If A is taken to obey the standard quantization condition

(2.1), then the partition function involving the action (2.5)
for a single Dirac fermion is not gauge invariant. This is the
parity anomaly [45,46]. One way to see this is to give the
fermion a mass mψ̄ψ . Integrating them out then results in
the Chern-Simons term

1

2
signðmÞSCS½A�:

But, as described above, Chern-Simons terms are only
gauge invariant with integer coefficients.
Alternatively, we can see the lack of gauge invariance

directly when m ¼ 0. Consider the background in which
we insert a single unit of flux (2.1) through a spatial S2. The
Atiyah-Singer index theorem ensures that the Dirac fer-
mion has a single, complex zero mode. We denote the
creation operator for this zero-energy state as χ. This means
that the monopole has two ground states,

j0i and χ†j0i: ð2:6Þ

Because ψ has charge 1, the charge of these two states must
differ by þ1. But, by CT symmetry, the magnitude of the
charge should be the same for the two states. The net result
is that we have a simple example of charge fractionaliza-
tion, and the states have charge Q ¼ � 1

2
. This means that,

in the presence of an odd number of background fluxes, the
gauge charge is not integer valued. This result is in
contradiction with our original Dirac quantization condi-
tion, which assumed unit fundamental charge. Something
has to break. That something is gauge invariance.
The upshot of these arguments is that we must amend the

action (2.5) in some way in order to preserve gauge
invariance. There are (at least) two remedies. The first is
to retain the quantization condition (2.1) but include a
compensating half-integer Chern-Simons action SCS½A�;
this is the usual story. The second possibility is to change
the quantization condition (2.1); this was invoked only
recently in relation to the proposed fermionic particle-
vortex duality [3–5]. This change of quantization can be
accomplished by the addition of an auxiliary gauge [47].
Both remedies will appear in different places below.

1For all gauge fields, we only write the Chern-Simons terms
explicitly. For dynamical gauge fields, there is also an implicit
Maxwell term ð1=g2Þfμνfμν. We neglect this as we are ultimately
interested in the infrared limit g2 → ∞. Nonetheless, we should
remember that, in the presence of an ultraviolet cutoff ΛUV, we
keep g2 ≪ ΛUV as this limit is taken.
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B. Attaching flux to scalars

With these building blocks in place, we can now describe
the simple dual from which all else follows. We consider a
scalar coupled to a dynamical gauge field a with unit Chern-
Simons coefficient. This, in turn, is coupled to a background
field A. The full partition function takes the form

Zscalarþflux½A� ¼
Z

DϕDa expðiSscalar½ϕ; a�

þ iSCS½a� þ iSBF½a;A�Þ: ð2:7Þ

Here, the path integral over gauge fields implicitly includes
the relevant gauge-fixing terms. Both f ¼ da and F ¼ dA
are taken to have canonical normalization (2.1).
If we turn off the background source, so F ¼ 0, then the

equation of motion for a0 reads

ρscalar þ
f
2π

¼ 0; ð2:8Þ

where ρscalar is the charge density of ϕ. Clearly, this attaches
one unit of flux to each ϕ particle. If the particles were
massive, the usual nonrelativistic story [12] would mean
that these excitations are fermions. To make sure that this
remains the case here, we need to look at the monopole
operator [48]. (Once again, this is simplest if we work on S2

rather thanR2.) A single monopole operator has
R
f ¼ 2π.

The constraint (2.8) means that we must excite a single
mode of the scalar in this background. However, the scalar
monopole harmonics carry half-integer angular momentum
[49], ensuring that the monopole operator does indeed carry
half-integer spin. The monopole is a fermion.
With this in mind, we define the fermionic path integral

Zfermion½A� ¼
Z

Dψ expðiSfermion½A�Þ:

As we explained previously, this is not gauge invariant. To
restore gauge invariance, we dress this partition function by
a Chern-Simons term for the background gauge field with a
half-integer coefficient, e.g., e−ði=2ÞSCS½A�. Such a term
results in contact interactions between currents [50].
The proposed duality of Refs. [14,17,23] is simply to

identify the theory (2.7) describing scalar þ flux with the
fermionic theory. Their partition functions are conjectured
to be related as

Zfermion½A�e−ði=2ÞSCS½A� ¼ Zscalarþflux½A�: ð2:9Þ

This is the simplest example of 3D bosonization. We note
that it is also an example of a particle-vortex duality: As we
saw above, the free fermion operator maps to the monopole
operator in the interacting theory.
In fact, the formula (2.9) actually describes two different

dualities. The difference between them is hidden in the

“…” in Eqs. (2.4) and (2.5). As we saw above, there are two
choices for the critical scalar and fermion. The results of
Refs. [20,21] strongly suggest that if we take the free
fermion as the left-hand side of Eq. (2.9), then we should
take the Wilson-Fisher scalar on the right-hand side.
Analogously, the critical fermion with σψ̄ψ coupling
corresponds to the free scalar.
The level − 1

2
of SCS½A� on the left-hand side of Eq. (2.9)

is fixed by the Hall conductivity [22]. To see this, let us first
gap the fermion. After integrating it out, we find a Hall
conductivity that is either 0 or −1 depending on the sign of
the mass. On the scalar side, two different things happen
depending on the sign of this fermionic mass. For one sign,
the scalar is gapped, and integrating out the dynamical
gauge field a results in a Hall conductivity of −1; for the
other sign, the scalar condenses, and the gauge field a is
Higgsed. In this phase, the Hall conductivity vanishes. In
both cases, we find agreement with the fermionic behavior.
In what follows, we assume the duality (2.9) and use it to

derive many further dualities. We do this using the kind of
techniques first introduced in Ref. [44] and further explored
in Ref. [51]. First, we breathe life into the background
gauge field A, promoting it to a dynamical gauge field.
This, in turn, gives rise to a new topological current ⋆F=2π,
which is subsequently coupled to a replacement back-
ground gauge field through a BF term. Below, we use this
simple but powerful trick many times. We find that minor
variations on the theme allow us to derive a vast array of
different dualities, including the particle-vortex dualities
described in the Introduction.

C. Attaching flux to fermions

We start with a simple example. As described above, we
promote the background gauge field A in Eq. (2.9) to a
dynamical field and couple it to a new background gauge
field, which we denote as C. The left-hand side of Eq. (2.9)
becomes

Zfermionþflux½C� ¼
Z

DψDA exp

�
iSfermion½ψ ;A�

−
i
2
SCS½A� − iSBF½A;C�

�
: ð2:10Þ

This describes a fermion coupled to a background flux. To
get a feel for the resulting physics, we can again look at
Gauss’s law, arising as the equation of motion for A0.
Setting dC ¼ 0, this reads

ρfermion −
1

2

F
2π

¼ 0: ð2:11Þ

In the background of a single monopole,
R
F ¼ 2π, we

must haveQfermion ¼ 1
2
. We have already seen that this is the

charge of the state χ†j0i arising from quantizing the zero
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mode (2.6). The other state j0i does not satisfy Gauss’s law
(2.11) and is not part of the physical Hilbert space.
Moreover, the zero mode χ is known to be a singlet under
rotation symmetry [43]. This means that the monopole
operator is a boson, and we might expect Eq. (2.10) to be
dual to a scalar theory.
Let us now note what becomes of the right-hand side of

Eq. (2.9) under this operation. The partition function is

Z
DA Zscalarþflux½A� expð−iSBF½A;C�Þ:

The newly promoted gauge field A appears linearly in the
action and can be integrated out. Its equation of motion is
simply da ¼ dC. In the absence of any holonomy, we set
a ¼ C to get

Z
Dϕ expðiSscalar½ϕ;C� þ iSCS½C�Þ ¼ Zscalar½C�eiSCS½C�:

This, of course, must be equal to the left-hand side of
Eq. (2.10). The end result is that, starting from Eq. (2.9), we
can derive a new duality in which attaching fluxes to
fermions gives rise to a bosonic theory

Zfermionþflux½C� ¼ Zscalar½C�eiSCS½C�: ð2:12Þ

A duality of this kind first appeared in Ref. [18] (see also
Ref. [19]) and has arisen more recently as a special case of
non-Abelian dualities in Ref. [23].
One can check that repeating this procedure by gauging

C in Eq. (2.12) and adding a new background gauge field
through a BF coupling takes us back to the duality (2.9).

D. Time reversal

Before we proceed, it will be useful to highlight the role
that time reversal plays in the dualities (2.9) and (2.12). In
each case, time reversal is manifest on one side of the
duality but not on the other. For the dualities to hold, it must
be that time reversal appears as a hidden, quantum
symmetry on the other side.
This fact allows us to immediately write down two new

dualities, which arise from the action of time reversal on
Eqs. (2.9) and (2.12). This flips the sign of all Chern-
Simons and BF couplings, leaving other terms in the action
invariant. (Parity would also play the same role.) Applying
time reversal to the duality (2.9) gives

Zfermion½A�eþi
2
SCS½A� ¼ Z̄scalarþflux½A�; ð2:13Þ

where, on the left-hand side, only the background fields are
affected, while on the right-hand side, we have defined

Z̄scalarþflux½A� ¼
Z

DϕDa expðiSscalar½ϕ; a�

− iSCS½a� − iSBF½a;A�Þ: ð2:14Þ

We see that the lack of manifest time-reversal invariance
allows us to derive two different dualities, Eqs. (2.9) and
(2.13), for a free fermion.
Similarly, applying time reversal to the duality (2.12), we

can derive a second duality for the ungauged scalar,
namely,

Z̄fermionþflux½C� ¼ Zscalar½C�e−iSCS½C�; ð2:15Þ

where

Z̄fermionþflux½C� ¼
Z

DψDA exp

�
iSfermion½ψ ;A�

þ i
2
SCS½A� þ iSBF½A;C�

�
: ð2:16Þ

We will have use for these versions of the duality shortly.

III. PARTICLE-VORTEX DUALITY

We can now use similar methods to derive dualities that
map bosons to bosons and fermions to fermions. As we will
see, these include the familiar particle-vortex dualities.

A. Bosons

We start with the duality (2.12). However, before we
proceed, we first divide by the contact interaction so that
the duality reads

Zfermionþflux½C�e−iSCS½C� ¼ Zscalar½C�: ð3:1Þ

We now gauge the background field C. For notational
reasons, it will prove useful to recycle some of our old
names for gauge fields. We therefore relabel C → a. We
couple this to a new background gauge field, which we call
A. After gauging, the right-hand side becomes the partition
function for scalar QED,

Zscalar−QED½A� ¼
Z

DϕDa expðiSscalar½ϕ; a� þ iSBF½a;A�Þ:

Now, we look at the left-hand side of the duality.
After these operations, the partition function isR
DaZfermionþflux½a�e−iSCS½a�þiSBF½a;A�. Written out in full

using Eq. (2.10) (and changing the names of integration
variables), this reads
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Z
DψD ~aDa exp

�
iSfermion½ψ ; ~a� −

i
2
SCS½ ~a� − iSBF½ ~a; a�

− iSCS½a� þ iSBF½a;A�
�
:

The next step is to integrate out the gauge field a. Its
equation of motion requires (in the absence of holonomy)
a ¼ A − ~a. Substituting back in, and collecting various
terms, we find the resulting partition function2

Z
DψD ~a exp

�
iSfermion½ψ ; ~a� þ

i
2
SCS½ ~a�

− iSBF½ ~a;A� þ iSCS½A�
�
: ð3:2Þ

Something interesting has happened: We recognize the first
three terms as the time-reversed partition function
Z̄fermionþflux½−A� defined in Eq. (2.16). We can replace this
by using the time-reversed duality (2.15). The resulting
contact interaction cancels the final term in Eq. (3.2). We
are simply left with the scalar partition function Zscalar½−A�.
We learn that applying the duality twice, once in its

original form (2.12) and once in its time-reversed avatar
(2.15), we relate two scalar partition functions,

Zscalar−QED½A� ¼ Zscalar½−A�:

This, of course, is the original particle-vortex duality [1,2],
relating the XY model (1.1) (on the right) to the Abelian
Higgs model (1.2) (on the left). (The flip of sign in the
background field A can be undone by a charge conjuga-
tion.) Following the fate of the “…” in the original scalar
action, we see that the scalar should either be free on both
sides or tuned to the Wilson-Fisher fixed point on both
sides. Of course, there have long been derivations of this
duality from constructing such theories on the lattice [1,2].
Nonetheless, it is interesting to see that it follows from
bosonization.
We highlight that the derivation assumes the absence of

holonomies in the gauge field when integrating out a. This
means that the duality may be modified on S2 × S1, or
indeed in flat space in the presence of Wilson lines.

B. Fermions

We can repeat the above derivation for the fermions. This
time, we start with the duality (2.9), but only after dividing
by the contact interaction on both sides,

Zfermion½C� ¼ Zscalarþflux½C�eþi
2
SCS½C�: ð3:3Þ

Now we have a problem. As we explained previously, if the
background gauge field C obeys the canonical quantization
condition (2.1), then neither side of this equation is gauge
invariant.
A fix for this was suggested in Refs. [3–5]: We simply

require the more stringent quantization condition that
fluxes must be even,

Z
dC
2π

∈ 2Z: ð3:4Þ

Restricted to such backgrounds, there is no anomaly.
The restriction (3.4) is certainly allowed for background

gauge fields that are under our control. However, the next
step is to promote C to a dynamical field, and here the
condition (3.4) is far from innocuous. A more systematic
treatment of this can be found in Refs. [47,53].
Let us look at what becomes of the two sides of the

duality (3.3). The left-hand side is simply QED3, with a
single flavor of fermion. Changing the name of integration
variables, the partition function is

ZQED½A� ¼
Z

DψDa exp

�
iSfermion½ψ ; a� þ

i
2
SBF½a;A�

�
;

ð3:5Þ

where the final term is the coupling to a background field A.
The partition function is gauge invariant only if dA also
obeys the quantization condition (3.4).
Meanwhile, the calculation on the right-hand side

closely follows the derivation of bosonic particle-vortex
duality above. Only factors of 2 are different, but since
these factors are important, let us list the steps here. Using
the definition (2.7) of Zscalarþflux, the partition function on
the right-hand side reads

Z
DϕD ~aDa exp

�
iSscalar½ϕ; ~a� þ iSCS½ ~a� þ iSBF½ ~a; a�

þ i
2
SCS½a� þ

i
2
SBF½a;A�

�
:

Integrating out a results in the equation of motion
da ¼ −ðdAþ 2d ~aÞ. Substituting this back into the action
and collecting terms, we find that

Z
DψD ~a exp

�
iSscalar½ϕ; ~a� − iSCS½ ~a� − iSBF½ ~a;A�

−
i
2
SCS½A�

�
:

As before, we recognize the first three terms as the time-
reversed partition function Z̄scalarþflux½A� defined in
Eq. (2.14). We replace this using the time-reversed duality
(2.13). The upshot of this argument is that Eq. (3.3) implies

2This action also appears in a recent proposal for a particle-
vortex symmetric description of the superconductor-insulator
transition [52].
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the relationship between single-flavor QED3, defined in
Eq. (3.5), and a free fermion

ZQED½A� ¼ Zfermion½A�: ð3:6Þ

This is precisely the particle-vortex duality for fermions
proposed in Refs. [3–5], equating the partition functions for
Eqs. (1.3) and (1.4).
It is instructive to look at the quantum numbers of

monopole operators in QED3 on S2 to see how they are
consistent with the duality (3.6). (See, for example,
Refs. [43,54] for the necessary facts about monopole
operators.) In the background of a monopole with fluxR
da ¼ 2πn, the Dirac equation has 2jnj zero modes,

transforming in the spin ðjnj − 1Þ=2 representation of the
SUð2Þrot rotational symmetry. For the n ¼ 2 monopole, the
resulting states are j0i, χ†aj0i, and χ†1χ

†
2j0i; these have

charge Q ¼ −1; 0;þ1 and spin 0; 1
2
; 0, respectively. The

constraint of Gauss’s law projects us onto the Q ¼ 0 states.
We learn that the monopole has spin 1

2
, as it should.

The equality of partition functions (3.6), and the corre-
sponding equality of current correlators, provides strong
evidence that QED3 is indeed equivalent to a free Dirac
cone. We stress that, on dynamical grounds, this is
surprising. With an even number Nf of fermionic flavors,
there is no parity anomaly, and QED3 can be quantized with
the usual flux condition (2.1). Here, the theory is expected
to flow to a critical point when Nf > N⋆, some critical
number of flavors thought to be N⋆ ≈ 4. In contrast, for
Nf < N⋆, the theory is confined, and it generates a gap
which, for an even number of flavors, spontaneously breaks
the flavor symmetry SUðNfÞ → SUðNf=2Þ. Based on this
evidence, one might have thought that when Nf ¼ 1, the
theory again is confined and generates a gap. This time,
however, the mass for a single fermion would break time-
reversal invariance. The result (3.6)—and, indeed, the
arguments of Refs. [4,5]—suggests that the theory is not
confined. It was recently argued that this is plausible
because the channel for time-reversal breaking is weaker
than that of flavor symmetry breaking [55].

C. Self-dual theories

It is straightforward to derive many further dualities by
taking variations on this theme. Here, we describe the self-
dual theories.
A familiar story from the study of supersymmetric mirror

symmetry is that when we couple two flavors of matter to a
single Uð1Þ gauge field, the resulting theory is self-dual.
This is known to hold for N ¼ 4 [36] and N ¼ 2 [40,41]
supersymmetric theories, which correspond to sigma mod-
els with target space T⋆CP1 and CP1, respectively. In this
section, we describe the nonsupersymmetric analogs of
these self-dual theories.

1. Self-dual fermions

A proposal for a self-dual fermionic theory was offered
recently in Ref. [56] by realizing the theory on the surface
of a topological insulator. Our derivation begins by putting
together our original dual theory (2.9) with its time-
reversed partner (2.13),

Zfermion½A1�Zfermion½A2�
¼ Zscalar−flux½A1�Z̄scalar−flux½A2�eþi

2
SCS½A1�−i

2
SCS½A2�:

ð3:7Þ

We write the background gauge fields as

A1 ¼ aþ C and A2 ¼ a − C:

We then promote a to a dynamical gauge field, introducing
a new background field A in the process. The left-hand side
of the duality becomes

ZQED½Nf¼2�½A;C�

¼
Z

DaZfermion½aþ C�Zfermion½a − C�eþiSBF½a;A�:

The claim of Ref. [56] is that this theory is actually self-
dual in the sense that the physics is invariant under
exchanging the two background fields A and C. This is
not obvious from the expression above. Indeed, C is the
background field for the Cartan element of an SUð2Þ flavor
symmetry, rotating the two fermions. There is no obvious
matching SUð2Þ symmetry associated with A.
We can use the duality (3.7) to help us. The right-hand

side of Eq. (3.7) becomes

Z
DaDϕ1D ~a1Dϕ2D ~a2 expðiSscalar½ϕ1; ~a1�

þ iSscalar½ϕ2; ~a2� þ iSCS½ ~a1� − iSCS½ ~a2�
þ iSBF½ ~a1 − ~a2; a� þ iSBF½ ~a1 þ ~a2;C�
þ iSBF½a;Aþ C�Þ:

Once again, this does not look symmetric under an
interchange of A and C. However, now we can integrate
out a. The equation of motion tells us that
d ~a1 − d ~a2 þ dAþ dC ¼ 0. We redefine c� ¼ ~a1 � ~a2 so
that the constraint reads dc− ¼ −ðdAþ dCÞ, which we
subsequently use to eliminate c−. The kinetic terms for ϕ
depend only on the symmetric combination Aþ C.
Meanwhile, something interesting happens to the remain-
ing Chern-Simons and BF terms; they rearrange themselves
so that they depend only on the combination A − C. We are
left with
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Z
Dϕ1Dϕ2Dcþ exp

×

�
iS½ϕ1;ϕ2; cþ;Aþ C� − i

2
SBF½cþ;A − C�

�
:

We see that the first term is invariant under the exchange
A ↔ C, while the second term picks up a minus sign. This,
however, is easily dealt with if we simultaneously apply a
time-reversal transformation.
Since this scalar theory is dual to QED with two flavors,

we learn that this too must be self-dual under the inter-
change of A ↔ C, together with time reversal,

ZQED½Nf¼2�½A;C� ¼ Z̄QED½Nf¼2�½C;A�

in agreement with the proposal of Ref. [56].

2. Self-dual bosons

It is a simple matter to repeat the steps above to derive the
self-duality of the Uð1Þ gauge field coupled to two scalars.
Starting from the duality (3.1), we find

ZQED½Ns¼2�½A;C�

¼
Z

DaZscalar½aþC�Zscalar½a−C�eiSBF½a;A�

¼
Z

DaZfermionþflux½aþC�Z̄fermionþflux½a−C�eiSBF½a;A−2C�

¼
Z

Dψ1Dψ2Dcþexp
�
i ~S½ψ1;ψ2;cþ;A−2C�

−
i
4
SBF½cþ;Aþ2C�

�
;

where ~S½ψ1;ψ2; cþ;A − 2C� is what becomes of the kinetic
terms after we integrate out a and impose the resulting
constraint c− ¼ A − 2C. Importantly, this term is invariant
under parity or time reversal. We see that, once again, the
partition function admits a symmetry under the exchange
A ↔ −2C together with time reversal. We have the self-
duality

ZQED½Ns¼2�½A;C� ¼ Z̄QED½Ns¼2�

�
−2C;−

1

2
A

�
:

This duality was previously studied in Ref. [57]. Moreover,
we learn something new: Comparing the equations in this
section, we see that QED with two fermions is actually the
same theory as QED coupled to two scalars. This is
reminiscent of the relationship between QED with Nf ¼
2 and the Oð4Þ sigma model previously proposed in
Refs. [58–60].

D. Vortex-vortex duality

To finish, we describe one final duality in which
monopole operators are mapped to monopole operators.
This duality was previously described in Ref. [23] forUðNÞ
theories; here, we derive the Uð1Þ version.
We again start with Eq. (2.12), but this time change the

Chern-Simons level for the background field on both
sides to

Zscalar½C�e2iSCS½C� ¼ Zfermionþflux½C�eiSSC½C�:

After promoting C to a dynamical gauge field (which we
rename as a), the left-hand side becomes

Z
DaZscalar½a� expð2iSCS½a� þ iSBF½a;A�Þ:

Meanwhile, the right-hand side is

Z
DaDCZfermi½a�exp

�
−
i
2
SCS½a�− iSBF½a;C�

þ iSCS½C�þ iSBF½C;A�
�

¼
Z

DaZfermi½a�exp
�
−
3i
2
SCS½a�þ iSBF½a;A�−SCS½A�

�
;

where, to get to the second line, we integrate out C and
substitute in its equation of motion C ¼ a − A. The end
result is that a scalar coupled to a Chern-Simons gauge field
at level 2 is equivalent to a fermion coupled to a Chern-
Simons gauge field at level − 3

2
. This duality was previously

reported in Ref. [23].
Let us check that the quantum numbers of operators

agree on both sides. On the scalar side, Gauss’s law requires
ρscalar ¼ −f=π. In the background of a single monopole, we
must turn on two scalar modes. As we saw above, the
lowest excited state of the scalar has spin 1

2
. Since these are

bosons, we pick out the symmetric part, so turning on two
such modes endows the monopole with spin 1.
Meanwhile, on the fermionic side, Gauss’s law tells us

that ρfermi ¼ 3f=4π. The single monopole must have charge
3=2. The zero mode (2.6) can account for charge 1

2
and

leaves the monopole with spin 0. But, in addition, we must
also turn on an excited mode. The first excited mode has
spin 1. Thus, once again, the monopole operator has spin 1.

IV. DISCUSSION

Above, we have focused exclusively on nonsupersym-
metric dualities. One may wonder if we can combine these
to derive mirror symmetry [36] or Seiberg-like dualities
[28] of supersymmetric theories. Unfortunately, we do not,
at present, have enough handle on the operator map needed
to include features like Yukawa couplings on both sides.
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Instead, we could ask the reverse question: Starting from
a supersymmetric mirror pair, how does it decompose
under RG flow if a relevant, supersymmetry-breaking
operator is added? For the supersymmetric bosonization
duality, this question was answered in the large N limit in
Refs. [32,33]. Here, our interest is in Abelian theories, and
we do not have control of the RG flow. Nonetheless, we
will make some suggestions.
For theories with N ¼ 4 supersymmetry, the simplest

mirror pair is [36]

free hypermultiplet ¼ Uð1Þ þ charged hypermultiplet:

Here, a single hypermultiplet contains two complex scalars
and two Dirac fermions. The Uð1Þ gauge field is part of a
vector multiplet which also contains three real scalars and
two Dirac fermions. It can be shown that, starting from this
seed mirror pair, one can generate all further N ¼ 4
Abelian mirrors using path-integral manipulations of the
kind employed above [44].
One can break the supersymmetry down to N ¼ 2 by

giving masses to half of the fields in the hypermultiplet and
integrating them out. Flowing from the simple N ¼ 4

duality above, one finds the N ¼ 2 duality involving a
half-integer Chern-Simons coupling [40,41]

free chiral multiplet ¼ Uð1Þ1=2 þ charged chiral multiplet:

Now the relevant N ¼ 2 multiplets are a chiral multiplet,
which consists of a single complex scalar and a single Dirac
fermion, and a vector multiplet containing the Uð1Þ gauge
field, a single real scalar, and a single Dirac fermion.
Now, we deform the theory further by adding mass to

either the free boson or the free fermion. The resulting RG
flow breaks all supersymmetry and is, correspondingly,
difficult to study. One might imagine that the end point of
integrating out the fermions on both sides is the standard
bosonic particle-vortex duality (1.1) and (1.2). However,
the end point of integrating out scalars on both sides cannot
be the fermionic counterpart (1.3) and (1.4) because the
anomaly structure is different. Something else must
happen.
Flows of a very similar kind were studied in a very

impressive analysis of large N theories in Refs. [32,33].
There, one finds that the bosonic currents on one side of the
duality are related to the fermionic currents on the other
side. Further, gapping out the boson on one side ultimately
results in a gap for the fermion on the other side. We
suggest that this structure survives in the Abelian theories
considered here. The end points of RG flows from the
N ¼ 2mirror are not the particle-vortex dualities described
in the Introduction; instead, they are the two bosonization
dualities (2.9) and (2.12).
The results of Sec. III, as well as our speculations

above, fit a general pattern, which suggests that a good

slogan for the content of this paper might be
“particle-vortex duality ¼ bosonization2”.
Our techniques open the door for the construction of

many more Abelian dual pairs. In the supersymmetric
context, one can use N copies of the basic pair and gauge r
of the background fields to derive mirror pairs in which
Uð1Þr withN matter fields is dual toUð1ÞN−r withN matter
fields [36,41,44]. The same steps can easily be repeated in
the nonsupersymmetric context to generate generalizations
of our story with multiple Abelian gauge groups, with the
self-dual theories of Sec. III C the first in the sequence.
More challenging is the extension of our techniques to

non-Abelian theories. The 3D bosonization dualities have a
simple non-Abelian generalization. Indeed, in the large N
limit, the evidence for this duality is overwhelming. It
would be very interesting to see if one can manipulate the
partition functions for these non-Abelian duals in a similar
way to their Abelian cousins.
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