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Introduction

Ambient particulate matter (PM) is a mix of heterogeneous 
components varies greatly by season and by region (1,2). 
It consists of various components, which includes organic 
carbon (OC), elemental carbon (EC), nitrate, sulfate and 
trace elements (e.g., iron, vanadium, nickel). These chemical 
components are derived from various anthropogenic and 
natural sources, such as soil or road dust, vehicle exhaust, 
biomass combustion, sea salt, forest fires, and may have 
great spatiotemporal variations associated with particular 
regional and local sources (3).

Since PM is a complex mixture, the toxicology of each 

chemical component may vary by time and locations. 
Multicity studies of PM show that associations between PM 
and morbidity and mortality vary across areas (4-6), with 
this variation attributed in part to chemical composition 
differences. Thus, it is still uncertain that whether certain 
PM components cause greater public health concern 
than others. Both National Academy of Sciences (NAS) 
and U.S. Environmental Protection Agency (EPA) have 
given prominence to the significance of investigating 
chemical components and characteristics of PM which 
contribute to their toxicity (7,8). Identifying most harmful 
PM components to human health could target control 
regulations more effectively so that it may reduce the 
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burden of disease due to PM at a lower cost.
PM chemical components are usually measured by fixed 

monitoring stations which are collected and managed by 
government agencies on the base of regulatory purposes. 
For instance, in US, mainly two monitoring networks 
measure PM chemical components, which are the U.S. EPA 
Chemical Speciation Network (CSN) and the Interagency 
Monitoring of Protected Visual Environment (IMPROVE) 
sponsored by the U.S. EPA and other agencies (9-11). 
There are around 250 monitoring stations measuring PM 
components, for each single urban area less than 3 monitors 
on average, in contrast to 2,000 monitors for PM2.5 mass 
across the whole country.

 In Hong Kong, PM chemical speciation network was 
established by the Hong Kong Environmental Protection 
Department to measure twenty-s ix  PM chemical 
components. Six general monitoring stations and one road 
side monitoring station were distributed across the whole 
area. The frequency of collecting samples was every six 
days. Thus, it is difficult to estimate the spatial and temporal 
variability based on the limited numbers of monitors. 

PM components usually include OC, EC, ammonium 
ion (NH4

+), nitrate (NO3
−), sulfate (SO4

2−), bromide ion (Br-),  
chloride ion (Cl−), sodium ion (Na+), potassium ion (K+), 
aluminium (Al), arsenic (As), beryllium (Be), barium (Ba), 
calcium (Ca), cadmium (Cd), chromium (Cr), copper (Cu), 
iron (Fe), mercury (Hg), magnesium (Mg), manganese (Mn), 
nickel (Ni), lead (Pb), selenium (Se), vanadium (V) and zinc 
(Zn). The common speciation methods and procedures for 
PM chemical components are summarized in Table 1. Due 
to the complexity of speciation methods and procedures, 

PM chemical components are commonly measured every  
6 days for each monitoring stations (12).

The exposure assessment methods for PM components 
in epidemiological studies haven’t been reviewed. In 
this review, we summarize exposure assessment methods 
which have been applied in estimating the associations 
between PM components and adverse health effects in 
epidemiological studies. 

Exposure assessment methods for short term 
exposure to PM components 

Evidence have been accumulated on the association between 
PM components and adverse health effects on short term 
studies, like time series studies and case crossover studies 
(13,14). These studies rely on the day-to-day variations of 
the concentrations of PM components. Usually, associations 
with health effects were estimated using the exposure of 
the same day on which the outcome occurs or several days 
before the outcome occurs. Since the components were 
measured in every 3–6 days in general, it is very likely that 
during certain days there is no corresponding data for the 
PM components. Temporal imputation should be utilized 
to impute the missing data, while it is still challenging since 
the missing data might be substantially different from the 
observed data. 

Exposure assessment methods for long term 
exposure to PM components 

Table 2 summarized the exposure assessment methods for 
long term exposure to PM components. Several studies 
estimated the individual exposure level according to 
the monitoring concentrations close to their geocoded 
addresses. One study attempted to assess the association 
between PM2.5 components and cardiopulmonary mortality 
in California (15,16), by assigning an concentration based 
on the nearest monitor according to the geocoded address. 
In this study, PM2.5, Al, ammonium, Br, Ca, Cl, Cu, EC, Fe, 
Pb, Mn, Ni, OC, K, Si, Na, sulfate, Ti, nitrate, V and Zn 
were included. Particularly, different buffer distances were 
examined in this study. In addition, a study in California (17)  
explored the association between low birth weights and 
PM2.5 constituents including EC and 35 metals, which 
applied the same exposure assessment method. In Florida, 
one study also tried to assess the risk of preeclampsia during 
pregnancy from exposure to PM components using the 
nearest monitoring station concentration as the surrogate 

Table 1 Techniques and procedures used for particulate matter (PM) 
chemical speciation

Chemical component Technique

PM mass (Quartz) Gravimetry

EC, OC Thermal/optical transmission

NO3
−
, SO4

2−
, NH

+
, Cl

−
, 

Br
−
, Na

+
 and K

+
 

Ion chromatography

Al, Ba, Be, Ca, Cd, Cr, 
Cu, Fe, Mg, Mn, Ni

USEPA IO-3 method with Inductively

Pb, V and Zn Coupled plasma atomic emission 
spectroscopy

As, Hg and Se USEPA IO-3 method with flow injection 
analysis—atomic absorption technique 
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Table 2 Exposure assessment methods for associations between long-term PM components and adverse health effects in cohort studies

Approach Description Study area Pollutants studied Reference

Distance based 
model

Long term average concentration 
within certain distance to the 
nearest monitoring station

California, USA PM2.5, Al, ammonium, Br, Ca, Cl, Cu, 
EC, Fe, Pb, Mn, Ni, OC, K, Si, Na, 
sulfate, Ti, nitrate, V, Zn

(15,16)

Florida, USA EC and 35 metals (17)

Connecticut, USA BC, Zn, Pb, Cu, Br, Si, Fe, Ba, Ti, Mn, 
Al, Ca, K, V, Ni, Na, Cl, S

(18)

Interpolation
model

Average of the monitoring 
concentrations within the same 
area 

Northeastern and mid-
Atlantic, USA

Al, NH4, As, Cd, Ca, Cl, EC, Pb, Hg, 
Ni, nitrite, OCM, Si, Na, sulfate, Ti, V, 
Zn

(19)

Weighted average concentrations 
within the same area

California, USA PM10 OC, PM10 EC, PM2.5 OC, 
PM2.5 EC, Ammonium nitrate PM2.5, 
Ammonium sulfate PM2.5, Biomass 
burning PM2.5, Diesel PM2.5, Gasoline 
PM2.5, Geological PM2.5, Meat cooking 
PM2.5, Residual Oil PM2.5, Sea salt 
PM2.5

(20-22)

Interpolation method for which the 
interpolated values are model by 
Gaussian process

California, USA EC, OC, K, Cr, Fe, Ti, As, Mn, Cu, Ni, 
Pb

(23)

MESA cohort, 48 States 
in USA

EC, OC, Si, S (9)

Land use 
regression model

Models were developed from 
emission sources, traffic intensity, 
population density, land use etc.

19 European area 
(ESCAPE)

Cu, Fe, K, Ni, S, Si, V, Zn (24-28)

3 cities in USA, The 
Multi-Ethnic Study of 
Atherosclerosis (MESA)

PM10-2.5 Mass, Cu, Zn, Si, P, endotoxin (29)

Dispersion model incorporate information of 
emissions, meteorology and 
atmospheric chemistry to predict 
the concentrations of PM2.5 
composition

Texas, USA nitrite, sulfate, OC and EC (30)

evaluate PM composition, particle 
size and source information, which 
incorporated information of wet 
and dry deposition, emissions and 
transport

California, USA O3, NO, NO2, CO, PM2.5 mass EC, OC, 
nitrate

(23,31)

Satellite-based 
methods

combine satellite-derived aerosol 
optical depth and composition 
information from the global 
chemical transport model

Global inorganic aerosol (SO4
2−

, NH4
+
 and 

NO3
−
), BC and organic mass

(32)

PM, particulate matter; OC, organic carbon; EC, elemental carbon.

for each individual. Another study attempted to explore 
the association between the source of fine particular 
matter and risk of preterm birth in Connecticut (18).  
BC, Zn, Pb, Cu, Br, Si, Fe, Ba, Ti, Mn, Al, Ca, K, V, 
Ni, Na, Cl, S were also included in the study. Exposure 

estimates were assigned to each woman based on the closest 
monitor of the women’s residence at time of birth. Source 
contributions to PM2.5 mass was estimated using Positive 
Matrix Factorization (33). There are several advantages 
for Proximity method. First, this method is time-efficient 
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for long term exposure assessment. In addition, models 
are derived from the monitoring station data, which have 
less uncertainty. Moreover, it is cost-effective to conduct 
compared to detailed exposure assessment which are often 
quite expensive. The distance based method is useful 
in preliminary studies when prior evidence is limited. 
However, this method also has limitations. First, it is very 
likely to lead to spatial misclassifications since only crude 
exposure is provided for each individual. This could lead to 
serious problem, when it comes to a large population and 
the monitoring stations are scarcely distributed. Second, 
the distance based method only takes the nearest fixed site 
monitors into account, fail to account the traffic related 
air pollution while commuting or indoor air pollution at 
schools or homes. Third, exposure misclassification tends to 
be smaller when restricted to small buffer radius, however, 
thus may lead to reduced statistical power. Fewer incidences 
may occur within smaller buffer which may cause imprecise 
estimation to some degree. Another potential issue is that 
urban areas tend to have more monitors than suburban or 
rural countries. Ambient monitoring stations are needed for 
more locations.

A number of studies use unweighted or distance-
weighted average concentrations of several close monitors 
as the exposure concentrations for each individual. One 
study attempted to explore whether low birth weight 
was affected by airborne PM2.5 chemical components (Al, 
NH4, As, Cd, Ca, Cl, EC, Pb, Hg, Ni, nitrite, OCM, Si, 
Na, sulfate, Ti, V and Zn) in the northeastern and mid-
Atlantic regions of United States (19). If one county has 
several monitors, the average concentration was calculated. 
However, different air pollutants were measured in different 
frequency. PM2.5 components were measured every 3-6 
days, while gaseous pollutants were measured daily. In 
order to avoid this problem, daily measured air pollutants 
and apparent temperature were incorporated to estimate 
weekly exposure. A study was conducted on women in Los 
Angeles, which tried to examine the risk of preterm birth 
when the women were exposed to high level of traffic-
related particles, including PM10 OC, PM10 EC, PM2.5 OC, 
PM2.5 EC, Ammonium nitrate PM2.5, Ammonium sulfate 
PM2.5, Biomass burning PM2.5, Diesel PM2.5, Gasoline 
PM2.5, Geological PM2.5, Meat cooking PM2.5, Residual 
Oil PM2.5 and Sea salt PM2.5 (20-22). For women who 
lived near 2 or 3 stations within 5 kilometers, the exposure 
values were calculated by distance-weighted method. The 
aforementioned model is a bit more accurate than the 
distance based model which incorporate weighted and 

unweighted concepts in the model. It is quite useful where 
the monitoring network is dense. Nevertheless, when the 
network is sparse, it may cause bias. Another limitation is 
that geographical patterns or topography have not been 
taken into account. In addition, outliers in monitoring data 
can affect the prediction. The third limitation is that some 
studies did not consider the addresses alterations during 
the study period. For birth cohort study, some studies only 
take into account the birth addresses not the actual or prior 
addresses for the mothers. The forth limitation is that this 
method does not deal with the spatial heterogeneity within 
a large single county, since they use a single monitoring 
station or average concentration as a surrogate for the whole 
county. In such circumstance, misclassification may occur 
for participants who reside far away from the monitoring 
stations. In addition, there is a challenge that the levels of 
some constituents are below the minimum detection limit 
which may cause exposure misclassification.

The Multi-Ethnic Study of Atherosclerosis, also known 
as the MESA study, utilized another approach to measure 
exposure to PM. They used partial least squares (PLS) and 
universal Kriging were used to build the national spatial 
exposure models (9). The aim of this study was to explore 
the relationship between low birth weight and exposure 
to particles by chemical composition (EC, OC, Si, S), size 
fraction and source. PLS, a kind of dimension deduction 
methods, was used as covariates in universal Kriging 
models. In addition, cross-validation was used to select 
the number of PLS components and assess the model’s 
prediction accuracy. Similarly, another study (23) conducted 
in California used empirical Bayesian Kriging methods 
to predict the concentrations of chemical composition 
(EC, OC, K, Cr, Fe, Ti, As, Mn, Cu, Ni, Pb), which could 
automatically calculate the parameters through a process 
of simulations comparing to other Kriging methods. 
The Kriging method was more accurate than the two 
aforementioned methods. The model will perform well 
with good accessibility of monitoring data, often in areas 
with dense monitoring stations compared to intricate 
spatial variability. On the contrary, when air pollution 
monitoring network is sparse, it might easily lead to the 
spatial misclassification, because large errors are exhibited 
which cannot represent the actual level of air pollutants. In 
addition, the ordinary Kriging methods assume that there 
is no global trend in the air pollution monitoring data, i.e., 
air pollutants spatial variability is only relied on the distance 
between monitoring stations.

Land use regression has been applied to predict the 
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spatial variation of the annual mean concentration for PM10, 
PM2.5, NOx, NO2, VOCs and PAHs. Recently, ESCAPE 
has measured the PM constituents (Cu, Fe, K, Ni, S, Si, 
V, Zn) in 20 areas across Europe (34). Land use regression 
for PM components has been developed based on these 
measurements for these study areas. Predictors are extracted 
from Geographic Information Systems (GIS), including 
emission sources, traffic intensity, population density, 
land use etc. Several studies have been used this exposure 
assessment to evaluate the long term PM components and 
health effects (24-29). The health endpoints including 
all natural cause, cardiovascular mortality, lung cancer 
mortality, lung cancer function, respiratory health in 
birth cohort. In the USA, the Multi-Ethnic Study of 
Atherosclerosis (MESA) (35) also developed the LUR model 
to predict the spatial variability (PM10-2.5 Mass, Cu , Zn, Si, 
P, endotoxin) for individuals within the cohorts, including 
fixed-site ambient monitors placed in density populated 
areas as well as rotating monitors. Both land use regression 
and universal Kriging were utilized to evaluate chemical 
components (36). Land use regression performs well with 
long term traffic-related air pollution and do not require 
detailed information on emission sources. However, land 
use regression fails to separate impacts of pollutants clearly, 
i.e. there may be large overlaps between the predictors for 
different PM components, since many of them share the 
same source. Moreover, both studies required additional 
monitoring campaigns based on the original measures. Such 
additional campaigns are time consuming and expensive, 
since it depends on a great number of monitors to develop 
the spatial-temporal models. In addition, land use regression 
does not provide much information on seasonal variability. 
If the topography and land use are quite different, the 
transferability is relatively low. One of the concerns in 
many land use regression is that the exposure measurement 
in land use regression model is developed at recent times 
while the cohort study might start in the past. So many 
studies back extrapolated the exposure concentrations to 
the baseline as well as the follow up period. Recent studies 
(37-40) have shown that nitrite dioxide (NO2) could remain 
the same up to 10 years, which indicates that LUR model 
derived from current traffic related NO2 could predict 
historical exposure well. These findings may be applied to 
traffic-related components, for example Zn, Fe and Cu.

The chemical transport model was developed from the 
air quality model which could predict source appointment 
to visibility reduction in California (41). The CTM model 
was developed to evaluate PM composition, particle size 

and source information, which incorporated information 
of wet and dry deposition, emissions and transport (30,31). 
Recently, a study conducted in Los Angeles assesses the 
PM components (O3, NO, NO2, CO, PM2.5 mass EC, 
OC, nitrate) and low birth weight by using the CTM 
modelled data (23). CMAQ (Community Multiscale Air 
Quality) model incorporates information about emissions, 
meteorology and atmospheric chemistry to predict the 
spatial concentrations of PM2.5 composition (30,42). A 
study conducted in Texas applied the Bayesian Spatial-
temporal model using modelled CMAQ data to evaluate 
the associations between PM components and the risk of 
congenital anomalies (30). Four main components were 
included in this study nitrite, sulfate, OC and EC. The 
dispersion model can be applied to both short term and long 
term air pollution modelling. For limitations, the above-
mentioned methods do not consider the effects of buildings 
during the exposure assessment. It often requires computing 
demands, which might be costly to run the model at detailed 
spatial scale. In addition, this method also demands detailed 
information of emission sources (for instance, road traffic 
and vehicle counts). If such information is not available, the 
model may not develop that well.

Recently, a Canadian team developed a method which 
combined satellite-derived aerosol optical depth and 
composition information from the global chemical transport 
model (32). The study evaluated secondary inorganic 
aerosol (SO4

2−, NH4
+ and NO3

−), BC and organic mass. 
The method which developed by Canadian team is the first 
assessment of long term exposure to fine PM constituents 
all over the world. One of the limitations is that trace metals 
were not evaluated, which serves as one of the important 
fine PM constituents that should be added when their 
assessment capability improves. There are still opportunities 
remaining to improve the modelled estimates. Finer satellite 
resolution and simulation would provide better intra-urban 
gradients.

Discussion

We reviewed different PM exposure assessment methods 
applied in epidemiological studies of adverse health effects 
of short-term and long-term exposure to PM components. 
For short term epidemiological study, the exposure 
largely relies on the day-to-day temporal variation of the 
pollutant concentrations. For long term epidemiological 
study, they include PM composition measurements by 
ambient fixed-site monitors (e.g., unweighted or distance-
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weighted methods), or incorporation of both measuring and 
modeling data (e.g., Kriging, land use regression, CTM). 
While these methods enable the assessment of adverse 
health associations of PM components, several challenges 
remain. Firstly, the large-scale routinely collected PM 
chemical composition data only started in the early 2000s, 
and it may vary by country/location. Thus, monitor-specific 
data on PM components remain sparse or incomplete 
in certain areas, resulting in lack of spatial variation and 
also greater exposure assessment error during land use 
model development and validation. Secondly and most 
importantly, ambient PM composition measurements at 
fixed-site monitors may not reflect personal exposures to 
ambient PM or its composition due to spatial variability 
of ambient PM concentrations, the house-to-house and 
temporal variations in indoor infiltration (i.e., attenuation) 
of ambient PM, and personal variation in the time spent 
in different outdoor and indoor places. For example, a 
panel study of four French metropolitan areas has showed 
little association between ambient monitors and personal 
measurements (43). As a result, the attempts to estimate 
long-term effects using average exposure in epidemiological 
studies, might lead to bias and wrong confidence intervals in 
health effect estimates, as well as reduce the power of such 
studies to build up the proper association between exposure 
and health effects.

Despite the challenges, there lie opportunities for future 
development and evaluation of appropriate exposure metrics 
that can estimate personal exposure well. For example, 
new research has emerged to explore the use of Exposure 
Model for Individual (EMI) to predict exposure metrics for 
actual individuals in the study using ambient air pollutants 
monitoring concentrations, questionnaire information (e.g., 
the characteristics of different buildings), meteorology, 
and information of time and location (44). Another study 
conducted in Saint Louis intended to explore the association 
between heart rate ability for elderly people during trips 
on public transportation and other activities (45). Portable 
monitors were utilized to measure the air pollution (PM2.5 

mass, BC, fine particle counts, coarse PM) exposure for 
each participant. So far, the personal monitoring technique 
has not been applied in the cohort studies, since it is 
relatively expensive to measure PM2.5 components exposure 
for each individual. In addition, new research interests 
have accumulated on the estimating infiltration rates (46), 
since people spend most of their time indoor and it is not 
feasible to measure indoor exposure for each individual. 
Both outdoor and indoor light scattering measurements 

were conducted and combined with meteorological data 
and spatial property assessment data (46). Such ideas have 
already been applied to PM2.5 mass, so it is promising to 
apply it to PM components. Furthermore, as more and 
more people are living in three dimensional landscape 
and exhibit a great deal of population mobility, neither 
traditional land use regression model nor dispersion model 
takes into account the vertical profile of the air pollution 
and the mobility of the population, especially in cities. A 
recent study which incorporates both three dimensional air 
pollution and population mobility has been developed in 
Hong Kong. Such research interest is quite promising in 
future.

To conclude, exposure assessment for PM components 
is complicated and need to be considered before exploring 
the association between PM components and adverse health 
effects. For example, due to the high spatial variability of 
PM components, the use of central site concentration alone 
may not reveal their real spatial variability. More concerns 
should be given to PM components infiltration rate from 
outdoor sources and personal monitoring methods.
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