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PARTITION-BASED CONDITIONAL DENSITY ESTIMATION

S.X. Cohen1 and E. Le Pennec2

Abstract. We propose a general partition-based strategy to estimate conditional density with can-
didate densities that are piecewise constant with respect to the covariate. Capitalizing on a general
penalized maximum likelihood model selection result, we prove, on two specific examples, that the
penalty of each model can be chosen roughly proportional to its dimension. We first study a classical
strategy in which the densities are chosen piecewise conditional according to the variable. We then con-
sider Gaussian mixture models with mixing proportion that vary according to the covariate but with
common mixture components. This model proves to be interesting for an unsupervised segmentation
application that was our original motivation for this work.
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1. Introduction

Assume we observe n pairs ((Xi, Yi))1≤i≤n of random variables, we are interested in estimating the law of
the second one Yi ∈ Y, called variable, conditionally to the first one Xi ∈ X , called covariate. In this paper,
we assume that the pairs (Xi, Yi) are independent while Yi depends on Xi through its law. More precisely,
we assume that the covariates Xi’s are independent but not necessarily identically distributed. Assumption
on the Yi’s is stronger: we assume that, conditionally to the Xi’s, they are independent and each variable Yi

follows a law of density s0(·|Xi) with respect to a common known measure dλ. Our goal is to estimate this two-
variable conditional density function s0(·|·) from the observations. In this paper, we apply a penalized maximum
likelihood model selection result of [13] to partition-based collection in which the conditional densities depend
on covariate in a piecewise constant manner.

The original conditional density estimation problem has been introduced by Rosenblatt [35] in the late 60’s. In
a stationary framework, he used a link between s0(y|x) and the supposed existing densities s0′(x) and s0′′(x, y)
of respectively Xi and (Xi, Yi),

s0(y|x) =
s0′′(x, y)
s0′(x)

,

and proposed a plugin estimate based on kernel estimation of both s0′′(x, y) and s0′(x). Few other references on
this subject seem to exist before the mid 90’s with a study of a spline tensor based maximum likelihood estimator
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proposed by Stone [37] and a bias correction of Rosenblatt’s estimator due to Hyndman et al. [26]. Kernel based
method have been much studied since as stressed by Li and Racine [30]. To name a few, Fan et al. [19] and
de Gooijer and Zerom [15] consider local polynomial estimator, Hall et al. [22] study a locally logistic estimator
later extended by Hyndman and Yao [25]. Pointwise convergence properties are considered, and extensions to
dependent data are often obtained. Those results are however non adaptive: their performances depend on a
critical bandwidth choice that should be chosen according to the regularity of the unknown conditional density.
Its practical choice is rarely discussed with the notable exception of Bashtannyk and Hyndman [5]. Extensions
to censored cases have also been discussed for instance by van Keilegom and Veraverbeke [41]. In the approach
of Stone [37], the conditional density is estimated using a representation, a parametrized modelization. This
idea has been reused by Györfi and Kohler [21] with a histogram based approach, by Efromovich [17, 18] with
a Fourier basis, and by Brunel et al. [11] and Akakpo and Lacour [2] with piecewise polynomial representation.
Risks of those estimators are controlled with a total variation loss for the first one and a quadratic distance for
the others. Furthermore within the quadratic framework, almost minimax adaptive estimators are constructed
using respectively a blockwise attenuation principle and a penalized model selection approach. Kullback–Leibler
type loss, and thus maximum likelihood approach, has only been considered by Stone [37] as mentioned before
and by Blanchard et al. [10] in a classification setting with histogram type estimators.

In [13], we propose a penalized maximum likelihood model selection approach to estimate s0. Given a collection
of models S = (Sm)m∈M comprising conditional densities and their maximum likelihood estimates

ŝm = argmin
sm∈Sm

−
n∑

i=1

ln sm(Yi|Xi),

we define, for a given penalty pen(m), the best model Sm̂ as the one that minimizes a penalized likelihood:

m̂ = argmin
m∈M

−
n∑

i=1

ln ŝm(Yi|Xi) + pen(m).

The main result of [13] is a sufficient condition on the penalty pen(m) such that an oracle type inequality holds
for the conditional density estimation error. In this paper, we show how this theorem can be used to derive
results for two interesting partition-based conditional density models, inspired by Kolaczyk and Nowak [28],
Kolaczyk et al. [29] and Antoniadis et al. [3].

Both are based on a recursive partitioning of space X , assumed for sake of simplicity to be equal to [0, 1]dX ,
they differ by the choice of the density used, once conditioned by covariates: in the first case, we consider
traditional piecewise polynomial models, while, in the second case, we use Gaussian mixture models with
common mixture components. The first case is motivated by the work of Willett and Nowak [42] where they
propose a similar model for Poissonian intensities. The second one is drived by an application to unsupervised
segmentation, which was our original motivation for this work. For both examples, we prove that the penalty
can be chosen roughly proportional to the dimension of the model.

In Section 2, we summarize the setting and the results of [13]. We describe the loss considered, explain the
penalty structure and present a general penalized maximum likelihood theorem we have proved. This will be
a key tool for the study of the partition-based strategy conducted in Section 3. We describe first our general
partition based approach in Section 3.1 and exemplify it with piecewise polynomial density with respect to the
variable in Section 3.2 and with Gaussian mixture with varying proportion in Section 3.3. Main proofs are given
in Appendix while proofs of the most technical lemmas are relegated to our technical report [12].

2. A general penalized maximum likelihood theorem

2.1. Framework and notation

As in [13], we observe n independent pairs ((Xi, Yi))1≤i≤n ∈ (X ,Y)n where the Xi’s are independent, but not
necessarily of same law, and, conditionally to Xi, each Yi is a random variable of unknown conditional density
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s0(·|Xi) with respect to a known reference measure dλ. For any model Sm, a set of candidate conditional den-
sities, we estimate s0 by the conditional density ŝm that maximizes the likelihood (conditionally to (Xi)1≤i≤n)
or equivalently that minimizes the opposite of the log-likelihood, denoted -log-likelihood from now on:

ŝm = argmin
sm∈Sm

(
n∑

i=1

− ln(sm(Yi|Xi))

)
.

To avoid existence issue, we should work with almost minimizer of this quantity and define a η -log-likelihood
minimizer as any ŝm that satisfies

n∑
i=1

− ln(ŝm(Yi|Xi)) ≤ inf
sm∈Sm

(
n∑

i=1

− ln(sm(Yi|Xi))

)
+ η.

Given a collection S = (Sm)m∈M of models, we construct a penalty pen(m) and select the best model m̂ as the
one that minimizes

n∑
i=1

− ln(ŝm(Yi|Xi)) + pen(m).

In [13], we give conditions on penalties ensuring that the resulting estimate ŝm̂ is a good estimate of the true
conditional density.

We should now specify our goodness criterion. As we are working in a maximum likelihood approach, the
most natural quality measure is the Kullback–Leibler divergence KL. As we consider law with densities with
respect to a known measure dλ, we use the following notation

KLλ(s, t) = KL(sdλ, tdλ) =

{∫
Ω

s
t ln s

t tdλ if sdλ � tdλ

+∞ otherwise.

where sdλ � tdλ means ∀Ω′ ⊂ Ω,
∫

Ω′ tdλ = 0 =⇒ ∫
Ω′ sdλ = 0. Remark that, contrary to the quadratic loss,

this divergence is an intrinsic quality measure between probability laws: it does not depend on the reference
measure dλ. However, the densities depend on this reference measure, this is stressed by the index λ when we
work with the non intrinsic densities instead of the probability measures. As we study conditional densities and
not classical densities, the previous divergence should be further adapted. To take into account the structure of
conditional densities and the design of (Xi)1≤i≤n, we use the following tensorized divergence:

KL⊗n

λ (s, t) = E

[
1
n

n∑
i=1

KLλ(s(·|Xi), t(·|Xi))

]
.

This divergence appears as the natural one in this setting and reduces to classical ones in specific settings:

• If the law of Yi is independent of Xi, that is s(·|Xi) = s(·) and t(·|Xi) = t(·) do not depend on Xi, this
divergence reduces to the classical KLλ(s, t).

• If the Xi’s are not random but fixed, that is we consider a fixed design case, this divergence is the classical
fixed design type divergence in which there is no expectation.

• If the Xi’s are i.i.d., this divergence can be rewritten as KL⊗n

λ (s, t) = E [KLλ(s(·|X1), t(·|X1))] .

Note that this divergence is an integrated divergence as it is the average over the index i of the mean with
respect to the law of Xi of the divergence between the conditional densities for a given covariate value. Remark
that more weight is given to regions of high density of the covariates than to regions of low density and, in
particular, divergence values outside the supports of the Xi’s are not used. When ŝ is an estimator, or any
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function that depends on the observations, KL⊗n

λ (s, ŝ) measures this (random) integrated divergence between s
and ŝ conditionally to the observations while E

[
KL⊗n

λ (s, ŝ)
]

is the average of this random quantity with respect
to the observations.

As often in density estimation, we are not able to control this loss but only a smaller one. Namely, we use
the Jensen–Kullback–Leibler divergence JKLρ with ρ ∈ (0, 1) defined by

JKLρ(sdλ, tdλ) = JKLρ,λ(s, t) =
1
ρ
KLλ (s, (1 − ρ)s + ρt) .

Note that this divergence appears explicitly with ρ = 1
2 in Massart [32], but can also be found implicitly in Birgé

and Massart [8] and van de Geer [39]. We use the name Jensen–Kullback–Leibler divergence in the same way
Lin [31] use the name Jensen–Shannon divergence for a sibling in an information theory work. This divergence
is smaller than the Kullback–Leibler one but larger, up to a constant factor, than the squared Hellinger one,
d2

λ(s, t) =
∫

Ω |√s−√
t|2dλ, and the squared L1 distance, ‖s− t‖2

λ,1 =
(∫

Ω |s − t|dλ
)2, as proved in our technical

report [12]. More precisely, we use their tensorized counterparts:

d2⊗n

λ (s, t) = E

[
1
n

n∑
i=1

d2
λ(s(·|X ′

i), t(·|X ′
i))

]
and JKL⊗n

ρ,λ(s, t) = E

[
1
n

n∑
i=1

JKLρ,λ(s(·|X ′
i), t(·|X ′

i))

]
.

2.2. Penalty, bracketing entropy and Kraft inequality

Our condition on the penalty is given as a lower bound on its value:

pen(m) ≥ κ0 (Dm + xm)

where κ0 is an absolute constant, Dm is a quantity, depending only on the model Sm, that measures its
complexity (and is often almost proportional to its dimension) while xm is a non intrinsic coding term that
depends on the structure of the whole model collection.

The complexity term Dm is related to the bracketing entropy of the model Sm with respect to the Hellinger

type divergence d⊗n

λ (s, t) =
√

d2⊗n

λ (s, t), or more precisely to the bracketing entropies of its subsets Sm(s̃, σ) ={
sm ∈ Sm|d⊗n

λ (s̃, sm) ≤ σ
}
. We recall that a bracket [t−, t+] is a pair of functions such that ∀(x, y) ∈ X ×

Y, t−(y|x) ≤ t+(y|x) and that a conditional density function s is said to belong to the bracket [t−, t+] if
∀(x, y) ∈ X × Y, t−(y|x) ≤ s(y|x) ≤ t+(y|x). The bracketing entropy H[·],d⊗n

λ
(δ, S) of a set S is defined as the

logarithm of the minimum number N[·],d⊗n
λ

(δ, S) of brackets [t−, t+] of width d⊗n

λ (t−, t+) smaller than δ such
that every function of S belongs to one of these brackets. To define Dm, we first impose a structural assumption:

Assumption (Hm). There is a non-decreasing function φm(δ) such that δ �→ 1
δ φm(δ) is non-increasing on

(0, +∞) and for every σ ∈ R
+ and every sm ∈ Sm∫ σ

0

√
H[·],d⊗n

λ
(δ, Sm(sm, σ)) dδ ≤ φm(σ).

Note that the function σ �→ ∫ σ

0

√
H[·],d⊗n

λ
(δ, Sm) dδ does always satisfy this assumption. Dm is then defined as

nσ2
m with σ2

m the unique root of
1
σ

φm(σ) =
√

nσ. A good choice of φm is one which leads to a small upper
bound of Dm. The bracketing entropy integral appearing in the assumption, often call Dudley integral, plays
an important role in empirical processes theory, as stressed for instance in van der Vaart and Wellner [40]. The
equation defining σm corresponds to an approximate optimization of a supremum bound as shown explicitly in
the proof. This definition is obviously far from being very explicit but it turns out that it can be related to an
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entropic dimension of the model. Recall that the classical entropic dimension of a compact set S with respect
to a metric d can be defined as the smallest real D such that there is a C such

∀δ > 0, Hd(δ, S) ≤ D(log
(

1
δ

)
+ C)

where Hd is the classical entropy with respect to metric d. Replacing the classical entropy by a bracketing one,
we define the bracketing dimension Dm of a compact set as the smallest real D such that there is a C such

∀δ > 0, H[·],d(δ, S) ≤ D(log
(

1
δ

)
+ C).

As hinted by the notation, for parametric model, under mild assumption on the parametrization, this bracketing
dimension coincides with the usual one. It turns out that if this bracketing dimension exists then Dm can be
thought as roughly proportional to Dm. More precisely, in our technical report [12], we obtain

Proposition 2.1.

• if ∃Dm ≥ 0, ∃Cm ≥ 0, ∀δ ∈ (0,
√

2], H[·],d⊗n
λ

(δ, Sm) ≤ Vm + Dm ln
1
δ

then

– if Dm > 0, (Hm) holds with a function φm such that Dm ≤
(

2C�,m + 1 +
(

ln
n

eC�,mDm

)
+

)
Dm with

C�,m =
(√

Vm

Dm
+
√

π
)2

,

– if Dm = 0, (Hm) holds with the function φm(σ) = σ
√Vm which is such Dm = Vm,

• if ∃Dm ≥ 0, ∃Vm ≥ 0, ∀σ ∈ (0,
√

2], ∀δ ∈ (0, σ], H[·],d⊗n
λ

(δ, Sm(sm, σ)) ≤ Vm + Dm ln
σ

δ
then

– if Dm > 0, (Hm) holds with a function φm such that Dm = C�,mDm with C�,m =
(√

Vm

Dm
+
√

π
)2

,

– if Dm = 0, (Hm) holds with the function φm(σ) = σ
√Vm which is such Dm = Vm.

We assume bounds on the entropy only for δ and σ smaller than
√

2, but, as for any conditional density pair
(s, t) d⊗n

λ (s, t) ≤ √
2,

H[·],d⊗n
λ

(δ, Sm(sm, σ)) = H[·],d⊗n
λ

(δ ∧
√

2, Sm(sm, σ ∧
√

2))

which implies that those bounds are still useful when δ and σ are large.
The coding term xm is constrained by a Kraft type assumption:

Assumption (K). There is a family (xm)m∈M of non-negative number such that∑
m∈M

e−xm ≤ Σ < +∞

This condition is an information theory type condition and thus can be interpreted as a coding condition as
stressed by Barron et al. [4].

2.3. A penalized maximum likelihood theorem

For technical reason, we also have to assume a separability condition on our models:

Assumption (Sepm). There exist a countable subset S′
m of Sm and a set Y ′

m with λ(Y \ Y ′
m) = 0 such that

for every t ∈ Sm, there exists a sequence (tk)k≥1 of elements of S′
m such that for every x and for every y ∈ Y ′

m,
ln (tk(y|x)) goes to ln (t(y|x)) as k goes to infinity.
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The main result of [13] is

Theorem 2.2. Assume we observe (Xi, Yi) with unknown conditional density s0. Let S = (Sm)m∈M an at
most countable model collection. Assume Assumption (K) holds while Assumptions (Hm) and (Sepm) hold for
every model Sm ∈ S. Let ŝm be a η -log-likelihood minimizer in Sm

n∑
i=1

− ln(ŝm(Yi|Xi)) ≤ inf
sm∈Sm

(
n∑

i=1

− ln(sm(Yi|Xi))

)
+ η.

Then for any ρ ∈ (0, 1) and any C1 > 1, there are two constants κ0 and C2 depending only on ρ and C1 such
that, as soon as for every index m ∈ M

pen(m) ≥ κ (Dm + xm) with κ > κ0

where Dm = nσ2
m with σm the unique root of

1
σ

φm(σ) =
√

nσ, the penalized likelihood estimate ŝm̂ with m̂ such
that

n∑
i=1

− ln(ŝm̂(Yi|Xi)) + pen(m̂) ≤ inf
m∈M

(
n∑

i=1

− ln(ŝm(Yi|Xi)) + pen(m)

)
+ η′

satisfies

E

[
JKL⊗n

ρ,λ(s0, ŝm̂)
]
≤ C1 inf

m∈M

(
inf

sm∈Sm

KL⊗n

λ (s0, sm) +
pen(m)

n

)
+ C2

Σ

n
+

η + η′

n
·

This theorem extends Theorem 7.11 of Massart [32], which handles only density estimation, and reduces to
it if all conditional densites considered do not depend on the covariate. The cost of model selection with respect
to the choice of the best single model is proved to be very mild. Indeed, let pen(m) = κ(Dm + xm) then one
obtains

E

[
JKL⊗n

ρ,λ(s0, ŝm̂)
]
≤ C1 inf

m∈M

(
inf

sm∈Sm

KL⊗n

λ (s0, sm) +
κ

n
(Dm + xm)

)
+ C2

Σ

n
+

η + η′

n

≤ C1
κ

κ0

(
max
m∈M

Dm + xm

Dm

)
inf

m∈M

(
inf

sm∈Sm

KL⊗n

λ (s0, sm) +
κ0

n
Dm

)
+ C2

Σ

n
+

η + η′

n
,

where

inf
m∈M

(
inf

sm∈Sm

KL⊗n

λ (s0, sm) +
κ0

n
Dm

)
+ C2

Σ

n
+

η

n

is the best known bound for a generic single model, as explained in [13]: as soon as the term xm remains small
relatively to Dm, we have thus an oracle inequality: the penalized estimate satisfies up to a small factor the
same bound as the estimate in the best model. The price to pay for the use of a collection of model is thus
small. The gain is on the contrary huge: we do not have to know the best model within a collection to almost
achieve its performance. Note that as there exists a constant cρ > 0 such that cρ‖s − t‖⊗n,2

λ,1 ≤ JKL⊗n

ρ,λ(s, t), as
proved in our technical report [12], this theorem implies a bound for the squared L1 loss of the estimator.

For sake of generality, this theorem is relatively abstract. A natural question is the existence of interesting
model collections that satisfy these assumptions. Motivated by an application to unsupervised hyperspectral
image segmentation, already mentioned in [13], we consider the case where the covariate X belongs to [0, 1]dX

and use collections for which the conditional densities depend on the covariate only in a piecewise constant
manner.
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3. Partition-based conditional density models

3.1. Covariate partitioning and conditional density estimation

Following an idea developed by Kolaczyk et al. [29], we partition the covariate domain and consider candidate
conditional density estimates that depend on the covariate only through the region it belongs. We are thus
interested in conditional densities that can be written as

s(y|x) =
∑
Rl∈P

s(y|Rl)1{x∈Rl}

where P is partition of X , Rl denotes a generic region in this partition, 1 denotes the characteristic function
of a set and s(y|Rl) is a density for any Rl ∈ P . Note that this strategy, called as in Willett and Nowak [42]
partition-based, shares a lot with the CART-type strategy proposed by Donoho [16] in an image processing
setting.

Denoting ‖P‖ the number of regions in this partition, the model we consider are thus specified by a partition
P and a set F of ‖P‖-tuples of densities into which (s(·|Rl))Rl∈P is chosen. This set F can be a product of
density sets, yielding an independent choice on each region of the partition, or have a more complex structure.
We study two examples: in the first one, F is indeed a product of piecewise polynomial density sets, while in the
second one F is a set of ‖P‖-tuples of Gaussian mixtures sharing the same mixture components. Nevertheless,
denoting with a slight abuse of notation SP,F such a model, our η-log-likelihood estimate in this model is any
conditional density ŝP,F such that(

n∑
i=1

− ln(ŝP,F(Yi|Xi))

)
≤ min

sP,F∈SP,F

(
n∑

i=1

− ln(sP,F (Yi|Xi))

)
+ η.

We first specify the partition collection we consider. For the sake of simplicity we restrict our description
to the case where the covariate space X is simply [0, 1]dX . We stress that the proposed strategy can easily
be adapted to more general settings including discrete variable ordered or not. We impose a strong structural
assumption on the partition collection considered that allows to control their complexity. We only consider five
specific hyperrectangle based collections of partitions of [0, 1]dX :

• Two are recursive dyadic partition collections.
– The uniform dyadic partition collection (UDP(X )) in which all hypercubes are subdivided in 2dX hyper-

cubes of equal size at each step. In this collection, in the partition obtained after J step, all the 2dXJ

hyperrectangles {Rl}1≤l≤‖P‖ are thus hypercubes whose measure |Rl| satisfies |Rl| = 2−dXJ . We stop
the recursion as soon as the number of steps J satisfies 2dX

n ≥ |Rl| ≥ 1
n .

– The recursive dyadic partition collection (RDP(X )) in which at each step a hypercube of measure |Rl| ≥
2dX

n is subdivided in 2dX hypercubes of equal size.
• Two are recursive split partition collections.

– The recursive dyadic split partition (RDSP(X )) in which at each step a hyperrectangle of measure
|Rl| ≥ 2

n can be subdivided in 2 hyperrectangles of equal size by an even split along one of the dX

possible directions.
– The recursive split partition (RSP(X )) in which at each step a hyperrectangle of measure |Rl| ≥ 2

n can
be subdivided in 2 hyperrectangles of measure larger than 1

n by a split along one a point of the grid 1
nZ

in one the dX possible directions.
• The last one does not possess a hierarchical structure. The hyperrectangle partition collection (HRP(X ))

is the full collection of all partitions into hyperrectangles whose corners are located on the grid 1
nZ

dX and
whose volume is larger than 1

n .

We denote by S�(X )
P the corresponding partition collection where �(X ) is either UDP(X ), RDP(X ), RDSP(X ),

RSP(X ) or HRP(X ).
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Figure 1. Example of a recursive dyadic partition with its associated dyadic tree.

� = UDP(X ) � = RDP(X ) � = RDSP(X ) � = RSP(X ) � = HRP(X )

A�
0 ln

(
max

(
2, 1 +

lnn

dX ln 2

))
0 0 0 0

B�
0 0 ln 2 �ln(1 + dX)�ln 2 �ln(1 + dX)�ln 2 dX�ln n�ln 2

+�ln n�ln 2

c�
0 0

2d
X

2d
X − 1

2 2 1

Σ�
0 1 +

ln n

dX ln 2
2 2(1 + dX) 4(1 + dX)n (2n)dX

As noticed by Kolaczyk and Nowak [28], Huang et al. [24] or Willett and Nowak [42], the first four partition
collections, (SUDP(X )

P , SRDP(X )
P , SRDSP(X )

P , SRSP(X )
P ), have a tree structure. Figure 1 illustrates this structure for

a RDP(X ) partition. This specific structure is mainly used to obtain an efficient numerical algorithm performing
the model selection. For sake of completeness, we have also added the much more complex to deal with collection
SHRP(X )
P , for which only exhaustive search algorithms exist.
As proved in our technical report [12], those partition collections satisfy Kraft type inequalities with weights

constant for the UDP(X ) partition collection and proportional to the number ‖P‖ of hyperrectangles for the
other collections. Indeed,

Proposition 3.1. For any of the five described partition collections S�(X )
P , ∃A�

0, B
�
0 , c�

0 and Σ0 such that for all
c ≥ c

�(X )
0 :

∑
P∈S�(X)

P

e
−c
(

A
�(X)
0 +B

�(X)
0 ‖P‖

)
≤ Σ

�(X )
0 e

−cmax
(

A
�(X)
0 ,B

�(X)
0

)
.

Those constants can be chosen as follow:
where �x�ln 2 is the smallest multiple of ln 2 larger than x. Furthermore, as soon as c ≥ 2 ln 2 the right hand

term of the bound is smaller than 1. This will prove useful to verify Assumption (K) for the model collections
of the next sections.

In those sections, we study the two different choices proposed above for the set F . We first consider a piecewise
polynomial strategy similar to the one proposed by Willett and Nowak [42] defined for Y = [0, 1]dY in which
the set F is a product of sets. We then consider a Gaussian mixture strategy with varying mixing proportion
but common mixture components that extends the work of Maugis and Michel [33] and has been the original
motivation of this work. In both cases, we prove that the penalty can be chosen roughly proportional to the
dimension.
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3.2. Piecewise polynomial conditional density estimation

In this section, we let X = [0, 1]dX , Y = [0, 1]dY and λ be the Lebesgue measure dy. Note that, in this case,
λ is a probability measure on Y. Our candidate density s(y|x ∈ Rl) is then chosen among piecewise polynomial
densities. More precisely, we reuse a hyperrectangle partitioning strategy this time for Y = [0, 1]dY and impose
that our candidate conditional density s(y|x ∈ Rl) is a square of polynomial on each hyperrectangle RY

l,k of the
partition Ql. This differs from the choice of Willett and Nowak [42] in which the candidate density is simply a
polynomial. The two choices coincide however when the polynomial is chosen among the constant ones. Although
our choice of using squares of polynomial is less natural, it already ensures the positiveness of the candidates so
that we only have to impose that the integrals of the piecewise polynomials are equal to 1 to obtain conditional
densities. It turns out to be also crucial to obtain a control of the local bracketing entropy of our models. Note
that this setting differs from the one of Blanchard et al. [10] in which Y is a finite discrete set.

We should now define the sets F we consider for a given partition P = {Rl}1≤l≤‖P‖ of X = [0, 1]dX . Let
D = (D1, . . . ,DdY ), we first define for any partition Q = {RY

k}1≤k≤‖Q‖ of Y = [0, 1]dY the set FQ,D of squares
of piecewise polynomial densities of maximum degree D defined in the partition Q:

FQ,D =

⎧⎨⎩s(y) =
∑

RY
k ∈Q

P 2
RY

k

(y)1{y∈RY
k }|

∀RY
k ∈ Q, PRY

k
polynomial of degree at most D,∑

RY
k ∈Q

∫
RY

k
P 2
RY

k

(y) = 1

⎫⎬⎭.

For any partition collection QP = (Ql)1≤l≤‖P‖ =
(
{RY

l,k}1≤k≤‖Ql‖
)

1≤l≤‖P‖
of Y = [0, 1]dY , we can thus defined

the set FQP ,D of ‖P‖-tuples of piecewise polynomial densities as

FQP ,D =
{
(s(·|Rl))Rl∈P |∀Rl ∈ P , s(·|Rl) ∈ FQl,D

}
.

The model SP,FQP ,D
, that is denoted SQP ,D with a slight abuse of notation, is thus the set

SQP ,D =

{
s(y|x) =

∑
Rl∈P

s(y|Rl)1{x∈Rl}| (s(y|Rl)Rl∈P ∈ FQP ,D

}

=

⎧⎪⎨⎪⎩s(y|x)=
∑
Rl∈P

∑
RY

l,k∈Ql

P 2
Rl×RY

l,k

(y)1{y∈RY
l,k}1{x∈Rl}|

∀Rl ∈ P , ∀RY
l,k ∈ Ql,

PRl×RY
l,k

polynomial of degree at most D,

∀Rl ∈ P ,
∑

RY
l,k∈Ql

∫
RY

l,k
P 2
Rl×RY

l,k

(y) = 1

⎫⎪⎬⎪⎭.

Denoting R×
l,k the product Rl×RY

l,k, the conditional densities of the previous set can be advantageously rewritten
as

s(y|x) =
∑
Rl∈P

∑
RY

l,k∈Ql

P 2
R×

l,k

(y)1{(x,y)∈R×
l,k}

As shown by Willett and Nowak [42], the maximum likelihood estimate in this model can be obtained by an
independent computation on each subset R×

l,k:

P̂R×
l,k

=

∑n
i=1 1{(Xi,Yi)∈R×

l,k}∑n
i=1 1{Xi∈Rl}

argmin
P,deg(P )≤D,

∫
RY

l,k
P 2(y)dy=1

n∑
i=1

1{(Xi,Yi)∈R×
l,k} ln

(
P 2(Yi)

)
.

This property is important to be able to use the efficient optimization algorithms of Willett and Nowak [42]
and Huang et al. [24].

Our model collection is obtained by considering all partitions P within one of the UDP(X ), RDP(X ),
RDSP(X ), RSP(X ) or HRP(X ) partition collections with respect to [0, 1]dX and, for a fixed P , all partitions
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Ql within one of the UDP(Y), RDP(Y), RDSP(Y), RSP(Y) or HRP(Y) partition collections with respect to
[0, 1]dY . By construction, in any cases,

dim(SQP ,D) =
∑
Rl∈P

(
‖Ql‖

dY∏
d=1

(Dd + 1) − 1

)
.

To define the penalty, we use a slight upper bound of this dimension

DQP ,D =
∑
Rl∈P

‖Ql‖
dY∏
d=1

(Dd + 1) = ‖QP‖
dY∏
d=1

(Dd + 1)

where ‖QP‖ =
∑
Rl∈P

‖Ql‖. is the total number of hyperrectangles in all the partitions:

Theorem 3.2. Fix a collection �(X ) among UDP(X ), RDP(X ), RDSP(X ), RSP(X ) or HRP(X ) for X =
[0, 1]dX , a collection �(Y) among UDP(Y), RDP(Y), RDSP(Y), RSP(Y) or HRP(Y) and a maximal degree for
the polynomials D ∈ N

dY .
Let

S =
{

SQP ,D|P = {Rl} ∈ S�(X )
P and ∀Rl ∈ P ,Ql ∈ S�(Y)

P
}

.

Then there exist a C� > 0 and a c� > 0 independent of n, such that for any ρ and for any C1 > 1, the
penalized estimator of Theorem 2.2 satisfies

E

[
JKL⊗n

ρ,λ(s0, ŝ ̂QP ,D
)
]
≤ C1 inf

SQP ,D∈S

(
inf

sQP ,D∈SQP ,D

KL⊗n

λ (s0, sQP ,D) +
pen(QP ,D)

n

)
+ C2

1
n

+
η + η′

n

as soon as

pen(QP ,D) ≥ κ̃DQP ,D

for

κ̃ > κ0

(
C� + c�

(
A

�(X )
0 + B

�(X )
0 + A

�(Y)
0 + B

�(Y)
0

)
+ 2 lnn

)
where κ0 and C2 are the constants of Theorem 2.2 that depend only on ρ and C1. Furthermore C� ≤ 1

2 ln(8πe)+∑dY

d=1 ln
(√

2(Dd + 1)
)

and c� ≤ 2 ln 2.

A penalty chosen proportional to the dimension of the model, the multiplicative factor κ̃ being constant over n
up to a logarithmic factor, is thus sufficient to guaranty the estimator performance. Furthermore, one can use
a penalty which is a sum of penalties for each hyperrectangle of the partition:

pen(QP ,D) =
∑

R×
l,k∈QP

κ̃

(
dY∏
d=1

(Dd + 1)

)
.

This additive structure of the penalty allows to use the fast partition optimization algorithm of Donoho [16]
and Huang et al. [24] as soon as the partition collection is tree structured.

In Appendix, we obtain a weaker requirement on the penalty

pen(QP ,D) ≥ κ

((
C� + 2 ln

n√‖QP‖

)
DQP ,D + c�

(
A

�(X )
0 +

(
B

�(X )
0 + A

�(Y)
0

)
‖P‖ + B

�(Y)
0

∑
Rl∈P

‖Ql‖
))
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in which the complexity part and the coding part appear more explicitly. This smaller penalty is no longer
proportional to the dimension but still sufficient to guaranty the estimator performance. Using the crude bound
‖QP‖ ≥ 1, one sees that such a penalty penalty can still be upper bounded by a sum of penalties over each
hyperrectangle. The loss with respect to the original penalty is of order κ log ‖QP‖DQP ,D, which is negligible
as long as the number of hyperrectangle remains small with respect to n2.

Some variations around this Theorem can be obtained through simple modifications of its proof as explained
in Appendix. For example, the term 2 ln(n/

√‖QP‖) disappears if P belongs to SUDP(X )
P while Ql is independent

of Rl and belongs to SUDP(X )
P . Choosing the degrees D of the polynomial among a family DM either globally

or locally as proposed by Willett and Nowak [42] is also possible. The constant C� is replaced by its maximum
over the family considered, while the coding part is modified by replacing respectively A

�(X )
0 by A

�(X )
0 +ln |DM |

for a global optimization and B
�(Y)
0 by B

�(Y)
0 + ln |DM | a the local optimization. Such a penalty can be further

modified into an additive one with only minor loss. Note that even if the family and its maximal degree grows
with n, the constant C� grows at a logarithic rate in n as long as the maximal degree grows at most polynomially
with n.

Finally, if we assume that the true conditional density is lower bounded, then

KL⊗n

λ (s, t) ≤
∥∥∥∥1

t

∥∥∥∥
∞

‖s − t‖⊗n,2
λ,2

as shown by Kolaczyk and Nowak [28]. We can thus reuse ideas from Willett and Nowak [42], Akakpo [1] or
Akakpo and Lacour [2] to infer the quasi optimal minimaxity of this estimator for anisotropic Besov spaces (see
for instance in Karaivanov and Petrushev [27] for a definition) whose regularity indices are smaller than 1 along
the axes of X and smaller than D + 1 along the axes of Y.

3.3. Spatial Gaussian mixtures, models, bracketing entropy and penalties

In this section, we consider an extension of Gaussian mixture that takes account into the covariate into
the mixing proportion. This model has been motivated by the unsupervised hyperspectral image segmentation
problem mentioned in the introduction. We recall first some basic facts about Gaussian mixtures and their uses
in unsupervised classification.

In a classical Gaussian mixture model, the observations are assuming to be drawn from several different
classes, each class having a Gaussian law. Let K be the number of different Gaussians, often call the number of
clusters, the density s0 of Yi with respect to the Lebesgue measure is thus modeled as

sK,θ,π(·) =
K∑

k=1

πkΦθk
(·)

where

Φθk
(y) =

1

(2π detΣk)p/2
e−

1
2 (y−μk)′Σ−1

k (y−μk)

with μk the mean of the kth component, Σk its covariance matrix, θk = (μk, Σk) and πk its mixing proportion. A
model SK,G is obtained by specifying the number of component K as well as a set G to which should belong the
K-tuple of Gaussian (Φθ1 , . . . , ΦθK ). Those Gaussians can share for instance the same shape, the same volume or
the same diagonalization basis. The classical choices are described for instance in Biernacki et al. [7]. Using the
EM algorithm, or one of its extension, one can efficiently obtain the proportions π̂k and the Gaussian parameters
θ̂k of the maximum likelihood estimate within such a model. Using tools also derived from Massart [32], Maugis
and Michel [33] show how to choose the number of classes by a penalized maximum likelihood principle. These
Gaussian mixture models are often used in unsupervised classification application: one observes a collection of
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Yi and tries to split them into homogeneous classes. Those classes are chosen as the Gaussian components of
an estimated Gaussian mixture close to the density of the observations. Each observation can then be assigned
to a class by a simple maximum likelihood principle:

k̂(y) = argmax
1≤k≤K̂

π̂kΦθ̂k
(y).

This methodology can be applied directly to an hyperspectral image and yields a segmentation method, often
called spectral method in the image processing communit. This method however fails to exploit the spatial
organization of the pixels.

To overcome this issue, Kolaczyk et al. [29] and Antoniadis et al. [3] propose to use mixture model in which
the mixing proportions depend on the covariate Xi while the mixture components remain constant. We propose
to estimate simultaneously those mixing proportions and the mixture components with our partition-based
strategy. In a semantic analysis context, in which documents replace pixels, a similar Gaussian mixture with
varying weight, but without the partition structure, has been proposed by Si and Jin [36] as an extension of
a general mixture based semantic analysis model introduced by Hofmann [23] under the name Probabilistic
Latent Semantic Analysis. A similar model has also been considered in the work of Young and Hunter [43]. In
our approach, for a given partition P , the conditional density s(·|x) are modeled as

sP,K,θ,π(·|x) =
∑
Rl∈P

(
K∑

k=1

πk[Rl]Φθk
(·)
)

1{x∈Rl}

which, denoting π[R(x)] =
∑
Rl∈P

π[Rl]1{x∈Rl}, can advantageously be rewritten

=
K∑

k=1

πk[R(x)]Φθk
(·) .

The K-tuples of Gaussian can be chosen is the same way as in the classical Gaussian mixture case. Using a
penalized maximum likelihood strategy, a partition P̂, a number of Gaussian components K̂, their parameters
θ̂k and all the mixing proportions π̂[R̂l] can be estimated. Each pair of pixel position and spectrum (x, y) can
then be assigned to one of the estimated mixture components by a maximum likelihood principle:

k̂(x, y) = argmax
1≤k≤K̂

π̂k[R̂l(x)]Φθ̂k
(y).

This is the strategy we have used at IPANEMA [6] to segment, in an unsupervised manner, hyperspectral images.
In these images, a spectrum Yi, with around 1000 frequency bands, is measured at each pixel location Xi and
our aim was to derive a partition in homogeneous regions without any human intervention. This is a precious
help for users of this imaging technique as this allows to focus the study on a few representative spectrums.
Combining the classical EM strategy for the Gaussian parameter estimation (see for instance Biernacki et al. [7])
and dynamic programming strategies for the partition, as described for instance by Kolaczyk et al. [29], we have
been able to implement this penalized estimator and to test it on real datasets.

Figure 2 illustrates this methodology. The studied sample is a thin cross-section of maple with a single layer
of hide glue on top of it, prepared recently using materials and processes from the Cité de la Musique, using
materials of the same type and quality that is used for lutherie. We present here the result for a low signal to
noise ratio acquisition requiring only two minutes of scan. Using piecewise constant mixing proportions instead
of constant mixing proportions leads to a better geometry of the segmentation, with less isolated points and
more structured boundaries. As described in a more applied study [14], this methodology permits to work with
a much lower signal to noise ratio and thus allows to reduce significantly the acquisition time.
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Figure 2. Unsupervised segmentation result: (a) with constant mixing proportions (b) with
piecewise constant mixing proportions.

We should now specify the models we consider. As we follow the construction of Section 3.1, for a given
segmentation P , this amounts to specify the set F to which belong the ‖P‖-tuples of densities (s(y|Rl))Rl∈P .
As described above, we assume that s(y|Rl) =

∑K
k=1 πk[Rl]Φθk

(y). The mixing proportions within the region
Rl, π[Rl], are chosen freely among all vectors of the K − 1 dimensional simplex SK−1:

SK−1 =

{
π = (π1, . . . , πk)|∀k, 1 ≤ k ≤ K, πk ≥ 0,

K∑
k=1

πk = 1

}
.

As we assume the mixture components are the same in each region, for a given number of components K, the
set F is entirely specified by the set G of K-tuples of Gaussian (Φθ1 , . . . , ΦθK ) (or equivalently by a set Θ for
θ = (θ1, . . . , θK)).

To allow variable selection, we follow Maugis and Michel [33] and let E be an arbitrary subspace of Y = R
p,

that is expressed differently for the different classes, and let E⊥ be its orthogonal, in which all classes behave
similarly. We assume thus that

Φθk
(y) = ΦθE,k

(yE)Φθ
E⊥ (yE⊥)

where yE and yE⊥ denote, respectively, the projection of y on E and E⊥, ΦθE,k
is a Gaussian whose parameters

depend on k while Φθ
E⊥ is independent of k. A model is then specified by the choice of a set GK

E for the K-tuples
(ΦθE,1 , . . . , ΦθE,K ) (or equivalently a set ΘK

E for the K-tuples of parameters (θE,1, . . . , θE,K)) and a set GE⊥ for
the Gaussian Φθ

E⊥ (or equivalently a set ΘE⊥ for its parameter θE⊥). The resulting model is denoted SP,K,G

SP,K,G =

⎧⎨⎩sP,K,θ,π(y|x) =
K∑

k=1

πk[R(x)] ΦθE,k
(yE) Φθ

E⊥ (yE⊥) |
(ΦθE,1 , . . . , ΦθE,K ) ∈ GK

E ,
Φθ

E⊥ ∈ GE⊥ ,
∀Rl ∈ P , π[Rl] ∈ SK−1

⎫⎬⎭ .

The sets GK
E and GE⊥ are chosen among the classical Gaussian K-tuples, as described for instance in Biernacki

et al. [7]. For a space E of dimension pE and a fixed number K of classes, we specify the set

G =
{
(ΦE,θ1 , . . . , ΦE,θK ) |θ = (θ1, . . . , θK) ∈ Θ[·]KpE

}
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through a parameter set Θ[·]KpE
defined by some (mild) constraints on the means μk and some (strong) constraints

on the covariance matrices Σk.
The K-tuple of means μ = (μ1, . . . , μK) is either known or unknown without any restriction. A stronger

structure is imposed on the K-tuple of covariance matrices (Σ1, . . . , ΣK). To define it, we need to introduce a
decomposition of any covariance matrix Σ into LDAD′ where, denoting |Σ| the determinant of Σ, L = |Σ|1/pE

is a positive scalar corresponding to the volume, D is the matrix of eigenvectors of Σ and A the diagonal
matrix of renormalized eigenvalues of Σ (the eigenvalues of |Σ|−1/pEΣ). Note that this decomposition is not
unique as, for example, D and A are defined up to a permutation. We impose nevertheless a structure on the
K-tuple (Σ1, . . . , ΣK) through structures on the corresponding K-tuples of (L1, . . . , LK), (D1, . . . , DK) and
(A1, . . . , AK). They are either known, unknown but with a common value or unknown without any restriction.
The corresponding set is indexed by [μ� L� D� A�]KpE

where � = 0 means that the quantity is known, � = K that
the quantity is unknown without any restriction and possibly different for every class and its lack means that
there is a common unknown value over all classes.

To have a set with finite bracketing entropy, we further restrict the values of the means μk, the volumes
Lk and the renormalized eigenvalue matrix Ak. The means are assumed to satisfy ∀1 ≤ k ≤ K, |μk| ≤ a for a
known a while the volumes satisfy ∀1 ≤ k ≤ K, L− ≤ Lk ≤ L+ for some known positive values L− and L+. To
describe the constraints on the renormalized eigenvalue matrix Ak, we define the set A(λ−, λ+, pE) of diagonal
matrices A such that |A| = 1 and ∀1 ≤ i ≤ pE , λ− ≤ Ai,i ≤ λ+. Our assumption is that all the Ak belong to
A(λ−, λ+, pE) for some known values λ− and λ+.

Among the 34 = 81 such possible sets, six of them have been already studied by Maugis and Michel [33, 34]
in their classical Gaussian mixture model analysis: [μ0 LK D0 A0]KpE

, [μK LK D0 AK ]KpE
, [μK LK DK AK ]KpE

,
[μK L D0 AK ]KpE

, [μK L D0 A]KpE
and [μK L DA]KpE

. All these cases, as well as the others, are covered by our
analysis with a single proof.

To summarize, our models SP,K,G are parametrized by a partition P , a number of components K, a set G
of K-tuples of Gaussian specified by a space E and two parameter sets, a set Θ[μ� L� D� A�]KpE

of K-tuples of
Gaussian parameters for the differentiated space E and a set Θ[μ� L� D� A�]p

E⊥
of Gaussian parameters for its

orthogonal E⊥. Those two sets are chosen among the ones described above with the same constants a, L−, L+,
λ− and λ+. One verifies that

dim(SP,K,G) = ‖P‖(K − 1) + dim
(
Θ[μ� L� D� A�]KpE

)
+ dim

(
Θ[μ� L� D� A�]p

E⊥

)
.

Before stating a model selection theorem, we should specify the collections S considered. We consider sets
of model SP,K,G with P chosen among one of the partition collections S�

P , K smaller than KM , which can be
theoretically chosen equal to +∞, a space E chosen as span{ei}i∈I where ei is the canonical basis of R

p and I
a subset of {1, . . . , p} is either known, equal to {1, . . . , pE} or free and the indices [μ� L� D� A�] of ΘE and ΘE⊥

are chosen freely among a subset of the possible combinations.
Without any assumptions on the design, we obtain

Theorem 3.3. Assume the collection S is one of the collections of the previous paragraph.
Then, there exist a C� > π and a c� > 0, such that, for any ρ and for any C1 > 1, the penalized estimator of

Theorem 2.2 satisfies

E

[
JKL⊗n

ρ,λ(s0, ŝ ̂P,K,G)
]
≤ C1 inf

SP,K,G∈S

(
inf

sP,K,G∈SP,K,G
KL⊗n

λ (s0, sP,K,G) +
pen(P , K,G)

n

)
+

C2

n
+

η + η′

n

as soon as

pen(P , K,G) ≥ κ̃1 dim(SP,K,G) + κ̃2DE
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for

κ̃1 ≥ κ

((
2C� + 1 +

(
ln

n

eC�

)
+

+ c�

(
A

�(X )
0 + B

�(X )
0 + 1

)))
and κ̃2 ≥ κc�

with κ > κ0 where κ0 and C2 are the constants of Theorem 2.2 that depend only on ρ and C1 and

DE =

⎧⎪⎨⎪⎩
0 if E is known,

pE
if E is chosen among spaces spanned by
the first coordinates,

(1 + ln 2 + ln p
pE

)pE if E is free.

As in the previous section, the penalty term can thus be chosen, up to the variable selection term DE ,
proportional to the dimension of the model, with a proportionality factor constant up to a logarithmic term
with n. A penalty proportional to the dimension of the model is thus sufficient to ensure that the model selected
performs almost as well as the best possible model in term of conditional density estimation. As in the proof
of Antoniadis et al. [3], we can also obtain that our proposed estimator yields a minimax estimate for spatial
Gaussian mixture with mixture proportions having a geometrical regularity even without knowing the number
of classes.

Moreover, again as in the previous section, the penalty can have an additive structure, it can be chosen as a
sum of penalties over each hyperrectangle plus one corresponding to K and the set G. Indeed

pen(P , K,G) =
∑
Rl∈P

κ̃1(K − 1) + κ̃1

(
dim

(
Θ[μ� L� D� A�]KpE

)
+ dim

(
Θ[μ� L� D� A�]p

E⊥

))
+ κ̃2DE

satisfies the requirement of Theorem 3.3. This structure is the key for our numerical minimization algorithm
in which one optimizes alternately the Gaussian parameters with an EM algorithm and the partition with the
same fast optimization strategy as in the previous section.

In Appendix, we obtain a weaker requirement

pen(P , K,G) ≥ κ

((
2C� + 1 +

(
ln

n

eC� dim(SP,K,G)

)
+

)
dim(SP,K,G)

+ c�

(
A

�(X )
0 + B

�(X )
0 ‖P‖ + (K − 1) + DE

))

in which the complexity and the coding terms are more explicit. Again up to a logarithmic term in dim(SP,K,G),
this requirement can be satisfied by a penalty having the same additive structure as in the previous paragraph.

Our theoretical result on the conditional density estimation does not guaranty good segmentation perfor-
mance. If data are generated according to a Gaussian mixture with varying mixing proportions, one could
nevertheless obtain the asymptotic convergence of our class estimator to the optimal Bayes one. We have nev-
ertheless observed in our numerical experiments at IPANEMA that the proposed methodology allow to reduce
the signal to noise ratio while keeping meaningful segmentations.

Two major questions remain nevertheless open. Can we calibrate the penalty (choosing the constants) in a
datadriven way while guaranteeing the theoretical performance in this specific setting? Can we derive a non
asymptotic classification result from this conditional density result? The slope heuristic, proposed by Birgé and
Massart [9], we have used in our numerical experiments, seems a promising direction. Deriving a theoretical
justification in this conditional estimation setting would be much better. Linking the non asymptotic estimation
behavior to a non asymptotic classification behavior appears even more challenging.



PARTITION-BASED CONDITIONAL DENSITY ESTIMATION 687

Appendix A. Proof for Section 3.2 (Piecewise polynomial conditional density
estimation)

Theorem 3.2 is obtained by proving that Assumption (HQP ,D) and (SQP ,D) hold for any model SQP ,D while
Assumption (K) holds for any model collection. Theorem 3.2 is then a consequence of Theorem 2.2.

One easily verifies that Assumption (SQP ,D) holds whatever the partition choice. Concerning the first as-
sumption,

Proposition A.1. Under the assumptions of Theorem 3.2, there exists a D� such that for any model SQP ,D

Assumption (HQP ,D) is satisfied with a function φ such that

DQP ,D ≤
(

C� + ln
n2

‖QP‖
)
DQP ,D

with C� = 2D� + 2π.

The proof relies on the combination of Proposition 2.1 and

Proposition A.2. ∀SQP ,D, ∀sQP ,D ∈ SQP ,D,

H[·],d⊗n

(
δ, SQP ,D(sQP ,D, σ)

) ≤ DQP ,D

(
1
2

ln
n2

‖QP‖ + D� + ln
σ

δ

)
·

By using Proposition 3.1 for both P and Q, we obtain the Kraft type assumption:

Proposition A.3. Under the assumptions of Theorem 3.2, for any collection S, there exists a c� > 0 such that
for

xQP ,D = c�

(
A

�(X )
0 +

(
B

�(X )
0 + A

�(Y)
0

)
‖P‖ + B

�(Y)
0

∑
Rl∈P

‖Ql‖
)

.

Assumption (K) is satisfied with
∑

SQP ,D
∈S

e−xQP ,D ≤ 1.

Its complete proof can be found in the technical report [12].

A.1. Proof of Proposition A.2

We rely on a link between ‖ · ‖2 and ‖ · ‖∞ structures of the square roots of the models and a relationship
between bracketing entropy and metric entropy for ‖ · ‖∞ norms.

Following Massart [32], we define the following tensorial norm on functions u(y|x)

‖u‖2⊗n
2 = E

[
1
n

n∑
i=1

‖u(·|Xi)‖2
2

]
and ‖u‖2,⊗n∞ = E

[
1
n

n∑
i=1

‖u(·|Xi)‖2
∞

]
.

As the reference measure is the Lebesgue measure on [0, 1]dY , ‖u‖2⊗n∞ ≥ ‖u‖2⊗n
2 . By definition d⊗n(s, t) =

‖√s −√
t‖⊗n

2 and thus for any model Sm and any function sm ∈ Sm

H[·],d⊗n (δ, Sm(sm, σ)) = H[·],‖.‖⊗n
2

(
δ,
{
u ∈

√
Sm|‖u −√

sm‖⊗n
2 ≤ σ

})
If
√

Sm is a subset of a linear space
√

Sm of dimension Dm, as in our model,

H[·],d⊗n (δ, Sm(sm, σ)) ≤ H[·],‖.‖⊗n
2

(
δ,
{
u ∈

√
Sm|‖u −√

sm‖⊗n
2 ≤ σ

})
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so that one can replace, without loss of generality,
√

sm by 0 and use

H[·],d⊗n (δ, Sm(sm, σ)) ≤ H[·],‖.‖⊗n
2

(
δ,
{
u ∈

√
Sm|‖u‖⊗n

2 ≤ σ
})

.

Using now ‖ · ‖⊗n∞ ≥ ‖ · ‖⊗n
2 , one deduces

H[·],d⊗n (δ, Sm(sm, σ)) ≤ H[·],‖.‖⊗n∞

(
δ,
{
u ∈

√
Sm|‖u‖⊗n

2 ≤ σ
})

.

As for any u, [u − δ/2, u + δ/2] is a δ-bracket for the ‖ · ‖⊗n∞ norm, any covering of
{
u ∈ √

Sm|‖u‖⊗n
2 ≤ σ

}
by

‖ · ‖⊗n∞ ball of radius δ/2 yields a covering by the corresponding brackets. This implies

H[·],d⊗n (δ, Sm(sm, σ)) ≤ H‖.‖⊗n∞

(
δ

2
,
{
u ∈

√
Sm|‖u‖⊗n

2 ≤ σ
})

where Hd(δ, S), the classical entropy, is defined as the logarithm of the minimum number of ball of radius δ
with respect to norm d covering the set S.

The following proposition, proved in next section, is similar to a proposition of Massart [32]. It provides a
bound for this last entropy term under an assumption on a link between ‖ · ‖2⊗n∞ and ‖ · ‖2⊗n

2 structures:

Proposition A.4. For any basis {φk}1≤k≤Dm of
√

Sm such that

∀β ∈ R
Dm , ‖

Dm∑
k=1

βkφk‖2⊗n
2 ≥ ‖β‖2

2,

let

rm({φk}) = sup∑Dm
k=1 βkφk 
=0

1√Dm

‖∑Dm

k=1 βkφk‖⊗n∞
‖β‖∞ ,

and let rm be the infimum over all suitable bases.
Then rm ≥ 1 and

H‖.‖⊗n∞

(
δ

2
,
{
u ∈

√
Sm|‖u‖⊗n

2 ≤ σ
})

≤ Dm

(
Cm + ln

σ

δ

)
with Cm = ln (κ∞rm) and κ∞ ≤ 2

√
2πe.

In our setting, using a basis of Legendre polynomials, we are able to derive from Proposition A.4

Proposition A.5. For any model of Section 3.2,

rQP ,D ≤
dY∏
d=1

(√
Dd + 1

√
2Dd + 1

)
sup

R×
l,k∈QP

1√‖QP‖
√
|R×

l,k|

so that ∀sQP ,D ∈ SQP ,D,

H[·],d⊗n

(
δ, SQP ,D(sQP ,D, σ)

) ≤ DQP ,D

(
CQP ,D + ln

σ

δ

)
with CQP ,D = ln

(
κ∞rQP ,D

)
and κ∞ ≤ 2

√
2πe.
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A proof, essentially computational, can be found in our technical report [12]. One easily verifies that

sup
R×

l,k∈QP

1√‖QP‖
√
|R×

l,k|
≤
{

1 if all hyperrectangles have same sizes√
n2

‖QP‖ otherwise.

Remark that when �(X ) = UDP(X ), �(Y) = UDP(Y) and Ql is independent of Rl, all the hyperrectangles
have same sizes and that the n2 corresponds to the arbitrary limitation imposed on the minimal size of the
segmentations. If we limit this minimal size to 1√

n
instead of 1

n this factor becomes n.
Let

D� = ln

(
κ∞

dY∏
k=1

(√
Dk + 1

√
2Dk + 1

))

we have slightly more than Proposition A.2 as ∀sQP ,D ∈ SQP ,D,

H[·],d⊗n

(
δ, SQP ,D(sQP ,D, σ)

) ≤ DQP ,D

{(
D� + ln σ

δ

)
for the same size case(

1
2 ln n2

‖QP‖ + D� + ln σ
δ

)
otherwise.

A.2. Proofs of Propositions A.4 and A.5

Proof of Proposition A.4. Let (φk)1≤k≤Dm be a basis of
√

Sm satisfying

∀β ∈ R
Dm ,

∥∥∥∥∥
Dm∑
k=1

βkφk

∥∥∥∥∥
2,⊗n

2

≥ ‖β‖2
2.

Note that for β defined by ∀1 ≤ k ≤ Dm, βk = 1∥∥∥∥∥
Dm∑
k=1

βkφk

∥∥∥∥∥
2,⊗n

∞
≥
∥∥∥∥∥
Dm∑
k=1

βkφk

∥∥∥∥∥
2,⊗n

2

≥ ‖β‖2
2 = Dm = Dm‖β‖2

∞

so that rm(φ) ≥ 1.
Let the grid Gm(δ, σ):{

β ∈ R
Dm | ∀1 ≤ k ≤ Dm, βk ∈ δ√Dmrm(φ)

Z and min
β′,‖β′‖2≤σ

‖β − β′‖∞ ≤ δ

2
√Dmrm(φ)

}
.

By definition, for any u′ ∈ √
Sm such that ‖u′‖⊗n

2 ≤ σ there is a β′ such that u′ =
∑Dm

k=1 β′
kφk and ‖β′‖2 ≤ σ.

By construction, there is a β ∈ Gm(δ, σ) such that

‖β − β′‖∞ ≤ δ

2
√Dmrm(φ)

·

Definition of rm implies then that∥∥∥∥∥
Dm∑
k=1

βkφk −
Dm∑
k=1

β′
kφk

∥∥∥∥∥
⊗n

∞
≤ rm(φ)

√
Dm‖β − β′‖∞

≤ δ

2
·
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The set
{∑Dm

k=1 βkφk|β ∈ Gm(δ, σ)
}

is thus a δ
2 covering of

{
u ∈ √

Sm|‖u‖⊗n
2 ≤ σ

}
for the ‖ · ‖⊗n∞ norm. It

remains thus only to bound the cardinality of Gm(δ, σ).
Let Gm(δ, σ) be the union of all hypercubes of width δ√Dmrm(φ)

centered on the grid Gm(δ, σ), by construction,

for any β ∈ Gm(δ, σ) there is a β′ with ‖β′‖2 ≤ σ such that ‖β′ − β‖∞ ≤ δ√Dmrm(φ)
. As ‖β′ − β‖2 ≤ √Dm‖β′ −

β‖∞, this implies ‖β‖2 ≤ σ + δ
rm(φ) . We then deduce

Vol
(
Gm(δ, σ)

)
= |Gm(δ, σ)|

(
δ√Dmrm(φ)

)Dm

≤ Vol
({

β ∈ R
Dm |‖β‖2 ≤ σ +

δ

rm(φ)

})
≤
(

σ +
δ

rm(φ)

)Dm

Vol
({

β ∈ R
Dm |‖β‖2 ≤ 1

})
and thus

|Gm(δ, σ)| ≤
(

1 +
σrm(φ)

δ

)Dm

DDm/2
m Vol

({
β ∈ R

Dm |‖β‖2 ≤ 1
})

and as σrm(φ)
δ ≥ 1 and Vol

({
β ∈ R

Dm |‖β‖2 ≤ 1
}) ≤ ( 2πe

Dm

)Dm/2

|Gm(δ, σ)| ≤
(

2
√

2πerm(φ)σ
δ

)Dm

which concludes the proof. �

Instead of Proposition A.5, by mimicking a proof of Massart [32], we prove in our technical report [12] an
extended version of it in which the degree of the conditional densities may depend on the hyperrectangle. More
precisely, we reuse the partition P ∈ S�(X )

P and the partitions Ql ∈ S�(Y)
P for Rl ∈ P and define now the model

SQP ,D as the set of conditional densities such that

s(y|x) =
∑

R×
l,k∈QP

P 2
R×

l,k

(y)1{(x,y)∈R×
l,k}

where PR×
l,k

is a polynomial of degree at most D(R×
l,k) =

(
D1(R×

l,k), . . . ,DdY (R×
l,k)
)

which depends on the leaf.
Instead of the true dimension, we use a slight upper bound

DQP ,D =
∑
Rl∈P

∑
RY

l,k∈Ql

dY∏
d=1

(
Dd(R×

l,k) + 1
)

=
∑

R×
l,k∈QP

dY∏
d=1

(
Dd(R×

l,k) + 1
)

.

Note that the space SQP ,D introduced in the main part of the paper corresponds to the case where the degree
D(R×

l,k) does not depend on the hyperrectangle R×
l,k.

Proposition A.6. There exists

rQP ,D ≤
supR×

l,k∈QP
∏dY

d=1

(∑
Dd≤Dd(R×

l,k)

√
2Dd + 1

)
infR×

l,k∈QP
∏dY

d=1

√
Dd(R×

l,k) + 1
sup

R×
l,k∈QP

1√‖P‖
√
|R×

l,k|
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such that ∀sQP ,D ∈ SQP ,D,

H[·],d⊗n

(
δ, SQP ,D(sQP ,D, σ)

) ≤ DQP ,D

(
CQP ,D + ln

σ

δ

)
with CQP ,D = ln

(
κ∞rQP ,D

)
and κ∞ ≤ 2

√
2πe.

Proposition A.5 is deduced from this proposition with the help of the simple upper bound∑
Dd≤Dd(R×

l,k)

√
2Dd + 1 ≤ (Dd(R×

l,k) + 1)
√

2Dd(R×
l,k) + 1.

As

supR×
l,k∈QP

∏dY

d=1

(∑
Dd≤Dd(R×

l,k)

√
2Dd + 1

)
infR×

l,k∈QP
∏dY

d=1

√
Dd(R×

l,k) + 1
≤

dY∏
d=1

max
√

2(Dd + 1),

once a maximal degree is chosen along each axis, the equivalent of constant C� of 3.2 depends only on this
maximal degrees. Assumption HQP ,D holds then, with the same constants, simultaneaously for all models of
both global choice and local choice strategies. Obtaining the Kraft type assumption, Assumption (K) is only
a matter of taking into account the augmentation of the number of models within the collection. Replacing
respectively A

�(X )
0 by A

�(X )
0 +ln |DM | for global optimization and B

�(Y)
0 by B

�(Y)
0 +ln |DM | for local optimization,

where |DM | denotes the size of the family of possible degrees, turns out to be sufficient as mentioned earlier.
The proof of Proposition A.6 is essentially computational and thus relegated to our extended technical report.

Appendix B. Proofs for Section 3.3 (Spatial Gaussian mixtures, models,
bracketing entropy and penalties)

As in the piecewise polynomial density case, Theorem 3.3 is obtained by showing that Assumptions (HP,K,G),
(SP,K,G) and (K) hold for any collection.

Again, one easily verifies that Assumption (SP,K,G) holds. For the complexity assumption, combining 2.1
with a bound on the bracketing entropy of the models of type

H[·],dsup(δ, SP,K,G) ≤ dim(SP,K,G)
(

C + ln
1
δ

)
,

one obtains

Proposition B.1. There exists a constant C depending only on a, L−, L+, λ− and λ+ such that for any model
SP,K,G of Theorem 3.3 Assumption (HP,K,G) is satisfied with a function φ such that

DP,K,G ≤

⎛⎜⎝2
(√

C +
√

π
)2

+ 1 +

⎛⎜⎝ln
n

e
(√

C +
√

π
)2

dim(SP,K,G)

⎞⎟⎠
+

⎞⎟⎠dim(SP,K,G).

For the Kraft assumption, one can verify that

Proposition B.2. For any collections S of Theorem 3.3, there is a c� such that for the choice

xP,K,G = c�

(
A

�(X )
0 + B

�(X )
0 ‖P‖ + (K − 1) + DE

)
.

Assumption (K) holds with
∑

SP,K,G∈S
e−xP,K,G ≤ 1.
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As for the piecewise polynomial case section, the main difficulty lies in controlling the bracketing entropy of the
models. A proof of Proposition B.2 can be found in our technical report [12].

We focus thus on the proof of Proposition B.1. Due to the complex structure of spatial mixture, we did
not manage to bound the bracketing entropy of local model. We derive only an upper bound of the bracketing
entropy H[·],d⊗n (δ, SP,K,G), but one that is independent of the distribution law of (Xi)1≤i≤n: the bracketing
entropy with a sup norm Hellinger distance dsup =

√
d2 sup, H[·],dsup(δ, SP,K,G), where d2 sup is defined by

d2 sup(s, t) = sup
x

d2 (s(·|x), t(·|x)) .

Obviously d2 sup ≥ d2⊗n and thus H[·],dsup(δ, SP,K,G) ≥ H[·],d⊗n (δ, SP,K,G). This upper bound is furthermore
design independent.

Proposition B.1 is a direct consequence of Proposition 2.1 and

Proposition B.3. There exists a constant C depending only on a, L−, L+, λ− and λ+ such that for any model
SP,K,G of Theorem 3.3:

H[·],dsup(δ, SP,K,G) ≤ dim(SP,K,G)
(

C + ln
1
δ

)
·

B.1. Entropy of spatial mixtures

Proof of Proposition B.3. While we use classical Hellinger distance to measure the complexity of the simplex
SK−1 and the set GE⊥ , we use a sup norm Hellinger distance on GK

E defined by

d2max ((s1, . . . , sK), (t1, . . . , tK)) = sup
k

d2(sk, tk).

We say that [(s1, . . . , sK), (t1, . . . , tK)] is a bracket of GK
E if ∀1 ≤ k ≤ K, sk ≤ tk.

Using a similar proof than Genovese and Wasserman [20], we decompose the entropy in three parts with:

Lemma B.4. For any δ ∈ (0,
√

2],

H[·],dsup(δ, SP,K,G) ≤ ‖P‖H[·],d(δ/3,SK−1) + H[·],dmax(δ/9,GK
E ) + H[·],d(δ/9,GE⊥).

We bound those bracketing entropies with the help of two results. We first use a Lemma proved in Genovese
and Wasserman [20] that implies the existence of a universal constant CS such that

H[·],d(δ/3,SK−1) ≤ (K − 1)
(
CS + ln

1
δ

)
·

Lemma B.5. For any δ ∈ (0,
√

2],

H[·],d(δ/3,SK−1) ≤ (K − 1)
(
CSK−1 + ln

1
δ

)

with CSK−1 =
1

K − 1
ln K +

K

2(K − 1)
ln(2πe) + ln 3

√
2

Furthermore, uniformly on K: CSK−1 ≤ ln 2 +
1
2

ln(2πe) + ln 3
√

2 = CS
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We then rely on Proposition B.6 to handle the bracketing entropy of Gaussian K-tuples collection. It implies
the existence of two constants C[�]� and C[�] depending only on a, L−, L+, λ− and λ+ such that

H[·],dmax

(
δ/9,GK

E

) ≤ dim(GK
E )
(
C[�]� + ln

1
δ

)
H[·],d(δ/9,GE⊥) ≤ dim(GE⊥)

(
C[�] + ln

1
δ

)
·

As dim(SK,P,G) = ‖P‖(K − 1) + dim(GK
E ) + dim(GE⊥), we obtain Proposition B.3 with C =

max(CS , C[�]� , C[�]). �

B.2. Entropy of Gaussian families

Proposition B.6. For any δ ∈ (0,
√

2],

H[·],dmax(δ/9,G[μ�,L�,D�,A�]KE
) ≤ V[μ�,L�,D�,A�]KpE

+ D[μ�,L�,D�,A�]KpE
ln

1
δ

where D[μ�,L�,D�,A�]KpE
= dim

(
Θ[μ�,L�,D�,A�]KpE

)
= cμ�Dμ,pE + cL�DL + cD�DD,pE + cA�DA,pE and

V[μ�,L�,D�,A�]KpE
= cμ�Vμ,pE + cL�VL,pE + cD�VD,pE + cA�VA,pE with

⎧⎪⎨⎪⎩
cμ0 = cL0 = cD0 = cA0 = 0
cμK = cLK = cDK = cAK = K

cμ = cL = cD = cA = 1,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Dμ,pE = pE

DL = 1
DD,pE = pE(pE−1)

2

DA,pE = pE − 1

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Vμ,pE = pE

⎛⎝ln

⎛⎝1 + 108 a√
L−λ−

λ−
λ+

pE

⎞⎠⎞⎠
VL,pE = ln

(
1 + 39 ln

(
L+
L−

)
pE

)
VD,pE = pE(pE−1)

2

(
2 ln cS

pE(pE−1) +
(
ln
(
252λ+

λ− pE

)))
VA,pE = (pE − 1)

(
ln
(
2 + 255λ+

λ−
ln
(

λ+
λ−

)
pE

))
where cS is a universal constant.

Proof of Proposition B.6. We consider all models G[μ� L� A� D�]KE
at once by a “tensorial” construction of a

suitable δ/9 bracket collection.
We first define a set of grids for the mean μ, the volume L, the eigenvector matrix D and the renormalized

eigenvalue matrix A from which one constructs the bracket collection.

• For any δμ, the grid Gμ(a, pE , δμ) of [−a, a]pE :

Gμ(a, pE , δμ) =
{

gδμ|g ∈ Z
pE , ‖g‖∞ ≤ a

δμ

}
·

• For any δL, the grid GL(L−, L+, δL) of [L−, L+]:

GL(L−, L+, δL) = {L−(1 + δL)g|g ∈ N, L−(1 + δL)g ≤ L+} .

• For any δD, the grid GD(pE , δD) of SO(pE) made of the elements of a δD-net with respect to the ‖ · ‖2

operator norm (as described by Szarek [38]).
• For any δA, the grid GA(λ−, λ+, pE , δA) of A(λ−, λ+(1 + δA), pE):

GA(λ−, λ+, pE , δA) = {A ∈ A(λ−, λ+(1 + δA), pE)|∀1 ≤ i < pE , ∃gi ∈ N, Ai = λ−(1 + δA)gi} .
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Obviously, for any μ ∈ [−a, a], there is a μ̃ ∈ Gμ(a, pE , δμ) such that

‖μ̃ − μ‖2 ≤ pEδ2
μ

while

|Gμ(a, pE , δμ)| ≤
(

1 + 2
a

δμ

)pE

≤ max
(

2pE ,

(
4a

δμ

)pE
)
·

In the same fashion, for any L in [L−, L+], there is a L̃ ∈ GL(L−, L+, δL) such that (1 + δL)−1LjL < L ≤ LjL

while

|GL(L−, L+, δL)| ≤ 1 +
ln
(

L+
L−

)
ln(1 + δL)

·

If we further assume that δL ≤ 1
12 then ln(1 + δL) ≥ 12

13δL and

|GL(L−, L+, δL)| ≤ 1 +
13 ln

(
L+
L−

)
12δL

·

By definition on a δD-net, for any D ∈ SO(pE) there is a D̃ ∈ GD(pE , δD) such that

∀x, ‖(D̃ − D)x‖2 ≤ δD‖x‖2·

As proved by Szarek [38], it exists a universal constant cS such that, as soon as δD ≤ 1

|GD(pE , δD)| ≤ cS

(
1
δD

) pE(pE−1)
2

where pE(pE−1)
2 is the intrinsic dimension of SO(pE).

The structure of the grid GA(λ−, λ+, pE , δA) is more complex. Although, looking at condition on the pE − 1
first diagonal values,

|GA(λ−, λ+, pE, δA)| ≤
⎛⎝2 +

ln
(

λ+
λ−

)
ln(1 + δA)

⎞⎠pE−1

where pE−1 is the intrinsic dimension of A(λ−, λ+, pE). If we further assume that δA ≤ 1
84 then ln(1+δA) ≥ 84

85δA

and thus

|GA(λ−, λ+, pE , δA)| ≤
⎛⎝2 +

85 ln
(

λ+
λ−

)
84δA

⎞⎠pE−1

.

A key to the succes of this construction is the following approximation property of this grid obtained in our
technical report [12] with a calculatory proof:

Lemma B.7. For A ∈ A(λ−, λ+, pE) there is Ã ∈ GA(λ−, λ+, pE, δA) such that

|Ã−1
i,i − A−1

i,i | ≤ δAλ−1
− .
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Define cμ0 = cL0 = cD0 = cA0 = 0, cμK = cLK = cDK = cAK = K, cμ = cL = cD = cA = 1. Let fK,μ�,pE be
the application from (RpE )cμ� to R

K defined by⎧⎪⎨⎪⎩
0 �→ (μ0,1, . . . , μ0,K) if μ� = μ0

(μ1, . . . , μK) �→ (μ1, . . . , μK) if μ� = μK

μ �→ (μ, . . . , μ) if μ� = μ

,

and fK,L� (respectively fK,D�,pE and fK,A�,pE ) be the similar application from (R+)cL� into (R+)K (respectively
from (SO(pE))cD� into (SO(pE))K and from (A(0, +∞, pE))cA� into (A(0, +∞, pE))K).

By definition, the image of

([−a, a]pE )cμ� × ([L−, L+])cL� × (SO(pE))cD� × (A(λ−, λ+, pE))cA�

by
(
fK,μ�,pE ⊗ fLK,·,pE ⊗ fK,D�,pE ⊗ fK,A�

)
is, up to reordering, the set of parameters of all K-tuples of Gaussian

densities of type [μ� L�, D�, A�]K .
We construct our δ/9 bracket covering with a grid on those parameters. For any K-tuple of Gaussian param-

eters ((μ1, Σ1), . . . , (μK , ΣK)) and any δΣ , we associate the K-tuple of pairs

((
(1 + δΣ)−pEΦμ1,(1+δΣ)−1Σ1 , (1 + δΣ)pE Φμ1,(1+δΣ)Σ1

)
, . . . ,

(
(1 + δΣ)−pEΦμK ,(1+δΣ)−1ΣK

, (1 + δΣ)pE ΦμK ,(1+δΣ)ΣK

))
.

We prove in our technical report [12] that, for γ = 18/49 and β =
√

cosh(1
6 ) + 1

2 , the choice

δμ =

√
γL−λ−

λ−
λ+

9β

δ

pE
, δL =

1
18β

δ

pE
≤ 1

12
, δD = δA =

1
126β

λ−
λ+

δ

pE
≤ 1

84
, δΣ =

1
9β

δ

pE
≤ 1

8

is such that the image of

(Gμ(a, pE , δμ))cμ� × (GL(L−, L+, δL))cL� × (GD(pE , δD))cD� × (GA(λ−, λ+, pE, δA))cA�

by fK,μ�,pE ⊗fLK,·,pE ⊗fK,D�,pE ⊗fK,A� is a set of parameters corresponding to a set of pairs that is a δ/9-bracket
covering of G[μ� L� D� A�]KE

for the dmax norm.

The cardinality of this δ/9-bracket covering is bounded by

⎛⎝⎛⎝1 +
18aβpE√
γL−λ−

λ−
λ+

δ

⎞⎠pE
⎞⎠cμ�

×
⎛⎝⎛⎝1 +

39β ln
(

L+
L−

)
pE

2δ

⎞⎠⎞⎠cL�

×

⎛⎜⎝cS

(
126β λ+

λ−
pE

δ

) pE(pE−1)
2

⎞⎟⎠
cD�

×

⎛⎜⎝
⎛⎝2 +

⎛⎝255β λ+
λ− ln

(
λ+
λ−

)
pE

2δ

⎞⎠⎞⎠pE−1
⎞⎟⎠

cA�

.
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So

H[·],dmax(δ/9,G[μ�,L�,D�,A�]KE
)

≤ cμ�pE

⎛⎝ln

⎛⎝1 +
18βapE√
γL−λ−

λ−
λ+

⎞⎠+ ln
1
δ

⎞⎠+ cL�

(
ln
(

1 +
39
2

β ln
(

L+

L−

)
pE

)
+ ln

1
δ

)

+ cD�

pE(pE − 1)
2

(
2 ln cS

pE(pE − 1)
+ ln

(
126β

λ+

λ−
pE

)
+ ln

1
δ

)
+ cA�(pE − 1)

(
ln
(

2 +
255
2

β
λ+

λ−
ln
(

λ+

λ−

)
pE

)
+ ln

1
δ

)
which concludes the proof as soon as one notices that 1/9 ≤ γ ≤ 1/3 and 1 ≤ β ≤ 2. �
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