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ABSTRACT
Methods based on Boolean satisfiability (SAT) typically use a Con-
junctive Normal Form (CNF) representation of the Boolean for-
mula, and exploit the structure of the given problem through use
of various decision heuristics and implication methods. In this pa-
per, we propose a new decision heuristic based on separator-set in-
duced partitioning of the underlying CNF graph. It targets those
variables whose choice generates clause partitions with disjoint
variable supports. This can potentially improve performance of
SAT applications by decomposing the problem dynamically within
the search. In the context of a recently proposed image compu-
tation method combining SAT and BDDs, this results in simpler
BDD subproblems. We provide algorithms for CNF partitioning
– one based on a clause-variable dependency matrix, and another
based on standard hypergraph partitioning techniques, and also for
the use of partitioning information in decision heuristics for SAT.
We demonstrate the effectiveness of our proposed partition-based
heuristic with practical results for reachability analysis of bench-
mark sequential circuits.

1. INTRODUCTION
The Boolean satisfiability problem (SAT) has recently received

considerable attention in many verification applications, such as
equivalence checking [6, 12, 23], as well as model checking [1,
3, 26]. Recently, combining SAT techniques with BDDs has been
shown to be effective for image computation with application in
state reachability analysis of sequential circuits [13].

A typical implementation for solving SAT uses a branch-and-
bound search over the values of all variables, with considerable
sophistication in the software engineering of techniques for deci-
sion making, implication gathering, and backtracking [19, 22, 28].
Since the SAT problem itself is NP-complete, the effectiveness of
any algorithm for solving SAT depends upon the amount of prun-
ing of the search space that it enables. Decision heuristics, i.e. the
choice of the SAT variable to branch on, and its value, directly af-
fect the amount of pruning. Many SAT implementations use a Con-
junctive Normal Form (CNF) representation of the Boolean for-
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mula. This has led to the development of many decision heuristics
based on the frequency of appearance of variables in unsatisfied
(or all) clauses, sometimes giving preference to smaller clauses in
order to facilitate implications [17]. In this paper, we focus on de-
cision heuristics targeted at decomposing the overall problem into
smaller, unrelated, partitions.

1.1 Motivation
A recently reported method for image computation uses SAT

search as a disjunctive decomposition of the overall search for im-
age solutions into multiple subproblems, each of which is handled
by using a standard BDD-based image computation algorithm [13].
In this context, SAT decision heuristics affect not only the pruning
of the search space in SAT, but also the complexity of dynamically
generated BDD subproblems.

We propose a new decision heuristic for SAT, based on separator-
set induced partitioning of the underlying CNF graph. We use sep-
arators instead of minimum cutsets for partitioning, because there
exist small separators for graphs that do not have bipartitions with
small cutsize [16]. The decision heuristic is targeted at those vari-
ables whose choice dynamically results in clause partitions with
disjoint variable supports. Since disjoint subproblems contribute
to search complexity additively, rather than multiplicatively, this
heuristic can potentially improve performance in many applications
of SAT, especially those where a large part of search space needs to
be explored. Specifically, for the image computation problem, use
of the proposed decision heuristic in SAT, leads to simpler BDD
subproblems. This is because BDD image computations with dis-
joint conjunctive partitions are less likely to blow up in size, in
comparison to those with connected partitions.

In this paper, we describe two different methods for partitioning
the CNF graph. One is based on the MLP (Minimal Lifetime Per-
mutation) approach proposed by Moonet al. [20], and the other is
based on use of a standard hypergraph partitioning package called
hMETIS [14]. We also provide a simple algorithm which uses the
partition information to assign weights to all CNF variables, which
can be combined with standard SAT decision heuristics.

The benefit of complementing a purely functional approach based
on BDDs with structural information captured by SAT is crucial in
improving performance of image computation. We present prac-
tical results on benchmark circuits demonstrating this impact. We
show that the use of our proposed heuristic consistently improves
the performance for reachability analysis, in some cases enabling
the prototype tool to reach more states than possible without the
use of this heuristic.

1.2 Related Work
There has been some effort in exploring the benefits of parti-



tioning for generic SAT applications in CAD [18], but this was
restricted to thedetectionof partitions as they arise dynamically
within the search, and no effort was made to actually derive such
partitions. There has been some recent independent work in the
SAT community also, on use of partitioning methods similar to
ours, in order to improve the efficiency of the SAT solver [2]. How-
ever, this effort is not directly targeted at deriving good decision
heuristics, and they do not provide any empirical results. Along
another related line, it has been conjectured that the degree of dif-
ficulty of a given SAT problem is related to the information “band-
width” of the problem [15, 24], i.e. the greater the connectivity
between variables, the more difficult the problem is likely to be.
Again, this observation can be used to justify choosing decision
variables which partition the problem into low bandwidth (or dis-
joint) partitions.

In terms of image computation itself, there have been many ef-
forts aimed at exploiting circuit structure information for a pure
BDD-based image computation [10]. For example, heuristics for
clustering and ordering are based on analysis of shared variable
support sets between next-state bit relations and the input state
set [25]. In particular, Moonet al. proposed the MLP algorithm
for a dependency matrix representation to obtain a Bordered Block
Triangular form, which is particularly suited for deriving a good
conjunction schedule [20]. We use this form directly for parti-
tioning, described later in the paper. They also identify existing
connected components for decomposition, but again, there is no
effort to actively derive such decompositions. Note that many of
these heuristics capture the benefits of partitioning on the underly-
ing circuit structure, which is similar to our goal. However, none of
these methods use SAT at all. Therefore, the specific partitioning
methods we use for CNF graphs, as well as their use for choosing
decision heuristics within SAT, are novel in our approach.

The rest of the paper is organized as follows. In Section 2, we
provide the necessary background for image computation based on
SAT and BDDs. Our algorithms for partitioning CNF graphs, and
our SAT decision heuristic based on this information is described
in Section 3. Experimental results demonstrating the benefits of
our heuristic are presented and discussed in Section 4, followed by
conclusions.

2. SAT-BASED IMAGE COMPUTATION
Historically, symbolic state space traversal [7, 11] has relied on

efficient algorithms based on BDDs [5] for carrying out an image
computation, shown below:

Image(Y ) = 9X;W T (X;W; Y ) ^ From(X) (1)

Here,X/Y denote present/next state variables, respectively,W de-
notes primary input variables,T denotes the transition relation, and
From denotes the input state set. BDDs are used to represent the
characteristic function of the transition relation, as well as the in-
put/image sets. As an example application, the set of reachable
states can be computed by starting with a setFrom which denotes
the set of initial states of a system, and using image computation
iteratively, until a fixpoint is reached. The BDD-based approaches
work well when it is possible to represent the sets of states and the
transition relation (as a whole, or in a usefully partitioned form) us-
ing BDDs. Unfortunately, BDD size is very sensitive to the number
of variables, variable ordering, and the nature of the logic expres-
sions being represented.

Recently, an integration of SAT and BDDs has been proposed
for image computation [13]. A pictorial representation of vari-
ous features of this method is shown in Figure 1. As shown in
Part (a), state sets are represented by BDDs, and the transition re-

Image(Y) = ∃∃∃∃ X, W. T(X,W,Y) ∧∧∧∧ From(X)
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Figure 1: Image Computation using SAT and BDDs

lation is represented as a CNF formula. All image solutions over
Y are enumerated using a backtracking search algorithm for SAT
which operates over the CNF formula forT . Within this search, the
BDD for From(X) is used as a constraint (called BDD Bound-
ing), where any partial assignment over theX variables that does
not satisfyFrom(X) leads to immediate backtracking within SAT.
As shown in Part (b), rather than using SAT to enumerate each so-
lution all the way down to a leaf, BDD-based subproblems are in-
voked at intermediate points within the SAT search. This allows a
symbolic, rather than explicit, enumeration of all solutions in the
subtree rooted below that point. In a sense, this approach can be
regarded as SAT providing a disjunctive decomposition of the im-
age computation into many BDD subproblems. Each of the BDD
subproblems involves a standard image computation as shown in
Part (c), where the BDDs for the conjunctive partition are gener-
ated on-the-fly from unsatisfied clauses of the CNF forT .

3. CNF PARTITIONING
In this section, we describe our algorithms for two partitioning

methods and the decision heuristic for SAT. The basic idea is to use
partitioning methods on a CNF formula to obtain a goodseparator,
i.e. a set of clauses which separates the remaining clauses into two
sets with no common variables. In other words, we obtain three
partitions of the entire set of clauses – called left, right, and separa-
tor, such that the left and right partitions do not share any variables.
We focused on the use of separators for partitioning, rather than
using a minimum cutset, because there exist graphs which have a
small separator, but do not have bipartitions with small cutsets [16].
For example, a star graph with a central node connected ton other
nodes, has a one-node separator, but anO(n) cutset. Furthermore,
we use a recursive partitioning scheme, whereby any partition is
considered for further re-partitioning if its size is above a certain
threshold.

Note that a three-way partition of the set of clauses does not
necessarily correspond to a partition of the support variables. This
is shown pictorially for the general case in Figure 2, which shows
the shared and the private (non-shared) variables for each of the
three clause partitions.

During SAT, we give preference to making decisions on the sepa-
rator variables, in order that the remaining search can be performed
over the disjoint left and right partitions. Note that it is sufficient,
but not necessary, to choose only shared variables in order to ob-
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Figure 2: Variables of Clause Partitions

tain partitions with disjoint variable supports. For example, it may
be possible to assign values to private separator variables in order
to satisfy all clauses in the separator partition. This still leads to
the remaining problem being disjoint in terms of the left and right
clause partitions. Our approach based on CNF partitioning allows
us to take into account not only the variable support sets, but also
the constraints on their values, i.e. the clauses. This is in contrast
to other approaches which may consider only variable support sets
for partitioning.

3.1 Dependency Matrix Method
The first partitioning method is based on the work by Moonet

al. [20]. They use a dependency matrix representation of conjunc-
tive partitions (rows) and their variable support sets (columns). The
rows and columns of this matrix are then permuted using the MLP
algorithm to obtain a Bordered Block Triangular form. The ba-
sic algorithm consists of working iteratively on the active region
of the matrix, by choosing a column which intersects the maxi-
mum number of shortest rows, moving it to the leftmost position,
and shrinking the active region to exclude it. This form is used to
obtain a good conjunction schedule for purely BDD-based image
computation.

We use a similar matrix representation for capturing the depen-
dencies between clauses (rows) and variables (columns) of the CNF
formula to be partitioned. In our implementation, we do not use all
CNF clauses representing the transition relation, since this some-
times resulted in clauses from the same gate being in different par-
titions. Instead, we consider only the minimum number of clauses
for each gate of the circuit such that all its variable dependencies are
captured. We also add a row to denote the dependency of the input
set BDD on various variables. Next, we use the basic MLP algo-
rithm proposed by Moonet al., with minor modifications, to obtain
the Bordered Block Triangular form. The modifications consist of
several rules to break ties whenever there are multiple column can-
didates that can be moved to the left. In particular, preference is
given to those columns with a higher “affinity” with the inactive
region, i.e. with more number of entries in the inactive matrix.

Next, we use this matrix to choose a goodseparator. This is done
by choosing a good separator variable, as shown in the pseudo-
algorithm in Figure 3. Basically, each variable (column) is con-
sidered as a candidate for separation, because it divides all clauses
into three sets – those with all variables to its left, those with all
variables to its right, and those with variables both to its left and
right. The last set of clauses is actually the separator set associated
with this variable. The figure of merit we use for each variable is
targeted at maximizing the number of private variables in each of
the left and right partitions, while minimizing the total number of

chooseseparatorvariable()
f

max = 0;
for (each column i)f

set varsInL, varsInSep, varsInR;
for (each row j)f

if (all entries in j are to the left of i)
varsInL = varsInL UNION (vars in row j);

else if (all entries in j are to the right of i)
varsInR = varsInR UNION (vars in row j);

else
varsInSep = varsInSep UNION (vars in row j);

g // end of loop on j
set PrivateVarsInL = varsInL - varsInSep;
set PrivateVarsInR = varsInR - varsInSep;
merit = (jPrivateVarsInLj * jPrivateVarsInRj) /

jvarsInSepj;
if (merit > max)f

max = merit;
sepvar = i;

g
g // end of loop on i
return sepvar;

g

Figure 3: Choosing a Separator Using Dependency Matrix

variables in the separator itself. This matrix-based separator algo-
rithm is used at every level of the recursive partitioning scheme to
yield three disjoint partitions of clauses at each level.

3.2 Graph Partitioning Method
We have explored another CNF partitioning method based on

standard hypergraph partitioning techniques. The CNF graph we
consider consists of nodes denoting clauses, and hyperedges de-
noting variables of the CNF formula. The CNF formula we use is
the same as for the Dependency Matrix Method, and we also add
a node to the CNF graph denoting the input set BDD. We consider
weighted graphs, where each hyperedge has a weight equal to the
number of nodes it connects, i.e. the number of clauses that the
corresponding variable appears in.

Though polynomial time algorithms exist for finding minimum
separators based on maxflow-mincut network algorithms, the prob-
lem of finding separators which yield balanced partitions is NP-
hard [16]. For partitioned CNF graphs, since the overall complex-
ity of the SAT solver is affected by the sizes of the individual par-
titions as well, our main interest is in solving the latter problem.
For this, we used a publicly available package called hMETIS [14],
which is known to perform well on practical problems. However,
the hMETIS package cannot be used directly to find good sepa-
rators. Instead, we use it to find a minimum-weight cutset of the
given graph, where the cutset partitions the graph into unconnected
components. The minimum-weight cutset consists of hyperedges,
i.e. variables, and the separator partition is defined as all clauses
that these variables appear in. Note that while this is not equivalent
to finding a good separator, minimizing the weights on the hyper-
edges does tend to give small separators. The variable support set
of the separator clauses defines the set of separator variables, which
can be larger than the set of cutset variables in general. By defini-
tion, the two node partitions defined by the cutset do not share any
hyperedges, i.e. they correspond to the left and right partitions of
clauses which do not share any common variables.

Again, the graph partitioning algorithm is used at each level of
the recursive partitioning scheme, such that each terminal partition
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Figure 4: Example Partition Tree

is less than a certain threshold. For this reason, we also allow un-
balanced partitions, with up to a 25% unbalance factor. (Using a
higher unbalance factor results in many trivial terminal partitions.)

3.3 Using Partitions for Decision Heuristics
The result of the partitioning method is a partition tree, such that

the size of each terminal partition is less than a certain threshold.
This partition tree is used to assign a weight to each variable in
the CNF representation of the SAT problem. This partition-based
weight is used as a multiplicative factor for the weight/rank com-
puted for each variable using standard SAT heuristics, e.g. DLIS [19].

Our weight assignment algorithm works as follows: we would
like to favor decisions on separator variables, in order that the re-
maining search can be performed over the disjoint left and right
partitions. Therefore, we assign separator terminals a weight of 2,
and other terminals a weight of 1. Recall from Figure 2 that some
variables of the separator partition might be shared, while others
are private. Again, we give more preference to shared separator
variables, rather than private separator variables. This is because
shared separator variable assignments are more likely to lead ear-
lier to disjoint partitions. Therefore, for each variable, its weight is
obtained by adding the contribution of each terminal partition that
the variable appears in. This ensures that shared variables get more
weight than non-shared variables.

For example, consider the partition tree shown in Figure 4, where
all terminal partitions are labeled by the support variables, and the
boxed numbers denote the weights assigned to the terminal parti-
tions – weight 2 for separators, weight 1 otherwise. The resulting
weight assignment for each variable is shown in the box to the right
of the partition tree.

We also experimented with alternative weight assignment strate-
gies. In one, the weight assigned to each terminal partition de-
creased according to increased depth from the top of the tree. In
another, the weight also depended on the size of the partition, with
smaller partitions being given higher weight, in order to achieve
disjoint partitions as soon as possible in the SAT search. However,
none of these variations worked as well as, or improved upon, the
simple scheme described above.

4. EXPERIMENTAL RESULTS
There has been significant progress made in symbolic reacha-

bility analysis in recent years. We compare the SAT-based image
computation with and without the partition-based decision heuris-
tic, to state of the art techniques in VIS [4], a public domain tool.

Our prototype implementation of the SAT-based image computa-
tion algorithm uses the GRASP SAT solver [19] and the CUDD
BDD package [27], and has been integrated within VIS. All re-
ported experiments were run on an UltraSparc machine, with a 296
MHz processor, 1 GB memory. For most experiments a time limit
of 100K seconds was used, and the CPU times indicated in the re-
sults tables are for the last reachability step completed within this
time limit. For VIS1, we used the default options in all experi-
ments (partition threshold=5000, frontier method for building par-
tition MDDs, iwls95 image method, and image cluster size=5000).
Dynamic variable reordering was enabled throughout all experi-
ments, and good orders on the state and primary input variables
(when available) were used initially. (Note that the SAT-based im-
age computation requires additional ordering on the internal vari-
ables also, which appear in the CNF formula.)

4.1 Partitioning
Results of the two partitioning methods for some medium-sized

ISCAS benchmark circuits are shown in Table 1. The name of the
circuit appears in Column 1, and number of latches in Column 2
(marked #L). The number of CNF variables and clauses for rep-
resentation of the entire transition relation are shown in Column 3
(marked #V / #C, respectively). Columns 4 through 7 show the re-
sults for the Dependency Matrix method – the depth of the partition
tree, the number of terminal partitions, size of the biggest terminal
partition (#v / #c), and the CPU time required for partitioning re-
spectively. Columns 8 through 11 show corresponding results for
the Graph Partitioning method. For these experiments, the input set
BDD corresponds to the initial state set. For reachability analysis,
we perform CNF partitioning dynamically at each iteration, taking
into account the dynamically changing input set BDD.

As can be seen from Table 1, both partitioning methods are quite
efficient in obtaining multi-depth partition trees for all benchmark
circuits. In general, for the same threshold size constraint (different
across circuits), the Graph Partitioning method (based on hMETIS)
results in smaller depth trees, and less number of terminal parti-
tions than the Dependency Matrix method. However, as results in
the next section show, smaller depth trees did not always lead to
improved results for reachability analysis.

4.2 Reachability Analysis
Results for reachability analysis on the benchmark circuits are

shown in Table 2. The name of the circuit appears in Column 1.
The maximum number of reachability steps completed by any of
the four reported methods is shown in Column 2, where a “(C)” in-
dicates that at least one method was able to complete the traversal,
i.e. a fixpoint was reached. Columns 3, 4, and 5 show the number
of steps completed (n), the CPU time (in seconds), and the Peak
number of BDD nodes (in Millions) for standard VIS [4], which
uses only BDDs for image computation. The remaining columns
report the results for the SAT-based image computation which uses
both SAT and BDDs. Columns 6, 7, and 8 report these numbers
without the use of partition-based decision heuristic. Columns 9,
10, and 11 report these numbers with the use of partition-based de-
cision heuristic using the Dependency Matrix (DM) method, while
Columns 12, 13, and 14 report these numbers for the Graph Parti-
tioning (GP) method using hMETIS. The CPU times reported in-
clude the time spent on obtaining the partition tree dynamically for
each reachability step. Finally, the last column reports the improve-
ment obtained by using the best partitioning method (DM or GP)
in comparison to not using the partition-based decision heuristic at
1These experiments were conducted with VIS version 1.3, since
version 1.4 was not available at that time.



Name #L CNF Size Dependency Matrix Method Graph Partitioning Method
#V / #C Tree # Tree Biggest Time Tree # Tree Biggest Time

Depth Terminals Size #v / #c (s) Depth Terminals Size #v / #c (s)
s1269 37 488 / 1308 6 11 181 / 342 2.7 3 7 174 / 282 1.5
s1423 74 589 / 1494 6 13 189 / 345 4.1 4 9 155 / 205 1.7
s3271 116 1273 / 3387 6 21 182 / 354 12.7 6 21 187 / 438 5.3
s3330 132 885 / 2214 7 15 193 / 325 8.7 5 13 200 / 363 2.9
s3384 183 1187 / 2853 7 21 217 / 456 9.7 6 17 239 / 154 3.1
s4863 88 1887 / 5250 7 21 286 / 642 46.7 5 19 256 / 678 7.5
prolog 136 921 / 2322 7 13 193 / 242 9.5 4 11 192 / 259 2.8
s5378 164 1234 / 3085 8 23 289 / 611 17.8 5 11 288 / 328 3.3
s6669 231 2440 / 6302 8 27 280 / 669 55.0 7 23 297 / 188 9.4
s9234.1 211 2316 / 6548 4 15 484 / 1012 38.6 5 15 445 / 725 9.8
s13207.1 638 3464 / 8773 9 43 520 / 974 110.9 10 35 526 / 1159 16.2

Table 1: Partitioning Results for Benchmark Circuits

Circuit Max VIS SAT+BDD Image
#Steps (Standard) No Partition DM Method GP Method Improvement
n n Time Peak n Time Peak n Time Peak n Time Peak (more steps

(s) (M) (s) (M) (s) (M) (s) (M) or speedup)
s1269 10(C) 10 3269 6.7 10 2164 0.8 10 2000 1.5 10 1685 1.7 1.28 (GP)
s1423 15 11 8791 6.5 13 13151 12 15 24933 30.6 14 33013 17.2 2 more (DM)
s3271 17(C) 17 17933 6 17 14036 1.4 17 9700 2.2 17 12791 2.4 1.45 (DM)
s3330 9(C) 9 20029 6 9 2029 1 9 4351 1.3 9 748 0.8 2.71 (GP)
s3384 7 4 24844 3.6 6 7801 0.5 6 3843 0.6 7 15307 2.9 1 more (GP)
s4863 5(C) 3 3592 6 1 1014 0.6 5 39250 1.6 4 9488 0.7 4 more (DM)
prolog 9(C) 4 22099 5 9 4697 2.8 9 858 0.7 9 726 1.1 6.47 (GP)
s5378 45(C) 8 57986 22.7 45 60547 2.6 45 95960 2.5 45 82644 1.6 0.73 (GP)
s6669 3 3 505 1 2 549 0.3 2 317 0.3 2 542 1.3 1.73 (DM)
s9234.1 11 9 11577 7.6 9 22777 7.7 11 96455 17.3 9 15769 1.4 2 more (DM)
s13207.1 14 14 28600 7.5 10 8340 0.8 8 4910 0.8 11 13548 2.3 1 more (GP)

Table 2: Reachability Results for Benchmark Circuits

all. The improvement is reported either as an increase in the num-
ber of reachability steps, or as a speedup factor when the number
of reachability steps completed are the same, i.e. (time without
partition heuristic)/(time with partition heuristic).

Note from the last column of Table 2 that for all circuits, except
s5378, the use of at least one partitioning method improves the per-
formance of the SAT-based image computationin comparison to
use of no partitioning method. The improvement in performance
for the same number of steps is up to factor of 6, or more num-
ber of reachability steps are completed. For one circuit, s4863, the
use of the GP method allowed a complete traversal, which could
not be done earlier. In our experiments, the CPU times were dom-
inated by the time needed to solve the BDD sub-problems. With
the use of partition-based decision heuristics in SAT, these BDD
sub-problems are considerably simplified because they consist of
image computation over more loosely-connected (sometimes dis-
joint) BDD relations. Therefore, these improvements clearly indi-
cate the benefit of adding partition-based information in SAT for
this application. Furthermore, both partitioning methods perform
fairly well, each contributing to best improvement in about half
of the circuits. At this time, our experiments are not conclusive
in terms of characterizing which method is better suited for which
kind of circuits (or partition trees).

In comparison to standard BDD-based image computation, note

again from the table that SAT-based image computation is able
to outperform standard VIS for many of the benchmark circuits,
sometimes by an order of magnitude. The numbers for the peak
BDD nodes clearly show the reduction in memory requirements
with use of SAT for decomposition. However, for some of the
larger circuits, such as s6669 and s13207.1, the SAT-based meth-
ods are not as good as VIS due to the larger number of variables in
the CNF representation, in comparison to a BDD-based transition
relation representation. However, there is scope for improvement
in this direction by use of clustering to pre-quantify variables stati-
cally, and we are currently exploring such methods.

Other researchers have also recently reported improvements for
these benchmark circuits in comparison to standard VIS by use
of better conjunction/ quantification schedules [9, 20, 21]. How-
ever, since these enhancements are not publicly available, we could
not conduct experiments within our environment, and it is diffi-
cult to make a fair comparison. (Note that our implementation of
the dependency matrix method of Moonet al. works on the CNF
graph, not on the next-state bit relations as in their original work.)
We are also aware of other prioritized (non breadth-first) traversal
techniques which have shown good results for reachability analy-
sis. (See a recent paper [8] for more details and other references).
However, the target application for our current paper is image com-
putation, and we have focused on pure breadth-first traversal as a



good indicator of its performance. It is our belief that just like pure
BDD-based image computation has seen many advances with so-
phisticated heuristics and better engineering, there is further poten-
tial to improve SAT-based image computation, which complements
the benefits of BDDs by incorporating domain-specific knowledge
through SAT.

4.3 Separator-set Induced Partitioning
Recall from Section 3.2 that in our CNF graph partitioning method

based on hMETIS, each hyperedge (denoting a CNF variable) has
a weight, which represent the number of clauses the variable ap-
pears in. We then used hMETIS to find a minimum-weight cutset,
and associated the separator partition with all clauses that the cutset
variables appeared in. Our motivation for using edge weights was
to minimize the number of clauses in the separator, and thereby
potentially minimize the total number (shared and private) of sepa-
rator variables. (There is no direct way to use hMETIS to find good
separators.)

We also explored the use of hMETIS without edge weights, i.e.
all hyperedges are given a weight of 1. In this case, hMETIS again
obtains minimum cutsets, but these do not necessarily correspond
to good separators. This is because only the number of shared sep-
arator variables is minimized, with no effort to minimize either the
number of separator clauses, or the total number of separator vari-
ables. Therefore, for the same size threshold for recursive parti-
tioning, we obtained different partition trees with no edge weights.
These were then used in the same way as described earlier for com-
puting decision heuristics in SAT.

The results for reachability analysis on some circuits using hMETIS
with and without edge weights are shown in Table 3. In this table,
Columns 2, 3, and 4 report the number of steps completed (n), the
CPU time (in seconds), and the Peak number of BDD nodes (in
Millions) for the hMETIS-based partitioning heuristic with edge
weights, while Columns 5, 6, and 7 report these numbers without
edge weights. Note that in all circuits, the performance of reacha-
bility analysis suffers when hMETIS is used without edge weights.
This highlights the benefit of using good separators for partitioning,
instead of using minimum cutsets alone.

5. CONCLUSIONS
We have proposed a decision heuristic for SAT which favors

those variables whose choice results dynamically in disjoint vari-
able supports for clause partitions in the underlying CNF graph.
When used in combination with BDDs for image computation, this
heuristic has the effect of simplifying the associated BDD subprob-
lems, because the conjunctive partitions are more loosely coupled
than before (and are disjoint in some cases). We have provided al-
gorithms for two CNF partitioning methods – one based on use of
a clause-variable dependency matrix, and another based on use of
a standard package for hypergraph partitioning. We have also de-
scribed details of using this partitioning information to modify stan-
dard decision heuristics in SAT. We have presented practical results
for reachability analysis on a number of benchmark circuits, which
show a consistent performance improvement due to our partition-
based decision heuristic, and also demonstrate the benefits of a
separator-set induced partitioning method. We are currently ex-
ploring the use of this heuristic for general SAT applications.
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