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Abstract

In this paper we wish to tackle stochastic programs affected by ambiguity about the
probability law that governs their uncertain parameters. Using optimal transport the-
ory, we construct an ambiguity set that exploits the knowledge about the distribution
of the uncertain parameters, which is provided by: (1) sample data and (2) a-priori
information on the order among the probabilities that the true data-generating distribu-
tion assigns to some regions of its support set. This type of order is enforced by means
of order cone constraints and can encode a wide range of information on the shape of
the probability distribution of the uncertain parameters such as information related to
monotonicity or multi-modality. We seek decisions that are distributionally robust. In
a number of practical cases, the resulting distributionally robust optimization (DRO)
problem can be reformulated as a finite convex problem where the a-priori informa-
tion translates into linear constraints. In addition, our method inherits the finite-sample
performance guarantees of the Wasserstein-metric-based DRO approach proposed
by Mohajerin Esfahani and Kuhn (Math Program 171(1-2):115-166. https://doi.org/
10.1007/s10107-017-1172-1, 2018), while generalizing this and other popular DRO
approaches. Finally, we have designed numerical experiments to analyze the perfor-
mance of our approach with the newsvendor problem and the problem of a strategic
firm competing a la Cournot in a market.
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1 Introduction

Distributionally robust optimization (DRO) is a powerful modeling framework for
optimization under uncertainty that emerges from considering that the probability
distribution of the problem’s uncertain parameters is, in itself, also uncertain. This gives
rise to the notion of the ambiguity set, that is, a set where the modeler assumes that the
true distribution of the problem’s uncertain parameters is contained. The goal of DRO
is therefore to find the decision maker’s choice that is optimal against the worst-case
probability distribution within the prescribed ambiguity set. Hence, DRO can be seen
as a marriage between stochastic programming and robust optimization, working with
probability distributions as the former does, while hedging the decision-maker against
the worst case as the latter typically aims to do. Since the work of Scarf (1958), many
DRO models have been proposed and studied in the technical literature, especially over
the last decade, in which DRO has attracted a lot of attention and become very popular
in the field of optimization under uncertainty as an alternative to other paradigms. We
refer the reader to Keith and Ahner (2021), Rahimian and Mehrotra (2019) for recent
surveys on DRO and optimization under uncertainty. Naturally, the construction of the
ambiguity set is key to the practical performance of DRO. It is no wonder, therefore,
that much effort has been applied to this issue, resulting in several ways to specify and
characterize the ambiguity set, namely:

1. Moment-based approach: The ambiguity set is defined as the set of all probability
distributions whose moments satisfy certain constraints; see, Delage and Ye (2010),
Gao and Kleywegt (2017), Liu et al. (2018, 2019), Mehrotra and Papp (2014),
Nakao et al. (2017), Xin and Goldberg (2021), Zymler et al. (2013), to name a few.

2. Dissimilarity-based approach: The ambiguity set is defined as the set of all proba-
bility distributions whose dissimilarity to a prescribed distribution (often referred
to as the nominal distribution) is lower than or equal to a given value. Within
this category, the choice of the dissimilarity function leads to a wealth of distinct
variants:

(a) Optimal-transport-based (OTP) approach: Here, we include the work in
Blanchet et al. (2019, 2021), Gao and Kleywegt (2016), Mohajerin Esfahani
and Kuhn (2018), Shafieezadeh-Abadeh et al. (2019), among many others, all
of which use, as the dissimilarity function, the well-known Wasserstein dis-
tance, which exhibits some nice statistical convergence properties. Our work
is also based on optimal mass transportation and consequently, it falls within
this category.

(b) ¢-divergences-based approach: This class comprises all those approaches,
which use ¢-divergences (such as the Kullback-Leibler divergence), for
instance, Bayraksan and Love (2015), Ben-Tal et al. (2013), Namkoong and
Duchi (2016). We also include in this group the likelihood-based approaches,
proposed by Duchi et al. (2021) and Wang et al. (2016).
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(c) Other measures of dissimilarity: This category includes all other dissimilarity-
based procedures for constructing ambiguity sets than those already mentioned,
such as those that utilize the family of ¢-structure probability metrics (for
example, the total variation metric, the Bounded Lipschitz metric ...), see, for
example, the work in Rahimian et al. (2019) and Zhao and Guan (2015), and
the Prokhorov metric (Erdogan and Iyengar 2006).

3. Hypothesis-test-based approach: The ambiguity set is made up of all those prob-
ability distributions which, given a data sample, pass a certain hypothesis test
with a prescribed confidence level; see, for example, the work in Bertsimas et al.
(2018a,b), Chen et al. (2019).

In the work we present here, we focus on ambiguity sets that are formulated by
way of an optimal mass transportation problem. In fact, when the cost function in this
problem is a metric, we recover the Wasserstein metric, which is indeed a metric for
probability measures. According to Blanchet et al. (2021), Gao and Kleywegt (2016),
Mohajerin Esfahani and Kuhn (2018), the Wasserstein metric has nice and interest-
ing properties which make it a good choice in DRO, compared to popular alternative
choices such as ¢-divergences (see Sects. 1.1 and 5.1 in Gao and Kleywegt (2016), and
the Introduction in Mohajerin Esfahani and Kuhn (2018) for a comparative analysis).
Interestingly, the Wassertein distance offers a powerful theoretical framework to estab-
lish rates and guarantees of convergence. Furthermore, the conservatism implied by
the ambiguity sets, built by means of the Wasserstein metric can be easily controlled,
based on those rates.

Other cost functions can be used in the optimal mass transportation problem, but
these do not generally result in a metric, which, most likely, makes it much harder to
establish rates of convergence and theoretical guarantees.

However, one disadvantage of using the Wasserstein metric is that the worst-case
probability distribution may take the form of a Dirac distribution (Yue et al. 2020),
which is implausible in practice. Ambiguity sets containing unrealistic distributions
may result in overly conservative solutions, since protection against these implausible
distributions may require a decision that is more expensive than actually needed.
Consequently, ambiguity sets that are solely based on a Wasserstein ball may lead to
excessively costly solutions. In order to reduce the degree of conservatism, the authors
in Gao and Kleywegt (2017), Liu (2021), Wang et al. (2018), Yao et al. (2018) consider
ambiguity sets that are formulated using the Wasserstein metric in conjunction with
moment constraints. Specifying these constraints, however, requires the estimation of
the relevant parameters. Moreover, adding second-order moment information leads to
semidefinite programs. In fact, as underlined in Liu (2021), although the mixture of
moment conditions and the Wasserstein metric allows the decision maker to exclude
pathological distributions and results in good out-of-sample performance, only in some
special cases, e.g., when the objective function is piecewise linear with respect to the
uncertain parameter, can the DRO problem be reformulated as a tractable semidefinite
program. For this reason, they propose a method to approximate the solution of DRO
problems with ambiguity sets that are based on both moment conditions and the
Wasserstein metric.
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Our work follows the path of the work in Gao and Kleywegt (2017), Liu (2021),
Wang et al. (2018), Yao et al. (2018): In an attempt to avoid overly conservative solu-
tions, we seek to enrich the specification of Wasserstein ambiguity sets with a-priori
information on the true probability distribution of the problem’s uncertain parameters.
Nonetheless, unlike the aforementioned approaches, we represent this information in
the form of order cone constraints on the probability masses associated with a partition
of the sample space. This has the advantage that the inclusion of such a-priori informa-
tion does not jeopardize the computational tractability of the underlying mathematical
program. Our main contributions can be summarized as follows:

1. In real-world decision-making problems, it is common to count on qualitative and
expert information conveying some sense of order between the probabilities of
occurrence of certain events. For instance, in the multi-item newsvendor problem,
the experienced decision maker may state that high demand values for a certain item
are more likely to occur than low ones. This can occur, for example, when the true
data-generating probability distribution is known or believed to be a mixture of dis-
tributions. In this case, determining the number of partitions in our DRO approach
would be equivalent to estimating the number of components of the mixture. Indeed,
one should use a number of partitions close to the number of distributions in the
mixture. The task of inferring that number and the contribution of each component
to the mixture is a relevant and well-known problem in statistics, which falls within
the so-called realm of finite mixture models (see, Chapter 6 of McLachlan and Peel
(2000)). In our approach, however, we assume that part of this inference task has
already been done and so some of the inference results are available to the decision
maker. Our aim is to exploit this type of qualitative information in the construction
of the ambiguity set. Most importantly, our DRO approach protects the decision
maker against the ambiguity in this inference process. For this purpose, we pro-
pose partitioning the support of the random parameter vector and bestow a partial
order on (some of) the probability masses of the resulting subregions. This partial
order can be described by a graph, which, in turn, can be associated with a convex
cone. Consequently, the partial order can be embedded into the formulation of the
ambiguity set in the form of conic constraints. The use of these types of cones is
well known in the field of statistical inference with order restrictions (see, Németh
and Németh 2016; Silvapulle and Sen 2011).

2. As shown in the numerical tests, this partial order can be leveraged, among other
things, to easily encode multi-modality using linear constraints, as opposed to
other approaches based on semidefinite programming (see, for example, the work
in Hanasusanto et al. 2015), with the consequent benefit in terms of computational
complexity. The recent papers Chen et al. (2019), Lam and Mottet (2017), Li et al.
(2019) consider ambiguity sets with moment and generalized unimodal constraints.
Our approach, however, can practically model a wider range of “shapes” beyond
unimodality (see Sect. 2.3 for more details).

3. In addition to the order cone constraints on the probability masses linked to the
different subregions of the partitioned sample space, these probability masses can
also be treated as random, with their probability distribution belonging to a certain
ambiguity set. This way, our modeling framework extends the two popular DRO
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paradigms proposed by Mohajerin Esfahani and Kuhn (2018), and Bayraksan and
Love (2015), Ben-Tal et al. (2013), respectively. Indeed,

— If we consider one partition only, that is, the entire sample space itself, there is
no uncertainty about the associated probability mass (which is, evidently, equal
to one) and no partial order can be established. If we now use a distance as the
transportation cost function, our DRO framework reduces to that of Mohajerin
Esfahani and Kuhn (2018).

— On the contrary, in order to get the DRO framework of Bayraksan and Love
(2015), Ben-Tal et al. (2013), we just need to (1) consider a number of partitions
such that every partition contains a single data point from the sample, (2) assume
that the distribution of their probability masses belongs to a ¢-divergence-based
ambiguity set and (3) ignore any other information on the true probability
distribution of the problem’s uncertain parameters (namely, partial order and
ambiguity in the conditional distributions).

For their part, the authors in Chen et al. (2020) have proposed a different ambiguity
set that also covers these two DRO approaches as special cases. However, their
ambiguity set does not include the DRO framework we propose, as we note later.

4. Under mild assumptions, we provide a tractable reformulation of our proposed
DRO framework and show that it enjoys finite sample and asymptotic consistency
guarantees.

5. Finally, we numerically illustrate the benefits in having a-priori information by
comparing our DRO framework with the well-known sample average approxi-
mation (SAA) solution and the Wasserstein metric-based approach of Mohajerin
Esfahani and Kuhn (2018). To this end, we consider the single and multi-item
newsvendor problems and the problem of a strategic firm competing a la Cournot
in a market.

The rest of the paper is organized as follows. Section 2 includes some preliminar-
ies to the optimal transport problem, we formulate the proposed DRO approach and
present tractable reformulations. Convergence properties and performance guarantees
are theoretically discussed in Sect. 3. Section 4 provides the results from numerical
experiments. Finally, Sect. 5 concludes the paper.

Notation We use R to denote the extended real line, and adopt the conventions of its
associated arithmetic. Furthermore, R denotes the set of non-negative real numbers.
We employ lower-case bold face letters to represent vectors and bold face capital letters

for matrices. We use diag(ay, ..., a,) for a diagonal matrix of size m x m whose
diagonal elements are equal to ay, . . ., a,,. Moreover, given a matrix M, its transpose
matrix will be written as M7 . We define e as the array with all its components equal to

1. The inner product of two vectors u, v (in a certain space) is denoted (u, v) = u’v.

Given any norm ||-|| in the Euclidean space (of a given dimension d), the dual norm
is defined as |[u|l, = SuPHngl(“’ v). Given a function f : R? — R, we will say
that f is a proper function if f(x) < 4oo for at least one x and f(x) > —o0
for all x € RY. Additionally, the convex conjugate function of f, f*, is defined as
SH(y) = supycpa (y, X) — f(x). It is well known that if f is a proper function, then
f* is also a proper function. Given a set A € R?, we denote its relative interior as
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relint(A). Similarly, we refer to its interior as int(A). The support function of set A,
S4, is defined as Sq(b) := sup,c,(b, a). The dual cone €* of a cone ¥ is given
by €* :={y / {(y.x) > 0, Vx € €}. We use the symbol & to represent the Dirac
distribution supported on &. In addition, we reserve the symbol “ ™ ” for objects
which are dependent on the sample data. The symbols E and P denote, respectively,
“expectation” and “probability.” Finally, for the rest of the paper we assume that we
always have measurability for those objects, whose expected values we consider.

2 Data-driven distributionally robust optimization model

First, we briefly introduce some concepts from the optimal transport problem (also
known as the mass transportation problem) that are at the core of the development of
our DRO framework.

Intuitively speaking, the optimal transport problem (OTP) centers on the question
of how to move masses between two probability distributions in such a way that the
transportation cost is minimal. Let P and Q be two probability distributions in a Polish
space S such that P is the distribution of mass seen as the origin (i.e. the source) and
Q is the distribution of mass seen as the destination (i.e., the sink), and let ¢ be a
measurable cost function with c(x, y) representing the cost of moving a unit of mass
from location x to location y. The OTP can be stated as follows

C(P, Q) = inf [ / c(x, )T (dx, dy) : T is a joint distribution

with marginals P and Q, respectively}

We assume that the cost function ¢ is a non-negative jointly convex lower semicontin-
uous function such that if x = y , then c(x, y) = 0. In the remainder of the paper we
assume that we have existence and uniqueness of the OTP (see, for example, Theorem
4.1 in Villani (2008)).

For more technical details about the assumptions on the cost function in the OTP,
we refer to Villani (2008) and Santambrogio (2015). Note that if we choose a distance
on S as the cost function (for example, a p-norm, with p > 1, if S is the Euclidean
space R"), we get the so-called Wasserstein metric of order 1, which we represent as
W (P, Q) and which is also known as the Kantorovich metric.

It is well known that this probability distance metrizes the weak convergence prop-
erty. Furthermore, convergence with respect to the Wasserstein metric of order 1 is
equivalent to weak convergence plus convergence of the first moment. Wherever the
Wasserstein metric of order 1 is used in this paper, we implicitly consider the set of
all probability distributions with finite moment of order 1. Likewise, we refer to the
Wasserstein ball of radius r > 0 centered at a certain nominal probability distribu-
tion Py, which we denote by B, (Py), as the set of all probability distributions whose
Wasserstein metric of order 1 to Py is at most r.
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2.1 Formulation of the proposed model

Problem (P) below formulates the data-driven distributionally robust optimization
(DDRO) framework we propose.

(P) inf sup Eg [f(x,§)] (1a)
xeX QEQ
st.Polé €& =pi.Vies (1b)
cp—P =p (Ic)
Y piC(Qi, 0 <e (1d)
=4
Qi€ 2i.Vied (le)
peo (1f)

where X C R” is the set of feasible decisions, § : 2 — & C R4 is a random vector
defined on the measurable space (£2, .%) with o-algebra .%#, and 2 is the set of all
probability distributions over the measurable space (§2, .%). Moreover, for each i €
#, Q; is the conditional distribution of Q given & € &, thatis Q; = Q& / & € &) €
2;, with 2; being the set of all conditional probability distributions of Q given & € Z;.
In this setting, .# is the set of regions =; with pairwise disjoint interiors into which
the support set = is partitioned, that is, | J;. ,(&;) = & and int(&Z;) ()int(Z;) = 0,
Vi, j € .Z,i # j.Furthermore, we assume that Q*(Z;NZ;) =0,Vi, j € Z,i # j,
where Q* is the true data-generating distribution. This is equivalent to stating that
{Zi}ic.s constitutes a Q*-packing (see a formal definition of this concept in page
50 of Graf and Luschgy (2000)) and will allow us to unequivocally assign samples
from Q* to the partitions Z;,i € .#. Finally, constraint (I1c) defines the set of all
probability vectors p that differ from the nominal empirical probability vector p in
at most p according to the cost function ¢. This is a function that quantifies how
dissimilar two probability vectors p and q are. For this purpose, we require that ¢ be
a non-negative jointly convex lower semicontinuous function such that if p = q, then
¢(p, q) = 0. As mentioned further on, function ¢ could, for example, take the form
of a norm or a ¢-divergence. To ease the notation and the formulation, we use & to
represent either the random vector & (w), with w € §2 or an element of R?. Note that
we can consider the probability measure induced by the random vector &, if we choose
the corresponding Borel o -algebra 2 on = Thus, we can see 2 as a set of probability
measures defined over (&, %), so we write 2 = 2(Z). We define the uncertainty
set & for the probability vector p € R, with |.#| being the number of partitions, as
the intersection of ® and the set defined by constraint (1c). The support set ®, which
includes the order cone constraints on the probability masses p, is given by:

O=pekR’:(ep =1peckR pew) @)

where % is a proper (convex, closed, full and pointed) cone. Hence, @ is a convex
compact set.
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In problem (P), p and ¢ are non-negative parameters, to be tuned by the decision
maker, which control the size of the ambiguity set defined by Eqs. (1b)—(1f).

We represent this set as %p,g(’Q\), where Q is a nominal distribution expressed in
terms of p and Q; as

0=) pi0i 3)
ied
where N
—~ i
= 4
pi N+ 1] 4)
and
1o
i = — 8ai 5
0i =5 Z 3 )
j=1
Additionally,
R "= {i €  such that partition i does not contain any data from the sample},
Ejl € {Ell, . ,EI\I/,.} and N; is the number of atoms in region =;. Here we set N; = 1

and /E\ll = argsupgcz, f(x, §) for those i € / ’. Implicitly, we assume that this supre-
mum is attained. We remark that this modeling choice protects the decision maker in
those cases where there is a total absence of information on the conditional distributions
Q;,i € I'.Indeed, by introducing the “artificial” data pointgll = argsupgcz, f(x, §)
in a partition =; with no samples, we are considering the worst-case form that the true
conditional distribution Q; could possibly take, that is, a Dirac distribution supported
on Elt .

Finally, we note that the ambiguity set defined by constraints (1b)—(1f) is unequiv-
ocally determined by specifying the partitions =;, i € .#, the nominal distribution Q ,
the budgets p and ¢, and the order cone constraints p € ¢ in (2). In fact, if these con-
straints are removed and we set p = ¢ = 0, then we have p; = p; and Q; = @i, Vi,
and therefore, Q = Q .

The following theorem shows that problem (P) can be reformulated as a single-level
problem.

Theorem 1 (Reformulation based on strong duality) For any non-negative values of
parameters &, p, problem (P) is equivalent to the following:

1 N;i ) ~
D Lt —ne
(- Xn) _ +m—netp
A

PO inf_ Ap+n+0s+ 1k
( )MM o (&

sttry = sup [f(x,8) = 0. E)]. Vie s, j<N

Ees;
XGX,AZO,;LGR'_{',UER, peé*0>0
l‘i’jER,Vief,jSNi (6)
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where E%(J is the convex conjugate function of ¢(-, p), withp fixed, and (NL, Zjv’zl ti"i)iej

. ; 1L N
is the vector with the |.'| components z- > it

Proof Recall that we have assumed that regions Z; are disjoint. Thus, using the law
of total probability, we can rewrite problem (P) as follows:

inf sup G(x, p) @)
X€X pep

where we have considered the subproblem (SP):

SP)Gx,p)= sup Y piEo, [f(x )] (8a)
Qi;€2; Vi ies
sty piC(Qi, Q) <e (8b)
iced

The probability distribution Q; is defined as Qi = + Y1, 851, with G
: J

{Ell, . ,‘S\lz,i }, and N; being the number of data points in &;.

Note that the structure of problem (7) does not fit in the general ambiguity set
proposed in Chen et al. (2020).

Equivalently, we can recast the subproblem (SP) as

) Qids)

w Yo

Q,’GQ,‘,H,’,VI'Z-E!] &

(SP) = s.t. > pi ﬁ L C(€ ENIT;(d, dE') < ¢ )
ied =i
Vi, II; is a joint distribution of & and &’
with marginals Q; and Q;, respectively
pi %
sup Z ﬁl Z

é;,‘v’ieﬂ,jSNi ies ! j=1

. 6)0)(dE)

Sl st TRY [ ceBdiun = 1o

[ an=1viesjz=n

f_Nﬁ.
N
~
L
b

)

where reformulation (10) follows on from the fact that the marginal distribution of &’
is the discrete uniform distribution supported on points E; ,j=1,..., N;. Thus, IT;
is completely determined by the conditional distributions Q'; = IT; (£, § g = é\;)’
Vi < N;, thatis, IT;(d&, d§") = Ni’ Zjv’zl 83; (dE’)é; (d&) (Mohajerin Esfahani and
Kuhn 2018).

@ Springer



474 A. Esteban-Pérez, J. M. Morales

The mathematical program (10) constitutes a generalized moment problem over the
normalized measures Q’] for which strong duality holds (see, for example, Shapiro
(2001)). We can, therefore, dualize the e-budget constraint on the transport cost, thus
obtaining:

ntsup 9£+Zp12/l [fx6)—6c@ED|Diar)

Q’ Vie s, j<N; ic s

0'(d§)=1,Vie s, j<N, (12)

i

=inf 6e+ ) o Zsup /ﬁ [Fox8) —0c¢.E)) 0 @p)

ej ] lQl =i

(13)
st [ Gap =1 viesj=n (14)
Pi i

mf Oe + Z Z sup [ (x, &) — 06(§,Ej)] 15)
tef bj=1 fesi
B pi

e i VLIEH} LJ<Ni Oe + l;] Zt’ Y (16)

s.t.tj j > sup [f(x,&) —QC(E,E;)] ,Vie S, j<N;
§ez;
(17)
6>0 (18)

where the second equality derives from the fact that we can choose a Dirac distribution
supported on Z; as Q’]

Now, dualizing the p-budget constraint on the transport cost in the inner supremum
of problem (7), we obtain:

inf Ap + sup [G(x, p) — AZ(p. P) ] (19)

>0 pe®

Thus,
1nf kp + sup [G(x, p) — AC(p, P)] 20)
pe®
. Di

fk f 6 i i — A 21
08| 4 0|

ief b=t
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Since function e + ), ~ N Z - ti,j — Ac(p, P) is upper semicontinuous and
concave in p on the compact Convex set @ (recall that ¢ is nonegative, lower semi-
continuous, and convex in p), and linear in 6 and #; ; on the convex set defined by
6 > 0 and (17), we can apply Sion’s min-max theorem (Sion 1958) and in this way,
interchange the innest infimum with the outer supremum. Then, by merging the two
infima, we arrive at

Ni
. Di ~ A
inf A Oe + su — ti i — Arc(p,
oo L do +p€g l;y v X_: i.j — (P, D)

St 1 > sup [f(x,;:) —eic(g,’g‘j.)], Vie s, j<N;

§eg;

We focus now on the inner supremum,

peo®

N.
1 & ~
sup <p, 5 Dl >—Ac(p,p> (22)
r .
j=1 ied

where we have written ), ~ 1’\’,—’1_ Z;V’zl tj,j as <p, (Nl, Z?]’:l ti’j>ief > This is a con-
cave maximization problem (be aware that (p, H(x)) — A¢(p, P) is a concave function
with respect to p and @ is a convex compact set; furthermore, notice that we have

Hx) = ( Z jet i j> p in our particular case). Consequently, strong duality holds
if a Slater condition is satisfied, that is, if there exists a point p* € relint(R‘f‘) such
that (e, p*) = 1, and p* € int(%) (see, for example, Boyd and Vandenberghe 2004).
Using a standard duality argument, we dualize the constraints p € leﬂl, (e,p) =1

and p € ¥, with associated multipliers u € R‘_{_ﬁl, n € Rand p € €*, respectively.
Thus, we obtain the following problem:

inf Ztl J - AE‘(P’i’\) + (’Ls P> + 7’(1 - <es p)) + (’l\i p)
neRr, [LE]R‘ ! , pet > P N; s
iey
1 &
inf n+sup{{p, | — ) t#; +p—ne+p)—2rcp,p)
neRr, uER‘/‘ Peé * p < Ni 2=: " ics
ey

N e lt,/) +pr-—ne+p\
= inf 7 +Asup S —c(p.p)
neR, ;LE]R‘+ ‘pe{ *
(ll j= 1tz/) +ﬂ_"e+ﬁ
= inf n+AcA
neRr, ueR‘f‘,ﬁe% * )‘

where ¢ ( ) is the convex conjugate function of ¢(-, p), with P fixed.
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Therefore, problem (7) can be equivalently reformulated as follows:

(), eneess
PO inf A 0 ACE
( )x,)\,;}?nii,@,tp—i_n—i_ &+ Acp S

St i > sup [f(x £)—0c(, )] Vie s, j<N;

§ez;
xeX,kzO,ueR'f',neR, pes*,0>0
l‘iJER,ViEf,jENi

O

Moreover, in the case that the cost function ¢(-, -) is given by a norm, we have
Fﬁ(p) = ||p — PlI. The next corollary deals with this particular case.

Corollary 1 If the cost functions c(-, -) and (-, -) are given by norms, then for any
non-negative values of parameters ¢, p, the problem (P) is equivalent to the following
problem

1
X, 1,0 D6, P l; pi N; ]2:; i+ wi =0+ pi

stotiy = sup [ F8) =0 [g ~E;

],Vieﬂ,ngNi

N;

Zttj+l/«l_77+pz <A

/1 ied llx
xeX,AzO,ueR‘f',neR, pes*,0>0
ti,jGR,Vin,VjEN,' (23)

Proof We use the following Lemma to put problem (PO0) in a better shape.

Lemma1 Let ¢(p) = Ilp — Pll, where p € R is a fixed vector and || - || a norm in
RI1. Then, it holds that the convex conjugate function of c3(p) is as follows

ey _ | Sics Bisi i sl <1
B = {oo i sl > 1
Proof The claim of the Lemma follows from Proposition 5.1.4. (vii) and Example
5.1.2 (b) of Lucchetti (2006). O
Therefore, problem (P0O) reduces to
| N

®1)  inf Mo n+0e+ P Zt,,+uz—n+p,
ot B0 ies L
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St fij > ;;15 [rx -0 -

],Vief,ngNi

H ZI1]+M1_7)+P1 <A

ied Il
xeX,AzO,;LeR‘j‘,neR, pes*,0>0
lij eR,Vie #,Vj <N;

O

Remarks Our data-driven DRO framework (P) can be easily understood as a gener-
alization of other popular DRO approaches. To see this, first we need to remove the
order cone constraints on the probabilities associated with each subregion into which
the support = has been partitioned, that is, the condition p € %, and then proceed as
indicated below:

1. If we set ¢ = 0, |.#| = N, with every partition containing a single and different
data point from the sample, and use a ¢-divergence to build the cost function,

ie, () =D ;cs Did ( ) and hence, cA(s) Y ic.s Pi¢*(s;), then our data-
driven DRO approach boﬂs down to that of Ben-Tal et al. (2013) and Bayraksan
and Love (2015).

2. On the contrary, if we set |.#| = 1, c is given by a norm and take ¢3(p) = ||p — Pl
(hence E%(s) =Y ;e Disi if [Isll, < 1), we get the model of Mohajerin Esfahani
and Kuhn (2018).

Finally, we remark that constraint (6) for each i € I’ is equivalent (under the
assumptions we make on the transportation cost function) to ;1 > supgcz, f(x, §).

2.2 Tractable reformulations

In this section we provide nice reformulations of our DRO model (P) under mild
assumptions. For this purpose, we make use of the theoretical foundations laid out in
Mohajerin Esfahani and Kuhn (2018). Likewise, some extensions to our model, such
as the extension to two-stage stochastic programming problems, are omitted here for
brevity and because they can be easily derived in a similar way as found in Mohajerin
Esfahani and Kuhn (2018) for the data-driven DRO approach they develop.

We start our theoretical development with the following assumption.

Assumption 1 We consider that B;, for eachi € .7, is a closed convex set, and that
f(x,8) := maxy<k gk (X, §), with g, for each k < K, being a proper, concave and
upper semicontinuous function with respect to & (for any fixed value of x € X) and
not identically co on E;.

Theorem 2 below provides a tractable reformulation of problem (P1) as a finite
convex problem. For ease of notation, we suppress the dependence on the variable x
(bearing in mind that this dependence occurs through functions g, k < K).
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Theorem 2 IfAssumption 1 holds and if we choose anorm (inR% ) as the transportation
cost function c, then for any values of p and ¢, problem (Pl) is equivalent to the
following finite convex problem:

N.
1 ¢ ~

N E lijjt i —n+pi
l_]zl

(PI’) inf Mo+n+0e+ > P
X, A7, 1, Py Zijk,Vijk,0,t icr
st tp ;> [—g)" @ijk — Viji) + Sz (Vijr) — (Zijik, E;)
Vie #,Vj <N;,Vk < K
|ziji|, <6.¥ie.#,Vj < Ni,Vk < K

N;
Nlizli,j‘}‘ﬂi_n"‘ﬁi <X
j=1 ied %
X€X,A>0,0>0neR ueR per
Zijk, Vij € R, Vi e S, V¥j < N;,Vk < K
tij eR,Vie #,Vj <N;

where [—gi1"(z;jk — Vijk) is the conjugate function of —g; evaluated at z;;; — v;jk
and Sg, is the support function of &j.

Proof In essence, the complexity of problem (P1) depends on our ability to refor-
mulate the supremum in constraint (23) in a tractable manner. This is possible under
Asummption 1, following similar steps to those in the proof of Theorem 4.2 in Moha-
jerin Esfahani and Kuhn (2018), to which we refer. O

We note that Asummption 1 covers the particular case where functions gx, k < K,
are affine and, as a result, f is convex piecewise linear. The single-item newsvendor
problem, which we illustrate in the first part of Sect. 4, constitutes a popular example
of this case.

2.2.1 Separable objective function

Now we extend the results presented above to a class of objective functions which
are additively separable with respect to the dimension d. We assume here that § =
(&,....&,), where &, € R?, foreachl = 1, ..., d. Furthermore, we consider the
separable norm ||§]|,; = Zle ||§1H associated with the base norm ||-|| (on RP).
Finally, we assume that the function f is given as follows:

d
Fx.8) =) max gi(x. &) (24)
=1 —

In this case, the complexity of the resulting DRO problem is linear with respect to
the number N of samples. The multi-item newsvendor problem, which we illustrate
in the second half of Sect. 4, constitutes a popular example of this case.
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Theorem3 If f(x, &) = Zle maxi<xk gik(X, &), {8k tk<k satisfy Assumption 1 for
alll <d, and B;, for eachi € 7, is given by the Cartesian product of closed convex
sets (that is, Z; = n1d=1 D;, with Dli a closed convex set), and if we choose the norm
I-1l 7 as the transportation cost function c, then for any values of p and &, problem (P)
is equivalent to the following finite convex problem:

N; d
. ~ 1 ~
(P2) inf Ap+n+9£+2pi ﬁzzwijl'i‘l/«i_n"'l’i

XA, 0,1, PaZijkl Vijki 0,0

ies bj=11=1
(25)
s.t. ojj1 > [—gi)* Zijk — Vijk) + SD;' (Vijk1) — (Zijkla’gjl']),
Vie #,Vj <N;,Vk <K,Vl<d (26)
|ziju|, <6.Vie #.Vj < Ni.Vk<K.VI<d (27)
N;

d
1 ~
FZZQ)U]‘FIM_’?‘FI%' <X (28)

i
j=11=1 .

XEX,1>0,0>0neR peR per*, (29

wjjl eR,Vi Gﬂ,Vj < N;,Vl <d (30)

Zijki, Vijit € RP, Vi e S Vj < N;,Vk < K,Vl <d
(1)

Proof The proof runs in a similar way to that of Theorem 6.1 in Mohajerin Esfahani
and Kuhn (2018). m]

Remarks 1f the transportation cost function c is not a norm, there are still some cases
where the constraint (6) can be reformulated in a tractable way. In general, Eq. (6)
can be seen as the robust counterpart of a constraint affected by the random parameter
vector &, with ZE; playing the role of the so-called uncertainty set. In our case, the
tractability of (6) depends on the nature of each set Z; and each function «;;(§) :=

f(x, &) —0Oc(E, Ejl) Indeed, suppose that every Z; is a closed convex set, then:

— If the function f is concave in &, so is each function o;; () (recall that the trans-
portation cost function ¢ is assumed to be convex and that € is non-negative).
As Roos et al. (2018) points out, this is a tractable instance and tractable refor-
mulations of constraint (6) can be obtained using Fenchel duality following the
guidelines in Ben-Tal et al. (2015).

— In contrast, the case in which some «;;(§) are convex is much more challenging
and may call for approximation methods such as the one proposed by Roos et al.
(2018).

In any case, we need to compute convex conjugate functions, which is, in itself,
a complicated problem in general. For assistance in this regard, one may resort to
symbolic computation in order to get closed formulas for convex conjugate functions
(see, for example, Borwein and Hamilton 2009).
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2.3 Order cone constraints

To account for a-priori knowledge about the probability distribution of the random
parameter vector & (for example, the decision maker may have some information
about the shape of this distribution), we propose to convey this knowledge using order
constraints on the probability masses p; associated with each subregion Z; into which
the support = of & is partitioned. These order constraints are based on order cones,
which, in turn, can be represented in the form of graphs.

We can build order cones from graphs that allow for the comparison of all prob-
abilities p;. In that case, we say that the graph, and the associated cone, establish a
total order. If, on the contrary, the graph only allows some of those probabilities to be
compared, we talk about partial order. For more details about order cones we refer
the reader to Németh and Németh (2016).

Below, we present some common choices of order cones.

Simple order cone (monotonicity):
C={(peR”:ip=...2py)
— Tree order cone:

C=peR i pi=pg,i=1...,17-1)

Star-shaped cone (decrease on average):
v p1+p2 P11+ ...+ Py
{ eRI . p x> L2252 T }

P pr= 2 - - | A

— Umbrella cone (unimodality):

C={peR’ :pi<pr<...<puw=pur1>...> ps)

An order cone is a polyhedral convex cone and as such, can be algebraically
expressed in the form ¢ = {p € R : Ap > 0}, with A being a matrix of appropriate
dimensions. Its dual €* can, therefore, be easily computed as €* = {p = ATv : v >
0} (see, for instance, Corollary 3.12.9 in Silvapulle and Sen (2011)). Notwithstanding,
our DRO approach can be equally applied under other types of support sets, as long as
the problem (22) admits a strong dual (we refer the interested reader to Ben-Tal et al.
(2013) for a list of types of support sets under which strong duality holds).

As compared to other approaches available in the technical literature, order cones
provide a straightforward way of encoding modality information in the ambiguity set of
the DRO problem. For instance, Hanasusanto et al. (2015) indirectly introduces multi-
modality information by imposing first and second moment conditions on the different
ambiguous components of a mixture with known weights. Their approach, however,
results in a semidefinite program. Unlike Hanasusanto et al. (2015), the authors in
Li et al. (2019) explicitly incorporate modality information into their ambiguity set
through moment and generalized unimodal constraints. Nonetheless, they still need
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to solve a semidefinite program and their DRO approach overlooks the data-driven
nature of those constraints. In Chen et al. (2019), they construct an ambiguity set made
up of those absolutely continuous probability distributions whose density function is
bounded by some bands with a certain confidence level. Their approach can be used
to impose monotonicity or unimodality of the probability distributions, but can only
be applied to the univariate case.

Beyond modality, the order cone constraints on the partition probabilities that char-
acterize our DRO approach equip the decision maker with a versatile and intuitive
framework to exploit information on the shape of the ambiguous probability distribu-
tion. For example, as we do in the numerical experiments in Sect. 4, we can construct
an order cone that constrains the ratios among the partition probabilities, which can be
seen as a discrete approximation of encoding “derivative” information on the ambigu-
ous probability distribution (if this admits a density function). Likewise, other order
cones could be used to bestow some sense of “convexity" on this distribution.

3 On convergence and out-of-sample performance guarantees

In this section, we show that our DRO approach (P) naturally inherits the conver-
gence and performance guarantees of that introduced in Mohajerin Esfahani and Kuhn
(2018). For this purpose, we first need to recall some terminology and concepts from
this paper to which we will resort later on. Throughout this section, we denote the

training data sample (that is, the sample path sequence) as §N = {§ }l 1 €
Following Mohajerin Esfahani and Kuhn (2018), Zy can be seen as a random vector
governed by the probability distribution PV := Q* x --- x Q* (N times) supported
on ZV (with the respective product o -algebra).

In the remainder of this paper, we will denote the optimization problem associated
with problem (P) under the true probability distribution Q* as (P*) (that s, the problem
defined as J* := infxex Eg+«[f(x, £)]). We then say that a data-driven solution for
problem (P*) is a feasible solution Xy € X which is constructed from the sample data.
Furthermore, the out-of-sample performance of a data-driven solution Xy is defined
as Eg«[f Xn, &)].

In line with Mohajerin Esfahani and Kuhn (2018), given a data-driven solution Xy,
a finite sample guarantee is a relation in the form

P¥[Ey : Eolf Gy, §)l < Jn|z1-8 (32)

where j;v is a certificate for the out-of-sample performance of Xy (i.e., an upper
bound that is generally contingent on the training dataset), g € (0, 1) is a significance
parameter with respect to the distribution PV, on which both Xy and Iy depend.
Moreover, we refer to the probability on the left-hand side of (32) as the reliability of
Xn, In).

Ideally, we strive to develop a method capable of identifying a highly reliable data-
driven solution with a certificate as low as possible.
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The data-driven DRO approach that we propose in this paper to address problem
(P*) accounts for the uncertainty about the true data-generating distribution Q*, while
taking advantage of some a-priori order information that the decision maker may have
on some probabilities induced by Q* over a partition of the support set =. Below,
we claim that the pair (Xy, IN) provided by our distributionally robust optimization
problem (P) features performance guarantees in line with those discussed in Mohajerin
Esfahani and Kuhn (2018). More specifically, for a suitable choice of the ambiguity set,
the optimal value Ty of problem (P) constitutes a certificate of the type (32) providing
a confidence level 1 — B on the out-of-sample performance of the data-driven solution
Xy. This can be formally stated under some assumptions about the underlying true
conditional probability distributions.

To this end, we first provide probabilistic guarantees on the partition probabilities
pi, Vi < |.#|.In this vein, note that the empirical probability p;, defined as in Eq. (4),
can be modeled as a binomial distribution with success probability p, divided by the
total number of trials. Consequently, by the Strong Law of Large Numbers (SLLN),
pi converges to p almost surely.

Now suppose that we choose a ¢-divergence as ¢, where ¢ is a twice continuously
differentiable function around 1 with ¢”(1) > 0. Then, take B, > 0. If we choose as
p the value

p(Bp) = (@"(D/ QNI -1 g, (33)

we get a confidence set of level 1 — B, on the true partition probabilities p* (see
Ben-Tal et al. 2013 and Bayraksan and Love 2015).

If, alternatively, we choose the total variation distance as ¢, we can use Eq. (19) in
Guo and Xu (2019) to take p as

p(Bp) = (171N N)2 + /2log(|.71/B,)) (34)

and obtain a confidence set of level 1 — §, on p*.

Next we establish a concentration tail inequality of the probability weighted Wasser-
stein metric of order 1 between each conditional distribution and its respective true
conditional distribution. For this purpose, we first need to make the following assump-
tion:

Assumption 2 (Light-tailed Conditional Distributions) For each i € .7, there exist
ai, yi € R, witha; > 1 and y; > 0 such that

oF

Eo: [ exp(yilI€11)] =ﬁ exp(y;1§1“) QF (d§) < oo. (35)

The following theorem provides a tail concentration inequality for the weighted
sum of the Wasserstein metrics of order 1 between the true and empirical conditional
distributions.

Theorem 4 (Concentration Inequality for the Conditional Distributions) If Assumption
2 holds, for each i € #, given B; € (0, 1] we have that VN; > 1, dim(§) # 2
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and for all ¢ > Y";_ s pien, (Bi), for any values p;,i € % such that p; > 0 and
Ziej pi = 1, the following holds

L PR 2
ied ies
where
=1y 1/ max{dim(&),2} 87"
(logélf}vfi, )) if N; > %,
N BD= s ai log(B; ") o

Proof Given Assumption 3, for all i € ., we deduce from Theorem 2 in Fournier
and Guillin (2015) that

P[#(Qf, 0) < en,(B)] = 1 - Bi.

Thus, we have that

Z piv(Q;, 0i) < Z pien; (Bi)

ied =54

> P| () (m#(QF. i) < pien; (B)) (38)
icd

=1-P | {J (n7(QF, Q) > pien,(B)) (39)

ics

> 1= P[p#(Q}, 00 > pien,(B)] (40)
ied

>1-Y B S
ied

Theorem 4 sets the probabilistic bound )", _ ~ p;en; (B;) on the weighted Wasserstein
metric of order 1 between each conditional distribution and its respective true con-
ditional distribution, with at least confidence level 1 — Zie 7 Bi. We remark that, if
the partitions are compact, stronger results like those in Theorem 2 of Ji and Lejeune
(2020) could be used to choose the radii of the Wasserstein balls. More specifically, the
result in Theorem 2 of Ji and Lejeune (2020) depends on the diameter of the compact
support set (i.e., the maximum distance between two elements of that set). The result
stated in our theorem, in contrast, is valid for unbounded partitions, as it only requires
the true conditional distribution associated with each partition be light-tailed. The next
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theorem states the finite-sample guarantee performance of the proposed DRO method
we develop in this paper: O

Theorem 5 (Finite sample guarantee) Suppose that Assumption 2 holds and that we
have chosen as p the value given by Eqs. (33) or (34). Then, the finite sample guarantee
(32) holds with at least confidence level (1 — B,)(1 — Zieﬂ Bi).

Proof The clair’r\l follows from Theorem 4 and Egs. (33) and (34), which imply that
P(Q* € %« (Q)) = (1 = Bp)(1 = > ;c 7 Bi). Hence,

Eo-[f&n. &)1 < sup EolfRn, &)= Jy
QEa}/p.s(Q)

with probability at least (1 — 8,)(1 — Zieﬂ Bi). O

Remarks Inpractice, proper values for ¢ and p are set by way of data-driven procedures
like bootstrapping or cross-validation, as we illustrate in the numerical experiments in
Sect. 4.2 (see also Chen and Paschalidis 2018; Cisneros-Velarde et al. 2020; Mohajerin
Esfahani and Kuhn 2018; Shafieezadeh-Abadeh et al. 2019; and Xie 2021 for more
examples). These procedures allow the decision maker to tune those parameters as a
function of sample size N in order to get reliable decisions without giving up too much
on out-of-sample performance. Following this line, and as noted in Remark 5 in Kuhn
et al. (2019), the requirement to include the true distribution inside the ambiguity set
is only a sufficient, but not necessary condition to ensure a finite sample guarantee.
Indeed, this guarantee can be sustained even if the parameters of the ambiguity set are
reduced below the lowest values for which the ambiguity set represents a confidence
set for the true distribution.

Furthermore, recall that the partition probabilities p belong to the support set &
defined by the order cone constraints. Since we assume that these constraints are
coherent with the true distribution Q*, we do not need to explore those probability
measures Q in the Wasserstein ball B, (s) that do not comply with them. Consider,
for example, the case in which the worst-case distribution in the ball B, s) does not
satisfy the order cone constraints. One could expect, therefore, that, in practice, our
approach could benefit from this fact to produce a data-driven solution X as reliable
as that given by the method of Mohajerin Esfahani and Kuhn (2018), but with a tighter
certificate Jy. This is precisely what we observe in the numerical experiments that we
present below.

We conclude this section with some remarks on the convergence and asymptotic
consistency of our DRO approach: We have that, as the number N of samples grows
to infinity,

RN, Iy) = (5,9 2)

where x* (resp. J*) is an optimizer (resp. the optimal solution value) of problem (P*).

Indeed, assume that Theorem 3.6 in Mohajerin Esfahani and Kuhn (2018) holds,
then take a confidence level 1 — B, and choose ¢ and p by way of Theorem 4 and
Egs. (33) (or (34)), respectively. When N grows to infinity, we have, on the one
hand, that the conditional distributions converge (in the Wasserstein metric) to their
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respective true conditional distributions and the probability weights converge a.s. by
the SLLN to their respective true values. Therefore, both ¢ and p tend to zero as
N increases to infinity. Consequently, our ambiguity set only contains the empirical
distribution Q N> Which converges almost surely to the true distribution Q*.

4 Numerical experiments

The following simulation experiments are designed to provide additional insights
into the performance guarantees of our proposed distributionally robust optimiza-
tion scheme with order cone constraints. For this purpose, we consider two test
instances: the (single and multi-item) newsvendor problem and the problem of a
strategic firm competing a la Cournot in a market. These two problems have been
intentionally selected, because they are qualitatively different when addressed by the
standard Wasserstein-metric-based DRO approach proposed in Mohajerin Esfahani
and Kuhn (2018). In effect, the former features an objective function f(x, &) whose
Lipschitz constant with respect to & is independent of the decision x. Consequently,
as per Remark 6.7 in Mohajerin Esfahani and Kuhn (2018), the standard Wasserstein-
metric-based DRO approach renders the same minimizer for this problem as the sample
average approximation, whenever the support of the uncertainty & is unbounded. This
is, in contrast, not true for the problem of a strategic firm competing a la Cournot in a
market, which is characterized by an objective function with a Lipschitz constant over
& that is a function of x. This allows us to highlight the differences of our approach
with regard to Mohajerin Esfahani and Kuhn (2018) in two distinct settings.

All the numerical experiments have been implemented in Python. The optimization
problems have been built using Pyomo (2019) and solved with CPLEX 12.10 CPLEX
Optimizer-IBM (2019) on a PC with Windows 10 and a CPU Intel (R) Core i7-8550U
clocking at 1.80 GHz and with 8 GB of RAM. The statistical methods that have been
used for the numerical experiments have been coded by means of the module Scikit-
learn (see Pedregosa et al. 2011). In what follows we provide some implementation
details regarding the proposed model. The numerical experiments have been designed
under the following assumptions:

1. A-priori information. Given a fixed and known partition of the sample space =, we
can construct an order cone that is consistent with the true probability distribution.
That is, the probability masses that the true distribution assigns to each partition
verify the order cone constraints. In practice, this a-priori information is deter-
mined by the nature of the problem and the random phenomena, and is assumed
to be known by the decision maker based on experience and expert knowledge.
Furthermore, in the case that the decision maker has no full certainty about the
a-priori information, s/he may resort to statistical hypothesis testing to assess the
confidence that the partition probabilities belong to a given order cone (see, for
instance, Bhattacharya (1997) and references therein).

In our numerical experiments, we specifically apply the following approach: Given
a fixed number of partitions (later we explain how the partition set is obtained),
we consider that the decision maker knows a total order between the probability
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masses associated with each of the regions into which the sample space = is split.
Furthermore, s/he also knows their ratios approximately, within a certain tolerance
(which, in the subsequent experiments, we set to 0.1).

For instance, suppose we have three partitions with (true) probability masses of
pi = 0.6, p; = 0.3 and p3 = 0.1. The decision maker only knows their relative
ratios with a tolerance error of 0.1, that is:

p1 > (0.6/0.3 -0.1)ps
p2 > (0.3/0.1 —0.1)p3

This way, we get the following order cone constraints:

p1=>19p>
P2 >2.9p3

2. Support set E. The support set is the Cartesian product of closed intervals (that is,
an hypercube, whose size is indicated in each example) and, therefore, is a closed
convex set.

3. True distribution. For simulation and analysis, the data-generating distribution is
approximated by a certain number of data points (15,000 in the newsvendor setting
and 10,000 in the problem of the Cournot producer) drawn from a mixture of
three normal distributions, whose characteristics are specified in each of the two
examples we consider in the following subsections. Furthermore, those data points
that fall outside the support set = are discarded.

4. Construction of partitions E;,i =1, ..., |.7|: In order to construct the partitions,
we proceed as follows:

(a) Clustering phase: Firstly, we employ the K-means clustering technique to
group the total number of data points that approximate the true data distribution
into K clusters. The number K of clusters is decided upon using the well-known
Elbow’s method (see, for example, Dangeti 2017). It is based on the value of
the average distortion produced by different values of K. If K increases, the
average distortion will decrease and the improvement in average distortion will
diminish. The value of K at which the improvement in distortion decreases the
most s called the elbow. At this value of K, we should stop dividing the data into
further clusters and choose this value as the number of clusters. In addition, we
assign a label to identify each of the K clusters. In all the numerical experiments
that are presented next, the true data-generating distribution is constructed as a
mixture of three (univariate or multivariate) normal distributions. We assume
that the decision maker has a good estimate of the number of components of
this mixture and thus, we consider, for example, four clusters, i.e., K = 4.

(b) Decision-tree classifier phase: Once all the clusters have been labelled, we use
the aforementioned total number of data points to train a decision-tree multi-
classifier with a maximum number of leafs equal to K. The tree will be then
used to allocate new data points into one of the K clusters, which, in effect, is
equivalent to having a partition of the support set in K disjoint regions.
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5. Comparative analysis: We compare three different data-driven approaches to

address the solution to problem infxex Eg+ [ f(x,&)], namely, our approach
(DROC), the one of Mohajerin Esfahani and Kuhn (2018) (DROW) and the sample
average approximation (SAA). Recall that we denote x* € arg minyex E o+ [ f(x, & )]
and J* = Ep+ [ f(x*, & )], which, in practice, are unknown to the decision maker,
but, for analysis purposes, we estimate using the total number of data points that
approximate the true data-generating distribution. Moreover, in all numerical exper-
iments, we consider the 1-norm as the functions ¢ and ¢. To compare the three
data-driven approaches we consider, we use two performance metrics, specifically,
the out-of-sample performance of the data-driven solution (which we also refer to as
its actual expected cost) and its out-of-sample disappointment. The former is given
by Eg« [ f (X%, §)], while the latter is calculated as J* — f]’v", where m = {DROC,
DROW, SAA} and j;’{,’ is the objective function value yielded by the data-driven
optimization problem solved by method m. We stress that a negative out-of-sample
disappointment represents a favourable outcome. As [E+ [ f&Y, §)] and J' N are
random variables (they are direct functions of the sample data), we conduct a cer-
tain number of runs, each with an independent sample of size N. This way we
can provide (visual) estimates of the expected value and variability of the out-of-
sample performance and disappointment for several values of the sample size N.
These estimates are illustrated in the form of box plots in a series of figures. In
these figures, the dotted black horizontal line corresponds to either solution x* or to
its associated optimal cost J* with complete information (i.e., without ambiguity
about the true data distribution).
For the sole purpose of conducting a comparison as fairly as possible, parameters &
and p in both DROC and DROW are tuned so that the underlying true distribution
of the data belongs to the corresponding ambiguity set with, at least, a pre-fixed
confidence level of probability. In the case of the newsvendor examples, we guar-
antee this by trial and error for simplicity. In practice, however, these parameters
should be calibrated by way of a (statistical) procedure that uses the data available
to the decision maker, for example, through cross-validation or bootstrapping. We
follow this approach in the problem of the Cournot producer. Finally, we stress that,
in our approach, caution should be exercised when selecting ¢ and p, as they should
be such that problem (P) has at least one feasible solution. This is not guaranteed in
the case that the empirical distribution Q does not satisfy the order cone constraints
on the probability masses associated with each subregion Z; of the support set &'.
Intuitively, in this case, optimization problem (P) must have enough “budget” (i.e.,
& and p must be high enough) to “transport” the empirical distribution to another
one that complies with the a-priori information. In other words, the ambiguity set
of problem (P) must be sufficiently large to contain at least one probability distri-
bution that assigns probability masses verifying the order cone constraints to the
partitions.
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4.1 Newsvendor problems

In this section, we illustrate the theoretical results of our paper on the popular newsven-
dor problem (also known as the newsboy problem). Many extensions and variants of
this problem have been considered since it was first posed in the 50s (see, for example,
the work in Gallego and Moon (1993), Choi (2012), Andersson et al. (2013), Pando
et al. (2014), and references therein). According to Pando et al. (2013),

The newsboy problem is probably the most studied stochastic inventory model in
inventory control theory and the one with most extensions in recent years. This problem
reflects many real-life situations and is often used to aid decision making in both
manufacturing and retailing. It is particularly important for items with significant
demand uncertainty and large over-stocking and under-stocking costs.

4.1.1 The single-item newsvendor problem

In the single-item newsvendor model, the decision maker has to plan the inventory
level for a certain product before the random demand & for that product is realized,
facing both holding and backorder costs. The newsvendor problem can be formulated
as

inf Eo[h(x —&)" +b( —x)"]

where x is the order quantity, and b, h > 0 are the unit holding cost and the unit
backorder cost, respectively. Here we have assumed that h = 4 and b = 2.

The demand for the item (unknown to the decision maker) is assumed to follow
a mixture (with weights w1 = 0.1, wy = 0.35 and w3 = 0.55) of the three normal
distributions .47(0.2, 0.05), .41(0.5,0.1), and .41(0.8,0.05) , truncated over the
unit interval [0, 1]. Figure la provides a visual illustration of the resulting mixture.
Recall that, in the numerical experiments that follow, we have used 15,000 samples
drawn from this mixture of Gaussian distributions to approximate the true distribution
of the item demand and to partition its support set [0, 1] into four regions, based on the
two-phase procedure we have previously described. In fact, what we show in Fig. lais
the histogram of those 15,000 data points and its corresponding kernel density estimate.

For the sole purpose of conducting a comparison as fairly as possible, parameters &
and p in both DROC and DROW are tuned so that the underlying true distribution of the
data belongs to the corresponding ambiguity set with at least 95% of probability. We
check whether this condition holds or not a posteriori (by trial and error), by counting
the number of runs (out of the one thousand we perform) for which the out-of-sample
disappointment is negative.

The values we have used for the parameters ¢ and p in DROC and DROW are
collated in Table 1. We insist that these parameters have been adjusted so that at
most 50 out of the 1000 runs we have conducted for each sample size N deliver a
positive out-of-sample disappointment (that is, to achieve and maintain a similar level
of reliability for the data-driven solutions given by DROC and DROW). As expected,
therefore, the values of both ¢ and p decrease as the sample size N grows.
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Table 1 Single—itf:m newsvendor N DROC DROW
problem: values for parameters

¢, p in DROC and p in DROW ¢ P P
2 0.9 0.9 1
5 0.8 0.8 0.9
10 0.7 0.7 0.8
20 0.4 0.6 0.6
50 0.15 0.25 0.4
100 0.1 02 0.25
200 0.01 0.15 0.05

Figure 1b—d show the box plots corresponding to the order quantity, the out-of-
sample disappointment and the actual expected cost delivered by each of the considered
data-driven approaches for various sample sizes. The shaded areas have been obtained
by joining the whiskers of the box plots, while the associated solid lines link their
medians. Interestingly, whereas the medians of the order quantity estimators provided
by SAA are very close to the optimal one x*, their high variability results in (large)
disappointment with very high probability. On the contrary, the median of the order
quantity delivered by DROW is significantly far from the optimal one (with complete
information) for small sample sizes, but it manages to keep the out-of-sample disap-
pointment below zero in return. To do so, however, DROW tends to produce costly
(overconservative) solutions on average, as inferred from their actual expected cost
in Fig. 1d. In plain words, DROW pays quite a lot to ensure a highly reliable/robust
order quantity. The proposed approach DDRO, however, is able to leverage the a-priori
information on the partition probabilities ( p,')l.ﬂ to substantially reduce the cost to
pay for reliable data-driven solutions, especially for small sample sizes. Intuitively,
this information enables DROC to identify highly reliable solutions that are myopi-
cally deemed as non-reliable and, therefore, discarded by DROW. Logically, this is
contingent on the quality of the a-priori information that is supplied to DROC in the

form of order cone constraints on (p;) lfll
4.1.2 The multi-item newsvendor problem

In this section, we carry out an analysis similar to that of Sect. 4.1.1, but for the
multi-item newsvendor problem, which can be formulated as follows:

d
inf B » Jlhi(u —&)" +bi& —x)"]
- =1

where x; is the order quantity for the /-th item, Q is the joint probability distribution
governing the demands for the d items, and b;, h; > 0 are the unit holding cost and
the unit backorder cost for the /-th item, respectively.

To illustrate our approach in a higher dimensional setting, we consider twenty items,
ie.,d =20.
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Fig. 1 Single-item newsvendor problem: (Approximate) true data-generating distribution, order quantity
and performance metrics

Table 2 Multi-item newsvendor N DROC DROW
problem: values for parameters

¢, p in DROC and p in DROW N ° L
2 5 2 60
5 5 2 50
10 4.5 1.5 40
20 4 1 20
50 2.5 0.6 10
100 1.75 0.5 8
200 1.25 0.35
We consider the following parameters: hy = --- = hjg =2, h11 =--- = hy =4,
by =---=bjp=4;and bj; = --- = byp = 2. The demands for the twenty items are

assumed to follow a mixture of three multivariate normal distributions A20(p, X1),

Moy, B2),  and Mo(ns, T3), where gy = [3,...,3] € RY, 5 =
diag(l,...,1) € R?x20; y, = [5,...,5] € R®, %, = diag(0.5,...,0.5) €
R29%20: and 3 = [7,...,7] € R, 23 = diag(0.1,...,0.1) € R**?0 The
weights of the mixture are w; = 0.1, wy; = 0.65 and w3 = 0.25, respectively.
Furthermore, the mixture has been truncated on the hypercube [0, 10]20.

The values we have used for the parameters ¢ and p in DROC and DROW are
collated in Table 2.
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Fig.2 Multi-item newsvendor problem: Performance metrics

Again, for a meaningful and fair comparison, these parameters have been tuned by
trial and error in such a way that at most 50 out of the 1000 runs we have carried out for
each sample size N yield a positive out-of-sample disappointment. The values for the
parameters, which we need to this end, diminish as we gain more information (i.e., as
the sample size N grows). Note that, for small sample sizes, for which the available data
provide very little information about their true distribution, a great deal of robustness
is required to produce highly reliable data-driven solutions. Consequently, it is little
wonder that the selected values for p in DROC are equal to two, which is the maximum
value that the total variation distance between P and P can take on.

In the same fashion as in the case of the previous example of the single-item
newsvendor problem, Fig. 2a and b show, for various sample sizes, the box plots
pertaining to the out-of-sample disappointment and the actual expected cost associated
with each of the considered data-driven approaches, in that order. The results conveyed
by these figures confirm our initial conclusions: The ability of our approach DROC
to exploit a-priori knowledge of the order among some partition probabilities permits
identifying solutions that perform noticeably better out of sample with the same level
of confidence. We underline that, in terms of the out-of-sample disappointment, the
decision maker seeks a data-driven method m that renders an estimate .7;’\,” that results
in a positive surprise (i.e., negative disappointment) with a high probability, but that
is as close as possible to the cost with full information J*. Consequently, the large
negative out-of-sample disappointment that the solutions given by DROW feature can
be attributed to its over-conservativeness.

In terms of computational time, solving DROC for this instance of the multi-item
newsvendor problem, with 20 items, four partitions and a sample size of 200, takes
less than a second with CPLEX 12.10 running on a Windows 10 PC with a CPU Intel
(R) Core 17-8550U clocking at 1.80 GHz and 8 GB of RAM.

4.2 The problem of a strategic firm competing a la Cournot in a market

Next we consider the problem of a strategic firm competing a la Cournot in a market
for an undifferentiated product. This could be the case of, for instance, the electricity
market (see, e.g., (Gabriel et al. 2012, Ch. 3) and Ruiz et al. 2008). Suppose the firm
can produce up to one per-unit amount of product at a cost given by arx? 4+ ajx + ag,
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where x is the per-unit amount of product eventually produced and ag, a; and as
are known parameters taking values in R*. Furthermore, assume an inverse residual
demand function in the form A = o — Bx, where X is the market clearing price for
the product, and o, 8 € RY are unknown and uncertain parameters. The firm seeks,
therefore, to minimize its cost (a2x2 + aix + ag) — Ax subject to x € [0, 1]. After
some basic manipulation, the problem of the firm can be posed as

inf Eol(— 2
xelﬁ),l] ol(—=x)§ + x7]

where £ = ZIZ;

The most interesting feature of this example is that, unlike in the aforementioned
newsvendor problems, the Lipschitz constant of the objective function f(x, &) :=
(—x)& + x? with respect to £ is dependent on the decision variable x.

We consider that & follows a (true) probability distribution given by 10,000 points
sampled from a mixture of three Gaussian distributions with variances all equal to
0.3 and means pu; = 0, u2 = 1.2 and u3 = 2.5. The weights of the mixture are

= 0.5, wr» = 0.2 and w = 30.3. Furthermore, the mixture has been truncated
(over the interval [—1.8, 3]. Figure 3a plots the kernel estimate of the data-generating
distribution.

As in the previous experiments, we have divided the support [—1.8, 3] into four
partitions, using the procedure described at the beginning of Sect. 4. However, in a
different way to what we did in the newsvendor examples, here we select parameters
¢ and p following a procedure that solely relies on the available data, similarly to
what is done in Mohajerin Esfahani and Kuhn (2018). Essentially, given a desired
confidence level (1 — B) for the finite-sample guarantee (set to 0.85 in our numerical
experiments), we need to estimate, using the data sample available only, the parameters
¢ and p that deliver, at least, this confidence level while yielding the best out-of-sample
performance. To this end, we use bootstrapping. The estimator of those parameters
is denoted as param’j(B), underlining that the number and type of parameters to
be estimated depend on the method m. The estimation procedure is carried out as
follows for each sample of size N (in this experiment, we consider 300 independent
data samples for each size N):

1. We construct kboot resamples of size N (with replacement), each playing the
role of a different training dataset. Moreover, take those data points that have not
been resampled to form a validation dataset (one per resample of size N). In our
experiments below, we have considered kboot = 50.

2. For each resample k = 1, ..., kboot and each candidate value for param, get a
DRO solution from method j with parameter (or pair of paramaters) param on
the k-th resample. The resulting 0pt1ma1 decision is denoted as x7, N ( param) and
its associated objective value as J 1{, (param). Subsequently, we compute the out-

of-sample performance J (551{,’]‘ (param)) of the data-driven solution f};;k (param)
over the k-th validation dataset. _
3. From among the candidate values for param such that J If,’k( param) exceeds the

~j.k

value J(xy" (param)) in at least (1 — B) x kboot different resamples, take the
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Fig. 3 Strategic firm problem: (Approximate) true data-generating distribution, optimal solution and per-
formance metrics

. kboot J(z ~j.k . . .
one with the lowest Li=i ,((bom(p aram)) (that is, with the highest out-of-sample

performance averaged over the kboot resamples). ;
4. Finally, compute the solution given by method j with parameter param,’i,j , fN =

xN (paramNJ) and the respective certificate J] =T (paramN ).

As for the newsvendor examples, Fig. 3b—d show, for various sample sizes, the box
plots pertaining to the optimal decision, the out-of-sample disappointment and the
actual expected cost associated with each of the considered data-driven approaches,
in that order. Once again, the results conveyed by these figures confirm our previous
conclusions: Our approach DROC is able to leverage a-priori knowledge of the order
among some partition probabilities to deliver solutions that perform significantly better
out of sample for the same level of confidence. Furthermore, we see that the decision
computed by the proposed method DROC converges to the true optimal solution (with
complete information) faster than the solutions provided by the other methods.

5 Conclusions
In this paper, we have presented a novel framework for data-driven distributionally
robust optimization (DRO) based on optimal transport theory in combination with

order cone constraints to leverage a-priori information on the true data-generating
distribution. Motivated by the reported over-conservativeness of the traditional DRO
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approach based on the Wasserstein metric, we have formulated an ambiguity set able
to incorporate information about the order among the probabilities that the true distri-
bution of the problem’s uncertain parameters assigns to some subregions of its support
set. Our approach can accomodate a wide range of shape information (such as that
related to monotonicity or multi-modality) in a practical and intuitive way. Moreover,
under mild assumptions, the resulting distributionally robust optimization problem
can be, in fact, reformulated as a finite convex problem where the a-priori informa-
tion (expressed through the order cone constraints) are cast as linear constraints as
opposed to the more computationally challenging formulations that exist in the liter-
ature. Furthermore, our approach is supported by theoretical performance guarantees
and is capable of turning the provided information into solutions with increased relia-
bility and improved performance, as illustrated by the numerical experiments we have
prepared based on the well-known newsvendor problem and the problem of a strategic
firm competing 4 la Cournot in a market for a homogeneous product.
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