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Working within the nonequilibrium Green’s function formalism, a formula for the two-time current correlation

function is derived for the case of transport through a nanojunction in response to an arbitrary time-dependent

bias. The one-particle Hamiltonian and the wide-band limit approximation are assumed, enabling us to extract all

necessary Green’s functions and self-energies for the system, extending the analytic work presented previously

[Ridley et al., Phys. Rev. B 91, 125433 (2015)]. We show that our expression for the two-time correlation

function generalizes the Büttiker theory of shot and thermal noise on the current through a nanojunction to the

time-dependent bias case including the transient regime following the switch-on. Transient terms in the correlation

function arise from an initial state that does not assume (as is usually done) that the system is initially uncoupled,

i.e., our approach is partition free. We show that when the bias loses its time dependence, the long-time limit of

the current correlation function depends on the time difference only, as in this case an ideal steady state is reached.

This enables derivation of known results for the single-frequency power spectrum and for the zero-frequency

limit of this power spectrum. In addition, we present a technique which facilitates fast calculations of the transient

quantum noise, valid for arbitrary temperature, time, and voltage scales. We apply this formalism to a molecular

wire system for both dc and ac biases, and find a signature of the traversal time for electrons crossing the wire in

the time-dependent cross-lead current correlations.

DOI: 10.1103/PhysRevB.95.165440

I. INTRODUCTION

Electronic devices with nanoscale dimensions can now be

fabricated and tuned to form active circuit components [1].

In addition to the speedup in processing power that arises

from submicrometer size [2], molecular junctions also enable

a massive speedup in device operation due to THz intramolec-

ular transport processes and fast electron traversal time [3].

Subsequent to the initial proposal of molecular rectification

in 1974 [4], chemical fabrication techniques have led to the

realization of many interesting devices, including molecular

wires [5,6], single-electron transistors [7], frequency doublers

and detectors [8,9], and switches for fast memory storage

[10,11]. In addition, conductance properties of nanostructures

subjected to strong time-dependent external fields have been

the subject of intense experimental research. This research

includes work on photon-assisted tunneling (PAT) [12,13] and

transport through ac-biased carbon-based nanostructures in the

GHz-THz regime [14–17].

In contrast to classical electronics, the time-dependent

current in molecular structures may undergo fluctuations that

have a comparable magnitude to the current signal itself, so

that a theory of time-dependent fluctuations is essential for

the design and control of these devices [18]. Moreover, time-

dependent current-current correlations and their associated

frequency-dependent noise spectra contain information which

is not present in the first moment of the current [19]. This

includes deviation from classical behavior in the Fano factor

due to Pauli repulsion [20,21], detection of fractional charges

for quantum Hall quasiparticles [22], and the determination of

transmission probabilities [23]. When the external field driving

the transport process depends upon time, the transient current

correlations provide information on intramolecular “circular”

currents that cannot be studied using the current alone [24].

Recent measurements of shot noise in graphene irradiated by

THz fields showed an enhancement of the shot noise due to

the excitation of electron-hole pairs in the sample [25].

In general, nanoelectronic devices possess noise spectra

which are nonlinear functions of frequency. When in equi-

librium, there are two regimes, namely, the low-ω regime,

in which Johnson-Nyquist noise is evident [26,27], and the

high-ω scenario, in which zero-point fluctuations dominate

[28]. When a bias is applied to the system, one observes in

addition the shot noise, which results from the discreteness of

electronic charge and the Pauli exclusion principle. At high

frequencies, it was shown that the correct noise spectra are an

asymmetric function of the frequency due to the dominance of

zero-point photon fluctuations there [28,29]. Distinct negative

and positive frequency components of the current noise due

to quasiparticle tunneling across a Josephson junction have

been measured experimentally [30], and may be physically

interpreted in terms of the transfer of energy quanta during the

corresponding absorption and emission processes [31]. In the

theoretical literature, both symmetric [32–35] and asymmetric

[36–38] noise spectra have been classified and studied.

The Landauer-Büttiker (LB) theory of shot and thermal

noise represents a significant milestone in the development

of the theory of current fluctuations in nanoscale systems

[19,33,34,39,40]. Originally, it was developed within a scatter-

ing matrix approach to coherent quantum transport, wherein

one typically considers a molecular junction as a subsystem

coupled to macroscopic leads, which act as heat and particle

reservoirs. Electrons in the leads are treated as independent

plane waves, populated according to the Fermi distribution

function, and propagated onto the molecule, where they

scatter. Experiments have demonstrated a good agreement

between experiment and the noise spectra obtained from the
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scattering theory for both the low-frequency noise [41,42]

and for power spectra that depend upon the frequency of

the measurement device [28,43,44]. In these studies the

scattering potential is chosen to be static, but time-dependent

scattering formalisms have been developed which enable the

calculation of current and current noise in response to an ac

potential in the leads [45–47], in both the adiabatic [45] and

nonadiabatic [48,49] regimes. These approaches make use

of the Floquet theorem, as do master-equation approaches,

which expand scattering states into a harmonic series [35,50],

generating functional approaches to the full counting statistics

(FCS) [51] and reduced density matrix methods that make

a perturbative expansion in the lead-molecule coupling [52].

The noise response to an ac field has been shown to carry

information on the production of electron-hole pairs that

does not appear in the noise response to a dc bias [53].

Moreover, these electron-hole pairs are correlated and able

to propagate through the molecular junction into separate

terminals [54,55]. In a generating functional approach to the

full counting statistics of an ac-driven system, it was proven

that a periodic Lorentzian voltage signal with quantized flux

minimized the noise, i.e., it was reduced to the dc level

[56,57]. In recent experiments, these quantized voltage pulses,

known as levitons, have been experimentally realized [58]

and approximated by a biharmonic driving field [59]. Even

given the restriction of periodic time dependence, one can

study a rich range of phenomena, such as photon-assisted

tunneling (PAT) [35,54,60,61], quantum pumping [62,63],

and the interplay of external driving field parameters with

Fabry-Pérot conductance oscillations in graphene nanoribbon

(GNR) and carbon nanotube (CNT) systems [64].

The nonequilibrium Green’s function (NEGF) or Keldysh

method for the calculation of dynamical quantum statistical

averages can be used to reexpress time-dependent transmission

functions, currents, and particle populations in terms of

products of self-energies and Green’s functions [65–68]. The

equivalence of this picture to the Landauer-Büttiker theory

in the noninteracting case is well known [69,70]. However,

it can also be extended to perturbative calculations of noise

in systems with a Coulombic interaction [63,71] and to

the derivation of steady-state fluctuation-dissipation relations

involving the current-current correlation functions of quantum

dots coupled to a single-phonon mode [72]. Crucially for this

work, it involves the propagation of Green’s functions along a

complex time contour that means the effects of the equilibrium

preparation of the system are automatically taken into account

in the dynamics resulting from the switch-on of a bias in the

leads [68].

Many calculations of the time-dependent response of a

nanojunction to the switch-on of a bias across the junction

make use of the partitioned approach, in which the leads and

molecule are completely decoupled prior to the switch on time

t0, and suddenly coupled simultaneously with the addition of

a time-dependent bias to the leads at t0 [73–76]. Partitioned

approaches often involve relegation of t0 to the distant past

because in noninteracting systems the memory-loss theorem

[77] guarantees that the initial condition does not affect the

long-time dynamics. However, transient dynamics was also

studied within a partitioned approach following an artificial

quench that instantaneously couples the molecule to the leads,

as was recently done for phononic transport [78] (assuming

that such an experiment can be done in practice). In the

partition-free framework, one includes a coupling between

the leads and molecule in the equilibrium Hamiltonian which

describes the preparation of the system prior to the switch-on.

Partition-free approaches to quantum transport have been

implemented within NEGF [77,79] and master-equation [80]

approaches. Recent calculations of transient noise characteris-

tics have made use of the partitioned approach [63,81,82], and

there are currently no published calculations of the transient

current noise arising from a partition-free switch-on process.

In recent years, partition-free generalizations of the LB

formula for the current and particle number response to the

switch-on of a static bias have been derived [68,83–85]. This

formalism makes use of the wide-band limit approximation

(WBLA), and enables fast calculation of the transport char-

acteristics of realistic systems at very low computational cost

compared with other time-dependent schemes [85–87]. It was

then extended by the present authors to the current response to

an arbitrary time-dependent bias [88], and a practical scheme

for implementation of this formula based upon the replacement

of all frequency integrals with special functions was then

developed [89,90]. In the static bias partition-free switch-on

approach pioneered in Refs. [68,84,85], an analytic result for

the equal time lesser Green’s function G<(t,t) was derived,

from which the particle number in the molecular region and

current in the leads can be derived. However, to calculate

current-current correlations one needs an expression for the

lesser Green’s function in the two-time plane G<(t1,t2), and

the formalism presented in Refs. [88,89,91] does this for

the arbitrarily time-dependent bias. The ability to deal with

arbitrary time dependence enables us to study a wider class

of switch-on problems, including those in which the bias is

stochastic in time [91]. In this work, we will extend our NEGF

method further in order to develop an exact formalism enabling

the study of transient current correlations resulting from

an arbitrary time-dependent bias in the leads. This method

does not involve any assumption of adiabaticity or weak

lead-molecule coupling, and neither is there any limitation

on the kind of time dependence which can be studied. This

will be useful within the field of fast noise calculations for real

molecular junctions driven by ultrafast pulses [3,24,92], and

to new physics arising from the time-resolved nanoelectronic

response to these pulses that includes the effects of the initial

coupling.

The paper is organized as follows. In Sec. II, we introduce

the partition-free time-dependent NEGF formalism developed

in Refs. [88,89,91], and show how to obtain generic for-

mulas for the two-time current correlation function within

the WBLA. In Sec. III, expressions are derived for the

long-time and static bias approximations in the frequency

domain, thereby confirming that our formalism agrees with

other published work. In Sec. IV, we present the results of

numerical calculations of the two-time current correlations

in a two-terminal nanojunction, based upon a fast algorithm

that is based on an expansion of the Fermi function with

subsequent analytic removal of all frequency integrals. We

calculate the time-dependent cross correlations for extended
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molecular wires of different sizes. We identify finite-size

effects in the transient current cross correlations which cannot

be observed in single-level systems. In particular, by studying

the competition between wire length, end-site coupling, and

internal coupling on the molecule, we show that a resonant

signature of the time taken for electronic information to cross

the system can be seen in both the transient and steady-state

cross-lead correlations.

II. PARTITION-FREE CORRELATION FUNCTION

A. Time-dependent NEGF

In quantum transport processes, one is typically concerned

with the time-dependent electronic response through a junction

at measurement time t to the switch-on of a bias at some

initial time t0, which drives the system away from equilibrium.

The equations of motion for quantum statistical averages

are evolved along a complex time contour, consisting of an

upper branch C− running from t0 + i0 to t + i0, then along

a lower branch C+ running back from t − i0 to t0 − i0, and

finally along the imaginary-time branch CM from t0 − i0 to

t0 − iβ, where β ≡ 1/kBT (it is adopted that h̄ = 1 in the

following). The structure of this contour is suggested by the

mathematical structure of the quantum statistical ensemble

average associated with the operator Ô(t):

O(t) = Z−1Tr
[
e−βĤM

U †(t,t0)Ô(t)U (t,t0)
]
. (1)

In this expression, ĤM denotes the Matsubara Hamiltonian

describing the equilibrium system, Z = Tr[e−βĤM

] is the

partition function of the system, and the U (U †) are propagators

describing the evolution of the nonequilibrium system after the

bias is switched on. Thus, real times taken on the horizontal

branches of the Konstantinov-Perel’ contour correspond to the

nonequilibrium system, whereas on the vertical branch of the

contour the equilibrium system is represented. More detail on

the meaning of the contour can be found in Ref. [68].

The Hamiltonian we will use to describe the junction is

formally identical to the one studied in Ref. [91] and is

parametrized by the variable z which denotes the contour

“time” variable specifying positions on the Konstantinov-

Perel’ contour γ ≡ C− ⊕ C+ ⊕ CM :

Ĥ (t) =
∑

kα

εkα(z)d̂
†
kα d̂kα +

∑

mn

Hmn(z)d̂†
md̂n

+
∑

m,kα

[Tmkα(z)d̂†
md̂kα + Tkαm(z)d̂

†
kα d̂m]. (2)

Here, d̂kα , d̂m and d̂
†
kα , d̂

†
m are annihilation and creation

operators of leads and central system electronic states, where

for simplicity spin degrees of freedom are neglected. The first

term is a Hamiltonian of the lead states k belonging to each lead

α, the second is the Hamiltonian of the molecule sandwiched

between the leads, describing hopping within the molecular

structure, and the third term describes the coupling of the

molecule to the leads. We collect elements of this Hamiltonian

into a matrix consisting of “blocks” corresponding to each of

the physical subsystems it describes. For example, the α − C

“block” is the matrix hαC(z) with elements Vkα,m(z):

h(z) =

⎛
⎜⎜⎝

h11(z) 0 · · · h1C(z)

0 h22(z) · · · h2C(z)
...

...
. . .

...

hC1(z) hC2(z) · · · hCC(z)

⎞
⎟⎟⎠. (3)

In the molecular basis, we also define the (i,j )th component of

the one-particle Green’s function on the Konstantinov-Perel’

contour:

Gij (z1,z2) = −i
Tr
{
e−βĤM

T̂γ [d̂i,H (z1)d̂
†
j,H (z2)]

}

Tr
[
e−βĤM

] . (4)

The elements Gij of the Green’s function form a matrix G

defined on the whole space of orbitals of all leads and the

central region; correspondingly, one can introduce diagonal,

GCC and Gαα , as well as nondiagonal, GCα , GαC , and Gαα′ ,

blocks of this matrix:

G(z1,z2)=

⎛
⎜⎜⎝

G11(z1,z2) G12(z1,z2) · · · G1C(z1,z2)

G21(z1,z2) G22(z1,z2) · · · G2C(z1,z2)
...

...
. . .

...

GC1(z1,z2) GC2(z1,z2) · · · GCC(z1,z2)

⎞
⎟⎟⎠.

(5)

The Green’s function GCC for the central region is obtained by

projecting the general equation of motion onto the CC matrix

block:
[
i

d

dz1

− hCC(z1)

]
GCC(z1,z2)

= 1CCδ(z1,z2) +

∫

γ

dz̄ �CC(z1,z̄)GCC(z̄,z2), (6)

where 1CC is the unit matrix in the C subspace, and

�CC(z1,z2) =
∑

α

hCα(z1)gαα(z1,z2)hαC(z2) (7)

is the matrix of the embedding self-energy, where gαα(z1,z2) is

the isolated lead Green’s function, whose evolution is governed

solely by the αα block of the Hamiltonian matrix (3). The

nondiagonal matrix blocks of the Green’s function are given

by Eqs. (A1) and (A2) in Appendix A. The blocks in Eq. (5) can

then be further subdivided into subspaces defined by regions

of the complex time plane. For example, the “left” Green’s

function G� is obtained by choosing z1 ∈ CM and z2 ∈ C∓,

and one can obtain its equation of motion using the Langreth

rules [93,94]:

G�
CC(τ1,t2)

[
−i

←−
d

dt2
− hCC(t2)

]

=
[
G�

CC · �
a
CC + GM

CC ⋆ �
�
CC

]
(τ1,t2)

, (8)

where the differential operator in the left-hand side acts on the

left. In this expression, the convolution integrals denoted by

“·” and “⋆” are defined in Eqs. (A3) and (A4), respectively.

One also defines the “right” Green’s function G� by choosing
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z1 ∈ C∓ and z2 ∈ CM , the “lesser” and “greater” Green’s

functions G≶ with, e.g., z1 ∈ C−, z2 ∈ C+ and z1 ∈ C+, z2 ∈

C−, respectively, and the Matsubara Green’s function GM with

z1,z2 ∈ CM . In addition, “retarded” and “advanced” Green’s

functions are stipulated with a definite real-time ordering:

Gr (t1,t2) = θ (t1,t2)[G>(t1,t2) − G<(t1,t2)], (9)

Ga(t1,t2) = −θ (t2,t1)[G>(t1,t2) − G<(t1,t2)]. (10)

The equations obtained by projecting Eq. (6) and its complex

conjugate onto these subregions of the complex time plane are

known as the Kadanoff-Baym equations (see, e.g., Ref. [68]).

B. Generalized expression from Wick’s theorem

The current in lead α can be obtained as the thermal average

of the time derivative of the average charge in that lead Iα(t) ≡

q〈
dN̂α (t)

dt
〉 (where the spin-degenerate particle number is N̂α =

2
∑

k d̂
†
kα d̂kα). In all numerical calculations that follow, the

electron charge will be set to q = −1. Given the noninteracting

Hamiltonian in Eq. (2), the current operator has the form

Îα(t) = 2iq
∑

k,m

[Tmkα(t)d̂†
m(t)d̂kα(t) − T ∗

mkα(t)d̂
†
kα(t)d̂m(t)].

(11)

We define the current deviation operator with a mean value of

zero:

△Îα(t) = 2iq
∑

k,m

[Tmkα(t)(d̂†
m(t)d̂kα(t) − 〈d̂†

m(t)d̂kα(t)〉)

− T ∗
mkα(t)(d̂

†
kα(t)d̂m(t) − 〈d̂

†
kα(t)d̂m(t)〉)]. (12)

The two-time current correlator between leads α and β is

defined as

Cαβ(t1,t2) ≡ 〈△Îα(t1)△Îβ(t2)〉. (13)

This correlator obviously satisfies the symmetry property

Cαβ(t1,t2)∗ = Cβα(t2,t1). (14)

Since △Îα(t1) and △Îβ(t2) do not commute in general,

Cαβ(t1,t2) is not guaranteed to be real and so in several studies

the symmetrized correlation function is preferred [33,34]:

Pαβ (t1,t2) ≡ 1
2
〈△Îα(t1)△Îβ(t2) + △Îβ(t2)△Îα(t1)〉

= Re[Cαβ(t1,t2)]. (15)

Since Pαβ(t1,t2) is just the real part of Cαβ(t1,t2), knowledge

of the latter object is sufficient for a full characterization of

the symmetric noise properties of the junction. The lack of

two-particle interactions in the Hamiltonian (2) means we

can simplify the nonsymmetrized correlator using Wick’s

theorem, which is valid for a noninteracting Hamiltonian with

arbitrary time dependence [68]:

Cαβ(t1,t2) = −4q2
∑

k,k′,m,m′

[Tmkα(t1)Tm′k′β(t2)〈d̂†
m(t1)d̂k′β(t2)〉〈d̂kα(t1)d̂

†
m′ (t2)〉 − Tmkα(t1)T ∗

m′k′β(t2)〈d̂†
m(t1)d̂m′ (t2)〉〈d̂kα(t1)d̂

†
k′β(t2)〉

− T ∗
mkα(t1)Tm′k′β(t2)〈d̂

†
kα(t1)d̂k′β(t2)〉〈d̂m(t1)d̂

†
m′ (t2)〉 + T ∗

mkα(t1)T ∗
m′k′β(t2)〈d̂

†
kα(t1)d̂m′ (t2)〉〈d̂m(t1)d̂

†
k′β(t2)〉]. (16)

One identifies the following Green’s functions in this expression:

[G>
AB(t1,t2)]kk′ = −i〈d̂kA(t1)d̂

†
k′B(t2)〉, (17)

[G<
AB(t1,t2)]kk′ = i〈d̂

†
k′B(t2)d̂kA(t1)〉, (18)

where A and B correspond to either the lead or central molecule regions. It is then possible to rewrite Eq. (15) in the compact

analytic form

Cαβ(t1,t2) = −4q2TrC[hCα(t1)G>
αC(t1,t2)hCβ(t2)G<

βC(t2,t1) − hCα(t1)G>
αβ(t1,t2)hβC(t2)G<

CC(t2,t1)

− G>
CC(t1,t2)hCβ(t2)G<

βα(t2,t1)hαC(t1) + G>
Cβ(t1,t2)hβC(t2)G<

Cα(t2,t1)hαC(t1)]. (19)

The expression (19) is structurally identical to current correlation functions in Refs. [24,82], but we emphasize that here the

two-time Green’s functions appearing in Eq. (19) evolve in response to the switch-on of an arbitrary time-dependent bias in the

partition-free approach, i.e., they contain convolution integrals taken along the vertical part of the Konstantinov-Perel’ contour

as well. Notice that, in addition to correlation functions describing particle hopping events between the leads and the molecule,

Eq. (19) also contains information on lead-lead hopping events and on “circular” [24] currents involving electronic transport

processes within the molecular structure. In some work on the time-dependent noise, the two-time correlator was given as a

function of a single time [81], but we emphasize that we need to solve the Kadanoff-Baym equations for all Green’s functions

“blocks” in Eq. (5) in the two-time plane for a complete picture of current fluctuations. We present the main steps of this

derivation in Appendix A, and the derived Green’s functions are inserted into Eq. (19), resulting in a sum of terms involving only

self-energy components and components of the CC region Green’s function:

Cαβ(t1,t2) = 4q2TrC
[(

�
>
α (t1,t2)δαβ +

[(
�

>
α · Ga

CC + �
r
α · G>

CC + �
�
α ⋆ G�

CC

)
· �

a
β

+�
r
α ·
(
Gr

CC .�>
β + G�

CC ⋆ �
�
β

)]
(t+1 ,t−2 )

)
G<

CC(t2,t1) + G>
CC(t1,t2)

(
�

<
α (t2,t1)δαβ

+
[(

�
<
β · Ga

CC + �
r
β · G<

CC + �
�
β ⋆ G�

CC

)
· �

a
α + �

r
β ·
(
Gr

CC · �
<
α + G�

CC ⋆ �
�
α

)]
(t−2 ,t+1 )

)
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−
(
�

>
α · Ga

CC + �
r
α · G>

CC + �
�
α ⋆ G�

CC

)
(t+1 ,t−2 )

(
�

<
β · Ga

CC + �
r
β · G<

CC + �
�
β ⋆ G�

CC

)
(t−2 ,t+1 )

−
(
G>

CC · �
a
β + Gr

CC · �
>
β + G�

CC ⋆ �
�
β

)
(t+1 ,t−2 )

(
G<

CC · �
a
α + Gr

CC · �
<
α + G�

CC ⋆ �
�
α

)
(t−2 ,t+1 )

)
]
. (20)

Here, the sign superscripts indicate the contour position of

each time variable. So far, no assumptions have been made

on the system Hamiltonian, i.e., we have not yet stated

which regions are subject to a time-dependent perturbation,

and neither have we made assumptions about the nature of

the lead-molecule coupling. Up to this point, the derivation

is completely algebraic, and so for noninteracting systems

Eq. (20) is completely general.

C. Time-dependent model and the WBLA

In this section we make assumptions on the model that

enable us to solve the Kadanoff-Baym equations analyti-

cally. We assume that, prior to t0, the Hamiltonian Ĥ0 ≡

Ĥ (z ∈ CM ) is given by Eq. (2) with time-independent en-

ergies εkα(z ∈ CM ) = εkα and molecular site and hopping

integrals Hmn(z ∈ CM ) = hmn. The lead-molecule couplings

Tm,kα(z ∈ γ ) = Tm,kα are assumed to be present in equilibrium

in the partition-free approach and unchanged by the switch-

on process. As all subsystems are coupled during their

equilibration, they all possess the same initial temperature T

and chemical potential μ, which means the system is initially

described by the density operator ρ̂0 = Z−1e−β(Ĥ0−μN̂ ) (where

Z is the partition function and N̂ is the number operator for

the entire coupled system). Following Ref. [91], we add an

arbitrary spatially homogeneous time-dependent shift to the

lead energies as their bias. To the molecular Hamiltonian,

we add a static correction uCC =
∑

mnumnd̂
†
md̂n [85], and a

time-dependent shift that scales the particle number operator

N̂C =
∑

mnd̂
†
md̂n [91]:

εkα(z ∈ C∓) = εkα + Vα(t), (21)

Hmn(z ∈ C∓) = hmn + umn + δmnVC(t). (22)

Now, we assume that the leads satisfy the WBLA, i.e., we

neglect the energy dependence of the lead-molecule coupling.

As described in Ref. [88], this assumption enables us to write

all components of the effective embedding self-energy in terms

of the level-width matrix Ŵα , defined as

Ŵα,mn = 2π
∑

k

Tm,kαTkα,nδ
(
εF
α − εkα

)
, (23)

where εF
α is the equilibrium Fermi energy of lead α. The self-

energy components for this problem are collected together in

Eqs. (B5)–(B10) of Appendix B, where the time dependence

of the lead states is contained in phase factors of the form

ψα(t1,t2) ≡

∫ t1

t2

dτ Vα(τ ). (24)

Within the WBLA, the KB equations [66] for the different

components of GCC are linearized in terms of the effective

Hamiltonian h̃eff
CC ≡ h̃CC − i

2

∑
αŴα of the central region,

where h̃CC = hCC + uCC . The derivation of these components

was published in Refs. [88,91], and leads to the following

compact formula for the greater and lesser Green’s functions:

G
≷
CC(t1,t2) = ∓i

∫
dω

2π
f [∓(ω − μ)]

∑

γ

Sγ (t1,t0; ω)Ŵγ S†
γ (t2,t0; ω), (25)

where we introduce the matrix

Sα(t,t0; ω) ≡ e−ih̃eff
CC (t−t0)e−iϕC (t,t0)

[
Gr

CC(ω) − i

∫ t

t0

dt̄ e−i(ω1−h̃eff
CC )(t̄−t0)ei(ϕC−ψα )(t̄ ,t0)

]
(26)

defined in terms of Gr
CC(ω) = (ωI − heff

CC)
−1

(i.e., defined without the tilde on the effective Hamiltonian), and the phase factor

associated with the molecular time dependence:

ϕC(t1,t2) ≡

∫ t1

t2

dτ VC(τ ). (27)

All other components of the Green’s function (GF) can be explicitly calculated in the time domain [88,91], and are listed

in Appendix B. The quantum statistical expectation value of the current operator (11) can also be reformulated as a sum

of convolution integrals on the Konstantinov-Perel’ contour, which may be evaluated exactly within the WBLA. Setting the

electronic charge q = −1, the current may be expressed in terms of the Sα as [89]

Iα(t) =
1

π

∫
dωf (ω − μ) TrC

[
2 Re[iŴαeiω(t−t0)eiψα (t,t0)Sα(t,t0; ω)] − Ŵα

∑

γ

Sγ (t,t0; ω)Ŵγ S†
γ (t,t0; ω)

]
. (28)
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The WBLA enables us to derive a closed form for the current correlation function. We substitute Eqs. (B5) and (B6) for the

retarded/advanced self-energies into Eq. (20), which then reduces to a rather compact form

Cαβ(t1,t2) = 4q2TrC(δαβ(�>
α (t1,t2)G<

CC(t2,t1) + G>
CC(t1,t2)�<

α (t2,t1)) + ŴαG>
CC(t1,t2)ŴβG<

CC(t2,t1) + iG>
CC(t1,t2)[�+

β (t2,t1)Ŵα

+Ŵβ(�+
α )†(t1,t2)] + i[�−

α (t1,t2)Ŵβ + Ŵα(�−
β )†(t2,t1)]G<

CC(t2,t1) − �
+
β (t2,t1)�−

α (t1,t2) − (�+
α )†(t1,t2)(�−

β )†(t2,t1)).

(29)

Here, we have collected convolution integrals on the Konstantinov-Perel’ contour into the objects �±
α (t1,t2):

�
+
β (t2,t1) ≡

(
�

<
β · Ga

CC + �
�
β ⋆ G�

CC

)
(t−2 ,t+1 )

, (30)

(�+
α )†(t1,t2) ≡ −

(
Gr

CC · �
<
α + G�

CC ⋆ �
�
α

)
(t−2 ,t+1 )

, (31)

�
−
α (t1,t2) ≡

(
�

>
α · Ga

CC + �
�
α ⋆ G�

CC

)
(t+1 ,t−2 )

, (32)

(�−
β )†(t2,t1) ≡ −

(
Gr

CC · �
>
β + G�

CC ⋆ �
�
β

)
(t+1 ,t−2 )

. (33)

We may now perform the convolution integrals in Eqs. (30)–(33) using the formulas obtained for the self-energies and GFs of

the CC region in Appendix B. The convolution integrals in �
± are evaluated using the methods of Refs. [88,91], where the

transformation from Matsubara summations to frequency integrals [68] is done taking account of the ordering of time variables

on the contour. This guarantees the linearity of each term in the fermion/hole distribution function f [±(ω − μ)], and results in

the following pair of functional identities:

�
+
β (t2,t1) = ie−iψβ (t2,t0)

∫
dω

2π
f (ω − μ)e−iω(t2−t0)

ŴβS
†
β(t1,t0; ω), (34)

�
−
α (t1,t2) = −ie−iψα (t1,t0)

∫
dω

2π
[1 − f (ω − μ)]e−iω(t1−t0)

ŴαS†
α(t2,t0; ω). (35)

Here, we have expressed �
±
α in terms of the matrix Sα defined in Eq. (26). Notice on the second line of Eq. (29) the presence

of the object 4q2TrC[ŴαG>
CC(t1,t2)ŴβG<

CC(t2,t1)]. In the single-level case, all the objects inside the trace are replaced by

scalars, and this object is equal to q2ŴαŴβNC(t)[1 − NC(t)], where the particle number on the molecular region is defined by

NC(t) = −2iTrC[G<
CC(t,t)] . The time dependence of this object is thus entirely due to the internal dynamics of electron and hole

populations on sites of the molecule. The lead-dependent matrices �
+
β and �

−
α correspond physically to electrons propagating

from lead β and positively charged holes propagating from lead α, respectively. We therefore interpret the two terms appearing

on the second line of Eq. (29) as describing processes in which electrons in the leads interfere with holes in the molecular region,

or holes in the leads interfere with electrons in the molecule. The terms on the third line of Eq. (29) are interpreted as cross-lead

particle-hole interference terms.

In Refs. [88,91], the greater and lesser Green’s functions were expressed in terms of the Sα matrices following a line integral

of the Kadanof-Baym equations in the two-time plane, and these are given in Eq. (25). We thus have explicit formulas for all

terms which appear in the two-time correlation function, which may be evaluated numerically in the (t1,t2) plane as follows:

Cαβ(t1,t2) = 4q2

∫
dω

2π

dω′

2π
[1 − f (ω − μ)]f (ω′ − μ)TrC

{
δαβ

∑

γ

(Ŵαe−iψα (t1,t2)e−iω(t1−t2)Sγ (t2,t0; ω′)Ŵγ S†
γ (t1,t0; ω′) + H.c.)

+
∑

γ,γ ′

ŴαSγ (t1,t0; ω)Ŵγ S†
γ (t2,t0; ω)ŴβSγ ′ (t2,t0; ω′)Ŵγ ′S

†
γ ′ (t1,t0; ω′)

+ i
∑

γ

[ŴαSγ (t1,t0; ω)Ŵγ S†
γ (t2,t0; ω)Ŵβ(e−iψβ (t2,t0)e−iω′(t2−t0)S

†
β(t1,t0; ω′) − eiψα (t1,t0)eiω′(t1−t0)Sα(t2,t0; ω′))]

− (e−iψβ (t2,t0)e−iω(t2−t0)
ŴβS

†
β(t1,t0; ω)e−iψα (t1,t0)e−iω′(t1−t0)

ŴαS†
α(t2,t0; ω′)

+ eiψα (t1,t0)eiω(t1−t0)Sα(t2,t0; ω)Ŵαeiψβ (t2,t0)eiω′(t2−t0)Sβ(t1,t0; ω′)Ŵβ)

}
. (36)

This expression contains a great deal of information, and it is

the central result of this paper. It is the two-time correlation

function for a molecular junction connected to an arbitrary

number of leads, through which time-dependent voltages are

passed. It contains transient parts which decay as t1,t2 → ∞,

while τ ≡ t1 − t2 remains finite. It automatically enables

165440-6



PARTITION-FREE THEORY OF TIME-DEPENDENT . . . PHYSICAL REVIEW B 95, 165440 (2017)

evaluation of cross-correlation functions between different

leads when α �= β, and the correlation between currents

through the same lead when α = β. It describes the noise

on the current signal due to nonzero temperatures (the thermal

noise), and due to a nonzero bias (the shot noise), as will

be made clearer in the next section. The leads are assumed

to satisfy the WBLA, and the additive contribution of the

voltage to the lead-state energies is assumed, but the approach

is otherwise exact for noninteracting electrons. Under close

inspection, using the definition (26), we find that the explicit

time dependence enters into (36) only within structures of

the form ei(ψα−ϕC )(t,t0), so that the noise does not distinguish

between external fields that bias all leads identically [Vα(t) =

V (t), for all α] or a gate voltage which moves energies in the

negative energy direction [VC(t) = −V (t)]. This is also true

for the current [91]. The expression (36) will be used for the

proof of analytic identities in Sec. III, but it is not entirely

convenient for numerical evaluation. Instead, we describe in

Sec. IV and Appendix D how to evaluate Eq. (29) directly.

III. RECOVERY OF KNOWN RESULTS

FOR A STATIC BIAS

To parametrize our system with experimentally relevant

variables, we work in the relative time coordinate system so

that t1 = τ + t and t2 = t , where τ ≡ t1 − t2 is the relative

time that we wish to take a Fourier transform with respect to τ .

Note that, to make the mapping to the Fourier space associated

with τ , one needs τ to take on negative values. However, since

both t1 and t2 must be times greater than t0, this means that τ

is restricted to lie in the range [−(t − t0),t − t0], as was done

in Ref. [71]. We define the Fourier transform of the correlation

with respect to the relative time τ ≡ t1 − t2, as a function of a

single frequency � and the measurement time t :

Pαβ(�,t) ≡

∫ t−t0

−t+t0

dτ ei�τPαβ (t + τ,t)

=
1

2
[Cαβ(�,t) + C∗

αβ(−�,t)], (37)

where Cαβ(�,t) is the Fourier transform of Cαβ(t + τ,t) with

respect to τ . Note that the relation

P ∗
αβ(�,t) = Pαβ(−�,t) (38)

immediately follows. In Sec. II B, we remarked that it is suffi-

cient for knowledge of Pαβ (t1,t2) to know the nonsymmetrized

function Cαβ(t1,t2).

In addition to the power spectrum, one can calculate several

other useful quantities in terms of the Cαβ . For instance, in a

two-lead junction, one may focus on the net current

Î
(−)
LR (t) = 1

2
(ÎL(t) − ÎR(t)) (39)

or on the sum of currents, which by the continuity equation is

proportional to the rate of change of charge in the molecule

[89]

Î
(+)
LR (t) = 1

2
(ÎL(t) + ÎR(t)). (40)

The time-dependent noise spectra of these objects can be

written

C(−)(�,t) =

∫
dτ ei�τ 〈△Î

(−)
LR (t + τ )△Î

(−)
LR (t)〉

=
1

2
(C(auto)(�,t) − C(×)(�,t)), (41)

C(+)(�,t) =

∫
dτ ei�τ 〈△Î

(+)
LR (t + τ )△Î

(+)
LR (t)〉

=
1

2
(C(auto)(�,t) + C(×)(�,t)), (42)

where we have defined Fourier transforms of the average

autocorrelation and cross correlations:

C(auto)(t + τ,t) ≡ 1
2
[CLL(t + τ,t) + CRR(t + τ,t)], (43)

C(×)(t + τ,t) ≡ 1
2
[CLR(t + τ,t) + CRL(t + τ,t)]. (44)

In general, C(auto) and C(×) are complex quantities and so

cannot be observed. However, due to the symmetry property

(14), they are both real at the equal observation time point

τ = 0. This fact was exploited in Ref. [81], where the equal

time autocorrelation in the left lead, CLL(t,t), was studied in

the time domain. Using the identity (14), one can show that

the real parts of these functions are always symmetric in the

τ = 0 line:

Re[C(auto/×)(t + τ,t)] = Re[C(auto/×)(t,t + τ )], (45)

whereas the imaginary parts are always antisymmetric about

this line:

Im[C(auto/×)(t + τ,t)] = −Im[C(auto/×)(t,t + τ )]. (46)

To check the validity of our theory, we must confirm that

it reduces to known expressions in the long-time and static

bias limits, as was already demonstrated for the current in

Ref. [88]. We shall assume that the bias is applied only to the

leads [ϕC(t1,t2) ≡ 0], that the equilibrium and nonequilibrium

effective molecular Hamiltonians are identical (̃heff
CC = heff

CC),

and that Vα(t) = Vα is constant in time (t > t0). In this case,

the Sα defined in Eq. (26) can be evaluated explicitly, and in

the t0 → −∞ limit we obtain

Sγ (t1,t0; ω)Ŵγ S†
γ (t2,t0; ω) −→

t0→−∞
e−i(ω+Vγ )(t1−t2)Aγ (ω + Vγ ),

(47)

where Aγ (ω) ≡ Gr
CC(ω)Ŵγ Ga

CC(ω). Other expressions ap-

pearing in the generalized two-time correlation function can

be worked out in a similar way, for instance,

e−iψβ (t2,t0)e−iω(t2−t0)S
†
β(t1,t0; ω)

−→
t0→−∞

Ga
CC(ω + Vβ)ei(ω+Vβ )τ . (48)

The Sα matrices enter into the general expression (36) only in

the form of structures like (47) and (48), so we easily conclude

that the correlation function Cαβ(t1,t2) depends only on the

time difference τ , the power spectrum does not depend on

time t . Hence, the current becomes a stationary stochastic
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process under the conditions that the bias is static and that the

switch-on time is relegated to the distant past. This is implied

by the fact that the current itself is simply the steady-state

LB formula in this case, as it was proven in Ref. [88] that

all terms arising from the initial conditions (vertical contour

convolutions) vanish in the long-time limit. With the exception

of the initial condition term, every vanishing term includes a

convolution with a left or right self-energy. In the partitioned

approach to the transport problem, these quantities vanish, as

one can see from the definition (7) and the fact that hCα(z) = 0

for all z ∈ CM .

In studies of high-frequency shot noise, the interesting

physical observable is usually the static nonsymmetrized

power spectrum [28,31], which is the regular Fourier transform

(denoted via F hereafter) of Cαβ(τ ) ≡ limt0→−∞Cαβ(t + τ,t):

Cαβ(�) ≡ lim
t0→−∞

Cαβ(�,t)

=

∫ ∞

−∞

dτ ei�τCαβ(τ ) ≡ F[Cαβ(τ ); �]. (49)

Note that infinite limits are possible here as t0 → −∞.

The above quantity satisfies the relation C∗
αβ(�) = Cβα(�)

[95]. For those experiments which do distinguish between

absorption and emission processes, the quantity of interest

is most often Cαα(�), which in general satisfies the inequality

Cαα(�) �= Cαα(−�). Cαα(�) can therefore be used to describe

measurements in which a quanta of energy h̄� are transferred

from the measuring device to the system. By contrast, the

symmetrized spectrum obeys Pαα(�,t) = Pαα(−�,t), i.e.,

it does not distinguish between emission and absorption

processes. Moreover, in recently published work [82], a

master-equation formalism was used to derive an exact formula

for the frequency-dependent autocorrelation and cross-lead

current correlations in a nanojunction composed of a quantum

dot coupled to two leads, which were treated within the WBLA.

In Appendix C, we derive an explicit formula for Cαβ(�).

Here, we simply note that, if the discussion is restricted to a

molecule coupled to left (L) and right (R) leads, we find that

the nonsymmetrized autocorrelation associated with a single

lead is given by

Cαα(�) = 4q2

∫
dω

2π
TrC
[
[1 − fα(ω + � − μ)]fᾱ(ω − μ)T

(αᾱ)
CC (ω)T

†(αᾱ)
CC (ω)

+ [1 − fᾱ(ω + � − μ)]fα(ω − μ)T
(αᾱ)
CC (ω + �)T

†(αᾱ)
CC (ω + �)

− [fα(ω − μ) − fᾱ(ω − μ)][fα(ω + � − μ) − fᾱ(ω + � − μ)]T
(αᾱ)
CC (ω)T

†(αᾱ)
CC (ω)T

(αᾱ)
CC (ω + �)T

†(αᾱ)
CC (ω + �)

+�2[1 − fα(ω + � − μ)]fα(ω − μ)ŴαGr (ω)Aα(ω + �)Ga(ω)
]
, (50)

where ᾱ �= α, and we have defined the transmission matrices

in the standard way [70]:

T
(αβ)

CC (ω) ≡ [Ŵα]
1
2 Gr

CC(ω)[Ŵβ]
1
2 , (51)

T
†(αβ)

CC (ω) ≡ [Ŵβ]
1
2 Ga

CC(ω)[Ŵα]
1
2 . (52)

Physically, the eigenvalues of T
(αβ)
CC (ω) may be interpreted

as probability amplitudes for electron scattering events be-

tween the α and β leads. Equation (50) gives the analytic

behavior of a function which should be accessible to the ex-

perimentalist: it is a power spectrum for current measurements

carried out with arbitrary detection frequency, taken at long

times after the switch-on of a constant bias. It is expressed

in terms of the transmission matrices, which depend on the

molecular Hamiltonian and on the coupling of the molecule to

the leads. We remark that if one restricts the CC region to a

single-energy level, and replaces � → −� on the right-hand

side, then Eq. (50) is exactly equivalent to the expression

found in Ref. [82] (there, the Fourier transform was taken

with a phase of −i�τ ). We note that Ref. [82] also included a

numerical scheme for moving beyond the WBLA, and is in this

sense more general than the formalism presented in this paper.

Indeed, the self-energy in Eq. (D2) contains a singularity at

t1 = t2, and appears in Eq. (29) multiplied by δαβ , so that the

autocorrelation function is singular in the two-time plane for

t1 = t2 whereas the cross-correlation function is finite. This

singularity in the autocorrelation is an artifact of the WBLA,

and does not exist when the bandwidth of the leads is taken to

be finite [81,82]. However, our scheme can be used for rapid

calculations on extended molecules with a far larger spectrum

than a quantum dot, and in such molecules the WBLA is an

increasingly accurate approximation [96,97]. To remove this

singularity in the current autocorrelations, one may leave the

observation time representation and instead compute the noise

in a time-averaged sense. We defer this to a future work and will

instead perform calculations of the average cross correlation

C(×)(t,t) in the t domain in Sec. IV as this quantity is free

from any singularities.

From Eqs. (36) and (15), one obtains the symmetrized two-

time correlation function

Pαβ(t1,t2) = 2q2

∫
dω

2π

dω′

2π
F (ω,ω′)TrC

{
δαβ

∑

γ

(Ŵαe−iψα (t1,t2)e−iω(t1−t2)Sγ (t2,t0; ω′)Ŵγ S†
γ (t1,t0; ω′) + H.c.)

+
∑

γ,γ ′

ŴαSγ (t1,t0; ω)Ŵγ S†
γ (t2,t0; ω)ŴβSγ ′(t2,t0; ω′)Ŵγ ′S

†
γ ′ (t1,t0; ω′)
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+ i
∑

γ

[ŴαSγ (t1,t0; ω)Ŵγ S†
γ (t2,t0; ω)Ŵβ(e−iψβ (t2,t0)e−iω′(t2−t0)S

†
β(t1,t0; ω′) − eiψα (t1,t0)eiω′(t1−t0)Sα(t2,t0; ω′)) + H.c.]

− (e−iψβ (t2,t0)e−iω(t2−t0)
ŴβS

†
β(t1,t0; ω)e−iψα (t1,t0)e−iω′(t1−t0)

ŴαS†
α(t2,t0; ω′) + H.c.)

}
, (53)

where we define the combination of electron-hole distribution functions:

F (ω,ω′) ≡ [1 − f (ω − μ)]f (ω′ − μ) + [1 − f (ω′ − μ)]f (ω − μ). (54)

The steady-state symmetrized power spectrum can then be obtained either by substituting the long-time formulas (47) and (48)

into Eq. (53) and taking the Fourier transform, or simply by substituting the expression for Cαβ(�) into (37):

Pαβ(�) ≡ lim
t0→−∞

Pαβ(�,t) = 2q2

∫
dω

2π

{
δαβ

∑

γ

TrC
[
T

(αγ )

CC (ω)T
†(αγ )

CC (ω)
]
[Fαγ (ω + �,ω) + Fαγ (ω − �,ω)]

+
∑

γ,γ ′

Fγ γ ′(ω,ω − �)TrC
[
T

(αγ )

CC (ω)T
†(βγ )

CC (ω)T
(βγ ′)

CC (ω − �)T
†(αγ ′)

CC (ω − �)
]

+ i
∑

γ

TrC
[
T

(αγ )

CC (ω)T
†(βγ )

CC (ω)
(
Fγβ(ω,ω − �)T

†(αβ)

CC (ω − �) − Fγα(ω,ω − �)T
(βα)

CC (ω − �)
)

+ T
(βγ )

CC (ω)T
†(αγ )

CC (ω)
(
Fγα(ω,ω + �)T

†(βα)

CC (ω + �) − Fγβ(ω,ω + �)T
(αβ)

CC (ω + �)
)]

− TrC
[
Fαβ(ω,ω − �)T

†(αβ)

CC (ω − �)T
†(βα)

CC (ω) + Fαβ(ω,ω + �)T
(αβ)

CC (ω + �)T
(βα)

CC (ω)
]
}

, (55)

where we introduce fα(x) ≡ f (x − Vα), and make the definition

Fαβ(ω,ω′) ≡ [1 − fα(ω − μ)]fβ(ω′ − μ) + [1 − fβ(ω′ − μ)]fα(ω − μ) = Fβα(ω′,ω).

It is instructive to compare this formula with the finite-frequency power spectrum derived by Büttiker and Yang [32–34,47]

within their S-matrix approach. In particular, when one assumes the C region to be a single level, and there is a Breit-Wigner

resonance in the scattering matrix amplitudes of their approach with energy-independent resonance widths [36,37,61], the LB

formalism is exactly equivalent to ours. In many experiments, the quantity (55) is measured in the zero-frequency limit, i.e., when

the time separating measurements is much longer than the time scale over which the current fluctuates [44]. Taking this limit,

and using the identity

Gr
CC(ω) = Ga

CC(ω) − i
∑

γ

Gr
CC(ω)Ŵγ Ga

CC(ω), (56)

we obtain the zero-frequency power spectrum as

lim
�→0

Pαβ(�) = 2q2

∫
dω

2π

{
2δαβ

∑

γ

Fαγ (ω,ω)TrC
[
T

(αγ )

CC (ω)T
†(αγ )

CC (ω)
]

−Fαβ (ω,ω)TrC
[
T

(αβ)

CC (ω)T
†(αβ)

CC (ω) + T
(βα)

CC (ω)T
†(βα)

CC (ω)
]

+
∑

γ,γ ′

[
Fγ γ ′(ω,ω) + Fαβ(ω,ω)

]
TrC
[
T

(αγ )

CC (ω)T
†(βγ )

CC (ω)T
(βγ ′)

CC (ω)T
†(αγ ′)

CC (ω)
]

+ i
∑

γ

TrC
[
T

(αγ )

CC (ω)T
†(βγ )

CC (ω)
(
Fγβ(ω,ω)T

†(αβ)

CC (ω) − Fγα(ω,ω)T
(βα)

CC (ω)
)

+ T
(βγ )

CC (ω)T
†(αγ )

CC (ω)
(
Fγα(ω,ω)T

†(βα)

CC (ω) − Fγβ(ω,ω)T
(αβ)

CC (ω)
)]
}

. (57)

To better understand the content of the expression (57), we consider the special case where α = β. In this case, use of Eq. (56)

enables us to replace the single summation with a double sum, and we can use the identity

Fαγ (ω,ω) = 1
2
[Fαα(ω,ω) + Fγ γ (ω,ω) + 2[fα(ω − μ) − fγ (ω − μ)]2] (58)

to give

lim
�→0

Pαα(�) = P (thermal)
αα (�) + P (shot)

αα (�), (59)
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where we identify both the generalized thermal noise, which vanishes when the temperature T = 0, and the generalized shot

noise, which vanishes when Vγ = 0 for all γ :

lim
�→0

P (thermal)
αα (�) = 2q2

∫
dω

2π

∑

γ �=α

[Fαα(ω,ω) + Fγ γ (ω,ω)]TrC
[
T

(αγ )

CC (ω)T
†(αγ )

CC (ω)
]
, (60)

lim
�→∞

P (shot)
αα (�) = 2q2

∫
dω

2π

⎧
⎨
⎩2
∑

γ �=α

[fα(ω − μ) − fγ (ω − μ)]2TrC

⎡
⎣T

(αγ )

CC (ω)T
†(αγ )

CC (ω)

⎛
⎝1 −

∑

γ ′

T
(αγ ′)

CC (ω)T
†(αγ ′)

CC (ω)

⎞
⎠
⎤
⎦

+
∑

γ,γ ′

[fγ (ω − μ) − fγ ′ (ω − μ)]2TrC
[
T

(αγ )

CC (ω)T
†(αγ )

CC (ω)T
(αγ ′)

CC (ω)T
†(αγ ′)

CC (ω)
]
⎫
⎬
⎭. (61)

If we now specialize this discussion to the case of a two-lead junction, i.e., a junction in which α may be one of two indices L,

R, we recover the following well-known results for the thermal and shot noise, respectively:

lim
�→0

P
(thermal)
LL (�) = 4q2

∫
dω

2π
{[1 − fL(ω − μ)]fL(ω − μ) + [1 − fR(ω − μ)]fR(ω − μ)}TrC

[
T

(LR)
CC (ω)T

†(LR)
CC (ω)

]
, (62)

lim
�→0

P
(shot)
LL (�) = 4q2

∫
dω

2π

[
fL(ω − μ) − fR(ω − μ)

]2
TrC
[
T

(LR)
CC (ω)T

†(LR)
CC (ω)

(
1 − T

(LR)
CC (ω)T

†(LR)
CC (ω)

)]
. (63)

Finally, we note that it is common practice [32,70] to neglect the frequency dependence of the transmission functions TCC(ω) ∼

TCC in Eq. (55), which allows for the trivial removal of all frequency integrals. It is then simple to show that the LL component

of Eq. (55) reduces to the well-known expression

PLL(�) =
q2

π

{
TrC
[
T

(LR)
CC T

†(LR)
CC T

(LR)
CC T

†(LR)
CC

]
2� coth

(
�

2kBT

)
+ TrC

[
T

(LR)
CC T

†(LR)
CC

(
1 − T

(LR)
CC T

†(LR)
CC

)]

×

[
(VL − VR − �) coth

(
VL − VR − �

2kBT

)
+ (VL − VR + �) coth

(
VL − VR + �

2kBT

)]}
. (64)

This formula expresses the interplay of the shot noise, Nyquist

noise, and quantum vacuum fluctuations in a conductor, and

moreover has been verified experimentally for a wide range of

mesoscale conductors [43,98].

IV. NUMERICS

A. Periodic driving bias model

In Appendix D, we present an efficient technique for

evaluating each term in Eq. (29) based on the analytical

removal of all frequency integrals in these expressions, as

was done for the current in Ref. [91]. Other schemes in the

literature perform the frequency integrals in the transient noise

numerically [81,82], so we acquire a significant computational

speedup in comparison to those works, as well as access to the

noise response to an explicit time-dependent driving. Many

cases of interest can be studied by inserting into these formulas

the following biharmonic bias, consisting of a constant shift

Vα and two harmonic modes:

Vα(t) = Vα + A(1)
α cos[p1�α(t − t0) + φα]

+A(2)
α cos[p2�α(t − t0)]. (65)

Here, p1, p2 are any integers and φα is a lead-dependent

phase shift that breaks the dynamical symmetry of the system

under time reversal (TR), t → 2t0 − t . According to a well-

known Bessel function identity, this choice of bias leads to

the following representation of the exponential phase factor

appearing in Eq. (D12):

eiψα(t1,t2) = eiVα (t1−t2)
∑

r,r ′,s,s ′

Jr

(
A(1)

α

p1�α

)
Jr ′

(
A(1)

α

p1�α

)
Js

(
A(2)

α

p2�α

)
Js ′

(
A(2)

α

p2�α

)
ei(r−r ′)φαei�α (p1r+p2s)(t1−t0)e−i�α (p1r

′+p2s
′)(t2−t0). (66)

In Appendix E, we include explicit formulas for G≶(t1,t2) and

the �
± matrices within this biharmonic model, with all time

integrals explicitly removed by hand. In calculations presented

here, we will only consider the case of a single harmonic in

order to reflect numerical work carried out elsewhere [88,89].

However, the equations presented in this work will be valid

for the general biharmonic case studied experimentally in

Ref. [59].

B. Application to the molecular wire

Now, we shall apply our formalism to the transport

properties of the molecular wire, using the tight-binding model

of a one-dimensional wire with nearest-neighbor hopping from

Refs. [99,100]. We previously studied the current response in

this system for sinusoidal [89] and stochastic [91] biases in the

leads. We assume that each site corresponds to a single-energy

level, which may have a maximum occupation of 2 due to
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FIG. 1. (a) Schematic of a typical two-lead molecular junction consisting of the left (L) and right (R) leads bridged by a molecular system

C, which in this case is chosen to be a molecular wire composed of Ns = 5 atomic sites with nearest-neighbor hopping. (b) Plot of C(×)(t,t)

for the switch-on of a constant bias V = VL = −VR , for the parameter choice E = 1, Ŵ = 0.5, λ = 0.1.

spin degeneracy, so that our model is equivalent to a wire of

coupled quantum dots [101,102]. The Hamiltonian describing

this molecular wire is assumed to have onsite energies equal

to the constant value [hCC]k,k ≡ E and hopping elements all

given by [hCC]k,k+1 = [hCC]k+1,k ≡ λ. All quantities will be

given in arbitrary units, and we choose the chemical potential

μ = 0 as the zero of energy. We model the perpendicular

orientation of the wire between the leads. In Fig. 1(a), we

illustrate the configuration in which only the end sites of the

wire are coupled to their neighboring lead, in which case the

only nonzero elements of the level width are ŴL,11 and ŴR,NsNs
,

where Ns is the number of molecular sites. For simplicity, we

will assume that sites are symmetrically coupled to the left

and right leads ŴL,11 = Ŵ/2 = ŴR,NsNs
. We will now study

the response of the cross correlation in this system to the

switch-on of both dc and ac biases.

1. Time-dependent response to a dc bias

In Fig. 1(b), we plot the cross correlation C(×)(t,t) through a

molecular wire for for different values of the static (A(1)
α = 0 =

A(2)
α ) bias V = VL = −VR , with Ŵ = 0.5, onsite energy E =

1, and the hopping parameter is set to λ = 0.1. In Fig. 1(b),

we observe the occurrence of a “kick” in the cross-correlation

signal beginning at a resonance time of about tres ≃ 20, before

the signal decays towards zero. This resonance is extremely

small [shown in the inset to Fig. 1(b)] when V < E, as in

this case the onsite energy of the chain lies outside the bias

window [−V,V ]. The magnitude of the resonance sharply

increases when E crosses into the bias window at V = 1,

before saturating at a maximum value at around V = 2, which

can be seen from the fact tha the V = 5 (green) curve sits

almost exactly on top of the V = 2 (blue) one. This resonance

is transient; we associate it with the relaxation time taken for

the system to reach its steady state.

In Fig. 2 we exhibit the contour plot of Re[C(×)(t + τ,t)]

for the V = 5 case, and for different numbers of atomic sites

Ns = 3,4,5,6. Note that the symmetry property (45) is satisfied

in all four plots. Unlike the single-site case in Ref. [82], the

magnitude of the cross correlation is not in general maximized

along the τ = 0 diagonal. Instead, we see a very strong “ripple”

spreading out from the diagonal for all values of Ns with a

maximum magnitude at a value of τmax = t1 − t2 satisfying

the relation max |Re[C(×)(t + τ,t)]| = Re[C(×)(t ± τmax,t)].

It appears from Figs. 2(a)–2(d) that τmax increases linearly with

increasing Ns . In the Ns = 5 case τmax ≃ 20, i.e., it is roughly

equal to the resonance time tres in C(×)(t,t), so we expect that

that the two time scales τmax and tres may be physically related.

The fact that τmax increases with Ns implies that its position

is due to the finite size of the molecular wire and its intrinsic

properties. To understand this heuristically, one may consider

the Schrödinger equation for a wire of Ns sites with a spacing

of size 1 (i.e., of length Ns − 1), energy E, and intersite

coupling λ. This leads to a dispersion ε(k) = E + 2λcos(k),

and therefore the traversal time for an electron of unit mass to

pass through the wire is approximated by (note that h̄ = 1)

τtraversal ≈
Ns − 1

∂kǫ(k)
=

Ns − 1

2λsin(k)
. (67)

Whereas this expression neglects the presence of the leads

and cannot be taken as anything other than a rule of thumb,

it indicates that we may investigate the interplay of λ and Ns

should we wish to understand the effects on the dynamics of a

finite system size.

In Figs. 3(b) and 3(d), we show the results of calcu-

lations of the absolute value of the Fourier transform of

limt0→−∞Re[C(×)(t + τ,t)] with respect to τ . This is done

for each value of Ns in Fig. 2 by fixing t = 2000 and

evaluating a diagonal time slice of each plot shown there for

τ ∈ [−200,200]. These time slices are shown in Figs. 5(a)

(λ = 0.1) and 5(c) (λ = 0.5). From Eqs. (37) and (49), the

quantity plotted in Figs. 3(b) and 3(d) satisfies the following

identity:

F[Re[C(×)(τ + t,t)]; �] =
PLR(�) + PRL(�)

2
. (68)

We are therefore simply plotting the absolute value of the

average symmetrized cross correlations in Figs. 3(b) and 3(d).

In Fig. 3(b), we plot this for λ = 0.1, and observe oscillating

resonant frequencies at values of n�Ns
for some intrinsic

frequency �Ns
that depends on the length of the wire. We

find that �Ns
decreases with increasing wire length. For

example, the main Ns = 5 resonance occurs at �5 ≃ 0.15,

corresponding to a time of 2π/�5 ≃ 40 ≃ 2τmax, i.e., the

distance between peaks on Figs. 3(a) and 2(b). This is to

be expected from the heuristic relation (67) and the contour
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FIG. 2. Plots of Re[C(×)(t + τ,t)] for V = VL = −VR = 5, λ = 0.1, E = 1, Ŵ = 0.5 where the number of sites is varied so that (a) Ns = 3,

(b) Ns = 4, (c) Ns = 5, and (d) Ns = 6.

plots of Fig. 2. When we increase the intersite coupling to

λ = 0.5 in Fig. 3(d), we find that the position of the main

resonance, for each value of Ns , shifts by a factor of roughly

5, so that these peaks can be attributed to wire traversal

events. We also see that the higher-frequency modes occurring

at multiples of �Ns
are stronger and more numerous in the

λ = 0.5 case than for λ = 0.1. These modes correspond to the

subsidiary “ripples” seen to emanate from the main resonances

in Fig. 2. Physically, these ripples are due to internally reflected

electrons, or “circular currents” that contribute weakly to the

cross-lead correlations in each lead when compared with the

main influence of electrons propagating directly from the other

lead.

2. Time-dependent response to an ac bias

To understand how the time scale of the resonance occurring

in the case of the perpendicular wire combines with an ac

field, we will now compute the cross correlations for the

same type of driving that was studied in Ref. [89], where

long transients were observed due to the relative sparsity

of the level width matrix for a wire in the configuration

of Fig. 1(a). Specifically, we employ the bias (65) VL = 5,

VR = 5, A
(1)
L = 4 = A

(1)
R , A

(2)
L = 0 = A

(2)
R , �L = 1 = �R ≡

�D , with the only difference between the leads coming from a

symmetry-breaking phase: φL = 0, φR = −π/2. In Fig. 4(a),

we plot the τ = 0 cross correlation C(×)(t,t) for different

values of the end-site level width parameter Ŵ in a five-site

wire. Similarly to Fig. 2(a), we observe a resonance occurring

in the absolute value of C(×)(t,t) for the perpendicular five-site

wire at most values of Ŵ, and the frequency of this resonance,

given in Fig. 2(b), does not appear to be related to the

driving frequency �D as it is unchanged from its position of

tres ≃ 20 in the static bias case considered above in Fig. 1(b).

After the resonance, the cross correlation decays to a signal

with a smaller amplitude, while retaining a complex periodic

“ringing” signal, as shown in the inset to Fig. 4(a). In
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FIG. 3. (a) Cross section of Re[C(×)(t + τ,t)|t=2000] for the relative time range τ ∈ [−200,200], with λ = 0.1. (b) Plot of the low-frequency

end of the average symmetrized power spectrum of cross correlations [PLR(�) + PRL(�)]/2, obtained as the numerical Fourier transform of

the signal in (a). (c) Cross section of Re[C(×)(t + τ,t)|t=2000] for the relative time range τ ∈ [−40,40], with λ = 0.5. (d) The low-frequency

region of [PLR(�) + PRL(�)]/2 obtained from (c). We use the parameters V = VL = −VR = 5, E = 1, Ŵ = 0.5 throughout.

FIG. 4. (a) Plot of C(×)(t,t) for Ŵ ∈ [1,5]. (b) Plot of the low-frequency end of the absolute value of the Fourier transform F[C(×)(t,t); ω]

for the same parameters as (a), in units of the fundamental driving frequency �D . (c) Plot of C(×)(t,t) for Ŵ ∈ [0.05,1]. (d) Plot of the

low-frequency end of |F[C(×)(t,t); ω]| for the same parameters as (c). Parameters chosen are VL = 5, VR = 5, A
(1)
L = 4 = A

(1)
R , A

(2)
L = 0 = A

(2)
R ,

�L = 1 = �R ≡ �D , φL = 0, φR = −π/2, Ns = 5, λ = 0.1.
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FIG. 5. (a) Plot of C(×)(t,t) for λ ∈ [0.1,0.3]. (b) Plot of the low-frequency end of the absolute value of the Fourier transformF[C(×)(t,t); ω]

for the same parameters as in (a), in units of the fundamental driving frequency �D . (c) Plot of C(×)(t,t) for λ ∈ [0.4,0.6]. (d) Plot of

the low-frequency end of |F[C(×)(t,t); ω]| for the same parameters as in (c). Parameters chosen are VL = 5, VR = 5, A
(1)
L = 4 = A

(1)
R ,

A
(2)
L = 0 = A

(2)
R , �L = 1 = �R ≡ �D , φL = 0, φR = −π/2, Ns = 5.

Fig. 4(b), we plot the absolute value of the Fourier transform

of the signal in Fig. 4(a) with respect to the measurement

time, i.e., we compute |F[C(×)(t,t); ω]|. In addition to the

peak at ω = �D corresponding to a regular photon-assisted

tunneling process, we observe an additional peak at a much

lower frequency, occurring at ωres ≃ 0.3�D . This frequency

should be distinguished from the resonance in the steady-state

correlations �Ns
: it corresponds to the “kick” that the diagonal

(τ = 0) cross correlation receives at tres ≃ 20, via the relation

ωres = 2π/tres. This peak becomes increasingly dominant as

Ŵ is decreased from 5 to 1. In Fig. 4(c), we plot C(×)(t,t) for

Ŵ ∈ [0.05,1]. It is seen that the resonance at ωres ≃ 0.3�D

continues to grow as Ŵ decreases, before saturating in the

region of Ŵ = 0.25, whereupon the resonance decays into a

less singular form. This is reflected in the frequency spectrum

of this signal, shown in Fig. 4(d), which shows how the

resonance continues to grow before reaching the saturation

value of Ŵ and splitting into two smaller resonant peaks as Ŵ

tends to 0.

The frequency of the resonance in Figs. 4(b) and 4(d) is

located at about 0.3–0.35 �D regardless of whether the bias

is ac or dc, and seems to be only moderately affected by

changes in Ŵ. We therefore suspect that it is due to the finite

size and intrinsic properties of the wire. In Fig. 5, we present

calculations of the cross correlation in the same system, this

time varying the hopping parameter λ and keeping the coupling

parameter fixed at Ŵ = 0.5. Figure 5(a) shows that, as λ is

doubled from 0.1 to 0.2, the time at which the resonance

kicks in is approximately halved, before being scaled down

by a factor of ∼ 2
3

as λ is further increased to 0.3. This

is reflected in the Fourier transform of these signals shown

in Fig. 5(b), which show that the position of the resonant

frequency increases linearly with increasing λ, as expected

from the heuristic relation (67). As we continue to increase

the coupling parameter, the duration of the transient resonance

becomes shorter until it approaches the time of 2π , i.e., the

time period of the fundamental driving frequency ωres = �D

at around λ = 0.3. For values of the coupling greater than

this, we see indeed in Fig. 5(c) that that time scale of the

transient becomes smaller than the time scale associated with

the driving. The frequency spectrum of cross correlations,

shown in Fig. 5(d), contains peaks at ωres ≃ 1.4�D (when

λ = 0.4) and ωres ≃ 1.75�D (when λ = 0.5), corresponding

to a continuation of the linear dependence of the transient

resonant frequency on λ. However, when we cross into the

regime of λ/Ŵ > 1 (purple line), this resonance has been

submerged beneath the growing resonances at integer values

of ω/�D , a fact which is reflected in the strongly oscillating

signal of the purple line in Fig. 5(c). These resonances continue

into the high-frequency part of the spectrum beyond the narrow

window exhibited here, and are due to PAT processes.

3. Discussion of results

The calculations presented here point to a rather clear

physical interpretation of the transient behavior of cross

correlations in extended systems. There are three factors which

compete to determine how long electrons take to cross the
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nanojunction: the strength of the end-site coupling Ŵ, the

length of the wire Ns − 1, and the internal hopping parameter

λ. When Ŵ/λ > 1, the molecular wire is more resistant to

propagating electrons than the molecule-electrode interface.

Although the large value of Ŵ tends to reduce the lifetime of

molecular modes, the small value of λ makes it difficult for

tunneling between sites to occur. This means that the time taken

for electrons to traverse the molecular region is significantly

longer than the time scale of the external driving field, and so

the currents in each lead IL(t) and IR(t) become more strongly

correlated at about the time taken for electrons to propagate

between the leads following the switch-on. This explains the

resonant kick at tres ≃ 20 in Figs. 4(a) and 4(c), which remains

at this time so long as Ŵ > λ. If λ is kept fixed and Ŵ is

decreased to the weak coupling regime of Ŵ/λ < 1, we enter

a regime in which it is energetically easier to tunnel between

molecular sites than across the molecule-lead interface. This

increases the likelihood of internal reflection or circular

currents, and leads to the splitting of the single-frequency peak

in Fig. 4(d) into two smaller peaks.

The position of the resonance in frequency space is

determined by λ and Ns . Physically, as the coupling between

molecular sites is increased, it becomes increasingly easier

for electrons to traverse the wire. In the dc case, we saw that

increasing the value of λ increases the strength of reflected

currents within the molecular wire. In the ac case, we found

that in the regime of λ ∼ Ŵ ∼ �D , the time taken for electrons

to pass from lead L to lead R is smaller than the rate at

which photon-assisted electrons tunnel from the lead onto the

molecule. In this regime, the electrons can travel between leads

in less time than it takes for the signal driving them to undergo

an appreciable change.

Once the resonance in C(×)(t,t) has died out, a steady state

is achieved which is oscillatory in the case of an ac bias and

stationary in the case of a dc bias. In the latter case, we saw

the emergence of a regime in which each lead at time t felt

the influence of the other most strongly at a time shifted by

τmax, which was roughly equal to the time tres, and which

changed with Ns and λ in the same way as tres. This suggests

the existence of a time delay for information to propagate

between the L and R leads that shows up in the low-frequency

power spectrum, and in the equal time cross correlations.

The question of how to define the traversal time for electrons

tunneling across a nanostructure has been the subject of much

debate, with a variety of different definitions proposed, mainly

based on the rate of change of wave-packet phase with respect

to momentum [103,104]. The results presented here point to a

method of determining this time for large molecular structures,

namely, by identifying the low-frequency resonances in the

transient of C(×)(t,t) or in the steady-state Fourier transform

of C(×)(t + τ,t) with respect to the time difference τ .

V. CONCLUSIONS

In this paper, we have presented a formalism for the calcu-

lation of the time-dependent quantum current correlations in

nanojunctions which can be used to study the transient current

cross correlations following a partition-free bias switch-on

process. The switched-on bias may have any time dependence:

our approach is not restricted to periodic or constant biases.

Moreover, our formalism applies to any molecular structure to

which the WBLA applies and will be very useful for transport

calculations on large molecular structures. Importantly, it

perfectly reproduces the steady-state quantum noise formulas

obtained previously in Refs. [32,33,82] under the appropriate

limits.

We then presented calculations of the cross-lead current

correlations both in the full two-time plane and for the equal

time (τ = 0) case. Whereas in the single-level case, the

magnitude of cross correlations was maximized for a cor-

relation delay time τmax = 0, τmax was increased significantly

with an increase in the number Ns of atoms in a wire and

with decreasing intersite hopping strength λ, so we naturally

interpret it as the traversal time for electronic information to

cross the nanojunction. In addition, a resonance was observed

in the τ = 0 cross correlation at a time tres that could be orders

of magnitude greater than the time taken for electrons to tunnel

onto the molecule. We found that tres was independent of the

particular bias chosen but scaled linearly with Ns and 1/λ.

This points once again to a signature of the traversal time in

the cross correlations. Therefore, we anticipate that our method

can be used to determine electron traversal times in a rather

more precise way than that offered by heuristic arguments.

This will be useful for functional device applications, for

example, in determining the maximum operating frequencies

in extended molecules used as switches or frequency sensors

in real circuits.

We emphasize that we have only begun to explore the

parameter space and system size that is now accessible within

the biharmonic bias model of Eq. (65). The calculations

presented in this paper were intended to complement numerical

work done in Refs. [88,89] and therefore only used a single-

harmonic driving term. They were also applied to very simple

model systems, although our formulas are general and may

be applied efficiently to a comparatively larger systems,

such as CNT and GNR. In forthcoming work, we will use

the method described in Sec. IV to estimate the traversal

time for these kinds of structures. We will also show how

the formulas presented in Appendix E can be used to achieve

ac-dc rectification, or charge pumping, by including the second

harmonic in Eq. (65) and manipulating the TR symmetry-

breaking phase φα appearing in the first harmonic.
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APPENDIX A: DYSON EQUATIONS FOR MATRIX

BLOCKS OF THE GREEN’S FUNCTION

1. Lead-molecule coupling terms

In this section, the first and fourth terms in Eq. (19) will be

evaluated. First, one utilizes the fact that the Dyson equations

for the full α − C and C − α Green’s functions blocks are
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given by

GαC(z1,z2) =

∫

γ

dz̄ gαα(z1,z̄)hαC(z̄)GCC(z̄,z2), (A1)

GCα(z1,z2) =

∫

γ

dz̄ GCC(z1,z̄)hCα(z̄)gαα(z̄,z2). (A2)

We now introduce the notation “(z−
1 ,z+

2 )” to denote that

the first argument is always on the upper branch C− of

the Konstantinov-Perel’ contour, and the second argument

always on the lower branch C+, and therefore that the second

argument is always “later” on the contour than the first.

“(z+
1 ,z−

2 )” denotes the opposite ordering of contour positions,

and retaining this ordering is necessary to obtain the correct

initial conditions when the limit t1,t2 → t0 is taken. The

Langreth rules [93,94] can then be applied to Eqs. (A1)

and (A2), which map from the Konstantinov-Perel’ contour

onto real and imaginary convolution integrals defined with the

following notation:

A · B(z1,z2) ≡

∫ ∞

t0

dt̄ A(z1,t̄)B(t̄ ,z2), (A3)

A ⋆ B(z1,z2) ≡ −i

∫ β

0

dτ A(z1,τ )B(τ,z2). (A4)

This allows us to extract the lesser and greater components of

the lead-molecule matrix blocks:

G>
αC(t1,t2) =

[
g>

ααhαC · Ga
CC + gr

ααhαC · G>
CC + g�

ααhαC ⋆ G�
CC

]
(t+1 ,t−2 )

, (A5)

G<
βC(t2,t1) =

[
g<

ββhβC · Ga
CC + gr

ββhβC · G<
CC + g�

ββhβC ⋆ G�
CC

]
(t−2 ,t+1 )

, (A6)

G>
Cβ(t1,t2) =

[
G>

CC · hCβga
ββ + Gr

CC · hCβg>
ββ + G�

CC ⋆ hCβg�
ββ

]
(t+1 ,t−2 )

, (A7)

G<
Cα(t2,t1) =

[
G<

CC · hCαga
αα + Gr

CC · hCαg<
αα + G�

CC ⋆ hCαg�
αα

]
(t−2 ,t+1 )

. (A8)

These expressions are combined with the definition of the embedding self-energy to give

hCαG>
αC(t1,t2)hCβG<

βC(t2,t1) + G>
Cβ(t1,t2)hβCG<

Cα(t2,t1)hαC

=
(
�

>
α · Ga

CC + �
r
α · G>

CC + �
�
α ⋆ G�

CC

)
(t+1 ,t−2 )

(
�

<
β · Ga

CC + �
r
β · G<

CC + �
�
β ⋆ G�

CC

)
(t−2 ,t+1 )

+
(
G>

CC · �
a
β + Gr

CC · �
>
β + G�

CC ⋆ �
�
β

)
(t+1 ,t−2 )

(
G<

CC · �
a
α + Gr

CC · �
<
α + G�

CC ⋆ �
�
α

)
(t−2 ,t+1 )

. (A9)

2. Lead-lead and molecule-molecule terms

In this section, the second and third terms in Eq. (19) will be evaluated. The equation of motion (EOM) for the full GF is

projected onto the αβ region:

[
i

d

dz1

− hαα(z1)

]
Gαβ (z1,z2) = Iαδαβδ(z1,z2) + hαC(z1)GCβ(z1,z2), (A10)

Gαβ(z1,z2)

[
−i

←−−
d

dz2

− hββ(z2)

]
= Iαδαβδ(z1,z2) + GαC(z1,z2)hCβ(z2). (A11)

We insert the fomulas (A1) and (A2) into these EOM to get

[
i

d

dz1

− hαα(z1)

]
Gαβ(z1,z2) = Iαδαβδ(z1,z2) +

∫

γ

dz̄ hαC(z1)GCC(z1,z̄)hCβ(z̄)gββ(z̄,z2), (A12)

Gαβ(z1,z2)

[
−i

←−−
d

dz2

− hββ(z2)

]
= Iαδαβδ(z1,z2) +

∫

γ

dz̄ gαα(z1,z̄)hαC(z̄)GCC(z̄,z2)hCβ(z2). (A13)

Introducing the GF of the bare leads
[
i

d

dz1

− hαα(z1)

]
gαα(z1,z2) = Iαδ(z1,z2), (A14)

we can extract the desired Dyson equation

Gαβ(z1,z2) = gαα(z1,z2)δαβ +

∫

γ

dz̄ dz̄′gαα(z1,z̄)hαC(z̄)GCC(z̄,z̄′)hCβ(z̄′)gββ(z̄′,z2). (A15)

Once more applying the Langreth rules, the greater and lesser GFs can then be found:

G>
αβ(t1,t2) = g>

αα(t1,t2)δαβ +
[(

g>
ααhαC · Ga

CC + gr
ααhαC · G>

CC + g�
ααhαC ⋆ G�

CC

)
· hCβga

ββ

+ gr
ααhαC · Gr

CC · hCβg>
ββ +

(
gr

ααhαC · G�
CC + g�

ααhαC ⋆ GM
CC

)
⋆ hCβg�

ββ

]
(t+1 ,t−2 )

, (A16)
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G<
βα(t2,t1) = g<

αα(t2,t1)δαβ +
[(

g<
ββhβC · Ga

CC + gr
ββhβC · G<

CC + g�
ββhβC ⋆ G�

CC

)
· hCαga

αα

+ gr
ββhβC · Gr

CC · hCαg<
αα +

(
gr

ββhβC · G�
CC + g�

ββhβC ⋆ GM
CC

)
⋆ hCαg�

αα

]
(t−2 ,t+1 )

. (A17)

We are thus able to write the second and third terms in the correlation function (19) in terms of self-energy and GF components:

hCαG>
αβ(t1,t2)hβC = �

>
α (t1,t2)δαβ +

[(
�

>
α · Ga

CC + �
r
α · G>

CC + �
�
α ⋆ G�

CC

)
· �

a
β

+�
r
α · Gr

CC · �
>
β +

(
�

r
α · G�

CC + �
�
α ⋆ GM

CC

)
⋆ �

�
β

]
(t+1 ,t−2 )

, (A18)

hCβG<
βα(t2,t1)hαC = �

<
α (t2,t1)δαβ +

[(
�

<
β · Ga

CC + �
r
β · G<

CC + �
�
β ⋆ G�

CC

)
· �

a
α

+�
r
β · Gr

CC · �
<
α +

(
�

r
β · G�

CC + �
�
β ⋆ GM

CC

)
⋆ �

�
α

]
(t−2 ,t+1 )

. (A19)

To simplify these expressions, we use an identity [68,84]

(
�

�
α ⋆ GM

CC ⋆ �
�
β

)
(t1,t2)

= 0. (A20)

This enables us to neglect the terms in the correlation function arising from a double convolution on CM in Eqs. (A18) and (A19),

so that in conjunction with Eq. (A9) one finally obtains the correlation function in Eq. (20).

APPENDIX B: GREEN’S FUNCTIONS AND SELF-ENERGIES FOR THE TIME-DEPENDENT MODEL HAMILTONIAN

We have previously obtained all Green’s functions and self-energy components for the switch-on process described by the

Hamiltonian in Eq. (2) [91]. We list these below for expediency:

Gr
CC(t1,t2) = −iθ (t1 − t2)e−ih̃eff

CC (t1−t2)e−iϕC (t1,t2), (B1)

Ga
CC(t1,t2) = iθ (t2 − t1)e−i (̃heff

CC )†(t1−t2)e−iϕC (t1,t2), (B2)

GM
CC(τ1,τ2) =

i

β

∞∑

q=−∞

e−ωq (τ1−τ2)

{ (
ωq − heff

CC + μ
)−1

, Im(ωq) > 0(
ωq −

(
heff

CC

)†
+ μ

)−1
, Im(ωq) < 0

(B3)

G�
CC(t1,τ2) = e−ih̃eff (t1−t0)e−iϕC (t1,t0)

[
GM (0+,τ2) − i

∫ t1

t0

dt̄ eih̃eff (t̄−t0)eiϕC (t̄ ,t0)[�� ⋆ GM ](t̄ ,τ2)

]
,

G�
CC(τ1,t2) =

[
GM (τ1,0

+) + i

∫ t2

t0

dt̄[GM ⋆ �
�](τ1,t̄)e

−i (̃heff )†(t̄−t0)e−iϕC (t̄ ,t0)

]
ei (̃heff )†(t2−t0)eiϕC (t2,t0), (B4)

�
r
α(t1,t2) = −

iŴα

2
δ(t1 − t2), (B5)

�
a
α(t1,t2) =

iŴα

2
δ(t1 − t2), (B6)

�
M
α (τ1,τ2) =

i

β

∞∑

q=−∞

e−ωq (τ1−τ2) iŴα

2

{
−1, Im(ωq) > 0

+1, Im(ωq) < 0
(B7)

�
�
α(t1,τ2) =

iŴα

β

∞∑

q=−∞

e−iψα (t1,t0)eωqτ2

∫
dω

2π

e−iω(t1−t0)

ωq − ω + μα

, (B8)

�
�
α(τ1,t2) =

iŴα

β

∞∑

q=−∞

e−ωqτ1eiψα (t2,t0)

∫
dω

2π

eiω(t2−t0)

ωq − ω + μα

, (B9)

�
≶
α (t1,t2) = ±iŴαe−iψα (t1,t2)

∫
dω

2π
f [±(ω − μ)]e−iω(t1−t2). (B10)
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APPENDIX C: STEADY-STATE RESULTS

In the limits of long-time and static bias, the general WBLA formula for the two-time correlation given in Eq. (29) may be

mapped to the frequency domain as a summation over five terms:

Cαβ(�) =

5∑

i=1

C
(i)
αβ(�). (C1)

The first term is nonzero only when α = β:

C
(1)
αβ (�) = lim

t0→−∞,Vα (t)→Vα

∫
dτ ei�τ δαβ4q2TrC[�>

α (t1,t2)G<
CC(t2,t1) + G>

CC(t1,t2)�<
α (t2,t1)]

= δαβ4q2
∑

γ

∫
dω

2π
{[1 − fα(ω + � − μ)]fγ (ω − μ) + [1 − fγ (ω − μ)]fα(ω − � − μ)}Tγα(ω), (C2)

where we have introduced the transmission probability

Tγα(ω) ≡ TrC[ŴαGr (ω)Ŵγ Ga(ω)]. (C3)

Following the interpretative scheme of Ref. [31], we identify the physical origin of this term in processes involving the excitation

and propagation of a quasiparticle electron-hole pair, one of which is excited by an energy of h̄� with respect to the other. The

other terms in Cαβ(�) occur in higher orders of the level width and involve more complicated electron-hole energy transfer

processes:

C
(2)
αβ (�) = lim

t0→−∞,Vα (t)→Vα

∫
dτ ei�τ 4q2TrC[ŴαG>

CC(t + τ,t)ŴβG<
CC(t,t + τ )]

= 4q2
∑

γ,γ ′

∫
dω

2π
[1 − fγ (ω − μ)]fγ ′(ω − � − μ)TrC

[
T

(αγ )

CC (ω)T
†(βγ )

CC (ω)T
(βγ ′)

CC (ω − �)T
†(αγ ′)

CC (ω − �)
]
, (C4)

C
(3)
αβ (�) = lim

t0→−∞,Vα (t)→Vα

∫
dτ ei�τ i4q2TrC[G>

CC(t + τ,t)[�+
β (t,t + τ )Ŵα + Ŵβ(�+

α )†(t + τ,t)]]

= i4q2
∑

γ

∫
dω

2π
TrC[[1 − fγ (ω − μ)]fβ(ω − � − μ)Aγ (ω)ŴβGa

CC(ω − �)Ŵα

− [1 − fγ (ω − μ)]fα(ω − � − μ)Aγ (ω)ŴβGr
CC(ω − �)Ŵα], (C5)

C
(4)
αβ (�) = lim

t0→−∞,Vα (t)→Vα

∫
dτ ei�τ i4q2TrC{[�−

α (t + τ,t)Ŵβ + Ŵα(�−
β )†(t,t + τ )]G<

CC(t,t + τ )}

= i4q2
∑

γ

∫
dω

2π
TrC
[
[1 − fα(ω − μ)]fγ (ω − � − μ)ŴαGa

CC(ω)ŴβAγ (ω − �)

− [1 − fβ(ω − μ)]fγ (ω − � − μ)ŴαGr
CC(ω)ŴβAγ (ω − �)

]
, (C6)

C
(5)
αβ (�) = lim

t0→−∞,Vα (t)→Vα

−

∫
dτ ei�τ i4q2TrC[�+

β (t,t + τ )�−
α (t + τ,t) + (�+

α )†(t + τ,t)(�−
β )†(t,t + τ )]

= −4q2
∑

γ

∫
dω

2π
TrC
[
fβ(ω − � − μ)[1 − fα(ω − μ)]ŴαGa

CC(ω)ŴβGa
CC(ω − �)

+ fα(ω − � − μ)[1 − fβ(ω − μ)]ŴαGr
CC(ω)ŴβGr

CC(ω − �)
]
. (C7)

These formulas are then substituted into Eq. (C1) to get (50) after some lengthy algebra.

APPENDIX D: FORMULAS FOR A FAST NUMERICAL IMPLEMENTATION

In this Appendix, we provide exact formulas for all terms appearing in Eq. (29). Our method is based on the fact that we can

expand the Fermi function into a series expansion whose terms possess a simple pole structure [105]:

f (x) =
1

eβx + 1
=

1

2
− lim

Np→∞

Np∑

l=1

ηl

(
1

βx + iζl

+
1

βx − iζl

)
. (D1)

When the parameter values are ηl = 1 and ζl = π (2l − 1), this is referred to as the Matsubara expansion, but one can also

improve the convergence of this series for finite Np by expressing the Fermi function as a finite continued fraction, and then poles
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of the Fermi function can be found as the solution to an eigenproblem for a tridiagonal matrix [106–108]. From the Matsubara

expansion, one can write the lesser/greater self-energies as follows:

�
≶
α (t1,t2) = ±i

Ŵα

2
δ(t1 − t2) − Ŵαe−iψα (t1,t2)e−iμ(t1−t2)cosech

(
π

β
(t1 − t2)

)∣∣∣∣
t1 �=t2

, (D2)

where we define cosech(π
β

(t1 − t2))|
t1 �=t2

such that it is equal to zero when t1 = t2. In practice, this function is implemented using

the Padï parameters as in Ref. [89]:

cosech

(
π

β
(t1 − t2)

)∣∣∣∣
t1 �=t2

≃ 2

Np∑

l=1

ηl

[
θ (t1 − t2)e

−
ζl
β

(t1−t2)
− θ (t2 − t1)e

−
ζl
β

(t2−t1)
]
, (D3)

where the step function is defined by the midpoint convention:

θ (x) =

⎧
⎪⎨
⎪⎩

1, x > 0
1
2
, x = 0

0, x < 0.

(D4)

This evaluation in Eq. (D3) is extremely precise at large t1 − t2, but diverges less rapidly than the true cosech at t1 ∼ t2, thus

avoiding numerical errors in the integration. We remark that the delta function in the first term of Eq. (D2) is the reason for the

divergence in the current autocorrelation at t1 = t2 in the WBLA.

The effective Hamiltonian heff
CC is non-Hermitian. We introduce the left and right eigenvectors of this, which are known to

share the same eigenvalues [85]:

heff
CC

∣∣ϕR
j

〉
= ε̄j

∣∣ϕR
j

〉
and

〈
ϕL

j

∣∣heff
CC = ε̄j

〈
ϕL

j

∣∣. (D5)

By inserting the expansion in Eq. (D1) and removing all frequency integrals, it is possible to evaluate exactly the �
± matrices

defined in Eqs. (34) and (35) in terms of the so-called Hurwitz-Lerch transcendent � [109]:

�(z,s,a) ≡

∞∑

n=0

zn

(n + a)s
. (D6)

This arises from integrals over terms of the form eiωτ/(ω − z), where z is a complex-valued pole. Thus, we derive expressions

for the �
± matrices in the left/right eigenbasis and with all frequency integrals removed:

�
+
β (t2,t1) =

∑

j

Ŵβ

∣∣ϕL
j

〉〈
ϕR

j

∣∣
〈
ϕR

j

∣∣ϕL
j

〉
[

−
i

2β

∫ t1

t0

dτ eiε̄∗
j (t1−τ )e−iμ(t2−τ )e−iψβ (t2,τ )cosech

(
π

β
(t2 − τ )

)∣∣∣∣
t2 �=τ

− θ (t1 − t2)
eiε̄∗

j (t1−t2)

2
−

i

2π
eiε̄∗

j (t1−t0)e−iμ(t2−t0)e−iψβ (t2,t0)�̄(β,t2 − t0,ε̄
∗
j − μ)

]
, (D7)

(�+
α )†(t1,t2) =

∑

j

∣∣ϕR
j

〉〈
ϕL

j

∣∣Ŵα〈
ϕL

j

∣∣ϕR
j

〉
[

i

2β

∫ t2

t0

dτ e−iε̄j (t2−τ )eiμ(t1−τ )eiψα (t1,τ )cosech

(
π

β
(t1 − τ )

)∣∣∣∣
t1 �=τ

− θ (t2 − t1)
e−iε̄j (t2−t1)

2
+

i

2π
e−iε̄j (t2−t0)eiμ(t1−t0)eiψα(t1,t0)�̄[β,t1 − t0, − (ε̄j − μ)]

]
, (D8)

�
−
α (t1,t2) =

∑

j

Ŵα

∣∣ϕL
j

〉〈
ϕR

j

∣∣
〈
ϕR

j

∣∣ϕL
j

〉
[

−
i

2β

∫ t2

t0

dτ eiε̄∗
j (t2−τ )e−iμ(t1−τ )e−iψα (t1,τ )cosech

(
π

β
(t1 − τ )

)∣∣∣∣
t1 �=τ

+ θ (t2 − t1)
eiε̄∗

j (t2−t1)

2
−

i

2π
eiε̄∗

j (t2−t0)e−iμ(t1−t0)e−iψα (t1,t0)�̄(β,t1 − t0,ε̄
∗
j − μ)

]
, (D9)

(�−
β )†(t2,t1) =

∑

j

∣∣ϕR
j

〉〈
ϕL

j

∣∣Ŵβ〈
ϕL

j

∣∣ϕR
j

〉
[

i

2β

∫ t1

t0

dτ e−iε̄j (t1−τ )eiμ(t2−τ )eiψβ (t2,τ )cosech

(
π

β
(t2 − τ )

)∣∣∣∣
t2 �=τ

+ θ (t1 − t2)
e−iε̄j (t1−t2)

2
+

i

2π
e−iε̄j (t1−t0)eiμ(t2−t0)eiψβ (t2,t0)�̄[β,t2 − t0, − (ε̄j − μ)]

]
. (D10)

Here, we have defined the following compact object in terms of the Hurwitz-Lerch transcendent:

�̄(β,τ,z) ≡ exp

(
−

π

β
τ

)
�

(
e
− 2πτ

β ,1,
1

2
+

βz

2iπ

)
. (D11)
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In addition, the lesser and greater Green’s functions can be put into a convenient form for the numerical evaluation:

G
≷
CC(t1,t2) =

1

2π

∑

γ,k,j

∣∣ϕR
j

〉〈
ϕL

j

∣∣Ŵγ

∣∣ϕL
k

〉〈
ϕR

k

∣∣
〈
ϕL

j

∣∣ϕR
j

〉〈
ϕR

k

∣∣ϕL
k

〉 e−iϕc(t1,t2)e−iε̄j (t1−t0)eiε̄∗
k (t2−t0)

×

{
i

ε̄∗
k − ε̄j

[
�

(
1

2
+

β

2iπ
(ε̄∗

k − μ)

)
− �

(
1

2
−

β

2iπ
(ε̄j − μ)

)]

±
π

ε̄∗
k − ε̄j

[
θ (t1 − t2)ei(ε̄j −ε̄∗

k )(t2−t0) + θ (t2 − t1)ei(ε̄j −ε̄∗
k )(t1−t0)

]

−

(∫ t1

t0

dτ ei(ε̄j −μ)(τ−t0)ei(ϕc−ψγ )(τ,t0)�̄(β,τ − t0,ε̄
∗
k − μ) − c.c.j↔k,t1↔t2

)

−
2π

β
[θ (t1 − t2)I (t2,β,μ,ε̄j ,ε̄

∗
k ) + θ (t2 − t1)I (t1,β,μ,ε̄j ,ε̄

∗
k )]

−
2π

β

∑

l

ηl

[
θ (t1 − t2)

∫ t1

t2

dτ

∫ t2

t0

dτ̄ e
i(ε̄j −μ+i

ζl
β

)(τ−t0)
e
−i(ε̄∗

k −μ+i
ζl
β

)(τ̄−t0)
ei(ϕc−ψγ )(τ,τ̄ ) − c.c.j↔k,t1↔t2

]}
, (D12)

where c.c.j↔k,t1↔t2 denotes the complex conjugation of the preceding term with both the j and k indices and the times t1 and t2
exchanged, and we have defined the function

I (t,β,μ,ε̄j ,ε̄
∗
k ) =

∫ t

t0

dτ

∫ t

t0

dτ̄ ei(ε̄j −μ)(τ−t0)e−i(ε̄∗
k −μ)(τ̄−t0)ei(ϕc−ψγ )(τ,τ̄ )cosech

(
π

β
(τ − τ̄ )

)∣∣∣∣
τ �=τ̄

. (D13)

Here, we have introduced the digamma function �, defined as the logarithmic derivative of the complex gamma function

�(z) ≡
d ln Ŵ(z)

dz
[76]. Note that we can get G< directly from G> on each summation cycle via the following useful property:

G>(t1,t2) − G<(t1,t2) = −ie−iϕC (t1,t2)
∑

j

[∣∣ϕR
j

〉〈
ϕL

j

∣∣
〈
ϕL

j

∣∣ϕR
j

〉 e−iε̄j (t1−t2)θ (t1 − t2) +

∣∣ϕL
j

〉〈
ϕR

j

∣∣
〈
ϕR

j

∣∣ϕL
j

〉 eiε̄∗
j (t2−t1)θ (t2 − t1)

]
. (D14)

This means a single nested loop of calculations in the two-time plane is sufficient to calculate both Green’s functions. We then

use the fact that G<(t1,t2) = −G<(t2,t1)† to get the time-reversed GFs, thus further reducing the calculation time by a half.

APPENDIX E: FORMULAS FOR THE GREEN’S FUNCTIONS AND LAMBDA MATRICES IN THE BIHARMONIC MODEL

When we substitute Eq. (66) into Eq. (D12), we obtain the following result for the greater and lesser Green’s functions:

G≷(t1,t2) =
1

2π

∑

γ,k,j

∣∣ϕR
j

〉〈
ϕL

j

∣∣Ŵγ

∣∣ϕL
k

〉〈
ϕR

k

∣∣
〈
ϕL

j

∣∣ϕR
j

〉〈
ϕR

k

∣∣ϕL
k

〉
{
±

π

ε̄∗
k − ε̄j

[θ (t1 − t2)e−iε̄j (t1−t2) + θ (t2 − t1)eiε̄∗
k (t2−t1)]

+
ie−iε̄j (t1−t0)eiε̄∗

k (t2−t0)

ε̄∗
k − ε̄j

[
�

(
1

2
+

β

2iπ
(ε̄∗

k − μ)

)
− �

(
1

2
−

β

2iπ
(ε̄j − μ)

)]

+ i
∑

r,s

Jr

(
A(1)

γ

p1�γ

)
Js

(
A(2)

γ

p2�γ

)[
e−irφγ e

i
A

(1)
γ

p1�γ
sin φγ

ε̄j − ε̄∗
k − Vγ − �γ (p1r + p2s)

×

[
e−iε̄j (t1−t0)eiε̄∗

k (t2−t0)

[
�

(
1

2
+

β

2πi
(ε̄∗

k − μ)

)
− �

(
1

2
+

β

2πi
(ε̄j − μ − Vγ − �γ (p1r + p2s))

)]

+ eiε̄∗
k (t2−t0)e−i(μ+Vγ +�γ (p1r+p2s))(t1−t0)[�̄(t1 − t0,β,ε̄∗

k − μ) − �̄(t1 − t0,β,ε̄j − μ − Vγ − �γ (p1r + p2s))]
]

+
eirφγ e

−i
A

(1)
γ

p1�γ
sin φγ

ε̄∗
k − ε̄j − Vγ − �γ (p1r + p2s)

[
e−iε̄j (t1−t0)eiε̄∗

k (t2−t0)

[
�

(
1

2
−

β

2πi
(ε̄j − μ)

)

− �

(
1

2
−

β

2πi

(
ε̄∗
k − μ − Vγ − �γ (p1r + p2s)

))]
+ e−iε̄j (t1−t0)ei(μ+Vγ +�γ (p1r+p2s))(t2−t0)

×
[
�̄
(
t2 − t0,β, − (ε̄j − μ)

)
− �̄

(
t2 − t0,β, −

(
ε̄∗
k − μ − Vγ − �γ (p1r + p2s)

))]]]
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+i
∑

r,r ′,s,s ′

Jr

(
A(1)

γ

p1�γ

)
Jr ′

(
A(1)

γ

p1�γ

)
Js

(
A(2)

γ

p2�γ

)
Js ′

(
A(2)

γ

p2�γ

)
e−i(r−r ′)φγ

ε̄j − ε̄∗
k − �γ (p1(r − r ′) + p2(s − s ′))

×

[
e−iε̄j (t1−t0)eiε̄∗

k (t2−t0)

[
�

(
1

2
+

β

2πi

(
ε̄j − μ − Vγ − �γ (p1r + p2s)

))

− �

(
1

2
−

β

2πi

(
ε̄∗
k − μ − Vγ − �γ

(
p1r

′ + p2s
′
)))]

+ eiε̄∗
k (t2−t0)e−i(μ+Vγ +�γ (p1r+p2s))(t1−t0)

[
�̄
(
t1 − t0,β,ε̄j − μ − Vγ − �γ (p1r + p2s)

)

− �̄
(
t1 − t0,β,ε̄∗

k − μ − Vγ − �γ

(
p1r

′ + p2s
′
))]

+ e−iε̄j (t1−t0)ei(μ+Vγ +�γ (p1r
′+p2s

′))(t2−t0)
[
�̄
(
t2 − t0,β, −

(
ε̄j − μ − Vγ − �γ (p1r + p2s)

))

− �̄
(
t2 − t0,β, −

(
ε̄∗
k − μ − Vγ − �γ

(
p1r

′ + p2s
′
)))]

+ θ (t1 − t2)
[
e−i�γ (p1r+p2s)(t1−t0)ei�γ (p1r

′+p2s
′)(t2−t0)e−i(μ+Vγ )(t1−t2)

×
[
�̄
(
t1 − t2,β,ε̄∗

k − μ − Vγ − �γ

(
p1r

′ + p2s
′
))

− �̄
(
t1 − t2,β,ε̄j − μ − Vγ − �γ (p1r + p2s)

)]

+ e−iε̄j (t1−t2)e−i�γ (p1(r−r ′)+p2(s−s ′))(t2−t0)

[
�

(
1

2
−

β

2πi

(
ε̄j − μ − Vγ − �γ (p1r + p2s)

))

−�

(
1

2
+

β

2πi

(
ε̄j − μ − Vγ − �γ (p1r + p2s)

))]]

+ θ (t2 − t1)
[
e−i�γ (p1r+p2s)(t1−t0)ei�γ (p1r

′+p2s
′)(t2−t0)e−i(μ+Vγ )(t1−t2)

×
[
�̄
(
t2 − t1,β, −

(
ε̄∗
k − μ − Vγ − �γ

(
p1r

′ + p2s
′
)))

− �̄
(
t2 − t1,β, −

(
ε̄j − μ − Vγ − �γ (p1r + p2s)

))]

+ eiε̄∗
k (t2−t1)e−i�γ (p1(r−r ′)+p2(s−s ′))(t1−t0)

[
�

(
1

2
−

β

2πi

(
ε̄∗
k − μ − Vγ − �γ

(
p1r

′ + p2s
′
)))

−�

(
1

2
+

β

2πi

(
ε̄∗
k − μ − Vγ − �γ

(
p1r

′ + p2s
′
)))]]]}

(E1)

The formula for the current in lead α can be similarly derived by inserting Eq. (66) into Eq. (22) of Ref. [89]; we defer its

publication to a forthcoming paper on the quantum pump. To evaluate the two-time current correlation function in Eq. (29) for

the biharmonic driving model, it is necessary to evaluate the integral appearing in the expression (D7) for �
+
β (t2,t1). Expanding

the integrand using Eq. (66), we obtain

t1∫

t0

dτeiε̄∗
j (t1−τ )e−iμ(t2−τ )e−iψβ (t2,τ )cosech

(
π

β
(t2 − τ )

)∣∣∣∣
t2 �=τ

=
β

π
eiε̄∗

j (t1−t0)e−i(μ+Vβ )(t2−t0)e
−i

A
(1)
β

p1�β
sin(p1�β (t2−t0)+φβ )

e
−i

A
(2)
β

p2�β
sin(p2�β (t2−t0))

∑

r,s

Jr

(
A

(1)
β

p1�β

)
Js

(
A

(2)
β

p2�β

)
eirφβ

×

{
θ (t1 − t2)e

−i
(
ε̄∗
j −μ−Vβ−�β (p1r+p2s)

)
(t2−t0)

[
�

(
1

2
−

β

2πi
(ε̄∗

j − μ − Vβ − �β(p1r + p2s))

)

−�

(
1

2
+

β

2πi
(ε̄∗

j − μ − Vβ − �β(p1r + p2s))

)]
− �̄(t2 − t0,β,ε̄∗

j − μ − Vβ − �β(p1r + p2s))

+ e−i(ε̄∗
j −μ−Vβ−�β (p1r+p2s))(t1−t0)[θ (t1 − t2)�̄(t1 − t2,β, − (ε̄∗

j − μ − Vβ − �β(p1r + p2s)))

+θ (t2 − t1)�̄
(
t2 − t1,β,ε̄∗

j − μ − Vβ − �β(p1r + p2s)
)]}

. (E2)

The integral in (�−
β )†(t2,t1) is obtained as the complex conjugate of Eq. (E2), the integral in �

−
α (t1,t2) is obtained by exchanging

indices α ↔ β and times t1 ↔ t2, and the integral in (�+
α )†(t1,t2) is obtained as the complex conjugate of the latter expression.
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Thus, one obtains for the �
± matrices

�+
β (t2,t1) =

∑

j

Ŵβ

∣∣ϕL
j

〉〈
ϕR

j

∣∣
〈
ϕR

j

∣∣ϕL
j

〉
[
−

i

2π
eiε̄∗

j (t1−t0)e−i(μ+Vβ )(t2−t0)e
−i

A
(1)
β

p1�β
sin(p1�β (t2−t0)+φβ )

e
−i

A
(2)
β

p2�β
sin(p2�β (t2−t0))

×

[
e
i

A
(1)
β

p1�β
sin (φβ)

�̄
(
β,t2 − t0,ε̄

∗
j − μ

)
+
∑

r,s

Jr

(
A

(1)
β

p1�β

)
Js

(
A

(2)
β

p2�β

)
eirφβ

{
θ (t1 − t2)e

−i
(
ε̄∗
j −μ−Vβ−�β (p1r+p2s)

)
(t2−t0)

×

[
�

(
1

2
−

β

2πi

(
ε̄∗
j − μ − Vβ − �β(p1r + p2s)

))
− �

(
1

2
+

β

2πi

(
ε̄∗
j − μ − Vβ − �β(p1r + p2s)

))]

−�̄
(
t2 − t0,β,ε̄∗

j − μ − Vβ − �β(p1r + p2s)
)

+e
−i
(
ε̄∗
j −μ−Vβ−�β (p1r+p2s)

)
(t1−t0)[

θ (t1 − t2)�̄
(
t1 − t2,β, −

(
ε̄∗
j − μ − Vβ − �β(p1r + p2s)

))

+θ (t2 − t1)�̄
(
t2 − t1,β,ε̄∗

j − μ − Vβ − �β(p1r + p2s)
)]}]

− θ (t1 − t2)
eiε̄∗

j (t1−t2)

2

]
, (E3)

�−
α (t1,t2) =

∑

j

Ŵα

∣∣ϕL
j

〉〈
ϕR

j

∣∣
〈
ϕR

j

∣∣ϕL
j

〉
[
−

i

2π
eiε̄∗

j (t2−t0)e−i(μ+Vα )(t1−t0)e
−i

A
(1)
α

p1�α
sin(p1�α(t1−t0)+φα )

e
−i

A
(2)
α

p2�α
sin(p2�α(t1−t0))

×

[
e
i

A
(1)
α

p1�α
sin(φα )

�̄(β,t1 − t0,ε̄
∗
j − μ) +

∑

r,s

Jr

(
A(1)

α

p1�α

)
Js

(
A(2)

α

p2�α

)
eirφα

{
θ (t2 − t1)e

−i
(
ε̄∗
j −μ−Vα−�α (p1r+p2s)

)
(t1−t0)

×

[
�

(
1

2
−

β

2πi

(
ε̄∗
j − μ − Vα − �α(p1r + p2s)

))
− �

(
1

2
+

β

2πi

(
ε̄∗
j − μ − Vα − �α(p1r + p2s)

))]

−�̄
(
t1 − t0,β,ε̄∗

j − μ − Vα − �α(p1r + p2s)
)

+e
−i
(
ε̄∗
j −μ−Vα−�α (p1r+p2s)

)
(t2−t0)[

θ (t1 − t2)�̄
(
t1 − t2,β,ε̄∗

j − μ − Vα − �α(p1r + p2s)
)

+θ (t2 − t1)�̄
(
t2 − t1,β, −

(
ε̄∗
j − μ − Vα − �α(p1r + p2s)

))]}]
+ θ (t2 − t1)

eiε̄∗
j (t2−t1)

2

]
. (E4)

The matrices (�−
β )†(t2,t1) and (�+

α )†(t1,t2) are then obtained via complex conjugation and exchange of the lead indices α ↔ β

and times t1 ↔ t2 in Eqs. (E3) and (E4), respectively.
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